
1

1

SQL: The Query Language

2

Example Instances

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day

22 101 10/10/96
58 103 11/12/96

R1

S1

S2

❖ We will use these
instances of the
Sailors and
Reserves relations
in our examples.

❖ If the key for the
Reserves relation
contained only the
attributes sid and
bid, how would the
semantics differ?

3

Basic SQL Query

❖ relation-list A list of relation names (possibly with a
range-variable after each name).

❖ target-list A list of attributes of relations in relation-list
❖ qualification Comparisons (Attr op const or Attr1 op

Attr2, where op is one of)
combined using AND, OR and NOT.

❖ DISTINCT is an optional keyword indicating that the
answer should not contain duplicates. Default is that
duplicates are not eliminated!

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification

< > = ≤ ≥ ≠, , , , ,

4

Conceptual Evaluation Strategy

❖ Semantics of an SQL query defined in terms of the
following conceptual evaluation strategy:
– Compute the cross-product of relation-list.
– Discard resulting tuples if they fail qualifications.
– Delete attributes that are not in target-list.
– If DISTINCT is specified, eliminate duplicate rows.

❖ This strategy is probably the least efficient way to
compute a query! An optimizer will find more
efficient strategies to compute the same answers.

5

Example of Conceptual Evaluation
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

6

A Note on Range Variables

❖ Really needed only if the same relation
appears twice in the FROM clause. The
previous query can also be written as:

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND bid=103

SELECT sname
FROM Sailors, Reserves
WHERE Sailors.sid=Reserves.sid
 AND bid=103

It is good style,
however, to use
range variables
always!OR

2

7

Find sailors who’ve reserved at least one boat

❖ Would adding DISTINCT to this query make a
difference?

❖ What is the effect of replacing S.sid by S.sname in
the SELECT clause? Would adding DISTINCT to
this variant of the query make a difference?

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

8

Expressions and Strings

❖ Illustrates use of arithmetic expressions and string
pattern matching: Find triples (of ages of sailors and
two fields defined by expressions) for sailors whose names
begin and end with B and contain at least three characters.

❖ AS and = are two ways to name fields in result.
❖ LIKE is used for string matching. `_’ stands for any

one character and `%’ stands for 0 or more arbitrary
characters.

SELECT S.age, age1=S.age-5, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

9

Find sid’s of sailors who’ve reserved a red or a green boat

❖ UNION: Can be used to
compute the union of any
two union-compatible sets of
tuples (which are
themselves the result of
SQL queries).

❖ If we replace OR by AND in
the first version, what do
we get?

❖ Also available: EXCEPT
(What do we get if we
replace UNION by EXCEPT?)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND (B.color=‘red’ OR B.color=‘green’)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND
R.bid=B.bid
 AND B.color=‘red’
UNION
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND
R.bid=B.bid
 AND B.color=‘green’ 10

Find sid’s of sailors who’ve reserved a red and a green boat

❖ INTERSECT: Can be used to
compute the intersection
of any two union-
compatible sets of tuples.

❖ Included in the SQL/92
standard, but some
systems don’t support it.

❖ Contrast symmetry of the
UNION and INTERSECT
queries with how much
the other versions differ.

SELECT S.sid
FROM Sailors S, Boats B1, Reserves R1,
 Boats B2, Reserves R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid
 AND S.sid=R2.sid AND R2.bid=B2.bid
 AND (B1.color=‘red’ AND B2.color=‘green’)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND
R.bid=B.bid
 AND B.color=‘red’
INTERSECT
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND
R.bid=B.bid
 AND B.color=‘green’

Key field!

11

Nested Queries

❖ A very powerful feature of SQL: a WHERE clause can
itself contain an SQL query! (Actually, so can FROM
and HAVING clauses.)

❖ To find sailors who’ve not reserved #103, use NOT IN.
❖ To understand semantics of nested queries, think of a

nested loops evaluation: For each Sailors tuple, check the
qualification by computing the subquery.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid
 FROM Reserves R
 WHERE R.bid=103)

Find names of sailors who’ve reserved boat #103:

12

Nested Queries with Correlation

❖ EXISTS is another set comparison operator, like IN.
❖ If UNIQUE is used, and * is replaced by R.bid, finds

sailors with at most one reservation for boat #103.
(UNIQUE checks for duplicate tuples; * denotes all
attributes. Why do we have to replace * by R.bid?)

❖ Illustrates why, in general, subquery must be re-
computed for each Sailors tuple.

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *
 FROM Reserves R
 WHERE R.bid=103 AND S.sid=R.sid)

Find names of sailors who’ve reserved boat #103:

3

13

More on Set-Comparison Operators

❖ We’ve already seen IN, EXISTS and UNIQUE. Can also
use NOT IN, NOT EXISTS and NOT UNIQUE.

❖ Also available: op SOME, op ALL, op IN

❖ Find sailors whose rating is greater than that of some
sailor called Horatio:

> < = ≥ ≤ ≠, , , , ,

SELECT *
FROM Sailors S
WHERE S.rating > SOME (SELECT S2.rating
 FROM Sailors S2
 WHERE S2.sname=‘Horatio’)

14

Aggregate Operators

❖ Significant extension of
relational algebra.

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (*)
FROM Sailors S

SELECT AVG (DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

SELECT S.sname
FROM Sailors S
WHERE S.rating= (SELECT MAX(S2.rating)
 FROM Sailors S2)

single column

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

15

Find name and age of the oldest sailor(s)

❖ The first query is illegal!
(We’ll look into the
reason a bit later, when
we discuss GROUP BY.)

❖ The third query is
equivalent to the second
query, and is allowed in
the SQL/92 standard,
but is not supported in
some systems.

SELECT S.sname, MAX (S.age)
FROM Sailors S

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age =
 (SELECT MAX (S2.age)
 FROM Sailors S2)

SELECT S.sname, S.age
FROM Sailors S
WHERE (SELECT MAX (S2.age)
 FROM Sailors S2)
 = S.age

16

GROUP BY and HAVING

❖ So far, we’ve applied aggregate operators to all
(qualifying) tuples. Sometimes, we want to apply
them to each of several groups of tuples.

❖ Consider: Find the age of the youngest sailor for each
rating level.
– In general, we don’t know how many rating levels

exist, and what the rating values for these levels are!
– Suppose we know that rating values go from 1 to 10;

we can write 10 queries that look like this (!):

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

For i = 1, 2, ... , 10:

17

Queries With GROUP BY and HAVING

❖ The target-list contains (i) attribute names (ii) terms
with aggregate operations (e.g., MIN (S.age)).
– The attribute list (i) must be a subset of grouping-list.

Intuitively, each answer tuple corresponds to a group, and
these attributes must have a single value per group. (A
group is a set of tuples that have the same value for all
attributes in grouping-list.)

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

18

Conceptual Evaluation

❖ The cross-product of relation-list is computed, tuples
that fail qualification are discarded, `unnecessary’ fields
are deleted, as before.

❖ The remaining tuples are partitioned into groups by
the value of attributes in grouping-list.

❖ The group-qualification is then applied to eliminate
some groups.

❖ One answer tuple is generated per qualifying group.

4

19

Find the age of the youngest sailor with age 18,
for each rating with at least 2 such sailors

❖ Only S.rating and S.age are
mentioned in the SELECT,
GROUP BY or HAVING clauses;
other attributes `unnecessary’.

❖ 2nd column of result is
unnamed. (Use AS to name it.)

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
71 zorba 10 16.0
64 horatio 7 35.0
29 brutus 1 33.0
58 rusty 10 35.0

rating age
1 33.0
7 45.0
7 35.0
8 55.5
10 35.0

rating
7 35.0

Answer relation

≥

20

For each red boat, find the number of
reservations for this boat

❖ Grouping over a join of three relations.
❖ What if we drop Sailors and the condition

involving S.sid?

SELECT B.bid, COUNT (*) AS rcount
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid

21

Sorting a Result

❖ Names, ages of Sailors, sorted by name:
SELECT sname, age
FROM Sailors
ORDER BY sname

❖ Same, ordered by age within a name:
SELECT sname, age
FROM Sailors
ORDER BY sname, age

❖ ORDER BY clause evaluated last

22

Null Values
❖ Field values in a tuple are sometimes unknown (e.g., a

rating has not been assigned) or nonexistent (e.g., no
spouse’s name).
– SQL provides a special value null for such situations.

❖ The presence of null complicates many issues. E.g.:
– Special operators needed to check if value is/is not null.
– Is rating>8 true or false when rating is equal to null? What

about AND, OR and NOT connectives?
– We need a 3-valued logic (true, false and unknown).
– Meaning of constructs must be defined carefully. (e.g.,

WHERE clause eliminates rows that don’t evaluate to true.)
– New operators (in particular, outer joins) possible/needed.

23

Summary

❖ An important factor in the early acceptance of the
relational model; more natural than earlier,
procedural query languages.

❖ Relationally complete; in fact, significantly more
expressive power than relational algebra
(aggregates, arithmetic, sorting, grouping, string
matching….)

❖ Even queries that can be expressed in RA can often
be expressed more naturally in SQL.

24

Summary (cont’d)

❖ Nulls (unknown or nonexistent) force a 3-
valued logic and odd behavior

❖ Many alternative ways to write a query;
optimizer should look for most efficient
evaluation plan.
– In practice, users need to be aware of how queries

are optimized and evaluated for best results.

❖ SQL3 (SQL:1999) adds nested relational and
object-oriented features to SQL (later in
course)

