
1

1

Storing Data: Disks and File
Organizations

“Yea, from the table of my memory
I’ll wipe away all trivial fond records.”

-- Shakespeare, Hamlet

2

Disks and Files

❖ DBMS stores information on (“hard”) disks.
❖ This has major implications for DBMS design!

– READ: transfer data from disk to main memory (RAM).
– WRITE: transfer data from RAM to disk.
– Both are high-cost operations, relative to in-memory

operations, so must be planned carefully!

3

Why Not Store Everything in Main Memory?

❖ Costs too much. $1000 will buy you over
128MB of RAM or 7.5GB of disk today.

❖ Main memory is volatile. We want data to be
saved between runs. (Obviously!)

❖ Typical storage hierarchy:
– Main memory (RAM) for currently used data.
– Disk for the main database (secondary storage).
– Tapes for archiving older versions of the data

(tertiary storage).

4

Disks

❖ Secondary storage device of choice.
❖ Main advantage over tapes: random access vs.

sequential.
❖ Data is stored and retrieved in units called

disk blocks or pages.
❖ Unlike RAM, time to retrieve a disk page

varies depending upon location on disk.
– Therefore, relative placement of pages on disk has

major impact on DBMS performance!

5

Components of a Disk

Platters

The platters spin (say, 100rps).

Spindle

The arm assembly is moved
in or out to position a head
on a desired track. Tracks
under heads make a
cylinder (imaginary!).

Disk head

Arm movement

Arm assembly

Only one head
reads/writes at any
one time.

Tracks

Sector

❖ Block size is a multiple
of sector size (which is fixed).

6

Accessing a Disk Page

❖ Time to access (read/write) a disk block:
– seek time (moving arms to position disk head on track)
– rotational delay (waiting for block to rotate under head)

◆ often called “rotational latency”

– transfer time (actually moving data to/from disk surface)

❖ Seek time and rotational delay dominate.
– Seek time varies from about 1 to 20msec
– Rotational delay varies from 0 to 10msec
– Transfer rate is about 1msec per 4KB page

❖ Key to lower I/O cost: reduce seek/rotation
delays! Hardware vs. software solutions?

2

7

Arranging Pages on Disk

❖ ‘Next’ block concept:
– blocks on same track, followed by
– blocks on same cylinder, followed by
– blocks on adjacent cylinder

❖ Blocks in a file should be arranged
sequentially on disk (by `next’), to minimize
seek and rotational delay.

❖ For a sequential scan, pre-fetching several
pages at a time is a big win!

8

Disk Space Management

❖ Lowest layer of DBMS software manages space
on disk.

❖ Higher levels call upon this layer to:
– allocate/de-allocate a page
– read/write a page

❖ One such “higher level” is the buffer manager,
which receives a request to bring a page into
memory and then, if needed, requests the disk
space layer to read the page into the buffer pool.

9

Buffer Management in a DBMS

❖ Data must be in RAM for DBMS to operate on it!
❖ Table of <frame# , pageid> pairs is maintained.

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

10

When a Page is Requested ...

❖ If requested page is not in pool:
– Choose a frame for replacement; pin_count := 1
– If frame is dirty, write it to disk
– Read requested page into chosen frame

❖ Else:
– increment pin_count

❖ Return its address.

☛ If requests can be predicted (e.g., sequential scans)
pages can be pre-fetched several pages at a time!

11

More on Buffer Management

❖ Requestor of page must unpin it, and indicate
whether page has been modified:
– dirty bit is used for this.

❖ Page in pool may be requested many times:
– a pin count is used. A page is a candidate for

replacement iff pin count = 0.

❖ CC & recovery may entail additional I/O
when a frame is chosen for replacement.
(Write-Ahead Log protocol; more later.)

12

Buffer Replacement Policy

❖ Frame is chosen for replacement by a
replacement policy:
– Least-recently-used (LRU), Clock, MRU, etc.

❖ Policy can have big impact on # of I/O’s;
depends on the access pattern.

❖ Sequential flooding: Nasty situation caused by
LRU + repeated sequential scans.
– # buffer frames < # pages in file means each page

request causes an I/O. MRU much better in this
situation (but not in all situations, of course).

3

13

DBMS vs. OS File System

OS does disk space & buffer mgmt: why not let
OS manage these tasks?

❖ Differences in OS support: portability issues
❖ Some limitations, e.g., files can’t span disks.
❖ Buffer management in DBMS requires ability to:

– pin a page in buffer pool, force a page to disk
(important for implementing CC & recovery),

– adjust replacement policy, and pre-fetch pages based
on access patterns in typical DB operations.

14

Files of Records

❖ Page or block is OK when doing I/O, but
higher levels of DBMS operate on records, and
files of records.

❖ FILE: A collection of pages, each containing a
collection of records. Must support:
– insert/delete/modify record
– read a particular record (specified using record id)
– scan all records (possibly with some conditions on

the records to be retrieved)

15

Unordered (Heap) Files

❖ Simplest file structure: contains records in no
particular order.

❖ As file grows and shrinks, disk pages are
allocated and de-allocated.

❖ To support record-level operations, we must:
– keep track of the pages in a file
– keep track of free space on pages
– keep track of the records on a page

❖ There are many alternatives for keeping track
of this.

16

Alternative File Organizations
Many alternatives exist, each ideal for some

situation , and not so good in others:
– Heap files: Suitable when typical access is a file

scan retrieving all records.
– Sorted Files: Best if records must be retrieved in

some order, or only a `range’ of records is needed.
– Hashed Files: Good for equality selections.

◆ File is a collection of buckets. Bucket = primary
page plus zero or more overflow pages.

◆ Hashing function h: h(r) = bucket in which
record r belongs. h looks at only the search fields
of r.

– Clustered Files: Tuples from > 1 relation stored
together to speed up joins (later….)

17

Cost Model for Our Analysis

We ignore CPU costs, for simplicity:
– B: The number of data pages
– R: Number of records per page
– D: (Average) time to read or write disk page
– Measuring number of page I/O’s ignores gains of

pre-fetching blocks of pages; thus, even I/O cost is
only approximated.

– Average-case analysis; based on several simplistic
assumptions.

☛ Good enough to show the overall trends!

18

Assumptions in Our Analysis

❖ Single record insert and delete.
❖ Heap Files:

– Equality selection on key; exactly one match.
– Insert always at end of file.

❖ Sorted Files:
– Files compacted after deletions.
– Selections on sort field(s).

❖ Hashed Files:
– No overflow buckets, 80% page occupancy.

4

19

Cost of Operations (I/O only)

Heap
File

Sorted
 File

Hashed
File

Scan all recs BD BD 1.25 BD

Equality Search 0.5 BD D log2B D

Range Search BD D (log2B + # of
pages with
matches)

1.25 BD

Insert 2D Search + BD 2D

Delete Search + D Search + BD 2D

☛ Several assumptions (see previous slide)!

20

Disk and File Summary

❖ Disks provide cheap, non-volatile storage.
– Random access, but cost depends on location of page

on disk; important to arrange data sequentially to
minimize seek and rotation delays.

❖ Buffer manager brings pages into RAM.
– Page stays in RAM until released by requestor(s).
– Written to disk when frame chosen for replacement

(which is after all requestors release the page).
– Choice of frame to replace based on replacement policy.
– Tries to pre-fetch several pages at a time.

21

Disk and File Summary (Contd.)

❖ DBMS vs. OS File Support
– DBMS needs features not found in many OS’s, e.g.,

forcing a page to disk, controlling the order of
page writes to disk, files spanning disks, ability to
control pre-fetching and page replacement policy

❖ File layer keeps track of pages in a file, and
supports abstraction of a collection of records.
– Pages with free space identified using linked list or

directory structure (similar to how pages in file are
kept track of).

❖ Many alternative file organizations exist, each
appropriate in some situation.

