CSE594

Database Management Systems

Summer 1998
Knowledge Demonstration Opportunity (AKA Final Exam)

“… by these roads ... the lively mind may enter the secret places of wisdom”

- Hugh of St. Victor, 12th century

As stated earlier, you may use one sheet of paper (8.5” by 11”) with anything written on it. If you have a question or need more paper, please raise your hand. Read each question carefully and state any assumptions you make. Your answers, as always, should be clear, concise, and thorough. Good luck!

Please turn in these sheets along with your answers.

I. Logical Data Models (30 points)

A. (20 points) The Quick and Dirty Software Company has just hired you to help them implement part of their new system called WHOOPIE (Wonderful Homogeneous Object-Oriented Programming Interactive Environment). The company has purchased a relational DBMS and plans to build an object-oriented data model on top of it as part of the WHOOPIE system. Here is an example of a small WHOOPIE database schema (minus the methods for the classes):

create class Emp (ename: string, age: integer, salary: float)

 with key (ename);

create class MarriedEmp (spouse: string) subtype of Emp;

create class Dept (dname: string, emps: set of Emp, mgr: Emp)

 with key (dname);

Each reference to another class in a schema like the above implies that logically (and not physically) a referenced object appears there, i.e., a Dept object "contains" its manager object, which is an Emp. However, sharing is possible and several Dept objects can have the same manager. In addition, new object classes can only be created via "create class", and the type returned by a message that reveals the state of the object (like those in the above schema) can be a built-in primitive class (e.g. string), a user-defined class, a set of elements of a built-in class, or a set of elements of a user-defined class. Finally, WHOOPIE permits multiple inheritance.

i. (8 points) Illustrate two different approaches to handling inheritance by showing how the Emp and MarriedEmp classes would be translated into relational schemas by each approach. Explain the relative advantages and disadvantages of each approach with respect to queries. Assume that some queries will be over all instances of a specific class (e.g., all MarriedEmp objects), whereas others will be over all instances of a class and its subclasses (e.g., all Emp and MarriedEmp objects).

ii. (8 points) Keeping object sharing in mind, illustrate two different approaches to handling set-valued attributes by describing how the Dept class would be translated into a relational schema. Again, discuss the advantages and disadvantages of each approach.

iii. (4 points) Translate the Emp and Dept classes into an E/R diagram.

B. (10 points) Give a set of FDs for the relation R (A, B, C, D) under which R is in 3NF but not BCNF. What are the candidate keys for R, given your FDs? Decompose R into two smaller relations R1 and R2 such that R1 and R2 are both in BCNF. Is your decomposition lossless? Does it preserve dependencies? Identify primary and foreign keys in R1 and R2. Describe (in English) the redundancy present in R that has been removed by your decomposition.

II. Logical Query Languages (20 points)
Consider a relational database with information about students, classes, and computers. Each student is enrolled in 0 or more classes, each machine is assigned to 0 or more classes, and each student has an account for each class in which he or she is enrolled. Here is the schema:

Class (cno, title, mno)

Machine (mno, mname, manager)

Student (sno, name, year, phone)

HasAcct (sno, mno, login)

Enroll (cno, sno)

“Mno” always represents a machine number, “cno” a class number, etc. The “manager” field is the name of the manager. You should assume that student names and numbers are both unique and that all managers are also students.

A. Relational algebra (10 points)
i. (5 points) Write a relational algebra query to list the names of all students whose login name on some machine is the same as their name.

ii. (5 points) Write a relational algebra query to list all (machine name, machine manager) pairs such that the manager both manages the machine and takes a class that uses the machine.

B. SQL (10 points)
i. (4 points) Write the query of A(ii) in SQL.

ii. (6 points) Write an SQL query to retrieve the name and year of all students who have accounts on all machines.

III. Physical Aspects of Data and Queries (20 points)
A. (12 points) Recall that most relational optimizers only examine linear (left-deep) join execution plans and not bushy join execution plans. Give an example of a join of 4 relations in which a bushy join execution plan would be better than any of the available linear plans. Relevant information to include in your answer includes relation sizes (in pages), reduction factors, etc. Assume that no indexes are available, pipelining is available, and only the page-oriented nested-loops join method is being used.

B. (8 points) Describe a situation where a nested loops join with no index is sure to be cheaper than a sort-merge join and describe a situation where the opposite is sure to be true.

IV. Concurrency Control and Recovery (20 points)
A. (14 points) Consider the following six types of schedules:

(A) Schedules produced using standard (non-strict) 2PL

(B) Serializable schedules

(C) Serial schedules

(D) Schedules produced using strict 2PL

(E) All schedules

Put the five schedule types into a total order based on inclusion. E.g., one possible (but wrong) answer is: A (B (C (D (E.

For each schedule type (except C, the smallest), give an example schedule that is of that type but is not of the next smaller type. Your schedules can include Read, Write, Begin XACT, and Commit XACT actions, but no lock or unlock requests: for the purposes of this question, we’re interested only in interleavings that are allowed or disallowed in those five categories, not the specifics of how they are allowed or prevented.

B. (6 points) Suppose the DBMS forces data buffers to disk at commit time. In other words, at the end of a transaction, the system writes the log records to disk, writes the actual updates to disk, then writes the commit record to the log and forces that out to disk as well. What are the tradeoffs of this approach vs. the no-force approach we discussed in class (and in the book)? Consider performance issues during both normal processing and recovery.

V. Minibase (10 points)
You wrote code at the Buffer Manger and Relational Operator layers of the Minibase system.

A. (3 points) What layer of Minibase code calls the buffer manager code that you wrote? Give an example of something this layer might ask of your buffer manager and the context in which that request might occur.

B. (3 points) What layer of Minibase code does your join code invoke? Give an example of something you ask of this lower layer and the context in which the request is made.
C. (6 points) A few of you made a seemingly reasonable optimization in your index nested loops join implementations: You forced the smaller input to the join to be the outer relation of the join. That will generally improve performance of that join, as we discussed in class. I did not penalize anyone for doing this, but it’s actually a very bad idea. Why?
VI. Trivia (2 pts. Extra credit)

“Why, they couldn’t hit an elephant at that distance.”

- Last words of a Union general during the battle near Spottsylvania Court House, upon being warned of nearby Confederate infantry (US Civil War).

What was the general’s name?

“It is also hoped that this paper can contribute to greater precision in work on formatted data systems.”

- E.F. Codd, 1970

