Storing Data: Disks and File
Organizations

“Yea, from the table of my memory
I'll wipe away all trivial fond records.”
-- Shakespeare, Hamlet

\Disks and Files

0 DBMS stores information on (“hard”) disks.

0 This has major implications for DBMS design!
— READ: transfer data from disk to main memory (RAM).
— WRITE: transfer data from RAM to disk.

— Both are high-cost operations, relative to in-memory
operations, so must be planned carefully!

\Why Not Store Everything in Main Memory?

0 Costs too much. $1000 will buy you over
128MB of RAM or 7.5GB of disk today.

0 Main memory is volatile. We want data to be
saved between runs. (Obviously!)

0 Typical storage hierarchy:
— Main memory (RAM) for currently used data.
— Disk for the main database (secondary storage).

— Tapes for archiving older versions of the data
(tertiary storage).

\Disks

0 Secondary storage device of choice.

0 Main advantage over tapes: random access Vs.
sequential.

0 Data is stored and retrieved in units called
disk blocks or pages.

0 Unlike RAM, time to retrieve a disk page
varies depending upon location on disk.

— Therefore, relative placement of pages on disk has
major impact on DBMS performance!

Components of a Disk
Disk head

The platters spin (say, 100rps).
The arm assembly is moved
in or out to position a head
on a desired track. Tracks
under heads make a
cylinder (imaginary!).

Sector

——

Arm movement

Platters

Only one head
reads/writes at any
one time.

Arm assembly

0 Block size is a multiple
of sector size (which is fixed).

\Accessing a Disk Page

0 Time to access (read/write) a disk block:
— seek time (moving arms to position disk head on track)
— rotational delay (waiting for block to rotate under head)
o often called “rotational latency”
— transfer time (actually moving data to/from disk surface)
0 Seek time and rotational delay dominate.
— Seek time varies from about 1 to 20msec
— Rotational delay varies from 0 to 10msec
— Transfer rate is about 1msec per 4KB page
0 Key to lower 1/0 cost: reduce seek/rotation
delays! Hardware vs. software solutions?




Arranging Pages on Disk

0 ‘Next’ block concept:
— blocks on same track, followed by
— blocks on same cylinder, followed by
— blocks on adjacent cylinder

0 Blocks in a file should be arranged
sequentially on disk (by “next’), to minimize
seek and rotational delay.

0 For a sequential scan, pre-fetching several
pages at a time is a big win!

Disk Space Management

0 Lowest layer of DBMS software manages space
on disk.

o Higher levels call upon this layer to:
— allocate/de-allocate a page
— read/write a page

0 One such “higher level” is the buffer manager,
which receives a request to bring a page into
memory and then, if needed, requests the disk
space layer to read the page into the buffer pool.

Buffer Management in a DBMS

Page Requests from Higher Levels

BUFFER POOL
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0 Data must be in RAM for DBMS to operate on it!
0 Table of <frame#, pageid> pairs is maintained.

When a Page is Requested ...

0 If requested page is not in pool:
— Choose a frame for replacement; pin_count :=1
— If frame is dirty, write it to disk
— Read requested page into chosen frame

0 Else:
— increment pin_count

O Return its address.

0 If requests can be predicted (e.g., sequential scans)
pages can be pre-fetched several pages at a time!

More on Buffer Management

0 Requestor of page must unpin it, and indicate
whether page has been modified:
— dirty bit is used for this.

o Page in pool may be requested many times:
— apin count is used. A page is a candidate for

replacement iff pin count = 0.

0 CC & recovery may entail additional 170
when a frame is chosen for replacement.
(Write-Ahead Log protocol; more later.)

Buffer Replacement Policy

0 Frame is chosen for replacement by a
replacement policy:
— Least-recently-used (LRU), Clock, MRU, etc.

0 Policy can have big impact on # of I/0’s;
depends on the access pattern.

0 Sequential flooding: Nasty situation caused by
LRU + repeated sequential scans.

— # buffer frames < # pages in file means each page
request causes an 170. MRU much better in this
situation (but not in all situations, of course).
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\DBMS vs. OS File System

OS does disk space & buffer mgmt: why not let
OS manage these tasks?

[}

Differences in OS support: portability issues

0 Some limitations, e.g., files can’t span disks.

Buffer management in DBMS requires ability to:

— pin a page in buffer pool, force a page to disk
(important for implementing CC & recovery),

— adjust replacement policy, and pre-fetch pages based
on access patterns in typical DB operations.

O

\Files of Records

0 Page or block is OK when doing 170, but
higher levels of DBMS operate on records, and
files of records.

0 FILE: A collection of pages, each containing a
collection of records. Must support:

— insert/delete/modify record
— read a particular record (specified using record id)

— scan all records (possibly with some conditions on
the records to be retrieved)

\Unordered (Heap) Files

0 Simplest file structure: contains records in no
particular order.

0 As file grows and shrinks, disk pages are
allocated and de-allocated.

0 To support record-level operations, we must:
— keep track of the pages in a file
— keep track of free space on pages
— keep track of the records on a page

0 There are many alternatives for keeping track
of this.

Alternative File Organizations

Many alternatives exist, each ideal for some
situation , and not so good in others:
— Heap files: Suitable when typical access is a file
scan retrieving all records.
— Sorted Files: Best if records must be retrieved in
some order, or only a ‘range’ of records is needed.
— Hashed Files: Good for equality selections.
o File is a collection of buckets. Bucket = primary
page plus zero or more overflow pages.
o Hashing function h: h(r) = bucket in which

record r belongs. h looks at only the search fields
of r.

— Clustered Files: Tuples from > 1 relation stored 6

\Cost Model for Our Analysis

We ignore CPU costs, for simplicity:
- B: The number of data pages
- R: Number of records per page
- D: (Average) time to read or write disk page
- Measuring number of page 1/0’s ignores gains of

pre-fetching blocks of pages; thus, even I/0 cost is
only approximated.

- Average-case analysis; based on several simplistic
assumptions.

0 Good enough to show the overall trends!

\Assumptions in Our Analysis

0 Single record insert and delete.
0 Heap Files:
- Equality selection on key; exactly one match.
- Insert always at end of file.
0 Sorted Files:
- Files compacted after deletions.
- Selections on sort field(s).
0 Hashed Files:
- No overflow buckets, 80% page occupancy.

18




\Cost of Operations (1/0 only)

Heap Sorted Hashed
File File File
Scan all recs BD BD 1.25BD
Equality Search  0.5BD D log,B D
Range Search BD D (log,B + # of 1.25 BD
pages with
matches)
Insert 2D Search+BD 2D
Delete Search+D Search+BD 2D

O Several assumptions (see previous slide)!

\Disk and File Summary

0 Disks provide cheap, non-volatile storage.

— Random access, but cost depends on location of page
on disk; important to arrange data sequentially to
minimize seek and rotation delays.

0 Buffer manager brings pages into RAM.
— Page stays in RAM until released by requestor(s).

— Written to disk when frame chosen for replacement
(which is after all requestors release the page).

— Choice of frame to replace based on replacement policy.

— Tries to pre-fetch several pages at a time.
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Disk and File Summary (Contd.)

0 DBMS vs. OS File Support
— DBMS needs features not found in many OS’s, e.g.,
forcing a page to disk, controlling the order of
page writes to disk, files spanning disks, ability to
control pre-fetching and page replacement policy
0 File layer keeps track of pages in a file, and
supports abstraction of a collection of records.
— Pages with free space identified using linked list or
directory structure (similar to how pages in file are
kept track of).
0 Many alternative file organizations exist, each
appropriate in some situation. ”




