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Announcements

• HW1 due by Sunday

• HW2 is posted

• Lecture on Feb 19 moved to Feb 21,

same room

• Final project presentations confirmed:

March 14, 2pm-9:30pm

• Two parts, you will be scheduled in one
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Outline

• Discuss Data Models

• SQL Beyond Relations
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Data Model Motivation

• Applications need to model real-world data

• User somehow needs to define the data

• Data model enables a user to define the data 

using high-level constructs without worrying about 

many low-level details of how data will be stored 

on disk
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Early Proposal 1: IMS*

• What is it?

6
* IBM Information Management System



Early Proposal 1: IMS*

• Hierarchical data model

• Record

– Type: collection of named fields with data types 

– Instance: must match type definition 

– Each instance has a key 

– Record types arranged in a tree 

• IMS database is collection of instances of record 

types organized in a tree
7

* IBM Information Management System



IMS Example
• Figure 2 from “What goes around comes around”
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What does

this mean? 



IMS Example
• Figure 2 from “What goes around comes around”

CSEP 544 - Winter 2025 9

What does

this mean? 

Supp Part Part … Supp Part Part … …

File on disk:



IMS Example
• Figure 2 from “What goes around comes around”
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What does

this mean? 

File on disk:

Part Supp Supp … Part Supp Supp … …

Supp Part Part … Supp Part Part … …



IMS Limitations



IMS Limitations

• Tree-structured data model

– Redundant data; existence depends on parent
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• Tree-structured data model

– Redundant data; existence depends on parent

• Record-at-a-time user interface

– User must specify algorithm to access data 



IMS Limitations

• Tree-structured data model

– Redundant data; existence depends on parent

• Record-at-a-time user interface

– User must specify algorithm to access data 

• Very limited physical independence

– Phys. organization limits possible operations

– Application programs break if organization changes

• Some logical independence but limited



Data Manipulation Language: 

DL/1

• Each record has a hierarchical sequence key (HSK)

• HSK defines semantics of commands:

– get_next; get_next_within_parent

• DL/1 is a record-at-a-time language

– Programmers construct algorithm, worry about optimization
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Data storage

• Root records
– Stored sequentially (sorted on key)

– Indexed in a B-tree using the key of the record

– Hashed using the key of the record

• Dependent records
– Physically sequential 

– Various forms of pointers

• Selected organizations restrict DL/1 commands
– No updates allowed due to sequential organization

– No “get-next” for hashed organization
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Data Independence

• Physical data independence: Applications 

are insulated from changes in physical 

storage details

• Logical data independence: Applications 

are insulated from changes to logical 

structure of the data
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Lessons from IMS

• Physical/logical data independence needed

• Tree structure model is restrictive

• Record-at-a-time programming forces user to 

do optimization

CSEP 544 - Winter 2025 18



Early Proposal 2: CODASYL

What is it?
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Early Proposal 2: CODASYL

What is it?

• Networked data model

• Primitives are also record types with keys 

• Record types are organized into network 

• Multiple parents; arcs = “sets”

• More flexible than hierarchy

• Record-at-a-time data manipulation language 
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CODASYL Example

• Figure 5 from “What goes around comes around”
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CODASYL Limitations

• No data independence: application programs 

break if organization changes

• Record-at-a-time: “navigate the hyperspace”
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Relational Model Overview
Ted Codd 1970

• What was the motivation?  What is the model?



Relational Model Overview
Ted Codd 1970

• Motivation: logical and physical data independence

• Store data in a simple data structure (table)

• Access data through set-at-a-time language

• No physical storage proposal



Great Debate

• Pro relational

– What were the arguments?

• Against relational

– What were the arguments?

• How was it settled?
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Great Debate

• Pro relational

– CODASYL is too complex

– No data independence

– Record-at-a-time hard to optimize

– Trees/networks not flexible enough

• Against relational

– COBOL programmers cannot understand relational languages

– Impossible to implement efficiently

• Ultimately settled by the market place
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Data Independence

How it is achieved today:

• Physical independence: SQL to Plan

• Logical independence: Views in SQL
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Physical Data Independence

• In SQL we express What data we want 

to retrieve

• The optimizers figures out How to 

retrieve it
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Query Plan

SELECT DISTINCT x.name, z.name

FROM Product x, Purchase y, Customer z

WHERE x.pid = y.pid and y.cid = y.cid and

                x.price > 100 and z.city = ‘Seattle’

Product(pid, name, price)

Purchase(pid, cid, store)

Customer(cid, name, city)

We say What

we want



Logical Query Plan

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

SELECT DISTINCT x.name, z.name

FROM Product x, Purchase y, Customer z

WHERE x.pid = y.pid and y.cid = y.cid and

                x.price > 100 and z.city = ‘Seattle’

We say What

we want

Product(pid, name, price)

Purchase(pid, cid, store)

Customer(cid, name, city)



Physical Query Plan

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

SELECT DISTINCT x.name, z.name

FROM Product x, Purchase y, Customer z

WHERE x.pid = y.pid and y.cid = y.cid and

                x.price > 100 and z.city = ‘Seattle’

We say What

we want

Index-join

hash-join

hash-based

Says How

to get it

on-the-fly

on-the-fly

Product(pid, name, price)

Purchase(pid, cid, store)

Customer(cid, name, city)



Logical Data Independence

A View is a Relation defined by a SQL query

It can be used as any relation
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View Example
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Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

CREATE VIEW Big_Parts AS

 SELECT * FROM Part

 WHERE psize > 10;

View definition:



View Example
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Big_Parts(pno,pname,psize,pcolor)

View definition:

Virtual table:

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

CREATE VIEW Big_Parts AS

 SELECT * FROM Part

 WHERE psize > 10;



View Example
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SELECT * 

FROM Big_Parts

WHERE pcolor='blue';

View definition:

Virtual table:

Querying the view:

Big_Parts(pno,pname,psize,pcolor)

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

CREATE VIEW Big_Parts AS

 SELECT * FROM Part

 WHERE psize > 10;



Two Types of Views

• Virtual views:

– Default in SQL, and what Stonebraker means in the paper

– CREATE VIEW xyz AS …

– Computed at query time

• Materialized views:

– Some SQL engines support them

– CREATE MATERIALIZED VIEW xyz AS

– Computed at definition time
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Levels of Abstraction

37

Disk

Physical Schema

Conceptual Schema

External Schema External Schema External Schema

a.k.a logical schemal

storage details

file organization

indexes

views

access control



Recap: Data Independence

• Physical data independence: 

Applications are insulated from changes 

in physical storage details

• Logical data independence: 

Applications are insulated from changes 

to logical structure of the data
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Outline

• Discuss Data Models

• SQL Beyond Relations

CSEP 544 - Winter 2025 39



SQL Beyond Relations

• Sparse tensors

• Graphs

• Recursion
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Sparse Tensors

• “Tensor” = a multidimensional array

   E.g.   t[i,j,k]

• A “sparse” tensor: many entries are 0

• Sparse tensors can naturally and 

efficiently be represented in SQL

41



Sparse Matrix
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𝐴 =
5 0 −2
0 0 −1
0 7 0

How can we represent

it as a relation?



Sparse Matrix
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𝐴 =
5 0 −2
0 0 −1
0 7 0

Row Col Val

1 1 5

1 3 -2

2 3 -1

3 2 7



Matrix Multiplication in SQL
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𝐶 = 𝐴 ⋅ 𝐵



Matrix Multiplication in SQL
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𝐶 = 𝐴 ⋅ 𝐵 𝐶𝑖𝑘 = ෍

𝑗

𝐴𝑖𝑗 ⋅ 𝐵𝑗𝑘



Matrix Multiplication in SQL

CSEP 544 - Winter 2025 46

𝐶 = 𝐴 ⋅ 𝐵 𝐶𝑖𝑘 = ෍

𝑗

𝐴𝑖𝑗 ⋅ 𝐵𝑗𝑘

SELECT A.row, B.col, sum(A.val*B.val) as val

FROM A, B

WHERE A.col = B.row

GROUP BY A.row, B.col;



Discussion

• Matrix multiplication = join + group-by

• Many operations can be written in SQL

• E.g. try at home: write in SQL

  𝑇𝑟 𝐴 ⋅ 𝐵 ⋅ 𝐶
where the trace is defined as:
  𝑇𝑟 𝑋 = σ𝑖 𝑋𝑖𝑖

• Surprisingly, 𝐴 + 𝐵 is a bit harder…

47



Matrix Addition in SQL
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𝐶 = 𝐴 + 𝐵



Matrix Addition in SQL
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𝐶 = 𝐴 + 𝐵

SELECT A.row, A.col, A.val + B.val as val

FROM      A, B

WHERE   A.row = B.row and A.col = B.col



Matrix Addition in SQL
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𝐶 = 𝐴 + 𝐵

SELECT A.row, A.col, A.val + B.val as val

FROM      A, B

WHERE   A.row = B.row and A.col = B.col

Why is this wrong?



Solution 1: Outer Joins
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𝐶 = 𝐴 + 𝐵

SELECT

 (CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,

 (CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,

 (CASE WHEN A.val is null THEN 0 ELSE A.val END) +

 (CASE WHEN B.val is null THEN 0 ELSE B.val END)  as val

FROM A full outer join B ON A.row = B.row and A.col = B.col;



Solution 1: Outer Joins
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𝐶 = 𝐴 + 𝐵

SELECT

 (CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,

 (CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,

 (CASE WHEN A.val is null THEN 0 ELSE A.val END) +

 (CASE WHEN B.val is null THEN 0 ELSE B.val END)  as val

FROM A full outer join B ON A.row = B.row and A.col = B.col;



Solution 1: Outer Joins
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𝐶 = 𝐴 + 𝐵

SELECT

 (CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,

 (CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,

 (CASE WHEN A.val is null THEN 0 ELSE A.val END) +

 (CASE WHEN B.val is null THEN 0 ELSE B.val END)  as val

FROM A full outer join B ON A.row = B.row and A.col = B.col;



Solution 1: Outer Joins
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𝐶 = 𝐴 + 𝐵

SELECT

 (CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,

 (CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,

 (CASE WHEN A.val is null THEN 0 ELSE A.val END) +

 (CASE WHEN B.val is null THEN 0 ELSE B.val END)  as val

FROM A full outer join B ON A.row = B.row and A.col = B.col;



Solution 2: Group By
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𝐶 = 𝐴 + 𝐵

?



Solution 2: Group By
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𝐶 = 𝐴 + 𝐵

SELECT m.row, m.col, sum(m.val)

FROM (SELECT * FROM A 

                 UNION ALL

             SELECT * FROM B) as m

GROUP BY m.row, m.col;



SQL Beyond Relations

• Sparse tensors

• Graphs

• Recursion
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Graph Databases

• Graph databases systems: niche 

category specialized for large graphs

• Neo4J, Neptune, PathQueries,…

• SQL with Property Graphs: SQL/PGQ

Can use plain vanilla SQL for graphs 58



Graph Databases

A graph:

1

2

4

3

5



Graph Databases

src dst

1 2

2 1

2 3

1 4

3 4

4 5

EdgeA graph: A relation:

1

2

4

3

5



Graph Databases

1

2

4

3

src dst

1 2

2 1

2 3

1 4

3 4

4 5

Edge

5

A graph:

Find nodes at distance 2: 𝑥, 𝑧 ∃𝑦 𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒(𝑦, 𝑧)}

A relation:



Graph Databases

src dst

1 2

2 1

2 3

1 4

3 4

4 5

EdgeA graph:

Find nodes at distance 2: 𝑥, 𝑧 ∃𝑦 𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒(𝑦, 𝑧)}

SELECT DISTINCT e1.src as X, e2.dst as Z

FROM Edge e1, Edge e2

WHERE e1.dst = e2.src; 

A relation:

1

2

4

3

5



Other Representation

src dst

Alice Bob

Bob Alice

Bob Chris

Alice David

Chris David

David Eve

EdgeNode

Alice

Bob

David

Chris

Eve

Frank

src

Alice

Bob

Chris

David

Eve

Frank

Representing nodes separately;

needed for “isolated nodes” e.g. Frank



Other Representation

src dst

Alice Bob

Bob Alice

Bob Chris

Alice David

Chris David

David Eve

EdgeNode

Alice

Bob

David

Chris

Eve

Frank

src

Alice

Bob

Chris

David

Eve

Frank

Representing nodes separately;

needed for “isolated nodes” e.g. Frank

Compute the number of

children of each node

SELECT n.src, count(e.src)

FROM Node n

LEFT OUTER JOIN Edge e

WHERE n.src = e.src

GROUP BY n.src 



Other Representation

src dst weight

Alice Bob 3

Bob Alice 1

Bob Chris 2

Alice David 9

Chris David 5

David Eve 1

EdgeNode

Alice

Bob

David

Chris

Eve

Frank

src

Alice

Bob

Chris

David

Eve

Frank

Adding edge labels

Adding node labels…

2

5
3

1

9
1



Discussion

• Graphs are naturally represented using 

relations

• SQL can be used for graph patters:

– Pairs of nodes at distance 4

– Triples (x,y,z) that form a triangle

– Etc

• To find/travers paths, we need 

recursion.  Next.
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SQL Beyond Relations

• Sparse tensors

• Graphs

• Recursion
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Recursion

• The SQL fragment we studied can be 

translated to Relational Algebra and 

optimized well

• This fragment is missing recursion

• We discuss the extension of SQL with 

recursion (SQL’99)
68



Warning

• SQL Recursion: notoriously bad design

• Right design: datalog (in a few weeks)

• Until then, fasten your seat-belts!
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WITH RECURSIVE

WITH RECURSIVE TBL AS (

                 SELECT…FROM…      -- non-recursive rule

                     UNION

                 SELECT … FROM …[TBL]…) -- recursive rule

SELECT … FROM …[TBL] …



Example

1

2

4

3

5

Find all nodes x that have a path to node 3



Example

1

2

4

3

5

Find all nodes x that have a path to node 3

SELECT 3 as v;3 itself



Example

1

2

4

3

5

Find all nodes x that have a path to node 3

SELECT 3 as v;3 itself

Nodes 

connected

to 3

… UNION

SELECT x.src as v

FROM Edge x

WHERE x.dst = 3;



Example

1

2

4

3

5

Find all nodes x that have a path to node 3

SELECT 3 as v;3 itself

Nodes 

connected

to 3

… UNION

SELECT x.src as v

FROM Edge x

WHERE x.dst = 3;

Nodes

connected

to them

… UNION

SELECT x.src as v

FROM Edge x, Edge y

WHERE x.dst=y.src 

        and y.dst = 3;



Example

1

2

4

3

5

Find all nodes x that have a path to node 3

SELECT 3 as v;3 itself

Nodes 

connected

to 3

… UNION

SELECT x.src as v

FROM Edge x

WHERE x.dst = 3;

Nodes

connected

to them

… UNION

SELECT x.src as v

FROM Edge x, Edge y

WHERE x.dst=y.src 

        and y.dst = 3;. . .
Cannot answer

the query in the

SQL fragment

studied so far



Example

1

2

4

3

5

Find all nodes x that have a path to node 3

WITH RECURSIVE

   Answ AS (SELECT 3 as v

                     UNION

                   SELECT x.src as v

                   FROM Edge x, Answ a

                   WHERE x.dst = a.v)

SELECT * FROM Answ;

Can answer

with recursion!



Semantics

• Recursive query is computed bottom-up

• Initially TBL = non-recursive query

• Repeatedly evaluate the recursive 

query, add new tuples to TBL

• Stop when no more change

• Finally, evaluate the main query
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Semantics
WITH RECURSIVE TBL AS (

                 SELECT…FROM…      -- non-recursive rule

                     UNION

                 SELECT … FROM …[TBL]…) -- recursive rule

SELECT … FROM …[TBL] …

𝜟TBL0 := SELECT…FROM…    -- non-recursive rule

TBL0:= 𝜟TBL0 

t := 0

REPEAT  t := t+1

  𝜟TBLt := SELECT … FROM …[𝜟TBLt-1 ]… -- recursive rule

 TBLt := TBLt-1 UNION 𝜟TBLt 

UNTIL no more change



Example

1

2

4

3

5

Find all nodes x that have a path to node 3

WITH RECURSIVE

   Answ AS (SELECT 3 as v

                     UNION

                   SELECT x.src as v

                   FROM Edge x, Answ a
                   WHERE x.dst = a.v)

SELECT * FROM Answ;



Example

1

2

4

3

5

Find all nodes x that have a path to node 3

WITH RECURSIVE

   Answ AS (SELECT 3 as v

                     UNION

                   SELECT x.src as v

                   FROM Edge x, Answ a
                   WHERE x.dst = a.v)

SELECT * FROM Answ;

t 𝜟Answt Answt

0 3 3



Example

1

2

4

3

5

Find all nodes x that have a path to node 3

WITH RECURSIVE

   Answ AS (SELECT 3 as v

                     UNION

                   SELECT x.src as v

                   FROM Edge x, Answ a
                   WHERE x.dst = a.v)

SELECT * FROM Answ;

t 𝜟Answt Answt

0 3 3

1 2 3, 2



Example

1

2

4

3

5

Find all nodes x that have a path to node 3

WITH RECURSIVE

   Answ AS (SELECT 3 as v

                     UNION

                   SELECT x.src as v

                   FROM Edge x, Answ a
                   WHERE x.dst = a.v)

SELECT * FROM Answ;

t 𝜟Answt Answt

0 3 3

1 2 3, 2

2 1 3,2,1



Example

1

2

4

3

5

Find all nodes x that have a path to node 3

WITH RECURSIVE

   Answ AS (SELECT 3 as v

                     UNION

                   SELECT x.src as v

                   FROM Edge x, Answ a
                   WHERE x.dst = a.v)

SELECT * FROM Answ;

t 𝜟Answt Answt

0 3 3

1 2 3, 2

2 1 3,2,1

3 2 3,2,1



Limitations

• Strict syntax:

– One non-recursive rule

– UNION one recursive rule

• May use UNION ALL, but that is often 

leads to non-termination

• No aggregates in the recursion

• Recursive relation may occur only once
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Strict Syntax

85

1

2

4

3

5

Find all nodes x that have undirected a path to 3

WITH RECURSIVE

   Answ AS (SELECT 3 as v

                     UNION

                   SELECT x.src as v

                   FROM Edge x, Answ a
                   WHERE x.dst = a.v

                      UNION

                   SELECT x.dst as v

                   FROM Answ a, Edge x

                   WHERE a.v = x.src
)

SELECT * FROM Answ;

Backwards

ForwardSyntax Error



Union All is Dangerous

1

2

4

3

5

Find all nodes x that have a path to node 3

WITH RECURSIVE

   Answ AS (SELECT 3 as v

                     UNION ALL

                   SELECT x.src as v

                   FROM Edge x, Answ a
                   WHERE x.dst = a.v)

SELECT * FROM Answ;

t 𝜟Answt Answt

0 3 3

1 2 3, 2

2 1 3,2,1

3 2 3,2,1,2

4 1 3,2,1,2,1

5 2 3,2,1,2,1,2

Does not terminate



No Aggregates in Recursion

1

2

4

3

5

Find all nodes x find the shortest path to node 3

WITH RECURSIVE

   Answ AS (SELECT 3 as v, 0 as l

                     UNION

            SELECT x.src as v, 1+a.l as l

            FROM Edge x, Answ a
            WHERE x.dst = a.v

       and a.l < (SELECT count(*)

                  FROM Edge))

SELECT v, min(l) as l

FROM Answ
GROUP BY l;v l

3 0

2 1

1 2



Debugging

1

2

4

3

5

Find all nodes x that have a path to node 3

WITH RECURSIVE

   Answ AS (SELECT 3 as v, 0 as t

                     UNION

                   SELECT x.src as v, a.t+1 as t

                   FROM Edge x, Answ a
                   WHERE x.dst = a.v and a.t<5)

SELECT * FROM Answ ORDER BY t;

t 𝜟Answt Answt

0 3 3

1 2 3, 2

2 1 3,2,1

3 2 3,2,1

4 1 3,2,1

…

Debugging

v t

3 0

2 1

1 2

2 3

1 4

2 5



Knight’s (Shortest) Path

• Given a chess board, check which 

positions can the knight reach starting 

from the bottom-left position

• Variations:

– The board is m x n, for various m,n

– The board has obstructions

– We may want to also compute the length of 

the shortest path
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Knight’s (Shortest) Path

90

Graph:

  vertices = board

Board

x y

1 1

1 2

… …

2 1

… …

10 10



Knight’s (Shortest) Path

91

Graph:

  vertices = board

  edges = (+2,+1), (+2,-1), …

create table board as

  select x as x, y as y

  from generate_series(1,10) x, 

          generate_series(1,10) y;



Knight’s (Shortest) Path

92

Graph:

  vertices = board

  edges = …

create table board as

  select x as x, y as y

  from generate_series(1,10) x, 

          generate_series(1,10) y;

Edge xsrc ysrc xdst ydst

1 1 3 2

1 1 2 3

… …



Knight’s (Shortest) Path

93

Graph:

  vertices = board

  edges = (+2,+1), (+2,-1), …

create table board as

  select x as x, y as y

  from generate_series(1,10) x, 

          generate_series(1,10) y;

Better:

use delta’s



Knight’s (Shortest) Path

94

Graph:

  vertices = board

  edges = (+2,+1), (+2,-1), …

create table board as

  select x as x, y as y

  from generate_series(1,10) x, 

          generate_series(1,10) y;

create table move (dx int, dy int);

insert into move values

   (1,2), (2,1), (-1,2), (2,-1),

   (1,-2), (-2,1), (-1,-2), (-2,-1);

Better:

use delta’s



Knight’s (Shortest) Path
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Compute all positions reachable from (1,1) on a 5 x 5 board

(The answer is boring: all of them.  But we extend next.)



Knight’s (Shortest) Path
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Compute all positions reachable from (1,1) on a 5 x 5 board

(The answer is boring: all of them.  But we extend next.)

with recursive reach as

   (select 1 as x, 1 as y

      union

    select r.x + m.dx as x, r.y + m.dy as y

    from reach r, move m

    where 1 <= r.x + m.dx and r.x + m.dx <= 5

      and 1 <= r.y + m.dy and r.y + m.dy <= 5)

select r.x, r.y

from reach r

order by r.x, r.y;
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Compute all positions reachable from (1,1) on a 5 x 5 board

(The answer is boring: all of them.  But we extend next.)

with recursive reach as

   (select 1 as x, 1 as y

      union

    select r.x + m.dx as x, r.y + m.dy as y

    from reach r, move m

    where 1 <= r.x + m.dx and r.x + m.dx <= 5

      and 1 <= r.y + m.dy and r.y + m.dy <= 5)

select r.x, r.y

from reach r

order by r.x, r.y;
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Compute all positions reachable from (1,1) on a 5 x 5 board

(The answer is boring: all of them.  But we extend next.)

with recursive reach as

   (select 1 as x, 1 as y

      union

    select r.x + m.dx as x, r.y + m.dy as y

    from reach r, move m

    where 1 <= r.x + m.dx and r.x + m.dx <= 5

      and 1 <= r.y + m.dy and r.y + m.dy <= 5)

select r.x, r.y

from reach r

order by r.x, r.y;
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Compute all positions reachable from (1,1) on a 5 x 5 board

(The answer is boring: all of them.  But we extend next.)

with recursive reach as

   (select 1 as x, 1 as y

      union

    select r.x + m.dx as x, r.y + m.dy as y

    from reach r, move m

    where 1 <= r.x + m.dx and r.x + m.dx <= 5

      and 1 <= r.y + m.dy and r.y + m.dy <= 5)

select r.x, r.y

from reach r

order by r.x, r.y;
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Compute all positions reachable from (1,1) on a 5 x 5 board

(The answer is boring: all of them.  But we extend next.)

with recursive reach as

   (select 1 as x, 1 as y

      union

    select r.x + m.dx as x, r.y + m.dy as y

    from reach r, move m

    where 1 <= r.x + m.dx and r.x + m.dx <= 5

      and 1 <= r.y + m.dy and r.y + m.dy <= 5)

select r.x, r.y

from reach r

order by r.x, r.y;
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For n=2,10, check if the knight can reach the top-right position

on an n x n board

create table n as

 select n as n 

 from generate_series(2,10) n;
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For n=2,10, check if the knight can reach the top-right position

on an n x n board

with recursive reach as

   (select n.n as n, 1 as x, 1 as y from n n

      union

    select n.n, r.x + m.dx as x, r.y + m.dy as y

    from n n, reach r, move m

    where n.n = r.n

      and 1 <= r.x + m.dx and r.x + m.dx <= n.n

      and 1 <= r.y + m.dy and r.y + m.dy <= n.n)

select r.n

from reach r

where r.x=r.n and r.y = r.n

order by r.n;

create table n as

 select n as n 

 from generate_series(2,10) n;
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For n=2,10, check if the knight can reach the top-right position

on an n x n board

with recursive reach as

   (select n.n as n, 1 as x, 1 as y from n n

      union

    select n.n, r.x + m.dx as x, r.y + m.dy as y

    from n n, reach r, move m

    where n.n = r.n

      and 1 <= r.x + m.dx and r.x + m.dx <= n.n

      and 1 <= r.y + m.dy and r.y + m.dy <= n.n)

select r.n

from reach r

where r.x=r.n and r.y = r.n

order by r.n;

create table n as

 select n as n 

 from generate_series(2,10) n;
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For n=2,10, check if the knight can reach the top-right position

on an n x n board

with recursive reach as

   (select n.n as n, 1 as x, 1 as y from n n

      union

    select n.n, r.x + m.dx as x, r.y + m.dy as y

    from n n, reach r, move m

    where n.n = r.n

      and 1 <= r.x + m.dx and r.x + m.dx <= n.n

      and 1 <= r.y + m.dy and r.y + m.dy <= n.n)

select r.n

from reach r

where r.x=r.n and r.y = r.n

order by r.n;

create table n as

 select n as n 

 from generate_series(2,10) n;



Knight’s (Shortest) Path

CSEP 544 - Winter 2025 106

For n=2,10, check if the knight can reach the top-right position

on an n x n board

with recursive reach as

   (select n.n as n, 1 as x, 1 as y from n n

      union

    select n.n, r.x + m.dx as x, r.y + m.dy as y

    from n n, reach r, move m

    where n.n = r.n

      and 1 <= r.x + m.dx and r.x + m.dx <= n.n

      and 1 <= r.y + m.dy and r.y + m.dy <= n.n)

select r.n

from reach r

where r.x=r.n and r.y = r.n

order by r.n;

create table n as

 select n as n 

 from generate_series(2,10) n;
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For each position find the shortest path from (1,1), on a 5x5 board

with recursive reach as

   (select 1 as x, 1 as y, 0 as l

      union

    select r.x + m.dx as x, r.y + m.dy as y, r.l+1 as l

    from reach r, move m

    where 1 <= r.x + m.dx and r.x + m.dx <= 5

      and 1 <= r.y + m.dy and r.y + m.dy <= 5

      and r.l <= 25)

select r.x, r.y, min(r.l)

from reach r

group by r.x, r.y

order by r.x, r.y;
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Now the board has obstructions show in the file board.csv

10,---X-X--X-

09,--X---X---

08,---X------

07,----X--X--

06,----------

05,X--X----X-

04,-X-X--X---

03,--X-X-XX--

02,-X-----X--

01,---X------
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Now the board has obstructions show in the file board.csv

create table board_raw (row int, cols text);

copy board_raw

from ‘……/board.csv'

delimiter ',';

10,---X-X--X-

09,--X---X---

08,---X------

07,----X--X--

06,----------

05,X--X----X-

04,-X-X--X---

03,--X-X-XX--

02,-X-----X--

01,---X------
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Now the board has obstructions show in the file board.csv

create table board_raw (row int, cols text);

copy board_raw

from ‘……/board.csv'

delimiter ',';

10,---X-X--X-

09,--X---X---

08,---X------

07,----X--X--

06,----------

05,X--X----X-

04,-X-X--X---

03,--X-X-XX--

02,-X-----X--

01,---X------

create table board as

  (select b.row as x, y as y

   from board_raw b, 

           generate_series(1,length(b.cols)) as y

   where substr(b.cols, y, 1) = '-');
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Now the board has obstructions show in the file board.csv

create table board_raw (row int, cols text);

copy board_raw

from ‘……/board.csv'

delimiter ',';

10,---X-X--X-

09,--X---X---

08,---X------

07,----X--X--

06,----------

05,X--X----X-

04,-X-X--X---

03,--X-X-XX--

02,-X-----X--

01,---X------

create table board as

  (select b.row as x, y as y

   from board_raw b, 

           generate_series(1,length(b.cols)) as y

   where substr(b.cols, y, 1) = '-');

String functions:

look them up
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Now the board has obstructions show in the file board.csv

10,---X-X--X-

09,--X---X---

08,---X------

07,----X--X--

06,----------

05,X--X----X-

04,-X-X--X---

03,--X-X-XX--

02,-X-----X--

01,---X------

with recursive

   mrows as (select max(b.x) as m from board b),

   ncols as (select max(b.y) as n from board b),

  reach as

   (select 1 as x, 1 as y

      union

    select r.x + m.dx as x, r.y + m.dy as y

    from board dest, reach r, move m, mrows mr, ncols nc

    where 1 <= r.x + m.dx and r.x + m.dx <= mr.m

      and 1 <= r.y + m.dy and r.y + m.dy <= nc.n

      and r.x + m.dx = dest.x and r.y + m.dy = dest.y)

select r.x, r.y

from reach r;

Size of

the board
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Now the board has obstructions show in the file board.csv

10,---X-X--X-

09,--X---X---

08,---X------

07,----X--X--

06,----------

05,X--X----X-

04,-X-X--X---

03,--X-X-XX--

02,-X-----X--

01,---X------

with recursive

   mrows as (select max(b.x) as m from board b),

   ncols as (select max(b.y) as n from board b),

   reach as

   (select 1 as x, 1 as y

      union

    select r.x + m.dx as x, r.y + m.dy as y

    from board dest, reach r, move m, mrows mr, ncols nc

    where 1 <= r.x + m.dx and r.x + m.dx <= mr.m

      and 1 <= r.y + m.dy and r.y + m.dy <= nc.n

      and r.x + m.dx = dest.x and r.y + m.dy = dest.y)

select r.x, r.y

from reach r;
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Now the board has obstructions show in the file board.csv

10,---X-X--X-

09,--X---X---

08,---X------

07,----X--X--

06,----------

05,X--X----X-

04,-X-X--X---

03,--X-X-XX--

02,-X-----X--

01,---X------

with recursive

   mrows as (select max(b.x) as m from board b),

   ncols as (select max(b.y) as n from board b),

   reach as

   (select 1 as x, 1 as y

      union

    select r.x + m.dx as x, r.y + m.dy as y

    from board dest, reach r, move m, mrows mr, ncols nc

    where 1 <= r.x + m.dx and r.x + m.dx <= mr.m

      and 1 <= r.y + m.dy and r.y + m.dy <= nc.n

      and r.x + m.dx = dest.x and r.y + m.dy = dest.y)

select r.x, r.y

from reach r;

Check that

destination is

not obstructed
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Now the board has obstructions show in the file board.csv

10,---X-X--X-

09,--X---X---

08,---X------

07,----X--X--

06,----------

05,X--X----X-

04,-X-X--X---

03,--X-X-XX--

02,-X-----X--

01,---X------

with recursive

   mrows as (select max(b.x) as m from board b),

   ncols as (select max(b.y) as n from board b),

   reach as

   (select 1 as x, 1 as y

      union

    select r.x + m.dx as x, r.y + m.dy as y

    from board dest, reach r, move m, mrows mr, ncols nc

    where 1 <= r.x + m.dx and r.x + m.dx <= mr.m

      and 1 <= r.y + m.dy and r.y + m.dy <= nc.n

      and r.x + m.dx = dest.x and r.y + m.dy = dest.y)

select r.x, r.y

from reach r;
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Now the board has obstructions show in the file board.csv

10,---X-X--X-

09,--X---X---

08,---X------

07,----X--X--

06,----------

05,X--X----X-

04,-X-X--X---

03,--X-X-XX--

02,-X-----X--

01,---X------

with recursive

   mrows as (select max(b.x) as m from board b),

   ncols as (select max(b.y) as n from board b),

   reach as

   (select 1 as x, 1 as y

      union

    select r.x + m.dx as x, r.y + m.dy as y

    from board dest, reach r, move m, mrows mr, ncols nc

    where 1 <= r.x + m.dx and r.x + m.dx <= mr.m

      and 1 <= r.y + m.dy and r.y + m.dy <= nc.n

      and r.x + m.dx = dest.x and r.y + m.dy = dest.y)

select r.x, r.y

from reach r;



Summary

• Although limited, recursion increases 

the expressive power of SQL

• HW2 asks you to solve several puzzles 

by using vanilla SQL; some (but not all) 

puzzles require recursion
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