
1

1

Relational Query Optimization

2

Overview of Query Optimization

❖ Plan:  Tree of RA ops, with choice of alg for each op.
– Each operator typically implemented using a `pull’

interface: when an operator is `pulled’ for its next output
tuple(s), it `pulls’ on its input(s) and computes them.

❖ Two main issues:
– For a given query, what plans are considered?

◆ Algorithm to search plan space for cheapest (estimated) plan.

– How is the cost of a plan estimated?

❖ Ideally: Want to find best plan.  Practically: Avoid
worst plans!

❖ We will study the System R approach.

3

Highlights of System R Optimizer

❖ Impact:
– Most widely used currently; works well for < 10 joins.

❖ Cost estimation:  Approximate art at best.
– Statistics, maintained in system catalogs, used to estimate

cost of operations and result sizes.
– Considers combination of CPU and I/O costs.

❖ Plan Space:  Too large, must be pruned.
– Only the space of left-deep plans is considered.

◆ Left-deep plans allow output of each operator to be pipelined into
the next operator without storing it in a temporary relation.

– Cartesian products avoided when possible.

4

Motivating Example

❖ Cost:  1000 + 1000 * 500 I/Os
❖ By no means the worst plan!
❖ Misses several opportunities:

selections could have been
`pushed’ earlier, no use is made
of any available indexes, etc.

❖ Goal of optimization:  To find more
efficient plans that compute the
same answer.

SELECT  S.sname
FROM  Reserves R, Sailors S
WHERE  R.sid=S.sid AND 
    R.bid=100 AND S.rating>5

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

RA Tree:

Plan:

5

Alternative Plan 1
(No Indexes)

❖ Main difference:  push selects.
❖ With 5 buffers, cost of plan:

– Scan Reserves (1000) + write temp T1 (10 pages, if we have 100 boats,
uniform distribution).

– Scan Sailors (500) + write temp T2 (250 pages, if we have 10 ratings).
– Sort T1 (2*2*10), sort T2 (2*3*250), merge (10+250)
– Total:  3560 page I/Os.

❖ If we used BNL join, join cost = 10+4*250, total cost = 2770.
❖ If we `push’ projections, T1 has only sid, T2 only sid and sname:

– T1 fits in 3 pages, cost of BNL drops to under 250 pages, total < 2000.

Reserves Sailors

sid=sid

bid=100 

sname
(On-the-fly)

rating > 5
(Scan;
write to 
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

6

Alternative Plan 2
(With Indexes)

❖ With clustered index on bid of
Reserves, we get 100,000/100 =
1000 tuples on 1000/100 = 10 pages.

❖ INL with pipelining (outer is not
materialized).

❖  Decision not to push rating>5 before the join is based on 
     availability of sid index on Sailors.
❖  Cost:  Selection of Reserves tuples (10 I/Os); for each, 
     must get matching Sailors tuple (1000*1.2); total 1210 I/Os.

❖  Join column sid is a key for Sailors.
–At most one matching tuple, unclustered index on sid OK.

–Projecting out unnecessary fields from outer doesn’t help.
Reserves

Sailors

sid=sid

bid=100 

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to 
temp)

(Index Nested Loops,
with pipelining )

(On-the-fly)



2

7

Cost Estimation

❖ For each plan considered, must estimate cost:
– Must estimate cost of each operation in plan tree.

◆ Depends on input cardinalities.
◆ We’ve already discussed how to estimate the cost of operations

(sequential scan, index scan, joins, etc.)

– Must estimate size of result for each operation in tree!
◆ Use information about the input relations.
◆ For selections and joins, assume independence of predicates.

❖ We’ll discuss the System R cost estimation approach.
– Very inexact, but works ok in practice.
– More sophisticated techniques known now.

8

Statistics and Catalogs

❖ Need information about the relations and indexes
involved.  Catalogs typically contain at least:
– # tuples (NTuples) and # pages (NPages) for each relation.
– # distinct key values (NKeys) and NPages for each index.
– Index height, low/high key values (Low/High) for each

tree index.

❖ Catalogs updated periodically.
– Updating whenever data changes is too expensive; lots of

approximation anyway, so slight inconsistency ok.

❖ More detailed information (e.g., histograms of the
values in some field) are usually stored.

9

Size Estimation and Reduction Factors

❖ Consider a query block:
❖ Maximum # tuples in result is the product of the

cardinalities of relations in the FROM clause.
❖ Reduction factor (RF) associated with each term reflects

the impact of the term in reducing result size.  Result
cardinality = Max #  tuples  *  product of all RF’s.
– Implicit assumption that terms are independent!
– Term col=value has RF = 1/NKeys(I), given index I on col
– Term col1=col2 has RF = 1/MAX(NKeys(I1), NKeys(I2))
– Term col>value has RF = (High(I)-value)/(High(I)-Low(I))

SELECT  attribute list
FROM  relation list
WHERE  term1 AND ... AND termk

10

Result Size Estimation (cont’d)

❖ Selections:
– Use reduction factors, logic, probability
– Often use histograms, other statistics

❖ Projections:
– Ignore duplicate elimination (done last, if needed)
– Tuple size is reduced ⇒ fewer pages for result

❖ Joins:  like selections, plus:
– Use candidate key information
– Should consider “dangling” tuples

11

Relational Algebra Equivalences

❖ Allow us to choose different join orders and to
`push’ selections and projections ahead of joins.

❖ Selections:                                                            (Cascade)( ) ( )( )σ σ σc cn c cnR R1 1∧ ∧ ≡... . . .

( )( ) ( )( )σ σ σ σc c c cR R1 2 2 1≡ (Commute)

❖  Projections: ( ) ( )( )( )π π πa a anR R1 1≡ . . . (Cascade)

❖  Joins: R     (S     T) ≡ (R     S)      T (Associative)

(R     S) ≡ (S     R) (Commute)�� ���� ��

�� ��

12

More Equivalences

❖ A projection commutes with a selection that only
uses attributes retained by the projection.

❖ Selection between attributes of the two arguments of
a cross-product converts cross-product to a join.

❖ A selection on just attributes of R commutes with
R     S.   (i.e.,  σ  (R      S)     ≡   σ (R)      S )

❖ Similarly, if a projection follows a join R |X| S, we
can `push’ it by retaining only attributes of R (and S)
that are needed for the join or are kept by the
projection.

������



3

13

Enumeration of Alternative Plans

❖ There are two main cases:
– Single-relation plans
– Multiple-relation plans

❖ For queries over a single relation, queries consist of a
combination of selects, projects, and aggregate ops:
– Each available access path (file scan / index) is considered,

and the one with the least estimated cost is chosen.
– The different operations are essentially carried out

together (e.g., if an index is used for a selection, projection
is done for each retrieved tuple, and the resulting tuples
are pipelined into the aggregate computation).

14

Queries Over Multiple Relations

❖ Fundamental decision in System R:  only left-deep join
trees are considered.
– As the number of joins increases, the number of alternative

plans grows rapidly; we need to restrict the search space.
– Left-deep trees allow us to generate all fully pipelined plans.

◆ Intermediate results not written to temporary files.
◆ Not all left-deep trees are fully pipelined (e.g., SM join).

BA

C

D

BA

C

D

C DBA

15

Enumeration of Left-Deep Plans
❖ Left-deep plans differ only in the order of relations,

the access method for each relation, and the join
method for each join.

❖ Enumerated using N passes (if N relations joined):
– Pass 1:  Find best 1-relation plan for each relation.
– Pass 2:  Find best way to join result of each 1-relation plan

(as outer) to another relation.  (All 2-relation plans.)
– Pass N:  Find best way to join result of a (N-1)-relation plan

(as outer) to the Nth relation.  (All N-relation plans.)

❖ For each subset of relations, retain only:
– Cheapest plan overall, plus
– Cheapest plan for each interesting order of the tuples.

16

Enumeration of Plans (Contd.)

❖ ORDER BY, GROUP BY, aggregates etc. handled as a
final step, using either an `interestingly ordered’
plan or an additional sorting operator.

❖ An N-1 way plan is not combined with an
additional relation unless there is a join condition
between them, unless all predicates in WHERE have
been used up.
– i.e., avoid Cartesian products if possible.

❖ In spite of pruning plan space, this approach is still
exponential in the #  of tables.

17

Example
❖ Pass1:

– Sailors:  B+ tree matches rating>5,
and is probably cheapest.  However,
if this selection is expected to
retrieve a lot of tuples, and index is
unclustered, file scan may be cheaper.

◆ Still, B+ tree plan kept (because tuples are in rating order).

– Reserves:  B+ tree on bid matches bid=500; cheapest.

Sailors:
  B+ tree on rating
  Hash on sid
Reserves:
  B+ tree on bid

❖ Pass 2:
– We consider each plan retained from Pass 1 as the outer,
and consider how to join it with the (only) other relation.

◆ e.g., Reserves as outer:  Hash index can be used to get Sailors tuples
   that satisfy sid = outer tuple’s sid value.

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

18

Summary
❖ Query optimization is an important task in a

relational DBMS.
❖ Typically optimize 1 “select…” (query block) at a time
❖ Must understand optimization in order to understand

the performance impact of a given database design
(relations, indexes) on a workload (set of queries).

❖ Two parts to optimizing a query:
– Consider a set of alternative plans.

◆ Must prune search space; typically, left-deep plans only.

– Must estimate cost of each plan that is considered.
◆ Must estimate size of result and cost for each plan node.
◆ Key issues: Statistics, indexes, operator implementations.



4

19

State of the Art (partial snapshot)

❖ Better histograms (compressed, n-dimensional)
❖ Run-time (adaptive) query optimization
❖ Improved buffering/caching techniques
❖ Performance evaluation and benchmarks
❖ Cost models for “federated” systems
❖ More inclusive algebras

– SQL-92:  grouping, aggregates, ordering, etc.
– SQL-99:  object-relational features


