
1

1

Indexing

2

Introduction

❖ A Heap file allows us to retrieve records:
– by specifying the rid, or
– by scanning all records sequentially

❖ Sometimes, we want to retrieve records by
specifying the values in one or more fields, e.g.,
– Find all students in the “CS” department
– Find all students with a gpa > 3

❖ Indexes are file structures that enable us to
answer such value-based queries efficiently.

3

Introduction (cont’d.)

❖ An index on a file speeds up selections on the
search key fields for the index.
– Any subset of the fields of a relation can be the

search key for an index on the relation.
– Search key is not the same as key (set of fields that

uniquely identify a record in a relation).

❖ An index contains a collection of data entries,
and supports efficient retrieval of all data
entries k* with a given search key value k.

4

Alternatives for Data Entry k* in Index

❖ Three alternatives:
➀ Data record with key value k
➁ <k, rid of data record with search key value k>
➂ <k, list of rids of data records with search key k>

❖ Choice of alternative for data entries is
orthogonal to the indexing technique used to
locate data entries with a given key value k.

– Examples of indexing techniques: B+ trees, hash-
based structures

– Typically, index contains auxiliary information that
directs searches to the desired data entries

5

Alternatives for Data Entries (Contd.)

❖ Alternative 1:
– If this is used, index structure imposes a file organization

for data records (like Heap files or sorted files).
– At most one index on a given collection of data records

can use Alternative 1. (Otherwise, data records
duplicated, leading to redundant storage and potential
inconsistency.)

– If data records very large, # of pages containing data
entries is high. Implies size of auxiliary information in
the index is also large, typically.

6

Alternatives for Data Entries (Contd.)

❖ Alternatives 2 and 3:
– Data entries typically much smaller than data

records. So, better than Alternative 1 with large
data records, especially if search keys are small.
(Portion of index structure used to direct search is
much smaller than with Alternative 1.)

– If more than one index is required on a given file, at
most one index can use Alternative 1; rest must use
Alternatives 2 or 3.

– Alternative 3 more compact than Alternative 2, but
leads to variable sized data entries even if search
keys are of fixed length.

2

7

Index Classification

❖ Primary vs. secondary: If search key contains
primary key, then called primary index.
– Unique index: Search key contains a candidate key.

❖ Clustered vs. unclustered: If order of data records
is the same as, or `close to’, order of data entries,
then called clustered index.
– A file can be clustered on at most one search key.
– Cost of retrieving data records through index varies

greatly based on whether index is clustered or not!

8

Clustered vs. Unclustered Index
❖ Suppose that the data records are stored in a Heap

file.
– To build clustered index, first sort the Heap file (with

some free space on each page for future inserts).
– Overflow pages may be needed for inserts. (Thus, order of

data recs is `close to’, but not identical to, the sort order.)

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

9

Index Classification (Contd.)

❖ Dense vs. Sparse: If
there is at least one data
entry per search key
value (in some data
record), then dense.
– Every sparse index is

clustered!
– Sparse indexes are

smaller; however, some
useful optimizations are
based on dense indexes.

Ashby, 25, 3000

Smith, 44, 3000

Ashby

Cass

Smith

22

25

30

40

44

44

50

Sparse Index
on

Name Data File

Dense Index
on

Age

33

Bristow, 30, 2007

Basu, 33, 4003

Cass, 50, 5004

Tracy, 44, 5004

Daniels, 22, 6003

Jones, 40, 6003

10

Tree-Structured Indices

❖ Tree-structured indexing techniques support
both range searches and equality searches.

❖ ISAM: static structure; B+ tree: dynamic,
adjusts gracefully under inserts and deletes.

11

ISAM

❖ Repeat sequential indexing until sequential
index fits on one page.

☛ Leaf pages contain data entries.

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

Pages

Overflow
page

Primary pages

Leaf

12

Example ISAM Tree

❖ Each node can hold 2 entries; no need for
`next-leaf-page’ pointers. (Why?)

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

3

13

Comments on ISAM

❖ File creation: Leaf (data) pages allocated
sequentially, sorted by search key; then index
pages allocated, then space for overflow pages.

❖ Index entries: <search key value, page id>; they
`direct’ search for data entries, which are in leaf pages.

❖ Search: Start at root; use key comparisons to go to leaf.
Cost log F N ; F = # entries/index pg, N = # leaf pgs

❖ Insert: Find leaf data entry belongs to, and put it there.
❖ Delete: Find and remove from leaf; if empty overflow

page, de-allocate.

☛ Static tree structure: inserts/deletes affect only leaf pages.

∝

Data Pages

Index Pages

Overflow pages

14

After Inserting 23*, 48*, 41*, 42* ...

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

15

 ... Then Deleting 42*, 51*, 97*

☛ Note that 51 appears in index levels, but not in leaf!

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40

Root

23* 48* 41*

16

B+ Tree: The Most Widely-Used Index

❖ Insert/delete at log F N cost; keep tree height-
balanced. (F = fanout, N = # leaf pages)

❖ Minimum 50% occupancy (except for root). Each
node contains d <= m <= 2d entries. The
parameter d is called the order of the tree.

❖ Supports equality and range-searches efficiently.

Index Entries

Data Entries
("Sequence set")

(Direct search)

17

Example B+ Tree

❖ Search begins at root, and key comparisons
direct it to a leaf (as in ISAM).

❖ Search for 5*, 15*, all data entries >= 24* ...

☛ Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

18

B+ Trees in Practice

❖ Typical order: 100. Typical fill-factor: 67%.
– average fanout = 133

❖ Typical capacities:
– Height 4: 1334 = 312,900,700 records
– Height 3: 1333 = 2,352,637 records

❖ Can often hold top levels in buffer pool:
– Level 1 = 1 page = 8 Kbytes
– Level 2 = 133 pages = 1 Mbyte
– Level 3 = 17,689 pages = 133 MBytes

4

19

Inserting a Data Entry into a B+ Tree
❖ Find correct leaf L.
❖ Put data entry onto L.

– If L has enough space, done!
– Else, must split L (into L and a new node L2)

◆ Redistribute entries evenly, copy up middle key.
◆ Insert index entry pointing to L2 into parent of L.

❖ This can happen recursively
– To split index node, redistribute entries evenly, but

push up middle key. (Contrast with leaf splits.)

❖ Splits “grow” tree; root split increases height.
– Tree growth: gets wider or one level taller at top.

20

Inserting 8* into Example B+ Tree

❖ Observe how
minimum
occupancy is
guaranteed in
both leaf and
index pg splits.

❖ Note difference
between copy-
up and push-up;
be sure you
understand the
reasons for this.

2* 3* 5* 7* 8*

5

Entry to be inserted in parent node.
(Note that 5 is
continues to appear in the leaf.)

s copied up and

appears once in the index. Contrast

5 24 30

17

13

Entry to be inserted in parent node.
(Note that 17 is pushed up and only

this with a leaf split.)

21

Example B+ Tree After Inserting 8*

❖ Notice that root was split, leading to increase in height.

❖ In this example, we can avoid split by re-distributing
entries; however, this is usually not done in practice.

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

22

Deleting a Data Entry from a B+ Tree

❖ Start at root, find leaf L where entry belongs.
❖ Remove the entry.

– If L is at least half-full, done!
– If L has only d-1 entries,

◆ Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

◆ If re-distribution fails, merge L and sibling.

❖ If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

❖ Merge could propagate to root, decreasing height.

23

Example Tree After (Inserting 8*,
Then) Deleting 19* and 20* ...

❖ Deleting 19* is easy.
❖ Deleting 20* is done with re-distribution.

Notice how middle key is copied up.

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

24

 ... And Then Deleting 24*

❖ Must merge.
❖ Observe `toss’ of

index entry (on right),
and `pull down’ of
index entry (below).

30

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root
30135 17

5

25

Summary

❖ Indexes support efficient retrieval of records
based on the values in some fields.

❖ Index is a collection of data entries plus a way
to quickly find entries with given key values.

❖ Can have several indexes on a given file of
data records, each with a different search key.

❖ Indexes can be classified as clustered vs.
unclustered, primary vs. secondary, and
dense vs. sparse. Differences have important
consequences for utility/performance.

26

Summary

❖ Tree-structured indexes are ideal for range-
searches, also good for equality searches.

❖ ISAM is a static structure.
– Performance can degrade over time.

❖ B+ tree is a dynamic structure.
– Inserts/deletes leave tree height-balanced; log F N cost.
– High fanout (F) means depth rarely more than 3 or 4.
– Almost always better than maintaining a sorted file.

27

Summary (Contd.)

– Typically, 67% occupancy on average.
– Usually preferable to ISAM, modulo locking

considerations; adjusts to growth gracefully.

❖ Most widely used index in database management
systems because of its versatility. One of the most
optimized components of a DBMS.

