
1

1

Physical Design and Tuning
Example

2

The Database

❖ A hockey league with rinks, teams, and players:
– Rink (name, phone, capacity)
– Team (tname, city, color, wins, losses, tie, rname FK

references Rink(name))
– Player (id, name, num, pos, tname, tcity, FK (tname,

tcity) references Team (tname, city))

❖ All relations are in BCNF
❖ The only FDs are PK→all other fields
❖ Constraint: All players with uniform number 9

must be goalies.

3

The Workload

❖ A mix of queries and updates:
– Q1 (20%): given player id, return num and pos
– Q2 (40%): given player position, return names, nums
– Q3 (5%): retrieve player name, num, pos, and rink
– Q4 (10%): get W-L-T record of a team (given name, city)
– Q5 (10%): produce an alphabetical team listing
– Q6 (5%): list all rink names from smallest to largest
– U1 (10%): update W-L-T information

4

Index Choices

❖ Q1: non-clustered index on player id
❖ Q2: clustered index on player pos
❖ Q3: index won’t help without harming Q2
❖ Q4, Q5: clustered index on team (tname, city)
❖ Q6: clustered index on rink capacity
❖ U1: team (tname, city) index will help, as will

lack of indices on wins, losses, tie attributes

5

Subsequent Tuning

❖ The system runs fine for a week, so you take a
vacation. When you return….
– General performance complaints abound

◆ you rebuild indices
◆ you create and update statistics
◆ you check optimizer plans

– Q3 is still particularly bad, and the league
president wants it to be fast.

◆ you wisely decide to give him what he wants
◆ you denormalize to achieve a precomputed join

6

Denormalization

❖ Add rname field to player to avoid join:
– newplayer (id, name, num, pos, tname, tcity,

rname FK references rink(rname), FK (tname,
tcity) references team (tname, city))

– newplayer is 2NF (YIKES!)
– DB is still lossless, dependency-preserving

❖ Must manage redundancy!
– Updates to newplayer (tname, tcity, rname) must

check for correct value of rname
– Updates to team (rname) must propagate to

newplayer

❖ Create a view to preserve external schema

2

7

Vertical Decomposition

❖ Suppose we want to speed up Q6. We can make it
read fewer pages by decomposing:
– Rink_phone (name, phone), clust. index on name
– Rink_cap (name, capacity), clust. index on capacity

❖ Create a view to preserve external schema
❖ IC (FD) maintenance choices:

– leave it to user (scary!)
– allow inserts to “rink” view, not to base relations
– application pgm. to force user to enter both (atomic)
– insert into one base relation triggers insert into other

8

Unpreserved Dependencies

❖ Suppose the users now decide that all rinks in
the same city have the same capacity:
– city → capacity
– While trying to remain calm, you realize that:
– This FD doesn’t exist in any single relation, so a

join is required to check it each time we add or
change a capacity value.

❖ The tradeoff:
– Expensive to check, but
– may not be checked often enough to justify

creating a dependency-preserving decomposition.

9

Other SQL Server Tuning

❖ Has a general performance profiling tool
– Generates execution traces

❖ Queries can give optimizer hints:
– Use loop, hash, or merge join
– Use hash or sort to do grouping
– Force use of an index
– Force a join ordering
– Optimize for time-to-nth-result-tuple
– Adjust lock granularities and concurrency (next

week…)
10

Summary

❖ Tunability varies among systems
❖ B trees nearly universal
❖ Denormalization, decomposition possible
❖ Storage structure size and growth tunable
❖ Optimizer hints common
❖ “Check” constraints very useful
❖ Triggers, assertions for IC (FD) enforcement

