
1

1

Object Databases: Logical Data
Modeling

2

Object Databases: Review

❖ Object Identity
❖ Behavioral modeling via methods
❖ Subclasses and inheritance
❖ Rich type system
❖ Encapsulation and information hiding

3

Object Databases: Advantages

❖ Better suited for many “new” applications
– Non-tabular data
– Large or variable-sized objects

❖ More realistic data structuring
❖ Explicit relationships
❖ Easier embedding in a host language (e.g. C++)
❖ Ease of design and querying (sometimes)
❖ “Support” for ordered data

4

Object Databases: Disadvantages

❖ Not as established as relational technology
❖ May be overkill for some systems
❖ Schema design not well understood
❖ Query processing still being researched

5

Logical Object Database Design

❖ We will focus on O2, an OODBMS
– OO features generally subsume OR features
– O2 is representative and mostly ODMG-compliant
– Other OO/OR systems make other choices

❖ Can do first-level logical design directly:
– Use ODL or other OO modeling languages
– Can skip E/R entirely
– One less level of translation (applause, please…)
– No standards or theory for logical design (boo…)

6

Logical DB Design in O2

❖ Class concept captures
– Object structure (type)
– Object behavior (methods)
– Inheritance (single and multiple)
– Type extents
– Many ICs

❖ Actual data created using named DB objects
– like persistent global variables within a DB
– “points of entry” into DB for browser, OQL

❖ Application programs model other aspects

2

7

Classes: Attributes

❖ Standard scalar types
– integer, char, etc.

❖ set (really a multiset; allows duplicates)
❖ unique set (a “real” set)
❖ list (indexable)
❖ object
❖ tuple
❖ Object vs. tuple: different semantics, storage
❖ “types” not always tuples !!!

8

Classes: Methods

❖ Model object behavior
❖ Only way to access data of private types
❖ Used to update an object

– Can also use browser directly if class is public

❖ The init method:
– Like a C++ constructor
– Invoked whenever a new object is created
– Very handy for maintaining extents
– Not inherited

9

Classes: Inheritance

❖ Type (structure) and methods (behavior) are
both inherited by subclasses

❖ Exception: “init” method not inherited
❖ Semantics: substitutability

– Example: a Student can appear wherever a Person
is allowed to appear (students are people too!)

– Collection types can participate in inheritance

❖ Multiple Inheritance:
– Two or more direct superclasses (e.g. WorkStudy)
– Must resolve naming conflicts (none in this case)

10

Classes: Inheritance (cont.)

❖ Can override method, attribute definitions in a
subclass
– Type of redefined attribute must be subtype of

inherited attribute’s type
– All types in a redefined method signature must be

subtypes of corresponding types in inherited method

❖ Problem:

– Which fire_emp method is invoked on a nextDept?
– Unknown until run-time: late binding

for (nextDept in Departments)
nextDept->fire_emp;

11

Classes: Extents

❖ An extent is a (unique, persistent) set
containing (the OIDs of) every object of the
class and its subclasses

❖ Optional for every class
❖ Similar to relations
❖ Built in to ODL
❖ In some actual systems, must create and

maintain “manually”
❖ Keys can be specified for a class iff it has an

extent
12

Classes: Referential Integrity

❖ OIDs can refer to an object anywhere in DB
❖ Objects can be referenced from anywhere in DB
❖ Insertion or deletion of a reference can never

violate referential integrity
❖ Assume automatically maintained extents
❖ Deletion of a referenced object, default:

– Same as SQL-92: disallow deletion from extent

❖ Methods can enforce other delete semantics
– Cascading delete, set NULL, or set default

3

13

Named DB Objects

❖ These are the roots of persistence
❖ They are the only way to access data
❖ Can use browser to examine all our data:

– Start at a named DB object and follow OIDs
– Can do some limited updates via browser also
– Can’t do “real” queries in browser
– Can’t “link” two existing objects in browser

❖ OQL queries (next class) must use named DB
objects to retrieve any data

14

Object Deletion

❖ Object physically removed when all sources of
its persistence are removed
– Thus deleting a named DB object doesn’t

physically remove object unless nothing else in DB
references that object

❖ One solution: reference counts
– Remove object when reference count = 0
– Performance problems
– Must ensure that copying a ref. incrs. ref. count
– Used in early versions of O2

❖ Can use periodic garbage collection instead

15

Object Deletion (cont.)

❖ An alternative (not available in O2): Allow
explicit object deletion at any time

❖ Replace the physical object with a tombstone
– Tombstone is a special marker (similar to a NULL)
– When some object follows an OID to the deleted

object, it encounters the tombstone
– The reference that was just followed can be set to

NULL or some default value or other action taken

❖ This approach can make implementation of
SET NULL semantics, etc. much easier!!!

❖ Avoids the dangling references problem 16

Application Programs

❖ Associated with an O2 schema
❖ Used for non-object-specific tasks

– Frequently-performed tasks that can’t or shouldn’t
be coded as methods

– Tasks that involve changing or examining more
than one object

❖ Examples:
– Prompt for a department name and display it
– Display all departments
– Move an employee from one dept. to another

17

Physical Design: Indexing

❖ Can index named list, set, unique set objects
❖ Search key must be:

– An atomic value (e.g. integer)
– An OID
– A collection (list, set, unique set) of the above

❖ Elements of an index path must all be tuples, not
OIDs (except possibly the last element)

❖ Sample indices:
– Companies: name, address.Country, address.city.name
– Departments: emps

18

Physical Design: Clustering

❖ When an object becomes persistent, by default
it is clustered near its parent

❖ DBA can specify clusters based on cluster trees:
– subsets of the schema composition graph
– can be sorted
– defined on classes or collection objects
– deep cluster trees can impede performance

❖ Examples:
– cluster Person /* all Person objects clustered */
– cluster Department on (chair) /* Departments stored

with chairs; emps, majors stored elsewhere */

4

19

Summary

❖ Classes reflect behavior and complex structure
❖ Inheritance provides new semantics
❖ Methods and OIDs help enforce integrity
❖ Named DB objects are “entry points” into DB
❖ Method, application language has same type

system as DBMS !!!
❖ Physical design options are numerous
❖ Much of this also applies, in a modified way, to

Object-Relational DBMSs!!!
20

State of the Art (logical ODB modeling)

❖ Indexing techniques
❖ Temporal OODB modeling
❖ Deductive OODB modeling
❖ Active OODB modeling
❖ More sophisticated ordered type support (e.g.

trees, graphs)
❖ Heterogeneous database integration
❖ Garbage collection techniques
❖ Storage and clustering techniques

