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Indexing

2

Introduction

❖ A Heap file allows us to retrieve records:
– by specifying the rid, or
– by scanning all records sequentially

❖ Sometimes, we want to retrieve records by
specifying the values in one or more fields, e.g.,
– Find all students in the “CS” department
– Find all students with a gpa > 3

❖ Indexes are file structures that enable us to
answer such value-based queries efficiently.
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Introduction (cont’d.)

❖ An index on a file speeds up selections on the
search key fields for the index.
– Any subset of the fields of a relation can be the

search key for an index on the relation.
– Search key is not the same as key (set of fields that

uniquely identify a record in a relation).

❖ An index contains a collection of data entries,
and supports efficient retrieval of all data
entries k* with a given search key value k.
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Alternatives for Data Entry k* in Index

❖ Three alternatives:
➀  Data record with key value k
➁  <k, rid of data record with search key value k>
➂  <k, list of rids of data records with search key k>

❖ Choice of alternative for data entries is
orthogonal to the indexing technique used to
locate data entries with a given key value k.

– Examples of indexing techniques: B+ trees, hash-
based structures

– Typically, index contains auxiliary information that
directs searches to the desired data entries
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Alternatives for Data Entries (Contd.)

❖ Alternative 1:
– If this is used, index structure imposes a file organization

for data records (like Heap files or sorted files).
– At most one index on a given collection of data records

can use Alternative 1.  (Otherwise, data records
duplicated, leading to redundant storage and potential
inconsistency.)

– If data records very large,  # of pages containing data
entries is high.  Implies size of auxiliary information in
the index is also large, typically.
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Alternatives for Data Entries (Contd.)

❖ Alternatives 2 and 3:
– Data entries typically much smaller than data

records.  So, better than Alternative 1 with large
data records, especially if search keys are small.
(Portion of index structure used to direct search is
much smaller than with Alternative 1.)

– If more than one index is required on a given file, at
most one index can use Alternative 1; rest must use
Alternatives 2 or 3.

– Alternative 3 more compact than Alternative 2, but
leads to variable sized data entries even if search
keys are of fixed length.
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Index Classification

❖ Primary vs. secondary:  If search key contains
primary key, then called primary index.
– Unique index:  Search key contains a candidate key.

❖ Clustered vs. unclustered:  If order of data records
is the same as, or `close to’, order of data entries,
then called clustered index.
– A file can be clustered on at most one search key.
– Cost of retrieving data records through index varies

greatly based on whether index is clustered or not!
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Clustered vs. Unclustered Index
❖ Suppose that the data records are stored in a Heap

file.
–   To build clustered index, first sort the Heap file (with

some free space on each page for future inserts).
– Overflow pages may be needed for inserts.  (Thus, order of

data recs is `close to’, but not identical to, the sort order.)

Index entries

Data entries

direct search for 

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED
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Index Classification (Contd.)

❖ Dense vs. Sparse:  If
there is at least one data
entry per  search key
value (in some data
record), then dense.
– Every sparse index is

clustered!
– Sparse indexes are

smaller; however, some
useful optimizations are
based on dense indexes.
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Tree-Structured Indices

❖ Tree-structured indexing techniques support
both range searches and equality searches.

❖ ISAM:  static structure;  B+ tree:  dynamic,
adjusts gracefully under inserts and deletes.

11

ISAM

❖ Repeat sequential indexing until sequential
index fits on one page.

☛ Leaf pages contain data entries.

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

Pages

Overflow 
page

Primary pages

Leaf
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Example ISAM Tree

❖ Each node can hold 2 entries; no need for
`next-leaf-page’ pointers.  (Why?)

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root
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Comments on ISAM

❖ File creation:  Leaf (data) pages allocated
sequentially, sorted by search key; then index
pages allocated, then space for overflow pages.

❖ Index entries:  <search key value, page id>;  they
`direct’ search for data entries, which are in leaf pages.

❖ Search:  Start at root; use key comparisons to go to leaf.
Cost     log F N ; F = #  entries/index pg, N = #  leaf pgs

❖ Insert:  Find leaf data entry belongs to, and put it there.
❖ Delete:  Find and remove from leaf; if empty overflow

page, de-allocate.

☛ Static tree structure:  inserts/deletes affect only leaf pages.

∝

Data Pages

Index Pages

Overflow pages
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After Inserting 23*, 48*, 41*, 42* ...

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary
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          ... Then Deleting 42*, 51*, 97*

☛ Note that 51 appears in index levels, but  not in leaf!

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40

Root

23* 48* 41*
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B+ Tree:  The Most Widely-Used Index

❖ Insert/delete at log F N cost; keep tree height-
balanced.   (F = fanout, N = # leaf pages)

❖ Minimum 50% occupancy (except for root).  Each
node contains d <=  m  <= 2d entries.  The
parameter d is called the order of the tree.

❖ Supports equality and range-searches efficiently.

Index Entries

Data Entries
("Sequence set")

(Direct search)
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Example B+ Tree

❖ Search begins at root, and key comparisons
direct it to a leaf (as in ISAM).

❖ Search for 5*, 15*, all data entries >= 24* ...

☛ Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13
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B+ Trees in Practice

❖ Typical order: 100.  Typical fill-factor: 67%.
– average fanout = 133

❖ Typical capacities:
– Height 4: 1334 = 312,900,700 records
– Height 3: 1333 =     2,352,637 records

❖ Can often hold top levels in buffer pool:
– Level 1 =           1 page  =     8 Kbytes
– Level 2 =      133 pages =     1 Mbyte
– Level 3 = 17,689 pages = 133 MBytes
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Inserting a Data Entry into a B+ Tree
❖ Find correct leaf L.
❖ Put data entry onto L.

– If L has enough space, done!
– Else, must split  L (into L and a new node L2)

◆ Redistribute entries evenly, copy up middle key.
◆ Insert index entry pointing to L2 into parent of L.

❖ This can happen recursively
– To split index node, redistribute entries evenly, but

push up middle key.  (Contrast with leaf splits.)

❖ Splits “grow” tree; root split increases height.
– Tree growth: gets wider or one level taller at top.
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Inserting 8* into Example B+ Tree

❖ Observe how
minimum
occupancy is
guaranteed in
both leaf and
index pg splits.

❖ Note difference
between copy-
up and push-up;
be sure you
understand the
reasons for this.

2* 3* 5* 7* 8*

5

Entry to be inserted in parent node.
(Note that 5 is
continues to appear in the leaf.)

s copied up and

appears once in the index. Contrast

5 24 30

17

13

Entry to be inserted in parent node.
(Note that 17 is pushed up and only

this with a leaf split.)
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Example B+ Tree After Inserting 8*

❖ Notice that root was split, leading to increase in height.

❖ In this example, we can avoid split by re-distributing
entries; however, this is usually not done in practice.

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*
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Deleting a Data Entry from a B+ Tree

❖ Start at root, find leaf L where entry belongs.
❖ Remove the entry.

– If L is at least half-full, done!
– If L has only d-1 entries,

◆ Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

◆ If re-distribution fails, merge L and sibling.

❖ If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

❖ Merge could propagate to root, decreasing height.
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Example Tree After (Inserting 8*,
Then) Deleting 19* and 20* ...

❖ Deleting 19* is easy.
❖ Deleting 20* is done with re-distribution.

Notice how middle key is copied up.

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

24

        ... And Then Deleting 24*

❖ Must merge.
❖ Observe `toss’ of

index entry (on right),
and `pull down’ of
index entry (below).

30

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root
30135 17
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Summary

❖ Indexes support efficient retrieval of records
based on the values in some fields.

❖ Index is a collection of data entries plus a way
to quickly find entries with given key values.

❖ Can have several indexes on a given file of
data records, each with a different search key.

❖ Indexes can be classified as clustered vs.
unclustered, primary vs. secondary, and
dense vs. sparse.  Differences have important
consequences for utility/performance.

26

Summary

❖ Tree-structured indexes are ideal for range-
searches, also good for equality searches.

❖ ISAM is a static structure.
– Performance can degrade over time.

❖ B+ tree is a dynamic structure.
– Inserts/deletes leave tree height-balanced; log F N cost.
– High fanout (F) means depth rarely more than 3 or 4.
– Almost always better than maintaining a sorted file.
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Summary (Contd.)

– Typically, 67% occupancy on average.
– Usually preferable to ISAM, modulo locking

considerations; adjusts to growth gracefully.

❖ Most widely used index in database management
systems because of its versatility.  One of the most
optimized components of a DBMS.


