
1

1

Concurrency Control

2

Why Have Concurrent Processes?

❖ Better transaction throughput, response time
❖ Done via better utilization of resources:

– While one processes is doing a disk read, another can
be using the CPU or reading another disk.

❖ DANGER DANGER! Concurrency could lead
to incorrectness!
– Must carefully manage concurrent data access.
– There’s (much!) more here than the usual OS tricks!

3

Transactions

❖ Basic concurrency/recovery concept: a
transaction (Xact).
– A sequence of many actions which are

considered to be one atomic unit of work.

❖ DBMS “actions”:
– reads, writes
– Special actions: commit, abort

4

The ACID Properties

❖ A tomicity: All actions in the Xact happen, or none
happen.

❖ C onsistency: If each Xact is consistent, and the DB
starts consistent, it ends up consistent.

❖ I solation: Execution of one Xact is isolated from that
of other Xacts.

❖ Durability: If a Xact commits, its effects persist.

5

Passing the ACID Test

❖ Concurrency Control
– Guarantees Consistency and Isolation, given

Atomicity.

❖ Logging and Recovery
– Guarantees Atomicity and Durability.

❖ We’ll do C. C. first:
– What problems could arise?
– What is acceptable behavior?
– How do we guarantee acceptable behavior?

6

Schedules

❖ Schedule: An interleaving of actions
from a set of Xacts, where the actions
of any 1 Xact are in the original order.
– Represents some actual sequence of

database actions.
– Example: R1(A), W1(A), R2(B), W2(B),

R1(C), W1(C)
– In a complete schedule, each Xact ends in

commit or abort.

❖ Initial State + Schedule → Final State

T1 T2

R(A)

W(A)

R(B)

W(B)

R(C)

W(C)

2

7

Acceptable Schedules

❖ One sensible “isolated, consistent” schedule:
– Run Xacts one at a time, in a series.
– This is called a serial schedule.
– NOTE: Different serial schedules can have different

final states; all are “OK” -- DBMS makes no guarantees
about the order in which concurrently submitted Xacts
are executed.

❖ Serializable schedules:
– Final state is what some serial schedule would have

produced.
– Aborted Xacts are not part of schedule; ignore them for

now (they are made to `disappear’ by using logging).
8

Serializability Violations

❖ Two actions conflict when 2
xacts access the same item:
– W-R conflict: T2 reads something

T1 wrote; T1 still active
– R-W and W-W conflicts:

Similar.

❖ WR conflict (dirty read):
– Result is not equal to any serial

execution!
– T2 reads what T1 wrote, but it

shouldn’t have!!

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

Commit

R(B)

W(B)

Commit

transfer
$100 from
A to B

add 6%
interest to
A & B

Database is
inconsistent!

9

More Conflicts

❖ RW Conflicts (Unrepeatable Read)
– T2 overwrites what T1 read.

– Again, not equivalent to a serial execution.

❖ WW Conflicts (Lost Update)
– T2 overwrites what T1 wrote.

– Usually occurs with RW or WR anomalies.
◆ Unless you have “blind writes” (as here).

T1: R(A), R(A), C
T2: R(A), W(A), C

T1: W(A), W(B), C
T2: W(A), W(B), C

10

Now, Aborted Transactions

❖ Serializable schedule: Equivalent to a serial
schedule of committed Xacts.
– as if aborted Xacts never happened.

❖ Two Issues:
– How does one undo the effects of an xact?

◆ We’ll cover this in logging/recovery
– What if another Xact sees these effects??

◆ Must undo that Xact as well!

11

Cascading Aborts

❖ Abort of T1 requires abort of T2!
– Cascading Abort

❖ What about WW conflicts & aborts?
– T2 overwrites a value that T1 writes.
– T1 aborts: its “remembered” values are restored.
– Lose T2’s write! We will see how to solve this, too.

❖ An ACA (avoids cascading abort)
schedule is one in which cascading abort cannot
arise.
– A Xact only reads/writes data from committed Xacts.

T1 T2

R(A)

W(A)

R(A)

W(A)

abort

12

Recoverable Schedules

❖ Abort of T1 requires abort of T2!
– But T2 has already committed!

❖ A recoverable schedule is one in
 which this cannot happen.

– i.e. a Xact commits only after all the Xacts it “depends
on” (i.e. it reads from or overwrites) commit.

– Recoverable implies ACA (but not vice-versa!).

❖ Real systems typically ensure that only
recoverable schedules arise (through locking).

T1 T2

R(A)

W(A)

R(A)

W(A)

commit

abort

3

13

Locking: A Technique for C. C.

❖ Concurrency control usually done via locking.
❖ Lock info maintained by a “lock manager”:

– Stores (XID, RID, Mode) triples.
◆ This is a simplistic view; suffices for now.

– Mode ∈ {S,X}
– Lock compatibility table:

❖ If a Xact can’t get a lock, it is
 suspended on a wait queue.

-- S X

--

S

X

√

√

√

√ √

√

LOCK REQUESTED

L
O
C
K

H
E
L
D

14

Two-Phase Locking (2PL)

❖ 2PL:
– If T wants to read an object, first obtains an S lock.
– If T wants to modify an object, first obtains X lock.
– If T releases any lock, it can acquire no new locks!

❖ Locks are automatically obtained by DBMS.
❖ Guarantees serializability!

– Why?

Time

of
locks

lock point

growing phase

shrinking
 phase

15

Strict 2PL

❖ Strict 2PL:
– If T wants to read an object, first obtains an S lock.
– If T wants to modify an object, first obtains X lock.
– Hold all locks until end of transaction.

❖ Guarantees serializability, and recoverable
schedule, too!
– Thus ensures ACA!

Time

of
locks

16

Precedence Graph

❖ A Precedence (or Serializability) graph:
– Node for each committed Xact.
– Arc from Ti to Tj if an action of Ti precedes and

conflicts with an action of Tj.

❖ T1 transfers $100 from A to B, T2 adds 6%
– R1(A), W1(A), R2(A), W2(A), R2(B), W2(B), R1(B),

W1(B)

T1 T2

17

Conflict Serializability

❖ 2 schedules are conflict equivalent if:
– they have the same sets of actions, and
– each pair of conflicting actions is ordered in the

same way.

❖ A schedule is conflict serializable if it is
conflict equivalent to a serial schedule.
– Note: Some serializable schedules are not conflict

serializable!

18

Conflict Serializability & Graphs

❖ Theorem: A schedule is conflict serializable iff
its precedence graph is acyclic.

❖ Theorem: 2PL ensures that the precedence
graph will be acyclic!

❖ Strict 2PL improves on this by avoiding
cascading aborts, problems with undoing WW
conflicts; i.e., ensuring recoverable schedules.

4

19

Lock Manager Implementation

❖ Question 1: What are we locking?
– Tuples, pages, or tables?
– Finer granularity increases concurrency, but also

increases locking overhead.

❖ Question 2: How do you “lock” something??
❖ Lock Table: A hash table of Lock Entries.

– Lock Entry:
◆ OID
◆ Mode
◆ List: Xacts holding lock (or a count)
◆ List: Wait Queue

20

Dynamic Databases

❖ If we relax the assumption that the DB is a
fixed collection of objects, even Strict 2PL will
not assure serializability:
– T1 locks all pages containing sailor records with

rating = 1, and finds oldest sailor (say, age = 71).
– Next, T2 inserts a new sailor; rating = 1, age = 96.
– T2 also deletes oldest sailor with rating = 2 (and,

say, age = 80), and commits.
– T1 now locks all pages containing sailor records

with rating = 2, and finds oldest (say, age = 63).

❖ No consistent DB state where T1 is “correct”!

21

The Problem

❖ T1 implicitly assumes that it has locked the
set of all sailor records with rating = 1.
– Assumption only holds if no sailor records are

added while T1 is executing!
– Need some mechanism to enforce this

assumption. (Index locking, predicate locking, or
table locking.)

❖ Example shows that conflict serializability
guarantees serializability only if the set of
objects is fixed!

22

Summary of Concurrency Control

❖ Concurrency control key to a DBMS.
– More than just mutexes!

❖ Transactions and the ACID properties:
– C & I are handled by concurrency control.
– A & D coming soon with logging & recovery.

❖ Conflicts arise when two Xacts access the
same object, and one of the Xacts is
modifying it.

❖ Serial execution is our model of correctness.

23

Summary, cont.

❖ Serializability allows us to “simulate” serial
execution with better performance.

❖ 2PL: A simple mechanism to get serializability.
– Strict 2PL also gives us recoverability, ACA

❖ Lock manager module automates 2PL so that
only the access methods worry about it.
– Lock table is a big main-mem hash table

❖ Deadlocks are possible, and typically a
deadlock detector is used to solve the problem.

24

Summary, cont.: SQL-92 support

ISOLATION
LEVEL

LOST
UPDATE

DIRTY
READ

UNREPEATABLE
READ PHANTOM IMPLEMENTATION

Read
Uncommitted

(0)
N Y Y Y No S locks; writers must

run at higher levels

Read
Committed

(1)
N N Y Y Strict 2PL X locks; S

locks released anytime

Repeatable
Reads (2) N N N Y Strict 2PL on data

Serializable
(3) N N N N

Strict 2PL on data and
indices (or predicate
locking)

5

25

State of the Art (concurrency)

❖ CC in broadcast data environments
❖ Update propagation for replication
❖ CC in search trees (R trees, etc.)
❖ Distributed optimistic CC
❖ CC in real-time DBMS
❖ CC for “long” transactions
❖ Version management

