
CSE544Database

Management Systems

Lecture 3:

Data Models,

SQL Beyond Relations

CSEP 544 - Winter 2025 1

Announcements

• HW1 due by Sunday

• HW2 is posted

• Lecture on Feb 19 moved to Feb 21,

same room

• Final project presentations confirmed:

March 14, 2pm-9:30pm

• Two parts, you will be scheduled in one

CSEP 544 - Winter 2025 2

Outline

• Discuss Data Models

• SQL Beyond Relations

CSEP 544 - Winter 2025 3

References

• M. Stonebraker and J. Hellerstein. What

Goes Around Comes Around. In

"Readings in Database Systems" (aka

the Red Book). 4th ed.

CSEP 544 - Winter 2025 4

Data Model Motivation

• Applications need to model real-world data

• User somehow needs to define the data

• Data model enables a user to define the data

using high-level constructs without worrying about

many low-level details of how data will be stored

on disk

CSEP 544 - Winter 2025 5

Early Proposal 1: IMS*

• What is it?

6
* IBM Information Management System

Early Proposal 1: IMS*

• Hierarchical data model

• Record

– Type: collection of named fields with data types

– Instance: must match type definition

– Each instance has a key

– Record types arranged in a tree

• IMS database is collection of instances of record

types organized in a tree
7

* IBM Information Management System

IMS Example
• Figure 2 from “What goes around comes around”

CSEP 544 - Winter 2025 8

What does

this mean?

IMS Example
• Figure 2 from “What goes around comes around”

CSEP 544 - Winter 2025 9

What does

this mean?

Supp Part Part … Supp Part Part … …

File on disk:

IMS Example
• Figure 2 from “What goes around comes around”

CSEP 544 - Winter 2025 10

What does

this mean?

File on disk:

Part Supp Supp … Part Supp Supp … …

Supp Part Part … Supp Part Part … …

IMS Limitations

IMS Limitations

• Tree-structured data model

– Redundant data; existence depends on parent

IMS Limitations

• Tree-structured data model

– Redundant data; existence depends on parent

• Record-at-a-time user interface

– User must specify algorithm to access data

IMS Limitations

• Tree-structured data model

– Redundant data; existence depends on parent

• Record-at-a-time user interface

– User must specify algorithm to access data

• Very limited physical independence

– Phys. organization limits possible operations

– Application programs break if organization changes

• Some logical independence but limited

Data Manipulation Language:

DL/1

• Each record has a hierarchical sequence key (HSK)

• HSK defines semantics of commands:

– get_next; get_next_within_parent

• DL/1 is a record-at-a-time language

– Programmers construct algorithm, worry about optimization

CSEP 544 - Winter 2025 15

Data storage

• Root records
– Stored sequentially (sorted on key)

– Indexed in a B-tree using the key of the record

– Hashed using the key of the record

• Dependent records
– Physically sequential

– Various forms of pointers

• Selected organizations restrict DL/1 commands
– No updates allowed due to sequential organization

– No “get-next” for hashed organization

16

Data Independence

• Physical data independence: Applications

are insulated from changes in physical

storage details

• Logical data independence: Applications

are insulated from changes to logical

structure of the data

17

Lessons from IMS

• Physical/logical data independence needed

• Tree structure model is restrictive

• Record-at-a-time programming forces user to

do optimization

CSEP 544 - Winter 2025 18

Early Proposal 2: CODASYL

What is it?

CSEP 544 - Winter 2025 19

Early Proposal 2: CODASYL

What is it?

• Networked data model

• Primitives are also record types with keys

• Record types are organized into network

• Multiple parents; arcs = “sets”

• More flexible than hierarchy

• Record-at-a-time data manipulation language

CSEP 544 - Winter 2025 20

CODASYL Example

• Figure 5 from “What goes around comes around”

CSEP 544 - Winter 2025 21

CODASYL Limitations

• No data independence: application programs

break if organization changes

• Record-at-a-time: “navigate the hyperspace”

CSEP 544 - Winter 2025 22

Relational Model Overview
Ted Codd 1970

• What was the motivation? What is the model?

Relational Model Overview
Ted Codd 1970

• Motivation: logical and physical data independence

• Store data in a simple data structure (table)

• Access data through set-at-a-time language

• No physical storage proposal

Great Debate

• Pro relational

– What were the arguments?

• Against relational

– What were the arguments?

• How was it settled?

CSEP 544 - Winter 2025 25

Great Debate

• Pro relational

– CODASYL is too complex

– No data independence

– Record-at-a-time hard to optimize

– Trees/networks not flexible enough

• Against relational

– COBOL programmers cannot understand relational languages

– Impossible to implement efficiently

• Ultimately settled by the market place

CSEP 544 - Winter 2025 26

Data Independence

How it is achieved today:

• Physical independence: SQL to Plan

• Logical independence: Views in SQL

CSEP 544 - Winter 2025 27

Physical Data Independence

• In SQL we express What data we want

to retrieve

• The optimizers figures out How to

retrieve it

CSEP 544 - Winter 2025 28

Query Plan

SELECT DISTINCT x.name, z.name

FROM Product x, Purchase y, Customer z

WHERE x.pid = y.pid and y.cid = y.cid and

 x.price > 100 and z.city = ‘Seattle’

Product(pid, name, price)

Purchase(pid, cid, store)

Customer(cid, name, city)

We say What

we want

Logical Query Plan

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

SELECT DISTINCT x.name, z.name

FROM Product x, Purchase y, Customer z

WHERE x.pid = y.pid and y.cid = y.cid and

 x.price > 100 and z.city = ‘Seattle’

We say What

we want

Product(pid, name, price)

Purchase(pid, cid, store)

Customer(cid, name, city)

Physical Query Plan

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

SELECT DISTINCT x.name, z.name

FROM Product x, Purchase y, Customer z

WHERE x.pid = y.pid and y.cid = y.cid and

 x.price > 100 and z.city = ‘Seattle’

We say What

we want

Index-join

hash-join

hash-based

Says How

to get it

on-the-fly

on-the-fly

Product(pid, name, price)

Purchase(pid, cid, store)

Customer(cid, name, city)

Logical Data Independence

A View is a Relation defined by a SQL query

It can be used as any relation

CSEP 544 - Winter 2025 32

View Example

CSEP 544 - Winter 2025 33

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

CREATE VIEW Big_Parts AS

 SELECT * FROM Part

 WHERE psize > 10;

View definition:

View Example

CSEP 544 - Winter 2025 34

Big_Parts(pno,pname,psize,pcolor)

View definition:

Virtual table:

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

CREATE VIEW Big_Parts AS

 SELECT * FROM Part

 WHERE psize > 10;

View Example

CSEP 544 - Winter 2025 35

SELECT *

FROM Big_Parts

WHERE pcolor='blue';

View definition:

Virtual table:

Querying the view:

Big_Parts(pno,pname,psize,pcolor)

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

CREATE VIEW Big_Parts AS

 SELECT * FROM Part

 WHERE psize > 10;

Two Types of Views

• Virtual views:

– Default in SQL, and what Stonebraker means in the paper

– CREATE VIEW xyz AS …

– Computed at query time

• Materialized views:

– Some SQL engines support them

– CREATE MATERIALIZED VIEW xyz AS

– Computed at definition time

CSEP 544 - Winter 2025 36

Levels of Abstraction

37

Disk

Physical Schema

Conceptual Schema

External Schema External Schema External Schema

a.k.a logical schemal

storage details

file organization

indexes

views

access control

Recap: Data Independence

• Physical data independence:

Applications are insulated from changes

in physical storage details

• Logical data independence:

Applications are insulated from changes

to logical structure of the data

38

Outline

• Discuss Data Models

• SQL Beyond Relations

CSEP 544 - Winter 2025 39

SQL Beyond Relations

• Sparse tensors

• Graphs

• Recursion

CSEP 544 - Winter 2025 40

Sparse Tensors

• “Tensor” = a multidimensional array

 E.g. t[i,j,k]

• A “sparse” tensor: many entries are 0

• Sparse tensors can naturally and

efficiently be represented in SQL

41

Sparse Matrix

CSEP 544 - Winter 2025 42

𝐴 =
5 0 −2
0 0 −1
0 7 0

How can we represent

it as a relation?

Sparse Matrix

CSEP 544 - Winter 2025 43

𝐴 =
5 0 −2
0 0 −1
0 7 0

Row Col Val

1 1 5

1 3 -2

2 3 -1

3 2 7

Matrix Multiplication in SQL

CSEP 544 - Winter 2025 44

𝐶 = 𝐴 ⋅ 𝐵

Matrix Multiplication in SQL

CSEP 544 - Winter 2025 45

𝐶 = 𝐴 ⋅ 𝐵 𝐶𝑖𝑘 = ෍

𝑗

𝐴𝑖𝑗 ⋅ 𝐵𝑗𝑘

Matrix Multiplication in SQL

CSEP 544 - Winter 2025 46

𝐶 = 𝐴 ⋅ 𝐵 𝐶𝑖𝑘 = ෍

𝑗

𝐴𝑖𝑗 ⋅ 𝐵𝑗𝑘

SELECT A.row, B.col, sum(A.val*B.val) as val

FROM A, B

WHERE A.col = B.row

GROUP BY A.row, B.col;

Discussion

• Matrix multiplication = join + group-by

• Many operations can be written in SQL

• E.g. try at home: write in SQL

 𝑇𝑟 𝐴 ⋅ 𝐵 ⋅ 𝐶
where the trace is defined as:
 𝑇𝑟 𝑋 = σ𝑖 𝑋𝑖𝑖

• Surprisingly, 𝐴 + 𝐵 is a bit harder…

47

Matrix Addition in SQL

CSEP 544 - Winter 2025 48

𝐶 = 𝐴 + 𝐵

Matrix Addition in SQL

CSEP 544 - Winter 2025 49

𝐶 = 𝐴 + 𝐵

SELECT A.row, A.col, A.val + B.val as val

FROM A, B

WHERE A.row = B.row and A.col = B.col

Matrix Addition in SQL

CSEP 544 - Winter 2025 50

𝐶 = 𝐴 + 𝐵

SELECT A.row, A.col, A.val + B.val as val

FROM A, B

WHERE A.row = B.row and A.col = B.col

Why is this wrong?

Solution 1: Outer Joins

CSEP 544 - Winter 2025 51

𝐶 = 𝐴 + 𝐵

SELECT

 (CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,

 (CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,

 (CASE WHEN A.val is null THEN 0 ELSE A.val END) +

 (CASE WHEN B.val is null THEN 0 ELSE B.val END) as val

FROM A full outer join B ON A.row = B.row and A.col = B.col;

Solution 1: Outer Joins

CSEP 544 - Winter 2025 52

𝐶 = 𝐴 + 𝐵

SELECT

 (CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,

 (CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,

 (CASE WHEN A.val is null THEN 0 ELSE A.val END) +

 (CASE WHEN B.val is null THEN 0 ELSE B.val END) as val

FROM A full outer join B ON A.row = B.row and A.col = B.col;

Solution 1: Outer Joins

CSEP 544 - Winter 2025 53

𝐶 = 𝐴 + 𝐵

SELECT

 (CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,

 (CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,

 (CASE WHEN A.val is null THEN 0 ELSE A.val END) +

 (CASE WHEN B.val is null THEN 0 ELSE B.val END) as val

FROM A full outer join B ON A.row = B.row and A.col = B.col;

Solution 1: Outer Joins

CSEP 544 - Winter 2025 54

𝐶 = 𝐴 + 𝐵

SELECT

 (CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,

 (CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,

 (CASE WHEN A.val is null THEN 0 ELSE A.val END) +

 (CASE WHEN B.val is null THEN 0 ELSE B.val END) as val

FROM A full outer join B ON A.row = B.row and A.col = B.col;

Solution 2: Group By

CSEP 544 - Winter 2025 55

𝐶 = 𝐴 + 𝐵

?

Solution 2: Group By

CSEP 544 - Winter 2025 56

𝐶 = 𝐴 + 𝐵

SELECT m.row, m.col, sum(m.val)

FROM (SELECT * FROM A

 UNION ALL

 SELECT * FROM B) as m

GROUP BY m.row, m.col;

SQL Beyond Relations

• Sparse tensors

• Graphs

• Recursion

CSEP 544 - Winter 2025 57

Graph Databases

• Graph databases systems: niche

category specialized for large graphs

• Neo4J, Neptune, PathQueries,…

• SQL with Property Graphs: SQL/PGQ

Can use plain vanilla SQL for graphs 58

Graph Databases

A graph:

1

2

4

3

5

Graph Databases

src dst

1 2

2 1

2 3

1 4

3 4

4 5

EdgeA graph: A relation:

1

2

4

3

5

Graph Databases

1

2

4

3

src dst

1 2

2 1

2 3

1 4

3 4

4 5

Edge

5

A graph:

Find nodes at distance 2: 𝑥, 𝑧 ∃𝑦 𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒(𝑦, 𝑧)}

A relation:

Graph Databases

src dst

1 2

2 1

2 3

1 4

3 4

4 5

EdgeA graph:

Find nodes at distance 2: 𝑥, 𝑧 ∃𝑦 𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒(𝑦, 𝑧)}

SELECT DISTINCT e1.src as X, e2.dst as Z

FROM Edge e1, Edge e2

WHERE e1.dst = e2.src;

A relation:

1

2

4

3

5

Other Representation

src dst

Alice Bob

Bob Alice

Bob Chris

Alice David

Chris David

David Eve

EdgeNode

Alice

Bob

David

Chris

Eve

Frank

src

Alice

Bob

Chris

David

Eve

Frank

Representing nodes separately;

needed for “isolated nodes” e.g. Frank

Other Representation

src dst

Alice Bob

Bob Alice

Bob Chris

Alice David

Chris David

David Eve

EdgeNode

Alice

Bob

David

Chris

Eve

Frank

src

Alice

Bob

Chris

David

Eve

Frank

Representing nodes separately;

needed for “isolated nodes” e.g. Frank

Compute the number of

children of each node

SELECT n.src, count(e.src)

FROM Node n

LEFT OUTER JOIN Edge e

WHERE n.src = e.src

GROUP BY n.src

Other Representation

src dst weight

Alice Bob 3

Bob Alice 1

Bob Chris 2

Alice David 9

Chris David 5

David Eve 1

EdgeNode

Alice

Bob

David

Chris

Eve

Frank

src

Alice

Bob

Chris

David

Eve

Frank

Adding edge labels

Adding node labels…

2

5
3

1

9
1

Discussion

• Graphs are naturally represented using

relations

• SQL can be used for graph patters:

– Pairs of nodes at distance 4

– Triples (x,y,z) that form a triangle

– Etc

• To find/travers paths, we need

recursion. Next.
CSEP 544 - Winter 2025 66

SQL Beyond Relations

• Sparse tensors

• Graphs

• Recursion

CSEP 544 - Winter 2025 67

Recursion

• The SQL fragment we studied can be

translated to Relational Algebra and

optimized well

• This fragment is missing recursion

• We discuss the extension of SQL with

recursion (SQL’99)
68

Warning

• SQL Recursion: notoriously bad design

• Right design: datalog (in a few weeks)

• Until then, fasten your seat-belts!

CSEP 544 - Winter 2025 69

WITH RECURSIVE

WITH RECURSIVE TBL AS (

 SELECT…FROM… -- non-recursive rule

 UNION

 SELECT … FROM …[TBL]…) -- recursive rule

SELECT … FROM …[TBL] …

Example

1

2

4

3

5

Find all nodes x that have a path to node 3

Example

1

2

4

3

5

Find all nodes x that have a path to node 3

SELECT 3 as v;3 itself

Example

1

2

4

3

5

Find all nodes x that have a path to node 3

SELECT 3 as v;3 itself

Nodes

connected

to 3

… UNION

SELECT x.src as v

FROM Edge x

WHERE x.dst = 3;

Example

1

2

4

3

5

Find all nodes x that have a path to node 3

SELECT 3 as v;3 itself

Nodes

connected

to 3

… UNION

SELECT x.src as v

FROM Edge x

WHERE x.dst = 3;

Nodes

connected

to them

… UNION

SELECT x.src as v

FROM Edge x, Edge y

WHERE x.dst=y.src

 and y.dst = 3;

Example

1

2

4

3

5

Find all nodes x that have a path to node 3

SELECT 3 as v;3 itself

Nodes

connected

to 3

… UNION

SELECT x.src as v

FROM Edge x

WHERE x.dst = 3;

Nodes

connected

to them

… UNION

SELECT x.src as v

FROM Edge x, Edge y

WHERE x.dst=y.src

 and y.dst = 3;. . .
Cannot answer

the query in the

SQL fragment

studied so far

Example

1

2

4

3

5

Find all nodes x that have a path to node 3

WITH RECURSIVE

 Answ AS (SELECT 3 as v

 UNION

 SELECT x.src as v

 FROM Edge x, Answ a

 WHERE x.dst = a.v)

SELECT * FROM Answ;

Can answer

with recursion!

Semantics

• Recursive query is computed bottom-up

• Initially TBL = non-recursive query

• Repeatedly evaluate the recursive

query, add new tuples to TBL

• Stop when no more change

• Finally, evaluate the main query

CSEP 544 - Winter 2025 77

Semantics
WITH RECURSIVE TBL AS (

 SELECT…FROM… -- non-recursive rule

 UNION

 SELECT … FROM …[TBL]…) -- recursive rule

SELECT … FROM …[TBL] …

𝜟TBL0 := SELECT…FROM… -- non-recursive rule

TBL0:= 𝜟TBL0

t := 0

REPEAT t := t+1

 𝜟TBLt := SELECT … FROM …[𝜟TBLt-1]… -- recursive rule

 TBLt := TBLt-1 UNION 𝜟TBLt

UNTIL no more change

Example

1

2

4

3

5

Find all nodes x that have a path to node 3

WITH RECURSIVE

 Answ AS (SELECT 3 as v

 UNION

 SELECT x.src as v

 FROM Edge x, Answ a
 WHERE x.dst = a.v)

SELECT * FROM Answ;

Example

1

2

4

3

5

Find all nodes x that have a path to node 3

WITH RECURSIVE

 Answ AS (SELECT 3 as v

 UNION

 SELECT x.src as v

 FROM Edge x, Answ a
 WHERE x.dst = a.v)

SELECT * FROM Answ;

t 𝜟Answt Answt

0 3 3

Example

1

2

4

3

5

Find all nodes x that have a path to node 3

WITH RECURSIVE

 Answ AS (SELECT 3 as v

 UNION

 SELECT x.src as v

 FROM Edge x, Answ a
 WHERE x.dst = a.v)

SELECT * FROM Answ;

t 𝜟Answt Answt

0 3 3

1 2 3, 2

Example

1

2

4

3

5

Find all nodes x that have a path to node 3

WITH RECURSIVE

 Answ AS (SELECT 3 as v

 UNION

 SELECT x.src as v

 FROM Edge x, Answ a
 WHERE x.dst = a.v)

SELECT * FROM Answ;

t 𝜟Answt Answt

0 3 3

1 2 3, 2

2 1 3,2,1

Example

1

2

4

3

5

Find all nodes x that have a path to node 3

WITH RECURSIVE

 Answ AS (SELECT 3 as v

 UNION

 SELECT x.src as v

 FROM Edge x, Answ a
 WHERE x.dst = a.v)

SELECT * FROM Answ;

t 𝜟Answt Answt

0 3 3

1 2 3, 2

2 1 3,2,1

3 2 3,2,1

Limitations

• Strict syntax:

– One non-recursive rule

– UNION one recursive rule

• May use UNION ALL, but that is often

leads to non-termination

• No aggregates in the recursion

• Recursive relation may occur only once

CSEP 544 - Winter 2025 84

Strict Syntax

85

1

2

4

3

5

Find all nodes x that have undirected a path to 3

WITH RECURSIVE

 Answ AS (SELECT 3 as v

 UNION

 SELECT x.src as v

 FROM Edge x, Answ a
 WHERE x.dst = a.v

 UNION

 SELECT x.dst as v

 FROM Answ a, Edge x

 WHERE a.v = x.src
)

SELECT * FROM Answ;

Backwards

ForwardSyntax Error

Union All is Dangerous

1

2

4

3

5

Find all nodes x that have a path to node 3

WITH RECURSIVE

 Answ AS (SELECT 3 as v

 UNION ALL

 SELECT x.src as v

 FROM Edge x, Answ a
 WHERE x.dst = a.v)

SELECT * FROM Answ;

t 𝜟Answt Answt

0 3 3

1 2 3, 2

2 1 3,2,1

3 2 3,2,1,2

4 1 3,2,1,2,1

5 2 3,2,1,2,1,2

Does not terminate

No Aggregates in Recursion

1

2

4

3

5

Find all nodes x find the shortest path to node 3

WITH RECURSIVE

 Answ AS (SELECT 3 as v, 0 as l

 UNION

 SELECT x.src as v, 1+a.l as l

 FROM Edge x, Answ a
 WHERE x.dst = a.v

 and a.l < (SELECT count(*)

 FROM Edge))

SELECT v, min(l) as l

FROM Answ
GROUP BY l;v l

3 0

2 1

1 2

Debugging

1

2

4

3

5

Find all nodes x that have a path to node 3

WITH RECURSIVE

 Answ AS (SELECT 3 as v, 0 as t

 UNION

 SELECT x.src as v, a.t+1 as t

 FROM Edge x, Answ a
 WHERE x.dst = a.v and a.t<5)

SELECT * FROM Answ ORDER BY t;

t 𝜟Answt Answt

0 3 3

1 2 3, 2

2 1 3,2,1

3 2 3,2,1

4 1 3,2,1

…

Debugging

v t

3 0

2 1

1 2

2 3

1 4

2 5

Knight’s (Shortest) Path

• Given a chess board, check which

positions can the knight reach starting

from the bottom-left position

• Variations:

– The board is m x n, for various m,n

– The board has obstructions

– We may want to also compute the length of

the shortest path

CSEP 544 - Winter 2025 89

Knight’s (Shortest) Path

90

Graph:

 vertices = board

Board

x y

1 1

1 2

… …

2 1

… …

10 10

Knight’s (Shortest) Path

91

Graph:

 vertices = board

 edges = (+2,+1), (+2,-1), …

create table board as

 select x as x, y as y

 from generate_series(1,10) x,

 generate_series(1,10) y;

Knight’s (Shortest) Path

92

Graph:

 vertices = board

 edges = …

create table board as

 select x as x, y as y

 from generate_series(1,10) x,

 generate_series(1,10) y;

Edge xsrc ysrc xdst ydst

1 1 3 2

1 1 2 3

… …

Knight’s (Shortest) Path

93

Graph:

 vertices = board

 edges = (+2,+1), (+2,-1), …

create table board as

 select x as x, y as y

 from generate_series(1,10) x,

 generate_series(1,10) y;

Better:

use delta’s

Knight’s (Shortest) Path

94

Graph:

 vertices = board

 edges = (+2,+1), (+2,-1), …

create table board as

 select x as x, y as y

 from generate_series(1,10) x,

 generate_series(1,10) y;

create table move (dx int, dy int);

insert into move values

 (1,2), (2,1), (-1,2), (2,-1),

 (1,-2), (-2,1), (-1,-2), (-2,-1);

Better:

use delta’s

Knight’s (Shortest) Path

CSEP 544 - Winter 2025 95

Compute all positions reachable from (1,1) on a 5 x 5 board

(The answer is boring: all of them. But we extend next.)

Knight’s (Shortest) Path

CSEP 544 - Winter 2025 96

Compute all positions reachable from (1,1) on a 5 x 5 board

(The answer is boring: all of them. But we extend next.)

with recursive reach as

 (select 1 as x, 1 as y

 union

 select r.x + m.dx as x, r.y + m.dy as y

 from reach r, move m

 where 1 <= r.x + m.dx and r.x + m.dx <= 5

 and 1 <= r.y + m.dy and r.y + m.dy <= 5)

select r.x, r.y

from reach r

order by r.x, r.y;

Knight’s (Shortest) Path

CSEP 544 - Winter 2025 97

Compute all positions reachable from (1,1) on a 5 x 5 board

(The answer is boring: all of them. But we extend next.)

with recursive reach as

 (select 1 as x, 1 as y

 union

 select r.x + m.dx as x, r.y + m.dy as y

 from reach r, move m

 where 1 <= r.x + m.dx and r.x + m.dx <= 5

 and 1 <= r.y + m.dy and r.y + m.dy <= 5)

select r.x, r.y

from reach r

order by r.x, r.y;

Knight’s (Shortest) Path

CSEP 544 - Winter 2025 98

Compute all positions reachable from (1,1) on a 5 x 5 board

(The answer is boring: all of them. But we extend next.)

with recursive reach as

 (select 1 as x, 1 as y

 union

 select r.x + m.dx as x, r.y + m.dy as y

 from reach r, move m

 where 1 <= r.x + m.dx and r.x + m.dx <= 5

 and 1 <= r.y + m.dy and r.y + m.dy <= 5)

select r.x, r.y

from reach r

order by r.x, r.y;

Knight’s (Shortest) Path

CSEP 544 - Winter 2025 99

Compute all positions reachable from (1,1) on a 5 x 5 board

(The answer is boring: all of them. But we extend next.)

with recursive reach as

 (select 1 as x, 1 as y

 union

 select r.x + m.dx as x, r.y + m.dy as y

 from reach r, move m

 where 1 <= r.x + m.dx and r.x + m.dx <= 5

 and 1 <= r.y + m.dy and r.y + m.dy <= 5)

select r.x, r.y

from reach r

order by r.x, r.y;

Knight’s (Shortest) Path

CSEP 544 - Winter 2025 100

Compute all positions reachable from (1,1) on a 5 x 5 board

(The answer is boring: all of them. But we extend next.)

with recursive reach as

 (select 1 as x, 1 as y

 union

 select r.x + m.dx as x, r.y + m.dy as y

 from reach r, move m

 where 1 <= r.x + m.dx and r.x + m.dx <= 5

 and 1 <= r.y + m.dy and r.y + m.dy <= 5)

select r.x, r.y

from reach r

order by r.x, r.y;

Knight’s (Shortest) Path

CSEP 544 - Winter 2025 101

For n=2,10, check if the knight can reach the top-right position

on an n x n board

Knight’s (Shortest) Path

CSEP 544 - Winter 2025 102

For n=2,10, check if the knight can reach the top-right position

on an n x n board

create table n as

 select n as n

 from generate_series(2,10) n;

Knight’s (Shortest) Path

CSEP 544 - Winter 2025 103

For n=2,10, check if the knight can reach the top-right position

on an n x n board

with recursive reach as

 (select n.n as n, 1 as x, 1 as y from n n

 union

 select n.n, r.x + m.dx as x, r.y + m.dy as y

 from n n, reach r, move m

 where n.n = r.n

 and 1 <= r.x + m.dx and r.x + m.dx <= n.n

 and 1 <= r.y + m.dy and r.y + m.dy <= n.n)

select r.n

from reach r

where r.x=r.n and r.y = r.n

order by r.n;

create table n as

 select n as n

 from generate_series(2,10) n;

Knight’s (Shortest) Path

CSEP 544 - Winter 2025 104

For n=2,10, check if the knight can reach the top-right position

on an n x n board

with recursive reach as

 (select n.n as n, 1 as x, 1 as y from n n

 union

 select n.n, r.x + m.dx as x, r.y + m.dy as y

 from n n, reach r, move m

 where n.n = r.n

 and 1 <= r.x + m.dx and r.x + m.dx <= n.n

 and 1 <= r.y + m.dy and r.y + m.dy <= n.n)

select r.n

from reach r

where r.x=r.n and r.y = r.n

order by r.n;

create table n as

 select n as n

 from generate_series(2,10) n;

Knight’s (Shortest) Path

CSEP 544 - Winter 2025 105

For n=2,10, check if the knight can reach the top-right position

on an n x n board

with recursive reach as

 (select n.n as n, 1 as x, 1 as y from n n

 union

 select n.n, r.x + m.dx as x, r.y + m.dy as y

 from n n, reach r, move m

 where n.n = r.n

 and 1 <= r.x + m.dx and r.x + m.dx <= n.n

 and 1 <= r.y + m.dy and r.y + m.dy <= n.n)

select r.n

from reach r

where r.x=r.n and r.y = r.n

order by r.n;

create table n as

 select n as n

 from generate_series(2,10) n;

Knight’s (Shortest) Path

CSEP 544 - Winter 2025 106

For n=2,10, check if the knight can reach the top-right position

on an n x n board

with recursive reach as

 (select n.n as n, 1 as x, 1 as y from n n

 union

 select n.n, r.x + m.dx as x, r.y + m.dy as y

 from n n, reach r, move m

 where n.n = r.n

 and 1 <= r.x + m.dx and r.x + m.dx <= n.n

 and 1 <= r.y + m.dy and r.y + m.dy <= n.n)

select r.n

from reach r

where r.x=r.n and r.y = r.n

order by r.n;

create table n as

 select n as n

 from generate_series(2,10) n;

Knight’s (Shortest) Path

107

For each position find the shortest path from (1,1), on a 5x5 board

with recursive reach as

 (select 1 as x, 1 as y, 0 as l

 union

 select r.x + m.dx as x, r.y + m.dy as y, r.l+1 as l

 from reach r, move m

 where 1 <= r.x + m.dx and r.x + m.dx <= 5

 and 1 <= r.y + m.dy and r.y + m.dy <= 5

 and r.l <= 25)

select r.x, r.y, min(r.l)

from reach r

group by r.x, r.y

order by r.x, r.y;

Knight’s (Shortest) Path

CSEP 544 - Winter 2025 108

Now the board has obstructions show in the file board.csv

10,---X-X--X-

09,--X---X---

08,---X------

07,----X--X--

06,----------

05,X--X----X-

04,-X-X--X---

03,--X-X-XX--

02,-X-----X--

01,---X------

Knight’s (Shortest) Path

CSEP 544 - Winter 2025 109

Now the board has obstructions show in the file board.csv

create table board_raw (row int, cols text);

copy board_raw

from ‘……/board.csv'

delimiter ',';

10,---X-X--X-

09,--X---X---

08,---X------

07,----X--X--

06,----------

05,X--X----X-

04,-X-X--X---

03,--X-X-XX--

02,-X-----X--

01,---X------

Knight’s (Shortest) Path

CSEP 544 - Winter 2025 110

Now the board has obstructions show in the file board.csv

create table board_raw (row int, cols text);

copy board_raw

from ‘……/board.csv'

delimiter ',';

10,---X-X--X-

09,--X---X---

08,---X------

07,----X--X--

06,----------

05,X--X----X-

04,-X-X--X---

03,--X-X-XX--

02,-X-----X--

01,---X------

create table board as

 (select b.row as x, y as y

 from board_raw b,

 generate_series(1,length(b.cols)) as y

 where substr(b.cols, y, 1) = '-');

Knight’s (Shortest) Path

CSEP 544 - Winter 2025 111

Now the board has obstructions show in the file board.csv

create table board_raw (row int, cols text);

copy board_raw

from ‘……/board.csv'

delimiter ',';

10,---X-X--X-

09,--X---X---

08,---X------

07,----X--X--

06,----------

05,X--X----X-

04,-X-X--X---

03,--X-X-XX--

02,-X-----X--

01,---X------

create table board as

 (select b.row as x, y as y

 from board_raw b,

 generate_series(1,length(b.cols)) as y

 where substr(b.cols, y, 1) = '-');

String functions:

look them up

Knight’s (Shortest) Path

CSEP 544 - Winter 2025 112

Now the board has obstructions show in the file board.csv

10,---X-X--X-

09,--X---X---

08,---X------

07,----X--X--

06,----------

05,X--X----X-

04,-X-X--X---

03,--X-X-XX--

02,-X-----X--

01,---X------

with recursive

 mrows as (select max(b.x) as m from board b),

 ncols as (select max(b.y) as n from board b),

 reach as

 (select 1 as x, 1 as y

 union

 select r.x + m.dx as x, r.y + m.dy as y

 from board dest, reach r, move m, mrows mr, ncols nc

 where 1 <= r.x + m.dx and r.x + m.dx <= mr.m

 and 1 <= r.y + m.dy and r.y + m.dy <= nc.n

 and r.x + m.dx = dest.x and r.y + m.dy = dest.y)

select r.x, r.y

from reach r;

Size of

the board

Knight’s (Shortest) Path

CSEP 544 - Winter 2025 113

Now the board has obstructions show in the file board.csv

10,---X-X--X-

09,--X---X---

08,---X------

07,----X--X--

06,----------

05,X--X----X-

04,-X-X--X---

03,--X-X-XX--

02,-X-----X--

01,---X------

with recursive

 mrows as (select max(b.x) as m from board b),

 ncols as (select max(b.y) as n from board b),

 reach as

 (select 1 as x, 1 as y

 union

 select r.x + m.dx as x, r.y + m.dy as y

 from board dest, reach r, move m, mrows mr, ncols nc

 where 1 <= r.x + m.dx and r.x + m.dx <= mr.m

 and 1 <= r.y + m.dy and r.y + m.dy <= nc.n

 and r.x + m.dx = dest.x and r.y + m.dy = dest.y)

select r.x, r.y

from reach r;

Knight’s (Shortest) Path

CSEP 544 - Winter 2025 114

Now the board has obstructions show in the file board.csv

10,---X-X--X-

09,--X---X---

08,---X------

07,----X--X--

06,----------

05,X--X----X-

04,-X-X--X---

03,--X-X-XX--

02,-X-----X--

01,---X------

with recursive

 mrows as (select max(b.x) as m from board b),

 ncols as (select max(b.y) as n from board b),

 reach as

 (select 1 as x, 1 as y

 union

 select r.x + m.dx as x, r.y + m.dy as y

 from board dest, reach r, move m, mrows mr, ncols nc

 where 1 <= r.x + m.dx and r.x + m.dx <= mr.m

 and 1 <= r.y + m.dy and r.y + m.dy <= nc.n

 and r.x + m.dx = dest.x and r.y + m.dy = dest.y)

select r.x, r.y

from reach r;

Check that

destination is

not obstructed

Knight’s (Shortest) Path

CSEP 544 - Winter 2025 115

Now the board has obstructions show in the file board.csv

10,---X-X--X-

09,--X---X---

08,---X------

07,----X--X--

06,----------

05,X--X----X-

04,-X-X--X---

03,--X-X-XX--

02,-X-----X--

01,---X------

with recursive

 mrows as (select max(b.x) as m from board b),

 ncols as (select max(b.y) as n from board b),

 reach as

 (select 1 as x, 1 as y

 union

 select r.x + m.dx as x, r.y + m.dy as y

 from board dest, reach r, move m, mrows mr, ncols nc

 where 1 <= r.x + m.dx and r.x + m.dx <= mr.m

 and 1 <= r.y + m.dy and r.y + m.dy <= nc.n

 and r.x + m.dx = dest.x and r.y + m.dy = dest.y)

select r.x, r.y

from reach r;

Knight’s (Shortest) Path

CSEP 544 - Winter 2025 116

Now the board has obstructions show in the file board.csv

10,---X-X--X-

09,--X---X---

08,---X------

07,----X--X--

06,----------

05,X--X----X-

04,-X-X--X---

03,--X-X-XX--

02,-X-----X--

01,---X------

with recursive

 mrows as (select max(b.x) as m from board b),

 ncols as (select max(b.y) as n from board b),

 reach as

 (select 1 as x, 1 as y

 union

 select r.x + m.dx as x, r.y + m.dy as y

 from board dest, reach r, move m, mrows mr, ncols nc

 where 1 <= r.x + m.dx and r.x + m.dx <= mr.m

 and 1 <= r.y + m.dy and r.y + m.dy <= nc.n

 and r.x + m.dx = dest.x and r.y + m.dy = dest.y)

select r.x, r.y

from reach r;

Summary

• Although limited, recursion increases

the expressive power of SQL

• HW2 asks you to solve several puzzles

by using vanilla SQL; some (but not all)

puzzles require recursion

CSEP 544 - Winter 2025 117

	Slide 1: CSE544Database Management Systems
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: References
	Slide 5: Data Model Motivation
	Slide 6: Early Proposal 1: IMS*
	Slide 7: Early Proposal 1: IMS*
	Slide 8: IMS Example
	Slide 9: IMS Example
	Slide 10: IMS Example
	Slide 11: IMS Limitations
	Slide 12: IMS Limitations
	Slide 13: IMS Limitations
	Slide 14: IMS Limitations
	Slide 15: Data Manipulation Language: DL/1
	Slide 16: Data storage
	Slide 17: Data Independence
	Slide 18: Lessons from IMS
	Slide 19: Early Proposal 2: CODASYL
	Slide 20: Early Proposal 2: CODASYL
	Slide 21: CODASYL Example
	Slide 22: CODASYL Limitations
	Slide 23: Relational Model Overview
	Slide 24: Relational Model Overview
	Slide 25: Great Debate
	Slide 26: Great Debate
	Slide 27: Data Independence
	Slide 28: Physical Data Independence
	Slide 29: Query Plan
	Slide 30: Logical Query Plan
	Slide 31: Physical Query Plan
	Slide 32: Logical Data Independence
	Slide 33: View Example
	Slide 34: View Example
	Slide 35: View Example
	Slide 36: Two Types of Views
	Slide 37: Levels of Abstraction
	Slide 38: Recap: Data Independence
	Slide 39: Outline
	Slide 40: SQL Beyond Relations
	Slide 41: Sparse Tensors
	Slide 42: Sparse Matrix
	Slide 43: Sparse Matrix
	Slide 44: Matrix Multiplication in SQL
	Slide 45: Matrix Multiplication in SQL
	Slide 46: Matrix Multiplication in SQL
	Slide 47: Discussion
	Slide 48: Matrix Addition in SQL
	Slide 49: Matrix Addition in SQL
	Slide 50: Matrix Addition in SQL
	Slide 51: Solution 1: Outer Joins
	Slide 52: Solution 1: Outer Joins
	Slide 53: Solution 1: Outer Joins
	Slide 54: Solution 1: Outer Joins
	Slide 55: Solution 2: Group By
	Slide 56: Solution 2: Group By
	Slide 57: SQL Beyond Relations
	Slide 58: Graph Databases
	Slide 59: Graph Databases
	Slide 60: Graph Databases
	Slide 61: Graph Databases
	Slide 62: Graph Databases
	Slide 63: Other Representation
	Slide 64: Other Representation
	Slide 65: Other Representation
	Slide 66: Discussion
	Slide 67: SQL Beyond Relations
	Slide 68: Recursion
	Slide 69: Warning
	Slide 70: WITH RECURSIVE
	Slide 71: Example
	Slide 72: Example
	Slide 73: Example
	Slide 74: Example
	Slide 75: Example
	Slide 76: Example
	Slide 77: Semantics
	Slide 78: Semantics
	Slide 79: Example
	Slide 80: Example
	Slide 81: Example
	Slide 82: Example
	Slide 83: Example
	Slide 84: Limitations
	Slide 85: Strict Syntax
	Slide 86: Union All is Dangerous
	Slide 87: No Aggregates in Recursion
	Slide 88: Debugging
	Slide 89: Knight’s (Shortest) Path
	Slide 90: Knight’s (Shortest) Path
	Slide 91: Knight’s (Shortest) Path
	Slide 92: Knight’s (Shortest) Path
	Slide 93: Knight’s (Shortest) Path
	Slide 94: Knight’s (Shortest) Path
	Slide 95: Knight’s (Shortest) Path
	Slide 96: Knight’s (Shortest) Path
	Slide 97: Knight’s (Shortest) Path
	Slide 98: Knight’s (Shortest) Path
	Slide 99: Knight’s (Shortest) Path
	Slide 100: Knight’s (Shortest) Path
	Slide 101: Knight’s (Shortest) Path
	Slide 102: Knight’s (Shortest) Path
	Slide 103: Knight’s (Shortest) Path
	Slide 104: Knight’s (Shortest) Path
	Slide 105: Knight’s (Shortest) Path
	Slide 106: Knight’s (Shortest) Path
	Slide 107: Knight’s (Shortest) Path
	Slide 108: Knight’s (Shortest) Path
	Slide 109: Knight’s (Shortest) Path
	Slide 110: Knight’s (Shortest) Path
	Slide 111: Knight’s (Shortest) Path
	Slide 112: Knight’s (Shortest) Path
	Slide 113: Knight’s (Shortest) Path
	Slide 114: Knight’s (Shortest) Path
	Slide 115: Knight’s (Shortest) Path
	Slide 116: Knight’s (Shortest) Path
	Slide 117: Summary

