
1

1

Relational Algebra

2

Relational Query Languages

❖ Query languages: Allow manipulation and retrieval
of data from a database.

❖ Relational model supports simple, powerful QLs:
– Strong formal foundation based on logic.
– Allows for much optimization.

❖ Query Languages != programming languages!
– QLs not expected to be “Turing complete”.
– QLs not intended to be used for complex calculations.
– QLs support easy, efficient access to large data sets.

3

Formal Relational Query Languages

Two mathematical Query Languages form the
basis for “real” languages (e.g. SQL), and for
implementation:

❶ Relational Algebra: More operational, very
useful for representing execution plans.

❷ Relational Calculus: Lets users describe what
they want, rather than how to compute it.
(Non-operational, declarative.)

☛ Understanding Algebra & Calculus is key to
☛ understanding SQL, query processing!

4

Preliminaries

❖ A query is applied to relation instances, and the
result of a query is also a relation instance.
– Schemas of input relations for a query are fixed (but

query will run regardless of instance!)
– The schema for the result of a given query is also

fixed! Determined by definition of query language
constructs.

❖ Positional vs. named-field notation:
– Positional notation easier for formal definitions,

named-field notation more readable.
– Both used in Relational Algebra and SQL

5

Example Instances

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day

22 101 10/10/96
58 103 11/12/96

R1

S1

S2

❖ “Sailors” and “Reserves”
relations for our examples.

❖ We’ll use positional or
named field notation,
assume that names of fields
in query results are
`inherited’ from names of
fields in query input
relations.

6

Relational Algebra

❖ Basic operations:
– Selection () Selects a subset of rows from relation.
– Projection () Deletes unwanted columns from relation.
– Cross-product () Allows us to combine two relations.
– Set-difference () Tuples in reln. 1, but not in reln. 2.
– Union (∪) Tuples in reln. 1 and in reln. 2.

❖ Additional operations:
– Intersection, join, division, renaming: Not essential, but

(very!) useful.

❖ Since each operation returns a relation, operations
can be composed! (Algebra is “closed”.)

σ
π

−
×

2

7

Projection
sname rating

yuppy 9
lubber 8
guppy 5
rusty 10

π
sname rating

S
,

()2

age
35.0
55.5

πageS()2

❖ Deletes attributes that are not in
projection list.

❖ Schema of result contains exactly
the fields in the projection list,
with the same names that they
had in the (only) input relation.

❖ Projection operator has to
eliminate duplicates! (Why??)
– Note: real systems typically

don’t do duplicate elimination
unless the user explicitly asks
for it. (Why not?)

8

Selection

σ
rating

S>8
2()

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

sname rating
yuppy 9
rusty 10

π σ
sname rating rating

S
,

(())>8
2

❖ Selects rows that satisfy
selection condition.

❖ No duplicates in result!
(Why?)

❖ Schema of result
identical to schema of
(only) input relation.

❖ Result relation can be
the input for another
relational algebra
operation! (Operator
composition.)

9

Union, Intersection, Set-Difference

❖ All of these operations take
two input relations, which
must be union-compatible:
– Same number of fields.
– `Corresponding’ fields

have the same type.
❖ What is the schema of result?

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

sid sname rating age
31 lubber 8 55.5
58 rusty 10 35.0

S S1 2

S S1 2

sid sname rating age
22 dustin 7 45.0

S S1 2 10

Cross-Product
❖ Each row of S1 is paired with each row of R1.
❖ Result schema has one field per field of S1 and R1,

with field names `inherited’ if possible.
– Conflict: Both S1 and R1 have a field called sid.

ρ (())C sid sid S R1 1 5 2 1 1→ → ×

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

☛ Renaming operator:

11

Joins

❖ Condition Join: R C S = σC (R × S)

S1 S1.sid < R1.sid R1
❖ Result schema same as that of cross-product.
❖ Fewer tuples than cross-product, might be

able to compute more efficiently
❖ Sometimes called a theta-join.

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 58 103 11/12/96

��

��

12

Joins

❖ Equi-Join: A special case of condition join where
the condition c contains only equalities and ^.

S1 sid R1
❖ Result schema similar to cross-product, but only

one copy of fields for which equality is specified.
❖ Natural Join: Equijoin on all common fields.

sid sname rating age bid day
22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

��

3

13

Find names of sailors who’ve reserved boat #103

❖ Solution 1: π σsname bid
serves Sailors((Re))=103

��

❖ Solution 2: ρ σ(, Re)Temp serves
bid

1
103=

ρ (,)Temp Temp Sailors2 1��

π snameTemp()2

❖ Solution 3: π σsname bid
serves Sailors((Re))=103

��

14

Find names of sailors who’ve reserved a red boat

❖ Information about boat color only available in
Boats; so need an extra join:

π σsname color red
Boats serves Sailors((

' '
) Re)= �� ��

❖ A more efficient solution:

π π π σsname sid bid color red
Boats s Sailors(((

' '
) Re))= �� ��

☛ A query optimizer can find this given the first solution!

15

Find sailors who’ve reserved a red or a green boat

❖ Can identify all red or green boats, then find
sailors who’ve reserved one of these boats:

ρ σ(, (
' ' ' '

))Tempboats
color red color green

Boats
= ∨ =

π snameTempboats serves Sailors(Re)�� ��

❖ Can also define Tempboats using union! (How?)

❖ What happens if is replaced by in this query?

16

Find sailors who’ve reserved a red and a green boat

❖ Previous approach won’t work! Must identify
sailors who’ve reserved red boats, sailors
who’ve reserved green boats, then find the
intersection (note that sid is a key for Sailors):

ρ π σ(, ((
' '

) Re))Tempred
sid color red

Boats serves��

π sname Tempred Tempgreen Sailors(())∩ ��

ρ π σ(, ((
' '

) Re))Tempgreen
sid color green

Boats serves
=

��

17

Relational Calculus

18

Relational Calculus

❖ Comes in two flavors: Tuple relational calculus (TRC)
and Domain relational calculus (DRC).

❖ Calculus has variables, constants, comparison ops, logical
connectives, and quantifiers.
– TRC: Variables range over (i.e., get bound to) tuples.
– DRC: Variables range over domain elements (= field values).
– Both TRC and DRC are simple subsets of first-order logic.

❖ Expressions in the calculus are called formulas. An
answer tuple is essentially an assignment of constants
to variables that make the formula evaluate to true.

4

19

Tuple Relational Calculus

❖ Query has the form: { T | p(T)}

❖ Answer includes all tuples T that
 make the formula p(T) be true.

❖ Formula is recursively defined, starting with
 simple atomic formulas (getting tuples from
 relations or making comparisons of values),
 and building bigger and better formulas using
 the logical connectives.

20

TRC Formulas

❖ Atomic formula:
– R ∈ Rel, or R.a op S.b, or R.a op constant
– op is one of

❖ Formula:
– an atomic formula, or
– , where p and q are formulas, or
– , where variable X is free in p(X), or
– , where variable X is free in p(X)

< > = ≤ ≥ ≠, , , , ,

¬ ∧ ∨p p q p q, ,
∃X p X(())
∀X p X(())

21

Free and Bound Variables

❖ The use of quantifiers ∀X and ∃X in a
formula is said to bind X.
– A variable that is not bound is free.

❖ Let us revisit the definition of a query: {T|p(T)}

❖ There is an important restriction: the variable
T that appears to the left of `|’ must be the only
free variable in the formula p(...).

22

Find all sailors with a rating above 7

❖ {S | S ∈ Sailors ^ S.rating > 7}
❖ Query is evaluated on an instance of Sailors
❖ Tuple variable S is instantiated to each tuple of this

instance in turn, and the condition “S.rating > 7” is
applied to each such tuple.

❖ Answer contains all instances of S (which are tuples
of Sailors) satisfying the condition.

23

Find sailors rated > 7 who’ve reserved boat #103

❖ {S | (S ∈ Sailors) ^ (S.rating > 7) ^ (∃ R ∈
Reserves (R.sid = S.sid ^ R.bid = 103))}

❖ Note the use of ∃ to find a tuple in Reserves
that `joins with’ the Sailors tuple under
consideration.

❖ R is bound, S is not

24

Unsafe Queries, Expressive Power

❖ It is possible to write syntactically correct calculus
queries that have an infinite number of answers!
Such queries are called unsafe.
– e.g.,

❖ It is known that every query that can be expressed
in relational algebra can be expressed as a safe
query in DRC / TRC; the converse is also true.

❖ Relational Completeness: Query language (e.g.,
SQL) can express every query that is expressible
in relational algebra/calculus.

S S Sailors| ¬ ∈

5

25

Summary
❖ The relational model has rigorously defined query

languages that are simple and powerful.
❖ Relational algebra is more operational; useful as

internal representation for query evaluation plans.
❖ Relational calculus is non-operational, and users

define queries in terms of what they want, not in
terms of how to compute it. (Declarativeness.)

❖ Several ways of expressing a given query; a query
optimizer should choose the most efficient version.

❖ Algebra and safe calculus have same expressive power,
leading to the notion of relational completeness.

26

Nested Relations

❖ Attributes can be scalar (as before) or
relation-valued

❖ Definition is recursive
❖ Example:

create table Book (title: string, author:string,
copies: (publ: string,
 pages: integer,
 date: integer))

❖ “copies” is a relation-valued field

27

Nested Relational Algebra

❖ A spectrum of algebras can be defined
❖ At one end:

– Relational algebra plus nest (ν) and unnest (µ):
If B =

title author copies

Moby Dick Melville

Marmion Scott { }

publ pages date

Prentice Hall

McGraw Hill

613 1971

542 1942

28

Nesting and Unnesting
❖ … then µ (B, copies) =

title author publ pages date
Moby Dick Melville

Moby Dick Melville

Marmion Scott

Prentice Hall

McGraw Hill

613 1971

542 1942

null null null

❖ Nulls must be supported in algebra

❖ ν (µ (B, copies), copies (publ, pages, date)) = B
❖ ν, µ inverses iff S → N

– S is set of scalar fields
– N is set of non-scalar fields
– This is called PNF (partitioned normal form)

29

Extending Relational Operators

❖ At other end of spectrum:
– Selection allows set comparators and constants and

use of select, project inside the formula
– Projection allows arbitrary NF2 algebra expression

in addition to simple field names
– Union, difference: recursive definitions
– Cross product: usually just relational.

❖ Example: retrieve title, number of pages of
all books by Melville:
– π[title, π[pages](copies)](σ[author=‘Melville’](B))

30

Nested Relations Summary

❖ An early step on the way to OODBMS
❖ No products, only prototypes, but:

– Many ideas from NF2 relations have survived
– Collection types in SQL3 (nesting, unnesting)
– Algebra ideas useful for Object Database QP

❖ Can provide a more natural model of data
❖ Are a straightforward extension of relations:

– many solutions are thus also straightforward
– formal foundation of relational model remains

