
1

1

OODBMS: Introduction and
Logical Database Design

2

Why OO?

❖ Relational Systems are limited:
– Structural restrictions on data
– Missing semantics (value-based relationships)
– Linguistic limitations (SQL and Algebra)

❖ PL community’s OO work is appealing:
– More “realistic” data structures
– Explicit relationships and behavior modeling
– “Tighter” interface between DBMS and PL

❖ New applications:
– CAD, OIS, hypertext, geograph. data, multimedia,

medical data, music, hierarchical data, ...

3

Fundamental OO Concepts

❖ Complex object structure
❖ Explicit relationships
❖ Object identity: globally unique OIDs
❖ Methods (behavior) an inherent part of model

– used to model integrity constraints!
– written in a “real” programming language

❖ Subclasses and inheritance
– structure (attributes) and behavior (methods)

❖ Private vs. public attributes and methods

4

OODBMS Required Features

❖ Complex Objects (set, tuple, list)
❖ OID (value-independent, permanent)
❖ Encapsulation (overriding it?)
❖ Classes/Types (maintain extents?)
❖ Subclasses (multiple superclasses?)
❖ Late binding for overridden methods
❖ Turing-complete host language
❖ Seamless type extensibility

5

OODBMS Required Features (cont)

❖ Persistence enforced by system
❖ Handle large DBs (indexing, buffering, etc.)
❖ Concurrency support
❖ Recovery support
❖ Must provide a simple (declarative,

optimizable) query language
❖ Separate constraint mechanisms?
❖ Views?

6

Solution 1: Object-Oriented DBMS
❖ Idea: Take an OO language like C++, add

persistence & collections.
class frame {

int frameno;

jpeg *image;

int category;

}

persistent set <frame *> frames;

foreach (frame *f, frames)

return f->image->thumbnail();

❖ Shut down the program. Start it up again.
Persistent vars (e.g. frames) retain values!

2

7

OODBMS applications

❖ OODBMSs good for:
– complex data
– easier integration with application code
– integrated modeling of behavior and structure

❖ Problems:
– lack of backward compatibility
– some argue it’s back to the network data model
– standards still emerging

❖ A modest success in the marketplace

8

Solution 2: Object-Relational

❖ Idea: Add OO features to the type system of
SQL. I.e. “plain old SQL”, but...
– columns can be of new types (ADTs)
– user-defined methods on ADTs
– columns can be of complex types
– reference types and “deref”
– inheritance
– old SQL schemas still work! (backwards

compatibility)

❖ Many relational vendors moving this way
(SQL3). Big business!

9

New features in SQL-3 DML

❖ Built-in ops for complex types
– e.g. the typical set methods, array indexing, etc.
– dot notation for tuple types

❖ Operators for reference types
– deref(foo)
– shorthand for deref(foo).bar: foo->bar.

❖ User-defined methods for ADTs.
❖ Support for recursive queries

10

Stonebraker’s Application Matrix

No Query Query

Complex Data

Simple Data File System

OODBMS

RDBMS

ORDBMS

Thesis: Most applications will move to
 the upper right.

11

Perspectives

❖ RDBMS + OO = ORDBMS
– Object-Relational DBMS
– “Looks and feels” like a better RDBMS
– Emerging standard: SQL-3

❖ OOPL + DB = OODBMS
– “Looks and feels” more like a programming

language than does an ORDBMS
– In reality, built from ground up
– Uses RDBMS techniques in an OO setting
– Emerging standard: OQL

12

Summary

❖ OO/ORDBMS offers many new features.
– But not clear how to use them!
– Schema design techniques not well

understood
– Query processing techniques still in

research phase.
◆ A moving target for OO/OR DBAs!

❖ Prediction: You will use an OO/ORDBMS in
the future.

3

13

Current Products

❖ Some OR features supported in:
– Oracle 8
– IBM DB2
– Informix UDS
– UniSQL

❖ Some OODBMS products:
– O2
– ObjectStore
– Objectivity
– Versant, Jasmine, Titanium, Poet, …

14

State of the Art (general OO/OR)

❖ Incorporating new data types
❖ Modeling ordered data
❖ Querying ordered data
❖ Indexing techniques
❖ Mapping objects to relations
❖ OO/OR benchmarks
❖ Garbage collection techniques

NEXT WEEK: Object Modeling; Object Querying

