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Relational Algebra
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Relational Query Languages

❖ Query languages:  Allow manipulation and retrieval
of data from a database.

❖ Relational model supports simple, powerful QLs:
– Strong formal foundation based on logic.
– Allows for much optimization.

❖ Query Languages != programming languages!
– QLs not expected to be “Turing complete”.
– QLs not intended to be used for complex calculations.
– QLs support easy, efficient access to large data sets.
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Formal Relational Query Languages

Two mathematical Query Languages form the
basis for “real” languages (e.g. SQL), and for
implementation:

❶ Relational Algebra:  More operational, very
useful for representing execution plans.

❷ Relational Calculus:   Lets users describe what
they want, rather than how to compute it.
(Non-operational, declarative.)

☛  Understanding Algebra & Calculus is key to 
☛  understanding SQL, query processing! 
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Preliminaries

❖ A query is applied to relation instances, and the
result of a query is also a relation instance.
– Schemas of input relations for a query are fixed (but

query will run regardless of instance!)
– The schema for the result of a given query is also

fixed! Determined by definition of query language
constructs.

❖ Positional vs. named-field notation:
– Positional notation easier for formal definitions,

named-field notation more readable.
– Both used in Relational Algebra and SQL
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Example Instances

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day

22 101 10/10/96
58 103 11/12/96

R1

S1

S2

❖ “Sailors” and “Reserves”
relations for our examples.

❖ We’ll use positional or
named field notation,
assume that names of fields
in query results are
`inherited’ from names of
fields in query input
relations.
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Relational Algebra

❖ Basic operations:
– Selection  (     )    Selects a subset of rows from relation.
– Projection  (     )   Deletes unwanted columns from relation.
– Cross-product  (     )  Allows us to combine two relations.
– Set-difference  (     )  Tuples in reln. 1, but not in reln. 2.
– Union  ( ∪ )  Tuples in reln. 1 and in reln. 2.

❖ Additional operations:
– Intersection, join, division, renaming:  Not essential, but

(very!) useful.

❖ Since each operation returns a relation, operations
can be composed! (Algebra is “closed”.)

σ
π

−
×



2
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Projection
sname rating

yuppy 9
lubber 8
guppy 5
rusty 10

π
sname rating

S
,

( )2

age
35.0
55.5

πageS( )2

❖ Deletes attributes that are not in
projection list.

❖ Schema of result contains exactly
the fields in the projection list,
with the same names that they
had in the (only) input relation.

❖ Projection operator has to
eliminate duplicates!  (Why??)
– Note: real systems typically

don’t do duplicate elimination
unless the user explicitly asks
for it.  (Why not?)
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Selection

σ
rating

S>8
2( )

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

sname rating
yuppy 9
rusty 10

π σ
sname rating rating

S
,

( ( ))>8
2

❖ Selects rows that satisfy
selection condition.

❖ No duplicates in result!
(Why?)

❖ Schema of result
identical to schema of
(only) input relation.

❖ Result relation can be
the input for another
relational algebra
operation!  (Operator
composition.)
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Union, Intersection, Set-Difference

❖ All of these operations take
two input relations, which
must be union-compatible:
– Same number of fields.
– `Corresponding’ fields

have the same type.
❖ What is the schema of result?

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

sid sname rating age
31 lubber 8 55.5
58 rusty 10 35.0

S S1 2

S S1 2

sid sname rating age
22 dustin 7 45.0

S S1 2 10

Cross-Product
❖ Each row of S1 is paired with each row of R1.
❖ Result schema has one field per field of S1 and R1,

with field names `inherited’ if possible.
– Conflict:  Both S1 and R1 have a field called sid.

ρ ( ( ) )C sid sid S R1 1 5 2 1 1→ → ×

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

☛ Renaming operator: 
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Joins

❖ Condition Join:   R     C S = σC (R × S)

S1      S1.sid < R1.sid  R1
❖ Result schema same as that of cross-product.
❖ Fewer tuples than cross-product, might be

able to compute more efficiently
❖ Sometimes called a theta-join.

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 58 103 11/12/96

��

��
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Joins

❖ Equi-Join:  A special case of condition join where
the condition c contains only equalities and ^.

S1        sid R1
❖ Result schema similar to cross-product, but only

one copy of fields for which equality is specified.
❖ Natural Join:  Equijoin on all common fields.

sid sname rating age bid day
22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

��
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Find names of sailors who’ve reserved boat #103

❖ Solution 1: π σsname bid
serves Sailors(( Re ) )=103

��

❖ Solution 2: ρ σ( , Re )Temp serves
bid

1
103=

ρ ( , )Temp Temp Sailors2 1��

π snameTemp( )2

❖ Solution 3: π σsname bid
serves Sailors( (Re ))=103

��
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Find names of sailors who’ve reserved a red boat

❖ Information about boat color only available in
Boats; so need an extra join:

π σsname color red
Boats serves Sailors((

' '
) Re )= �� ��

❖ A more efficient solution:

π π π σsname sid bid color red
Boats s Sailors( ((

' '
) Re ) )= �� ��

☛ A query optimizer can find this given the first solution!
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Find sailors who’ve reserved a red or a green boat

❖ Can identify all red or green boats, then find
sailors who’ve reserved one of these boats:

ρ σ( , (
' ' ' '

))Tempboats
color red color green

Boats
= ∨ =

π snameTempboats serves Sailors( Re )�� ��

❖ Can also define Tempboats using union!  (How?)

❖ What happens if       is replaced by       in this query?
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Find sailors who’ve reserved a red and a green boat

❖ Previous approach won’t work!  Must identify
sailors who’ve reserved red boats, sailors
who’ve reserved green boats, then find the
intersection (note that sid is a key for Sailors):

ρ π σ( , ((
' '

) Re ))Tempred
sid color red

Boats serves��

 

π sname Tempred Tempgreen Sailors(( ) )∩ ��

 

ρ π σ( , ((
' '

) Re ))Tempgreen
sid color green

Boats serves
=

��
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Relational Calculus
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Relational Calculus

❖ Comes in two flavors:  Tuple relational calculus (TRC)
and Domain relational calculus (DRC).

❖ Calculus has variables, constants, comparison ops, logical
connectives, and quantifiers.
– TRC:  Variables range over (i.e., get bound to) tuples.
– DRC:  Variables range over domain elements (= field values).
– Both TRC and DRC are simple subsets of first-order logic.

❖ Expressions in the calculus are called formulas.  An
answer tuple is essentially an assignment of constants
to variables that make the formula evaluate to true.
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Tuple Relational Calculus

❖ Query has the form:    { T | p(T)}

❖ Answer includes all tuples  T  that
   make the formula  p(T) be true.

❖ Formula is recursively defined, starting with
    simple atomic formulas  (getting tuples from
    relations or making comparisons of values), 
    and building bigger and better formulas using
    the logical connectives.
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TRC Formulas

❖ Atomic formula:
–  R ∈ Rel,  or R.a op S.b,  or  R.a op constant
– op  is one of

❖ Formula:
– an atomic formula,  or
–                             , where p and q are formulas,  or
–                        , where variable X is free in p(X),  or
–                        , where variable X is free in p(X)

< > = ≤ ≥ ≠, , , , ,

¬ ∧ ∨p p q p q, ,
∃X p X( ( ))
∀X p X( ( ))
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Free and Bound Variables

❖ The use of quantifiers    ∀X    and    ∃X     in a
formula is said to bind X.
– A variable that is not bound is free.

❖ Let us revisit the definition of a query: {T|p(T)}

❖ There is an important restriction:  the variable
T that appears to the left of `|’ must be the only
free variable in the formula p(...).
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Find all sailors with a rating above 7

❖ {S | S ∈ Sailors ^ S.rating > 7}
❖ Query is evaluated on an instance of Sailors
❖ Tuple variable S is instantiated to each tuple of this

instance in turn, and the condition “S.rating > 7” is
applied to each such tuple.

❖ Answer contains all instances of S (which are tuples
of Sailors) satisfying the condition.
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Find sailors rated > 7 who’ve reserved boat #103

❖ {S | (S ∈ Sailors) ^ (S.rating > 7) ^ (∃ R ∈
Reserves (R.sid = S.sid ^ R.bid = 103))}

❖ Note the use of    ∃   to find a tuple in Reserves
that `joins with’ the Sailors tuple under
consideration.

❖ R is bound, S is not
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Unsafe Queries,  Expressive Power

❖ It is possible to write syntactically correct calculus
queries that have an infinite number of answers!
Such queries are called unsafe.
– e.g.,

❖ It is known that every query that can be expressed
in relational algebra can be expressed as a safe
query in DRC / TRC; the converse is also true.

❖ Relational Completeness:  Query language (e.g.,
SQL) can express every query that is expressible
in relational algebra/calculus.

S S Sailors| ¬ ∈
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Summary
❖ The relational model has rigorously defined query

languages that are simple and powerful.
❖ Relational algebra is more operational; useful as

internal representation for query evaluation plans.
❖ Relational calculus is non-operational, and users

define queries in terms of what they want, not in
terms of how to compute it.  (Declarativeness.)

❖ Several ways of expressing a given query; a query
optimizer should choose the most efficient version.

❖ Algebra and safe calculus have same expressive power,
leading to the notion of relational completeness.
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Nested Relations

❖ Attributes can be scalar (as before) or
relation-valued

❖ Definition is recursive
❖ Example:

create table Book (title: string, author:string,
copies: (publ: string,
        pages: integer,
        date: integer))

❖ “copies” is a relation-valued field
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Nested Relational Algebra

❖ A spectrum of algebras can be defined
❖ At one end:

– Relational algebra plus nest (ν) and unnest (µ):  
If B =  

title author copies

Moby Dick Melville

Marmion Scott { }

publ pages date

Prentice Hall

McGraw Hill

613 1971

542 1942
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Nesting and Unnesting
❖ … then µ (B, copies) =

title author publ pages date
Moby Dick Melville

Moby Dick Melville

Marmion Scott

Prentice Hall

McGraw Hill

613 1971

542 1942

null null null

❖ Nulls must be supported in algebra

❖ ν (µ (B, copies), copies (publ, pages, date)) = B
❖ ν, µ inverses iff S → N

– S is set of scalar fields
– N is set of non-scalar fields
– This is called PNF (partitioned normal form)
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Extending Relational Operators

❖ At other end of spectrum:
– Selection allows set comparators and constants and

use of select, project inside the formula
– Projection allows arbitrary NF2 algebra expression

in addition to simple field names
– Union, difference:  recursive definitions
– Cross product:  usually just relational.

❖ Example:  retrieve title, number of pages of
all books by Melville:
– π[title, π[pages](copies)](σ[author=‘Melville’](B))
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Nested Relations Summary

❖ An early step on the way to OODBMS
❖ No products, only prototypes, but:

– Many ideas from NF2 relations have survived
– Collection types in SQL3 (nesting, unnesting)
– Algebra ideas useful for Object Database QP

❖ Can provide a more natural model of data
❖ Are a straightforward extension of relations:

– many solutions are thus also straightforward
– formal foundation of relational model remains


