Storing Data: Disks and File
Organizations

“Yea, from the table of my memory
I'll wipe away all trivial fond records.”
-- Shakespeare, Hamlet

\Disks and Files

0 DBMS stores information on (“hard”) disks.

0 This has major implications for DBMS design!
— READ: transfer data from disk to main memory (RAM).
— WRITE: transfer data from RAM to disk.

— Both are high-cost operations, relative to in-memory
operations, so must be planned carefully!

\Why Not Store Everything in Main Memory?

0 Costs too much. $1000 will buy you over
128MB of RAM or 7.5GB of disk today.

0 Main memory is volatile. We want data to be
saved between runs. (Obviously!)

0 Typical storage hierarchy:
— Main memory (RAM) for currently used data.
— Disk for the main database (secondary storage).

— Tapes for archiving older versions of the data
(tertiary storage).

\Disks

0 Secondary storage device of choice.

0 Main advantage over tapes: random access Vs.
sequential.

0 Data is stored and retrieved in units called
disk blocks or pages.

0 Unlike RAM, time to retrieve a disk page
varies depending upon location on disk.

— Therefore, relative placement of pages on disk has
major impact on DBMS performance!

Components of a Disk
Disk head

The platters spin (say, 100rps).
The arm assembly is moved
in or out to position a head
on a desired track. Tracks
under heads make a
cylinder (imaginary!).

Sector

——

Arm movement

Platters

Only one head
reads/writes at any
one time.

Arm assembly

0 Block size is a multiple
of sector size (which is fixed).

\Accessing a Disk Page

0 Time to access (read/write) a disk block:
— seek time (moving arms to position disk head on track)
— rotational delay (waiting for block to rotate under head)
o often called “rotational latency”
— transfer time (actually moving data to/from disk surface)
0 Seek time and rotational delay dominate.
— Seek time varies from about 1 to 20msec
— Rotational delay varies from 0 to 10msec
— Transfer rate is about 1msec per 4KB page
0 Key to lower 1/0 cost: reduce seek/rotation
delays! Hardware vs. software solutions?

Arranging Pages on Disk

0 ‘Next’ block concept:
— blocks on same track, followed by
— blocks on same cylinder, followed by
— blocks on adjacent cylinder

0 Blocks in a file should be arranged
sequentially on disk (by “next’), to minimize
seek and rotational delay.

0 For a sequential scan, pre-fetching several
pages at a time is a big win!

Disk Space Management

0 Lowest layer of DBMS software manages space
on disk.

o Higher levels call upon this layer to:
— allocate/de-allocate a page
— read/write a page

0 One such “higher level” is the buffer manager,
which receives a request to bring a page into
memory and then, if needed, requests the disk
space layer to read the page into the buffer pool.

Buffer Management in a DBMS

Page Requests from Higher Levels

BUFFER POOL

a—4

disk page

free frame

MAIN MEMORY <

DISK (—————) choice of frame dictated
m by replacement policy
—

0 Data must be in RAM for DBMS to operate on it!
0 Table of <frame#, pageid> pairs is maintained.

When a Page is Requested ...

0 If requested page is not in pool:
— Choose a frame for replacement; pin_count :=1
— If frame is dirty, write it to disk
— Read requested page into chosen frame

0 Else:
— increment pin_count

O Return its address.

0 If requests can be predicted (e.g., sequential scans)
pages can be pre-fetched several pages at a time!

More on Buffer Management

0 Requestor of page must unpin it, and indicate
whether page has been modified:
— dirty bit is used for this.

o Page in pool may be requested many times:
— apin count is used. A page is a candidate for

replacement iff pin count = 0.

0 CC & recovery may entail additional 170
when a frame is chosen for replacement.
(Write-Ahead Log protocol; more later.)

Buffer Replacement Policy

0 Frame is chosen for replacement by a
replacement policy:
— Least-recently-used (LRU), Clock, MRU, etc.

0 Policy can have big impact on # of I/0’s;
depends on the access pattern.

0 Sequential flooding: Nasty situation caused by
LRU + repeated sequential scans.

— # buffer frames < # pages in file means each page
request causes an 170. MRU much better in this
situation (but not in all situations, of course).

12

\DBMS vs. OS File System

OS does disk space & buffer mgmt: why not let
OS manage these tasks?

[}

Differences in OS support: portability issues

0 Some limitations, e.g., files can’t span disks.

Buffer management in DBMS requires ability to:

— pin a page in buffer pool, force a page to disk
(important for implementing CC & recovery),

— adjust replacement policy, and pre-fetch pages based
on access patterns in typical DB operations.

O

\Files of Records

0 Page or block is OK when doing 170, but
higher levels of DBMS operate on records, and
files of records.

0 FILE: A collection of pages, each containing a
collection of records. Must support:

— insert/delete/modify record
— read a particular record (specified using record id)

— scan all records (possibly with some conditions on
the records to be retrieved)

\Unordered (Heap) Files

0 Simplest file structure: contains records in no
particular order.

0 As file grows and shrinks, disk pages are
allocated and de-allocated.

0 To support record-level operations, we must:
— keep track of the pages in a file
— keep track of free space on pages
— keep track of the records on a page

0 There are many alternatives for keeping track
of this.

Alternative File Organizations

Many alternatives exist, each ideal for some
situation , and not so good in others:
— Heap files: Suitable when typical access is a file
scan retrieving all records.
— Sorted Files: Best if records must be retrieved in
some order, or only a ‘range’ of records is needed.
— Hashed Files: Good for equality selections.
o File is a collection of buckets. Bucket = primary
page plus zero or more overflow pages.
o Hashing function h: h(r) = bucket in which

record r belongs. h looks at only the search fields
of r.

— Clustered Files: Tuples from > 1 relation stored 6

\Cost Model for Our Analysis

We ignore CPU costs, for simplicity:
- B: The number of data pages
- R: Number of records per page
- D: (Average) time to read or write disk page
- Measuring number of page 1/0’s ignores gains of

pre-fetching blocks of pages; thus, even I/0 cost is
only approximated.

- Average-case analysis; based on several simplistic
assumptions.

0 Good enough to show the overall trends!

\Assumptions in Our Analysis

0 Single record insert and delete.
0 Heap Files:
- Equality selection on key; exactly one match.
- Insert always at end of file.
0 Sorted Files:
- Files compacted after deletions.
- Selections on sort field(s).
0 Hashed Files:
- No overflow buckets, 80% page occupancy.

18

\Cost of Operations (1/0 only)

Heap Sorted Hashed
File File File
Scan all recs BD BD 1.25BD
Equality Search 0.5BD D log,B D
Range Search BD D (log,B + # of 1.25 BD
pages with
matches)
Insert 2D Search+BD 2D
Delete Search+D Search+BD 2D

O Several assumptions (see previous slide)!

\Disk and File Summary

0 Disks provide cheap, non-volatile storage.

— Random access, but cost depends on location of page
on disk; important to arrange data sequentially to
minimize seek and rotation delays.

0 Buffer manager brings pages into RAM.
— Page stays in RAM until released by requestor(s).

— Written to disk when frame chosen for replacement
(which is after all requestors release the page).

— Choice of frame to replace based on replacement policy.

— Tries to pre-fetch several pages at a time.

20

Disk and File Summary (Contd.)

0 DBMS vs. OS File Support
— DBMS needs features not found in many OS’s, e.g.,
forcing a page to disk, controlling the order of
page writes to disk, files spanning disks, ability to
control pre-fetching and page replacement policy
0 File layer keeps track of pages in a file, and
supports abstraction of a collection of records.
— Pages with free space identified using linked list or
directory structure (similar to how pages in file are
kept track of).
0 Many alternative file organizations exist, each
appropriate in some situation. ”

