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Implementation of Relational
Operations
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Relational Operations

❖ We will consider how to implement:
– Selection  (     )    Selects a subset of rows from relation.
– Projection  (     )   Deletes unwanted columns from relation.
– Join  (     )  Allows us to combine two relations.

❖ Since each op returns a relation, ops can be composed!
After we cover the operations, we will discuss how to
optimize queries formed by composing them.
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Schema for Examples

❖ Similar to old schema; rname added for variations.
❖ Reserves:

– Each tuple is 40 bytes long,  100 tuples per page, 1000 pages.

❖ Sailors:
– Each tuple is 50 bytes long,  80 tuples per page, 500 pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)
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Simple Selections

❖ Of the form
❖ Size of result approximated as size of R * reduction

factor;  we will consider how to estimate reduction
factors later.

❖ With no index, unsorted:  Must essentially scan the
whole relation; cost is M (#pages in R).

❖ With an index on selection attribute:  Use index to
find qualifying data entries, then retrieve
corresponding data records.  (Hash index useful
only for equality selections.)

SELECT  *
FROM     Reserves R
WHERE   R.rname < ‘C%’
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Using an Index for Selections
❖ Cost depends on #qualifying tuples and clustering.

– Cost of finding qualifying data entries (typically small) plus
cost of retrieving records (could be large w/o clustering).

– In example, assuming uniform distribution of names, about
10% of tuples qualify (100 pages, 10000 tuples).  With a
clustered index, cost is little more than 100 I/Os; if
unclustered, up to 10000 I/Os!

❖ Important refinement for unclustered indexes:
1. Find qualifying data entries.
2. Sort the rids of the data records to be retrieved.
3. Fetch rids in order.  This ensures that each data page is

looked at just once (though #  of such pages likely to be
higher than with clustering).
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Projection via Hashing
SELECT   DISTINCT
               R.sid, R.bid
FROM     Reserves R

❖ Partitioning phase:  Read R using one input buffer.  For
each tuple, discard unwanted fields, apply hash
function h1 to choose one of B-1 output buffers.
– Result is B-1 partitions (of tuples with no unwanted fields).
– 2 tuples from different partitions guaranteed to be distinct.

❖ Duplicate elimination phase:  For each partition, read it
and build an in-memory hash table, using hash fn h2
(<> h1) on all fields, while discarding duplicates.
– If partition does not fit in memory, can apply hash-based

projection algorithm recursively to this partition.

❖ Cost:  For partitioning, read R, write out each tuple,
but with fewer fields.  This is read in next phase.
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Discussion of Projection

❖ Sort-based approach features better handling of skew
and result is sorted.

❖ Hash-based approach can be faster (locally).
❖ If an index on the relation contains all wanted

attributes in its search key, can do index-only scan.
– Apply projection techniques to data entries (much smaller!)

❖ If an ordered (i.e., tree) index contains all wanted
attributes as prefix of search key, can do even better:
– Retrieve data entries in order (index-only scan), discard

unwanted fields, compare adjacent tuples to check for
duplicates.
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Equality Joins With One Join Column

❖ In algebra: R       S.  Common!  Must be carefully
optimized.  R      S is large; so, R     S followed by a
selection is inefficient.

❖ Assume: M tuples in R, pR tuples per page, N tuples
in S, pS tuples per page.
– In our examples, R is Reserves and S is Sailors.

❖ Cost metric:  #  of I/Os.  We will ignore output costs.

SELECT  *
FROM     Reserves R1, Sailors S1
WHERE  R1.sid=S1.sid
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Simple Nested Loops Join

❖ For each tuple in the outer relation R, we scan the
entire inner relation S.
– Cost:  M +  pR * M * N  =  1000 + 100*1000*500  I/Os.

❖ Page-oriented Nested Loops join:  For each page of R,
get each page of S, and write out matching pairs of
tuples <r, s>, where r is in R-page and S is in S-page.
– Cost:  M + M*N = 1000 + 1000*500
– If smaller relation (S) is outer, cost = 500 + 500*1000

foreach tuple r in R do
foreach tuple s in S do

if ri == sj  then add <r, s> to result
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Block Nested Loops Join

❖ Use one page as an input buffer for scanning the
inner S, one page as the output buffer, and use all
remaining pages to hold ``block’’ of outer R.
– For each matching tuple r in R-block, s in S-page, add

<r, s> to result.  Then read next R-block, scan S, etc.

. . .

. . .

R & S
Hash table for block of R

(k < B-1 pages)

Input buffer for S Output buffer

. . .

Join Result

11

Examples of Block Nested Loops
❖ Cost:  Scan of outer +  #outer blocks * scan of inner

– #outer blocks =

❖ With Reserves (R) as outer, and 100 pages of R:
– Cost of scanning R is 1000 I/Os;  a total of 10 blocks.
– Per block of R, we scan Sailors (S);  10*500 I/Os.
– If space for just 90 pages of R, we would scan S 12 times.

❖ With 100-page block of Sailors as outer:
– Cost of scanning S is 500 I/Os; a total of 5 blocks.
– Per block of S, we scan Reserves;   5*1000 I/Os.

❖ With sequential reads considered, analysis changes:
may be best to divide buffers evenly between R and S.

 # /of pages of outer blocksize
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Index Nested Loops Join

❖ If there is an index on the join column of one relation
(say S), can make it the inner and exploit the index.
– Cost:  M + ( (M*pR) * cost of finding matching S tuples)

❖ For each R tuple, cost of probing S index is about 1.2
for hash index, 2-4 for B+ tree.  Cost of then finding S
tuples (assuming Alt. (2) or (3) for data entries)
depends on clustering.
– Clustered index:  1 I/O (typical), unclustered: up to 1 I/O

per matching S tuple.

foreach tuple r in R do
foreach tuple s in S where ri == sj  do

add <r, s> to result
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Examples of Index Nested Loops

❖ Hash-index (Alt. 2) on sid of Sailors (as inner):
– Scan Reserves:  1000 page I/Os, 100*1000 tuples.
– For each Reserves tuple:  1.2 I/Os to get data entry in

index, plus 1 I/O to get (the exactly one) matching Sailors
tuple.  Total:  220,000 I/Os.

❖ Hash-index (Alt. 2) on sid of Reserves (as inner):
– Scan Sailors:  500 page I/Os, 80*500 tuples.
– For each Sailors tuple:  1.2 I/Os to find index page with

data entries, plus cost of retrieving matching Reserves
tuples.  Assuming uniform distribution, 2.5 reservations
per sailor (100,000 / 40,000).  Cost of retrieving them  is 1 or
2.5 I/Os depending on whether the index is clustered.
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Sort-Merge Join  (R    S)

❖ Sort R and S on the join column, then scan them to do
a ``merge’’ (on join col.), and output result tuples.
– Advance scan of R until current R-tuple >= current S tuple,

then advance scan of S until current S-tuple >= current R
tuple; do this until current R tuple = current S tuple.

– At this point, all R tuples with same value in Ri (current R
group) and all S tuples with same value in Sj (current S
group) match;  output <r, s> for all pairs of such tuples.

– Then resume scanning R and S.

❖ R is scanned once; each S group is scanned once per
matching R tuple.  (Multiple scans of an S group are
likely to find needed pages in buffer.)
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Example of Sort-Merge Join

❖ Cost:  M log M + N log N + (M+N)
– The cost of scanning, M+N, could be M*N (very unlikely!)

❖ With 35, 100 or 300 buffer pages, both Reserves and
Sailors can be sorted in 2 passes; total join cost: 7500.

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

(BNL cost:  2500 to 15000 I/Os) 16

Set Operations

❖ Intersection and cross-product special cases of join.
❖ Union (Distinct) and Except similar; we’ll do union.
❖ Sorting based approach to union:

– Sort both relations (on combination of all attributes).
– Scan sorted relations and merge them.

❖ Hash-based approach to union:
– Partition R and S using hash function h.
– For each S-partition, build in-memory hash table (using h2),

scan corresponding R-partition and add tuples to table
while discarding duplicates.
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Impact of Buffering

❖ If several operations are executing concurrently,
estimating the number of available buffer pages is
guesswork.

❖ Repeated access patterns interact with buffer
replacement policy.
– e.g., Inner relation is scanned repeatedly in Simple

Nested Loop Join.  With enough buffer pages to hold
inner, replacement policy does not matter.  Otherwise,
MRU is best, LRU is worst (sequential flooding).

– Does replacement policy matter for Block Nested Loops?
– What about Index Nested Loops? Sort-Merge Join?

18

Summary

❖ A virtue of relational DBMSs: queries are composed of a
few basic operators; the implementation of these
operators can be carefully tuned (and it is important
to do this!).

❖ Many alternative implementation techniques for each
operator; no universally superior technique for most
operators.

❖ Must consider available alternatives for each
operation in a query and choose best one based on
system statistics, etc.  This is part of the broader task
of optimizing a query composed of several ops.
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State of the Art (impl. algorithms)

❖ Approximate answers (data warehousing)
– Too much data to find exact answer quickly
– No need for an exact answer

❖ Top-K queries (K “best” matches)
– Multimedia (fuzzy criteria); decision support
– Approximate or exact

❖ Extensibility:
– User-defined data types
– User-defined functionality

❖ Improve time-to-first-result-tuple
– Ripple Join (impl. project, part 2)


