
1

1

Physical Database Design and
Tuning

2

Overview

❖ After ER design, schema refinement, and the
definition of views, we have the conceptual and
external schemas for our database.

❖ The next step is to choose indexes, make clustering
decisions, and to refine the conceptual and external
schemas (if necessary) to meet performance goals.

❖ We must begin by understanding the workload:
– The most important queries and how often they arise.
– The most important updates and how often they arise.
– The desired performance for these queries and updates.

3

Choice of Indexes

❖ One approach: consider the most important queries in
turn. Consider the best plan using the current
indexes, and see if a better plan is possible with an
additional index. If so, create it.

❖ Before creating an index, must also consider the
impact on updates in the workload!
– Trade-off: indexes can make queries go faster, updates

slower. Require disk space, too.

4

Issues to Consider in Index Selection

❖ Attributes mentioned in a WHERE clause are
candidates for index search keys.
– Exact match condition suggests hash index.
– Range query suggests tree index.

◆ Clustering is especially useful for range queries,
although it can help on equality queries as well in the
presence of duplicates.

❖ Try to choose indexes that benefit as many queries as
possible. Since only one index can be clustered per
relation, choose it based on important queries that
would benefit the most from clustering.

5

Issues in Index Selection (Contd.)

❖ Multi-attribute search keys should be considered
when a WHERE clause contains several conditions.
– If range selections are involved, order of attributes should

be carefully chosen to match the range ordering.

❖ When considering a join condition:
– Hash index on inner is very good for Index Nested Loops.

◆ Should be clustered if join column is not key for inner,
and inner tuples need to be retrieved.

– Clustered B+ tree on join column(s) good for Sort-Merge.

6

Examples of Clustering
❖ B+ tree index on E.age can be

used to get qualifying tuples.
– How selective is the condition?
– Is the index clustered?

❖ Consider the GROUP BY query.
– If many tuples have E.age > 10, using

E.age index and sorting the retrieved
tuples may be costly.

– Clustered E.dno index may be better!

❖ Equality queries and duplicates
– Clustering on E.hobby helps!

SELECT E.dno
FROM Emp E
WHERE E.age>40

SELECT E.dno, COUNT (*)
FROM Emp E
WHERE E.age>10
GROUP BY E.dno

SELECT E.dno
FROM Emp E
WHERE E.hobby=‘Stamps’

2

7

Clustering and Joins

❖ Clustering is especially important when accessing
inner tuples in INL.
– Should make index on E.dno clustered.

❖ Suppose that the WHERE clause is instead:
WHERE E.hobby=‘Stamps’ AND E.dno=D.dno
– If many employees collect stamps, Sort-Merge join may be

worth considering. A clustered index on D.dno would help.

❖ Bottom line: Clustering is useful whenever many
tuples are to be retrieved.

SELECT E.ename, D.mgr
FROM Emp E, Dept D
WHERE D.dname=‘Toy’ AND E.dno=D.dno

8

Co-Clustering Relations

❖ SELECT E.name, D.dname
FROM Emp E, Dept D
WHERE E.dno = D.dnum

❖ Fast if employees are stored “with” their
departments (co-clustered).

❖ Co-clustering slower for file scans of each file.
❖ Difficult implementation.
❖ Provided in Oracle, other systems.

9

Tuning the Conceptual Schema
❖ The choice of conceptual schema should be guided by

the workload, in addition to redundancy issues:
– We may settle for a 3NF schema rather than BCNF.
– Workload may influence the choice we make in

decomposing a relation into 3NF or BCNF.
– We may further decompose a BCNF schema!
– We might denormalize (i.e., undo a decomposition step), or

we might add fields to a relation.
– We might consider horizontal decompositions.

❖ If such changes are made after a database is in use,
called schema evolution; might want to mask some of
these changes from applications by defining views.

10

Horizontal Decompositions

❖ Vertical decomposition: Relation is replaced by a
collection of relations that are projections. Most
important case.

❖ Sometimes, might want to replace relation by a
collection of relations that are selections.
– Each new relation has same schema as the original, but a

subset of the rows.
– Collectively, new relations contain all rows of the original.

Typically, the new relations are disjoint.

11

Horizontal Decompositions (Contd.)

❖ Suppose that contracts with value > 10000 are subject
to different rules. This means that queries on
Contracts will often contain the condition val>10000.

❖ One way to deal with this is to build a clustered B+
tree index on the val field of Contracts.

❖ A second approach is to replace contracts by two new
relations: LargeContracts and SmallContracts, with
the same attributes.
– Performs like index on such queries, but no index overhead.
– Can build clustered indexes on other attributes, in addition!

12

Masking Conceptual Schema Changes

❖ The replacement of Contracts by LargeContracts and
SmallContracts can be masked by the view.

❖ However, queries with the condition val>10000 must
be asked wrt LargeContracts for efficient execution:
so users concerned with performance have to be
aware of the change (if DBMS can’t figure it out!).

CREATE VIEW Contracts(cid, sid, jid, did, pid, qty, val)
AS SELECT *
FROM LargeContracts
UNION
SELECT *
FROM SmallContracts

3

13

Tuning Queries and Views

❖ If a query runs slower than expected, check if an
index needs to be re-built, or if statistics are too old.

❖ Sometimes, the DBMS may not be executing the plan
you had in mind. Common areas of weakness:
– Selections involving null values.
– Selections involving arithmetic or string expressions.
– Selections involving OR conditions.
– Lack of evaluation features like index-only strategies or

certain join methods or poor size estimation.

❖ Check the plan that is being used! Then adjust the
choice of indexes or rewrite the query/view.

14

More Guidelines for Query Tuning

❖ Unnest queries when possible (single-block opt.)
❖ Minimize the use of DISTINCT: don’t need it if

duplicates are acceptable, or if answer contains a key.
❖ Minimize the use of GROUP BY and HAVING:

SELECT MIN (E.age)
FROM Employee E
GROUP BY E.dno
HAVING E.dno=102

SELECT MIN (E.age)
FROM Employee E
WHERE E.dno=102

❖ Consider DBMS use of index when writing arithmetic
expressions: E.age=2*D.age will benefit from index on
E.age, but might not benefit from index on D.age!

15

Guidelines for Query Tuning (Contd.)

❖ Avoid using intermediate
relations:

SELECT * INTO Temp
FROM Emp E, Dept D
WHERE E.dno=D.dno

AND D.mgrname=‘Joe’

SELECT T.dno, AVG(T.sal)
FROM Temp T
GROUP BY T.dno

vs.

SELECT E.dno, AVG(E.sal)
FROM Emp E, Dept D
WHERE E.dno=D.dno

AND D.mgrname=‘Joe’
GROUP BY E.dno

and

❖ Does not materialize the intermediate reln Temp.
❖ If there is a dense B+ tree index on <dno, sal>, an

index-only plan can be used to avoid retrieving Emp
tuples in the second query!

16

The Notorious COUNT “Bug”
SELECT dname FROM Department D
 WHERE D.num_emps >

 (SELECT COUNT(*) FROM Employee E
 WHERE D.building = E.building)

CREATE VIEW Temp (empcount, building) AS
SELECT COUNT(*), E.building
 FROM Employee E
GROUP BY E.building

SELECT dname
 FROM Department D,Temp T
 WHERE D.building = T.building
 AND D.num_emps > T.empcount;

17

Summary

❖ Database design consists of several tasks:
requirements analysis, conceptual design, schema
refinement, physical design and tuning.
– In general, have to go back and forth between these tasks to

refine a database design, and decisions in one task can
influence the choices in another task.

❖ Understanding the nature of the workload for the
application, and the performance goals, is essential to
developing a good design.
– What are the important queries and updates? What

attributes/relations are involved?
18

Summary (Contd.)

❖ Indexes must be chosen to speed up important
queries (and perhaps some updates!).
– Clustering and Co-clustering are important decisions
– Performance trade-offs

❖ The conceptual schema should be refined by
considering performance criteria and workload:
– May denormalize, or undo some decompositions to speed up

joins
– May decompose (vertically or horizontally) speed up

selections, projections
– Redundancy vs. join-inducing IC check

4

19

Summary (Contd.)

❖ Statistics have to be periodically updated.
❖ Over time, indexes have to be fine-tuned (dropped,

created, re-built, ...) for performance.
– Should determine the plan used by the system, and adjust

the choice of indexes appropriately.

❖ System may still not find a good plan:
– Only left-deep plans considered (usually)!
– Null values, arithmetic conditions, string expressions, the

use of ORs, etc. can confuse an optimizer.

❖ So, may have to rewrite the query/view:
– Avoid nested queries, temporary relations, complex

conditions, and operations like DISTINCT and GROUP BY. 20

State of the Art, physical design

❖ Clustering (not indexes) for applications
❖ Simulations for performance evaluation
❖ Benchmarks for performance evaluation
❖ Bitmap indexes
❖ Compression techniques (stay tuned…)
❖ DBMS implementations must take advantage

of modern CPUs better (e.g. overlapped
execution)

❖ Data distribution and replication

