
CSEP544

Data Management

SQL, Database Design

CSEP 544 - Winter 2025 1

Announcement

• HW1 is due on January 26

CSEP 544 - Winter 2025 2

Recap

Relational data model

SQL

• SELECT-FROM-WHERE

• NULLs

• Joins, self-joins, outer-joins

• Aggregates, Group-by

CSEP 544 - Winter 2025 3

Aggregates

CSEP 544 - Winter 2025 4

Aggregate Operator

Aggregate op: set of values to single value

Aggregates in SQL:

• sum(1, 4, 3, 4) = 1+4+3+4 = 12

• max(1, 4, 3, 4) = 4

• min(1, 4, 3, 4) = 1

• count(1, 4, 3, 4) = 4

• avg(1, 4, 3, 4) = 3

5

Aggregate Operator

Aggregate op: set of values to single value

Aggregates in SQL:

• sum(1, 4, 3, 4) = 1+4+3+4 = 12

• max(1, 4, 3, 4) = 4

• min(1, 4, 3, 4) = 1

• count(1, 4, 3, 4) = 4

• avg(1, 4, 3, 4) = 3

6

May have duplicates

Count

sno sname scity sstate

11 ACME Seattle WA

12 Walmart Portland OR

13 Safeway Seattle WA

13 Walmart Seattle WA

Supplier

SELECT count(*)

FROM Part

SELECT count(sstate)

FROM Part

SELECT count(DISTINCT sstate)

FROM Part

4

4

2

GROUP-BY

CSEP 544 - Winter 2025 8

SELECT …

FROM …

WHERE …

GROUP BY …

Aggregates and Group-By

CSEP 544 - Winter 2025 9

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

SELECT count(*)

FROM Part

SELECT x.scity, count(*)

FROM Supplier x, Supply y, Part z

WHERE x.sno = y.sno and y.pno = z.pno

GROUP BY x.scity

Count # of Parts

Count # of Parts supplied by each city

Aggregates and Group-By

CSEP 544 - Winter 2025 10

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

SELECT count(*) as C

FROM Part

SELECT x.scity, count(*)

FROM Supplier x, Supply y, Part z

WHERE x.sno = y.sno and y.pno = z.pno

GROUP BY x.scity

Count # of Parts

Count # of Parts supplied by each city

C

1540

Aggregates and Group-By

CSEP 544 - Winter 2025 11

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

SELECT count(*) as C

FROM Part

SELECT x.scity, count(*) as C

FROM Supplier x, Supply y, Part z

WHERE x.sno = y.sno and y.pno = z.pno

GROUP BY x.scity

Count # of Parts

Count # of Parts supplied by each city

C

1540

City C

Seattle 300

NYC 240

…

Discussion

• GROUP-BY without an aggregate is

equivalent to DISTINCT

• Every attribute in SELECT that is not

aggregated must occur in GROUP-BY

CSEP 544 - Winter 2025 12

See last lecture

The HAVING Clause

CSEP 544 - Winter 2025 13

The HAVING Clause

CSEP 544 - Winter 2025 14

SELECT …

FROM …

WHERE …

GROUP BY …

HAVING [condition w/ aggregates]

HAVING Clause

CSEP 544 - Winter 2025 15

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Compute the total quantity supplied by each supplier in ‘WA’

HAVING Clause

CSEP 544 - Winter 2025 16

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

SELECT x.sno, x.sname, sum(y.qty)

FROM Supplier x, Supply y

WHERE x.sno=y.sno and x.sstate=‘WA’

GROUP BY x.sno, x.sname

Compute the total quantity supplied by each supplier in ‘WA’

HAVING Clause

CSEP 544 - Winter 2025 17

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

SELECT x.sno, x.sname, sum(y.qty)

FROM Supplier x, Supply y

WHERE x.sno=y.sno and x.sstate=‘WA’

GROUP BY x.sno, x.sname

Compute the total quantity supplied by each supplier

who supplied > 100 parts

Compute the total quantity supplied by each supplier in ‘WA’

HAVING Clause

CSEP 544 - Winter 2025 18

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Compute the total quantity supplied by each supplier in ‘WA’

SELECT x.sno, x.sname, sum(y.qty)

FROM Supplier x, Supply y

WHERE x.sno=y.sno and x.sstate=‘WA’

GROUP BY x.sno, x.sname

SELECT x.sno, x.sname, sum(y.qty)

FROM Supplier x, Supply y

WHERE x.sno=y.sno

GROUP BY x.sno, x.sname

HAVING count(*) > 100

Compute the total quantity supplied by each supplier

who supplied > 100 parts

Semantics

CSEP 544 - Winter 2025 19

SELECT …

FROM …

WHERE …

GROUP BY …

HAVING …

Paper SQL Has Problems. What is the logical order?

Semantics

CSEP 544 - Winter 2025 20

SELECT …

FROM …

WHERE …

GROUP BY …

HAVING …

Paper SQL Has Problems. What is the logical order?

FROM (joins)

WHERE (filter)

GROUP-BY (aggregate)

HAVING (filter)

SELECT (project)

Semantics
SELECT a1, …, ak, agg1, agg2

FROM R1 AS x1, R2 AS x2, …, Rn AS xn

WHERE condition1
GROUP BY a1, …, ak

HAVING condition2 -- may have aggs

CSEP 544 - Winter 2025 21

Semantics
SELECT a1, …, ak, agg1, agg2

FROM R1 AS x1, R2 AS x2, …, Rn AS xn

WHERE condition1
GROUP BY a1, …, ak

HAVING condition2 -- may have aggs

Step 1: FROM-WHERE

a1
… ak b1 … b1

Check

WHERE condition1

in each row

22

Semantics
SELECT a1, …, ak, agg1, agg2

FROM R1 AS x1, R2 AS x2, …, Rn AS xn

WHERE condition1
GROUP BY a1, …, ak

HAVING condition2 -- may have aggs

Step 1: FROM-WHERE

a1
… ak b1 … b1

Check

WHERE condition1

in each row

23

Semantics
SELECT a1, …, ak, agg1, agg2

FROM R1 AS x1, R2 AS x2, …, Rn AS xn

WHERE condition1
GROUP BY a1, …, ak

HAVING condition2 -- may have aggs

Step 1: FROM-WHERE

a1
… ak b1 … b1

24

Semantics

Step 2: GROUP BY

a1
… ak b1 … b1

u … v

u v

p q

p q

p q

All attributes a1, …, ak,

have the same value

inside each group

SELECT a1, …, ak, agg1, agg2

FROM R1 AS x1, R2 AS x2, …, Rn AS xn

WHERE condition1
GROUP BY a1, …, ak

HAVING condition2 -- may have aggs

25

Semantics

Step 3: HAVING

a1
… ak b1 … b1

u … v

u v

p q

p q

p q

Check condition2

in each group

SELECT a1, …, ak, agg1, agg2

FROM R1 AS x1, R2 AS x2, …, Rn AS xn

WHERE condition1
GROUP BY a1, …, ak

HAVING condition2 -- may have aggs

26

Semantics

Step 3: HAVING

a1
… ak b1 … b1

u … v

u v

p q

p q

p q

Check condition2

in each group

SELECT a1, …, ak, agg1, agg2

FROM R1 AS x1, R2 AS x2, …, Rn AS xn

WHERE condition1
GROUP BY a1, …, ak

HAVING condition2 -- may have aggs

27

Semantics

Step 3: HAVING

a1
… ak b1 … b1

u … v

u v

p q

p q

p q

SELECT a1, …, ak, agg1, agg2

FROM R1 AS x1, R2 AS x2, …, Rn AS xn

WHERE condition1
GROUP BY a1, …, ak

HAVING condition2 -- may have aggs

28

Semantics

Step 4: SELECT

a1
… ak b1 … b1

u … v

u v

p q

p q

p q

a1
… ak agg1 agg2

u … v

p q

Each group → one output

SELECT a1, …, ak, agg1, agg2

FROM R1 AS x1, R2 AS x2, …, Rn AS xn

WHERE condition1
GROUP BY a1, …, ak

HAVING condition2 -- may have aggs

Discussion

• GROUP-BY is very versatile in SQL

• No analogous in programming

languages: use nested loops instead

30

SELECT x.sno, count(*)

FROM Supplier x, Supply y

WHERE x.sno=y.sno

GROUP BY x.sno

CSEP 544 - Winter 2025

Discussion

• GROUP-BY is very versatile in SQL

• No analogous in programming

languages: use nested loops instead

31

SELECT x.sno, count(*)

FROM Supplier x, Supply y

WHERE x.sno=y.sno

GROUP BY x.sno

for x in Supplier:

 c = 0

 for y in Supply:

 if x.sno==y.sno:

 c = c+1

CSEP 544 - Winter 2025

Discussion

• GROUP-BY is very versatile in SQL

• No analogous in programming

languages: use nested loops instead

• The empty group problem (next)

32

SELECT x.sno, count(*)

FROM Supplier x, Supply y

WHERE x.sno=y.sno

GROUP BY x.sno

for x in Supplier:

 c = 0

 for y in Supply:

 if x.sno==y.sno:

 c = c+1

Empty Groups

CSEP 544 - Winter 2025 33

Empty Groups Problem

• Every group is non-empty

• Consequences:

– count(*) > 0

– sum(…) > 0 (assuming numbers are >0)

• Sometimes we want to return 0 counts:

– Parts that never sold

– Suppliers that never supplied

• Use outer joins: count(…) skips NULLs

34CSEP 544 - Winter 2025

Empty Groups Problem

35

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Compute the number of parts supplied by each supplier

CSEP 544 - Winter 2025

Empty Groups Problem

36

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Compute the number of parts supplied by each supplier

Suppliers who never

supplied any part

will be missing:

count(*) > 0

SELECT x.sno, count(*)

FROM Supplier x, Supply y

WHERE x.sno=y.sno

GROUP BY x.sno

CSEP 544 - Winter 2025

Empty Groups Problem

37

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Compute the number of parts supplied by each supplier

Suppliers who never

supplied any part

will be missing:

count(*) > 0

SELECT x.sno, count(*)

FROM Supplier x, Supply y

WHERE x.sno=y.sno

GROUP BY x.sno

Now we can get

count(*)=0

CSEP 544 - Winter 2025

SELECT x.sno, count(y.sno)

FROM Supplier x

 LEFT OUTER JOIN Supply y

ON x.sno=y.sno

GROUP BY x.sno

Empty Groups Problem

38

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Compute the number of parts supplied by each supplier

Suppliers who never

supplied any part

will be missing:

count(*) > 0

SELECT x.sno, count(*)

FROM Supplier x, Supply y

WHERE x.sno=y.sno

GROUP BY x.sno

Now we can get

count(*)=0

CSEP 544 - Winter 2025

SELECT x.sno, count(y.sno)

FROM Supplier x

 LEFT OUTER JOIN Supply y

ON x.sno=y.sno

GROUP BY x.sno
Can we write

count(*)?

The WITH Clause

CSEP 544 - Winter 2025 39

WITH Clause

CSEP 544 - Winter 2025 40

WITH

 tbl1 AS (SELECT … FROM …),

 tbl2 AS (SELECT … FROM …),

 …

SELECT … FROM …[tbl1, tbl2,…] …

Example

CSEP 544 - Winter 2025 41

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Warmup: find all parts supplied from Seattle

Example

CSEP 544 - Winter 2025 42

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Warmup: find all parts supplied from Seattle

SELECT z.*

FROM Supplier x, Supply y, Part z

WHERE z.scity = ‘Seattle’;

Example

CSEP 544 - Winter 2025 43

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Warmup: find all parts supplied from Seattle

SELECT z.*

FROM Supplier x, Supply y, Part z

WHERE z.scity = ‘Seattle’;

What is missing?

Example

CSEP 544 - Winter 2025 44

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Warmup: find all parts supplied from Seattle

SELECT DISTINCT z.*

FROM Supplier x, Supply y, Part z

WHERE z.scity = ‘Seattle’;

Example

CSEP 544 - Winter 2025 45

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Find the average psize of all parts supplied from Seattle

SELECT avg(z.psize)

FROM Supplier x, Supply y, Part z

WHERE z.scity = ‘Seattle’;

What is wrong?

Example

CSEP 544 - Winter 2025 46

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Find the average psize of all parts supplied from Seattle

WITH Tmp AS (

 SELECT DISTINCT z.pno, z.psize

 FROM Supplier x, Supply y, Part z

 WHERE z.scity = ‘Seattle’)

SELECT avg(psize)

FROM Tmp;

Subqueries

CSEP 544 - Winter 2025 47

Subqueries

• A subquery is a self-contained SQL

query that occurs inside another query

• The subquery can be any of these

clauses:

– FROM

– SELECT

– WHERE

– HAVING

CSEP 544 - Winter 2025 48

Subqueries in FROM Clause

• Subquery in FROM: the same as in WITH

• Sometimes WITH is easier to read

• Some DBMS may not support both

CSEP 544 - Winter 2025 49

Subqueries in FROM Clause

CSEP 544 - Winter 2025 50

WITH Tmp AS (SELECT DISTINCT z.pno, z.psize

 FROM Supplier x, Supply y, Part z

 WHERE z.scity = ‘Seattle’)

SELECT avg(psize)

FROM Tmp;

Subqueries in FROM Clause

CSEP 544 - Winter 2025 51

WITH Tmp AS (SELECT DISTINCT z.pno, z.psize

 FROM Supplier x, Supply y, Part z

 WHERE z.scity = ‘Seattle’)

SELECT avg(psize)

FROM Tmp;

SELECT avg(W.psize)

FROM (SELECT DISTINCT z.pno, z.psize

 FROM Supplier x, Supply y, Part z

 WHERE z.scity = ‘Seattle’) as W;

same as:

Subqueries in SELECT

• SELECT: only scalar expressions

• May use subquery in SELECT if it returns

a single value

CSEP 544 - Winter 2025 52

Subqueries in SELECT

53

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Compute the total quantity supplied by each supplier in Seattle

CSEP 544 - Winter 2025

Subqueries in SELECT

54

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Compute the total quantity supplied by each supplier in Seattle

SELECT x.sno, (SELECT sum(y.qty)

 FROM Supply y

 WHERE x.sno = y.sno) AS T

FROM Supplier x

WHERE x.scity = ‘Seattle’;

CSEP 544 - Winter 2025

?

Subqueries in SELECT

55

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Compute the total quantity supplied by each supplier in Seattle

SELECT x.sno, (SELECT sum(y.qty)

 FROM Supply y

 WHERE x.sno = y.sno) AS T

FROM Supplier x

WHERE x.scity = ‘Seattle’;

CSEP 544 - Winter 2025

Subqueries in SELECT

56

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Compute the total quantity supplied by each supplier in Seattle

SELECT x.sno, (SELECT sum(y.qty)

 FROM Supply y

 WHERE x.sno = y.sno) AS T

FROM Supplier x

WHERE x.scity = ‘Seattle’;

CSEP 544 - Winter 2025

SELECT x.sno, sum(y.qty) as T

FROM Supplier x, Supply y

WHERE x.sno = y.sno

 and x.scity = ‘Seattle’

GROUP BY x.sno

Subqueries in SELECT

57

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Compute the total quantity supplied by each supplier in Seattle

SELECT x.sno, (SELECT sum(y.qty)

 FROM Supply y

 WHERE x.sno = y.sno) AS T

FROM Supplier x

WHERE x.scity = ‘Seattle’;

CSEP 544 - Winter 2025

SELECT x.sno, sum(y.qty) as T

FROM Supplier x, Supply y

WHERE x.sno = y.sno

 and x.scity = ‘Seattle’

GROUP BY x.sno

Not equivalent!

WHY?

Subqueries in SELECT

58

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Compute the total quantity supplied by each supplier in Seattle

SELECT x.sno, (SELECT sum(y.qty)

 FROM Supply y

 WHERE x.sno = y.sno) AS T

FROM Supplier x

WHERE x.scity = ‘Seattle’;

CSEP 544 - Winter 2025

SELECT x.sno, sum(y.qty) as T

FROM Supplier x LEFT OUTER JOIN Supply y

ON x.sno = y.sno

 and x.scity = ‘Seattle’

GROUP BY x.sno

Now they

are equivalent

Subqueries in WHERE

Three SQL constructs:

• [NOT] EXISTS (SELECT…)

• X [NOT] IN (SELECT …)

• X > ALL | ANY (SELECT …)

CSEP 544 - Winter 2025 59

Subqueries in WHERE

60

Find all parts that have some supplier offering them for < $100

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

Subqueries in WHERE

61

Find all parts that have some supplier offering them for < $100

SELECT DISTINCT a.pno, a.pname

FROM Part a, Supply b

WHERE b.price < 100 and b.pno = a.pno

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

Subqueries in WHERE

62

Find all parts that have some supplier offering them for < $100

SELECT DISTINCT a.pno, a.pname

FROM Part a, Supply b

WHERE b.price < 100 and b.pno = a.pno

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM Part a

WHERE EXISTS

 (SELECT *

 FROM Supply b

 WHERE b.price < 100

 and b.pno = a.pno)

Subqueries in WHERE

63

Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

Subqueries in WHERE

64

Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

Natural language is ambiguous.

Question above is the same as:

Find all parts that are offered only for < $100

Subqueries in WHERE

65

Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

Subqueries in WHERE

66

Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

Find the other parts:

 all parts that have some supplier offering them for >= $100

Subqueries in WHERE

67

Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM Part a

WHERE EXISTS

 (SELECT *

 FROM Supply b

 WHERE b.price >= 100

 and b.pno = a.pno)

Find the other parts:

 all parts that have some supplier offering them for >= $100

Subqueries in WHERE

68

Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM Part a

WHERE NOT EXISTS

 (SELECT *

 FROM Supply b

 WHERE b.price >= 100

 and b.pno = a.pno)

Find the other parts:

 all parts that have some supplier offering them for >= $100

Negate!

Understanding Quantifiers

69

Find all parts that have some supplier offering them for < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

Understanding Quantifiers

70

Find all parts that have some supplier offering them for < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 = 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∃𝑧, 𝑤(𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ∧ 𝑤 < 100)

Understanding Quantifiers

71

Find all parts that have some supplier offering them for < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 = 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∃𝑧, 𝑤(𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ∧ 𝑤 < 100)

“Exists” quantifier

Understanding Quantifiers

72

Find all parts that have some supplier offering them for < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 = 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∃𝑧, 𝑤(𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ∧ 𝑤 < 100)

Find all parts where all supplier offering them charge < $100

Understanding Quantifiers

73

Find all parts that have some supplier offering them for < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 = 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∃𝑧, 𝑤(𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ∧ 𝑤 < 100)

Find all parts where all supplier offering them charge < $100

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 = 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑧, 𝑤 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ⇒ 𝑤 < 100

Understanding Quantifiers

74

Find all parts that have some supplier offering them for < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 = 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∃𝑧, 𝑤(𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ∧ 𝑤 < 100)

Find all parts where all supplier offering them charge < $100

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 = 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑧, 𝑤 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ⇒ 𝑤 < 100

“For all” quantifier

Understanding Quantifiers

75

Find all parts that have some supplier offering them for < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 = 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∃𝑧, 𝑤(𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ∧ 𝑤 < 100)

Find all parts where all supplier offering them charge < $100

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 = 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑧, 𝑤 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ⇒ 𝑤 < 100

Understanding Quantifiers

76

Find all parts that have some supplier offering them for < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 = 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∃𝑧, 𝑤(𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ∧ 𝑤 < 100)

Find all parts where all supplier offering them charge < $100

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 = 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑧, 𝑤 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ⇒ 𝑤 < 100

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ¬(∃𝑧, 𝑤 ¬ 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ⇒ 𝑤 < 100)

Understanding Quantifiers

77

Find all parts that have some supplier offering them for < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 = 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∃𝑧, 𝑤(𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ∧ 𝑤 < 100)

Find all parts where all supplier offering them charge < $100

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 = 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑧, 𝑤 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ⇒ 𝑤 < 100

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ¬(∃𝑧, 𝑤 ¬ 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ⇒ 𝑤 < 100)

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ¬(∃𝑧, 𝑤 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ∧ 𝑤 ≥ 100)

Understanding Quantifiers

78

Find all parts that have some supplier offering them for < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 = 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∃𝑧, 𝑤(𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ∧ 𝑤 < 100)

Find all parts where all supplier offering them charge < $100

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 = 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑧, 𝑤 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ⇒ 𝑤 < 100

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ¬(∃𝑧, 𝑤 ¬ 𝑺𝒖𝒑𝒑𝒍𝒚 𝒛, 𝒙, 𝒘 ⇒ 𝒘 < 𝟏𝟎𝟎)

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ¬(∃𝑧, 𝑤 𝑺𝒖𝒑𝒑𝒍𝒚 𝒛, 𝒙, 𝒘 ∧ 𝒘 ≥ 𝟏𝟎𝟎)

¬ 𝐴 ⇒ 𝐵 = 𝐴 ∧ ¬𝐵

Understanding Quantifiers
Find all parts supplied by all suppliers

Simplified schema
Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Understanding Quantifiers
Find all parts supplied by all suppliers

Simplified schema

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 =

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑢, 𝑣 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟(𝑢, 𝑣) ⇒ ∃𝑝 𝑆𝑢𝑝𝑝𝑙𝑦(𝑢, 𝑥, 𝑝)

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Understanding Quantifiers
Find all parts supplied by all suppliers

Simplified schema

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 =

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑢, 𝑣 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟(𝑢, 𝑣) ⇒ ∃𝑝 𝑆𝑢𝑝𝑝𝑙𝑦(𝑢, 𝑥, 𝑝)

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ¬∃𝑢, 𝑣 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑢, 𝑣 ∧ ¬∃𝑝 𝑆𝑢𝑝𝑝𝑙𝑦(𝑢, 𝑥, 𝑝)

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Understanding Quantifiers
Find all parts supplied by all suppliers

Simplified schema

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 =

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑢, 𝑣 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟(𝑢, 𝑣) ⇒ ∃𝑝 𝑆𝑢𝑝𝑝𝑙𝑦(𝑢, 𝑥, 𝑝)

= 𝑷𝒂𝒓𝒕 𝒙, 𝒚 ∧ ¬∃𝑢, 𝑣 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑢, 𝑣 ∧ ¬∃𝑝 𝑆𝑢𝑝𝑝𝑙𝑦(𝑢, 𝑥, 𝑝)

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM Part a

WHERE NOT EXISTS

 (SELECT *

 FROM Supplier c

 WHERE NOT EXISTS

 (SELECT * FROM Supply b

 WHERE a.pno=b.pno and b.sno=c.sno))

Understanding Quantifiers
Find all parts supplied by all suppliers

Simplified schema

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 =

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑢, 𝑣 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟(𝑢, 𝑣) ⇒ ∃𝑝 𝑆𝑢𝑝𝑝𝑙𝑦(𝑢, 𝑥, 𝑝)

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ¬∃𝒖, 𝒗 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑢, 𝑣 ∧ ¬∃𝑝 𝑆𝑢𝑝𝑝𝑙𝑦(𝑢, 𝑥, 𝑝)

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM Part a

WHERE NOT EXISTS

 (SELECT *

 FROM Supplier c

 WHERE NOT EXISTS

 (SELECT * FROM Supply b

 WHERE a.pno=b.pno and b.sno=c.sno))

Understanding Quantifiers
Find all parts supplied by all suppliers

Simplified schema

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 =

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑢, 𝑣 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟(𝑢, 𝑣) ⇒ ∃𝑝 𝑆𝑢𝑝𝑝𝑙𝑦(𝑢, 𝑥, 𝑝)

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ¬∃𝑢, 𝑣 𝑺𝒖𝒑𝒑𝒍𝒊𝒆𝒓 𝒖, 𝒗 ∧ ¬∃𝒑 𝑆𝑢𝑝𝑝𝑙𝑦(𝑢, 𝑥, 𝑝)

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM Part a

WHERE NOT EXISTS

 (SELECT *

 FROM Supplier c

 WHERE NOT EXISTS

 (SELECT * FROM Supply b

 WHERE a.pno=b.pno and b.sno=c.sno))

Understanding Quantifiers
Find all parts supplied by all suppliers

Simplified schema

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 =

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑢, 𝑣 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟(𝑢, 𝑣) ⇒ ∃𝑝 𝑆𝑢𝑝𝑝𝑙𝑦(𝑢, 𝑥, 𝑝)

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ¬∃𝑢, 𝑣 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑢, 𝑣 ∧ ¬∃𝒑 𝑺𝒖𝒑𝒑𝒍𝒚(𝒖, 𝒙, 𝒑)

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM Part a

WHERE NOT EXISTS

 (SELECT *

 FROM Supplier c

 WHERE NOT EXISTS

 (SELECT * FROM Supply b

 WHERE a.pno=b.pno and b.sno=c.sno))

Subqueries in WHERE

• EXISTS(….)

check if empty

• NOT EXISTS(…)

check if not empty

CSEP 544 - Winter 2025 86

Subqueries in WHERE

• EXISTS(….)

check if empty

• X IN (…)

check if X in the set

• NOT EXISTS(…)

check if not empty

• X NOT IN (…)

check if X not in set

CSEP 544 - Winter 2025 87

Subqueries in WHERE

• EXISTS(….)

check if empty

• X IN (…)

check if X in the set

• X > SOME (…)

∃Y in (…) and X>Y

• NOT EXISTS(…)

check if not empty

• X NOT IN (…)

check if X not in set

• X > ALL (…)

∀Y in (…): X > Y

CSEP 544 - Winter 2025 88

Subqueries in WHERE

89

Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

Subqueries in WHERE

90

Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM Part a

WHERE NOT EXISTS

 (SELECT *

 FROM Supply b

 WHERE b.price >= 100

 and b.pno = a.pno)

Subqueries in WHERE

91

Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM Part a

WHERE NOT EXISTS

 (SELECT *

 FROM Supply b

 WHERE b.price >= 100

 and b.pno = a.pno)

SELECT a.pno, a.pname

FROM Part a

WHERE a.pno NOT IN

 (SELECT b.pno

 FROM Supply b

 WHERE b.price >= 100)

Subqueries in WHERE

92

Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM Part a

WHERE NOT EXISTS

 (SELECT *

 FROM Supply b

 WHERE b.price >= 100

 and b.pno = a.pno)

SELECT a.pno, a.pname

FROM Part a

WHERE a.pno NOT IN

 (SELECT b.pno

 FROM Supply b

 WHERE b.price >= 100)

If evaluated naively, which query is more efficient?

Subqueries in WHERE

93

Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM Part a

WHERE NOT EXISTS

 (SELECT *

 FROM Supply b

 WHERE b.price >= 100

 and b.pno = a.pno)

SELECT a.pno, a.pname

FROM Part a

WHERE a.pno NOT IN

 (SELECT b.pno

 FROM Supply b

 WHERE b.price >= 100)

If evaluated naively, which query is more efficient?

Correlated

subquery

Subqueries in WHERE

94

Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM Part a

WHERE NOT EXISTS

 (SELECT *

 FROM Supply b

 WHERE b.price >= 100

 and b.pno = a.pno)

SELECT a.pno, a.pname

FROM Part a

WHERE a.pno NOT IN

 (SELECT b.pno

 FROM Supply b

 WHERE b.price >= 100)

If evaluated naively, which query is more efficient?

Correlated

subquery
Uncorrelated

Subqueries in WHERE

95

Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM Part a

WHERE NOT EXISTS

 (SELECT *

 FROM Supply b

 WHERE b.price >= 100

 and b.pno = a.pno)

SELECT a.pno, a.pname

FROM Part a

WHERE a.pno NOT IN

 (SELECT b.pno

 FROM Supply b

 WHERE b.price >= 100)

Subqueries in WHERE

96

Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM Part a

WHERE NOT EXISTS

 (SELECT *

 FROM Supply b

 WHERE b.price >= 100

 and b.pno = a.pno)

SELECT a.pno, a.pname

FROM Part a

WHERE a.pno NOT IN

 (SELECT b.pno

 FROM Supply b

 WHERE b.price >= 100)

SELECT a.pno, a.pname

FROM Part a

WHERE 100 < ALL

 (SELECT b.price

 FROM Supply b

 WHERE b.pno = a.pno)

Discussion

• Queries w/ existential quantifiers can be

unnested into SELECT-FROM-WHERE

• Queries w/ universal quantifier cannot

We will prove this next

CSEP 544 - Winter 2025 97

Monotone Queries

CSEP 544 - Winter 2025 98

Montone Functions

CSEP 544 - Winter 2025 99

Monotone:

𝑥3 + 𝑥2,

𝑒𝑥,

log(𝑥),

…

Non-Monotone:

𝑥3 − 𝑥2,

𝑒−𝑥,
1

𝑥
,

…

A function 𝑓: 𝑅 → 𝑅 is monotone if 𝑥 ≤ 𝑦 implies 𝑓 𝑥 ≤ 𝑓(𝑦)

Monotone Queries

CSEP 544 - Winter 2025 100

A query Q is monotone if 𝐼 ⊆ 𝐽 implies 𝑞 𝐼 ⊆ 𝑞(𝐽)

Monotone Queries

CSEP 544 - Winter 2025 101

Adding tuples to the input does

not remove tuples from the output

A query Q is monotone if 𝐼 ⊆ 𝐽 implies 𝑞 𝐼 ⊆ 𝑞(𝐽)

Monotone Queries

102

Find all parts that have some supplier offering them for < $100

Supply(sno,pno,price)

Part(pno,pname)

Is this query

monotone?

Monotone Queries

103

Find all parts that have some supplier offering them for < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 200

s02 p100 50

s01 p200 300

pno pname

p100 phone

p200 mouse

p300 lamp 𝐼

Supply Part

Monotone Queries

104

Find all parts that have some supplier offering them for < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 200

s02 p100 50

s01 p200 300

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

𝐼

Supply Part

Monotone Queries

105

Find all parts that have some supplier offering them for < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 200

s02 p100 50

s01 p200 300

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

sno pno price

s01 p100 200

s02 p100 50

s01 p200 300

s03 p200 99

pno pname

p100 phone

p200 mouse

p300 lamp

𝐽

𝐼

Supply Part

Monotone Queries

106

Find all parts that have some supplier offering them for < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 200

s02 p100 50

s01 p200 300

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

sno pno price

s01 p100 200

s02 p100 50

s01 p200 300

s03 p200 99

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

𝐽

𝐼

Supply Part

Monotone Queries

107

Find all parts that have some supplier offering them for < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 200

s02 p100 50

s01 p200 300

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

sno pno price

s01 p100 200

s02 p100 50

s01 p200 300

s03 p200 99

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

𝐽

Monotone

𝐼

Supply Part

Monotone Queries

108

Find all parts where all supplier offering them charge < $100

Supply(sno,pno,price)

Part(pno,pname)

Is this query monotone?

Monotone Queries

109

Find all parts where all supplier offering them charge < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 20

s02 p100 50

s01 p300 30

pno pname

p100 phone

p200 mouse

p300 lamp 𝐼

Supply Part

Monotone Queries

110

Find all parts where all supplier offering them charge < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 20

s02 p100 50

s01 p300 30

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

p300 lamp𝐼

Supply Part

Monotone Queries

111

Find all parts where all supplier offering them charge < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 20

s02 p100 50

s01 p300 30

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

p300 lamp𝐼

Supply Part

Why?

Monotone Queries

112

Find all parts where all supplier offering them charge < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 20

s02 p100 50

s01 p300 30

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

p300 lamp𝐼

Supply Part

𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑧, 𝑝(𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑝 ⇒ 𝑝 < 100)

Why?

Monotone Queries

113

Find all parts where all supplier offering them charge < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 20

s02 p100 50

s01 p300 30

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

p300 lamp𝐼

Supply Part

𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑧, 𝑝(𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑝 ⇒ 𝑝 < 100)

If 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑝 is FALSE, then 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑝 ⇒ 𝑝 < 100 is TRUE

Why?

Monotone Queries

114

Find all parts where all supplier offering them charge < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 20

s02 p100 50

s01 p300 30

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

p300 lamp𝐼

Supply Part

𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑧, 𝑝(𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑝 ⇒ 𝑝 < 100)

If 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑝 is FALSE, then 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑝 ⇒ 𝑝 < 100 is TRUE

Hence (p200,mouse) is in the output

Why?

Monotone Queries

115

Find all parts where all supplier offering them charge < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 20

s02 p100 50

s01 p300 30

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

p300 lamp𝐼

Supply Part

Monotone Queries

116

Find all parts where all supplier offering them charge < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 20

s02 p100 50

s01 p300 30

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

p300 lamp

sno pno price

s01 p100 200

s02 p100 50

s01 p200 300

s03 p100 199

pno pname

p100 phone

p200 mouse

p300 lamp

𝐽

𝐼

Supply Part

Monotone Queries

117

Find all parts where all supplier offering them charge < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 20

s02 p100 50

s01 p300 30

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

p300 lamp

sno pno price

s01 p100 200

s02 p100 50

s01 p200 300

s03 p100 199

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

p300 lamp

𝐽

𝐼

Supply Part

Monotone Queries

118

Find all parts where all supplier offering them charge < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 20

s02 p100 50

s01 p300 30

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

p300 lamp

sno pno price

s01 p100 200

s02 p100 50

s01 p200 300

s03 p100 199

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

p300 lamp

𝐽

Non-Monotone

𝐼

Supply Part

A Theorem

Every SELECT-FROM-WHERE query without subqueries

and without aggregates is monotone

A Theorem

Proof. Consider a SQL query:

SELECT attrs

FROM T1, T2, ...

WHERE condition

Every SELECT-FROM-WHERE query without subqueries

and without aggregates is monotone

A Theorem

for each r1 in T1:

 for each t2 in T2:

 for each t3 in T3:

 …

 if (condition):

 output (a1,a2,…)

Proof. Consider a SQL query: Its nested loop semantics is:

SELECT attrs

FROM T1, T2, ...

WHERE condition

Every SELECT-FROM-WHERE query without subqueries

and without aggregates is monotone

A Theorem

for each r1 in T1:

 for each t2 in T2:

 for each t3 in T3:

 …

 if (condition):

 output (a1,a2,…)

Proof. Consider a SQL query: Its nested loop semantics is:

If we insert a tuple into one of the input relations Ti,

we will not remove any tuples from the output.

SELECT attrs

FROM T1, T2, ...

WHERE condition

Every SELECT-FROM-WHERE query without subqueries

and without aggregates is monotone

An Application

CSEP 544 - Winter 2025 123

The query:

 Find all parts where all supplier offering them charge < $100

Cannot be unnested without using aggregates

Finding Witnesses

a.k.a. ARGMAX

CSEP 544 - Winter 2025 124

The Witness aka ARGMAX

• Find the city with the largest population

• Find product/products with largest price

• …

• SQL does not have ARGMAX

• Two solutions:

– Use intermediate relation in WITH

– Self-join and HAVING

CSEP 544 - Winter 2025 125

Using WITH

CSEP 544 - Winter 2025 126

For each supplier, find the most expensive product they supply

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Using WITH

CSEP 544 - Winter 2025 127

For each supplier, find the most expensive product they supply

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Finding the max price is easy:

SELECT x.sno, x.name, max(y.price)
FROM Supplier x, Supply y
WHERE x.sno = y.sno
GROUP BY x.sno, x.name

Using WITH

CSEP 544 - Winter 2025 128

For each supplier, find the most expensive product they supply

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Finding the max price is easy:

But we also want pno, pname:
SELECT x.sno, y.pno, x.name, max(y.price)
FROM Supplier x, Supply y
WHERE x.sno = y.sno
GROUP BY x.sno, x.name

Why does

this not work?

Using WITH

CSEP 544 - Winter 2025 129

For each supplier, find the most expensive product they supply

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Compute max price in temporary table

WITH Temp AS
 (SELECT x.sno, x.sname, max(y.price) as m
 FROM Supplier x, Supply y
 WHERE x.sno = y.sno
 GROUP BY x.sno, x.name)
.
SELECT t.sid, t.sname, v.pno, v.pname
FROM Temp t, Supply u, Part v
WHERE t.sno = u.sno
 and u.pno = v.pno
 and t.m = u.price;

Using WITH

CSEP 544 - Winter 2025 130

For each supplier, find the most expensive product they supply

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Compute max price in temporary table

WITH Temp AS
 (SELECT x.sno, x.sname, max(y.price) as m
 FROM Supplier x, Supply y
 WHERE x.sno = y.sno
 GROUP BY x.sno, x.name)

SELECT t.sno, t.sname, v.pno, v.pname
FROM Temp t, Supply u, Part v
WHERE t.sno = u.sno
 and u.pno = v.pno
 and t.m = u.price;

Using Self-joins and HAVING

CSEP 544 - Winter 2025 131

For each supplier, find the most expensive product they supply

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Join directly the temp table with Supply and Part

SELECT x.sno, x.sname, v.pno, v.pname
FROM Supplier x, Supply y, Supply u, Part v
WHERE x.sno = y.sno
 and x.sno = u.sno
 and u.pno = v.pno
HAVING max(y.price) = v.price
GROUP BY x.sno, x.sname, v.pno, v.pname

Using Self-joins and HAVING

CSEP 544 - Winter 2025 132

For each supplier, find the most expensive product they supply

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Join directly the temp table with Supply and Part

SELECT x.sno, x.sname, v.pno, v.pname
FROM Supplier x, Supply y, Supply u, Part v
WHERE x.sno = y.sno
 and x.sno = u.sno
 and u.pno = v.pno
HAVING max(y.price) = v.price
GROUP BY x.sno, x.sname, v.pno, v.pname

WITH Temp AS
 (SELECT x.sno, x.sname,
 max(y.price) as m
 FROM Supplier x, Supply y
 WHERE x.sno = y.sno
 GROUP BY x.sno, x.name)

SELECT t.sno, t.sname, v.pno, v.pname
FROM Temp t, Supply u, Part v
WHERE t.sno = u.sno
 and u.pno = v.pno
 and t.m = u.price;

Using Self-joins and HAVING

CSEP 544 - Winter 2025 133

For each supplier, find the most expensive product they supply

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Join directly the temp table with Supply and Part

SELECT x.sno, x.sname, v.pno, v.pname
FROM Supplier x, Supply y, Supply u, Part v
WHERE x.sno = y.sno
 and x.sno = u.sno
 and u.pno = v.pno
HAVING max(y.price) = v.price
GROUP BY x.sno, x.sname, v.pno, v.pname

WITH Temp AS
 (SELECT x.sno, x.sname,
 max(y.price) as m
 FROM Supplier x, Supply y
 WHERE x.sno = y.sno
 GROUP BY x.sno, x.name)

SELECT t.sno, t.sname, v.pno, v.pname
FROM Temp t, Supply u, Part v
WHERE t.sno = u.sno
 and u.pno = v.pno
 and t.m = u.price;

Using Self-joins and HAVING

CSEP 544 - Winter 2025 134

For each supplier, find the most expensive product they supply

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Join directly the temp table with Supply and Part

SELECT x.sno, x.sname, v.pno, v.pname
FROM Supplier x, Supply y, Supply u, Part v
WHERE x.sno = y.sno
 and x.sno = u.sno
 and u.pno = v.pno
HAVING max(y.price) = v.price
GROUP BY x.sno, x.sname, v.pno, v.pname

WITH Temp AS
 (SELECT x.sno, x.sname,
 max(y.price) as m
 FROM Supplier x, Supply y
 WHERE x.sno = y.sno
 GROUP BY x.sno, x.name)

SELECT t.sno, t.sname, v.pno, v.pname
FROM Temp t, Supply u, Part v
WHERE t.sno = u.sno
 and u.pno = v.pno
 and t.m = u.price;

Using Self-joins and HAVING

CSEP 544 - Winter 2025 135

For each supplier, find the most expensive product they supply

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Join directly the temp table with Supply and Part

SELECT x.sno, x.sname, v.pno, v.pname
FROM Supplier x, Supply y, Supply u, Part v
WHERE x.sno = y.sno
 and x.sno = u.sno
 and u.pno = v.pno
HAVING max(y.price) = v.price
GROUP BY x.sno, x.sname, v.pno, v.pname

WITH Temp AS
 (SELECT x.sno, x.sname,
 max(y.price) as m
 FROM Supplier x, Supply y
 WHERE x.sno = y.sno
 GROUP BY x.sno, x.name)

SELECT t.sno, t.sname, v.pno, v.pname
FROM Temp t, Supply u, Part v
WHERE t.sno = u.sno
 and u.pno = v.pno
 and t.m = u.price;

Implicit DISTINCT

Using Self-joins and HAVING

CSEP 544 - Winter 2025 136

For each supplier, find the most expensive product they supply

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Join directly the temp table with Supply and Part

SELECT x.sno, x.sname, v.pno, v.pname
FROM Supplier x, Supply y, Supply u, Part v
WHERE x.sno = y.sno
 and x.sno = u.sno
 and u.pno = v.pno
HAVING max(y.price) = v.price
GROUP BY x.sno, x.sname, v.pno, v.pname

WITH Temp AS
 (SELECT x.sno, x.sname,
 max(y.price) as m
 FROM Supplier x, Supply y
 WHERE x.sno = y.sno
 GROUP BY x.sno, x.name)

SELECT t.sno, t.sname, v.pno, v.pname
FROM Temp t, Supply u, Part v
WHERE t.sno = u.sno
 and u.pno = v.pno
 and t.m = u.price;

Discussion

• Why doesn’t SQL have ARGMAX?

 [in class]

• Solution 1: use temp table

• Solution 2: self-join + HAVING

• Solution 3: NOT EXISTS

• … [perhaps more]

CSEP 544 - Winter 2025 137

Final Words on SQL

• In this class we only use the fragment

discussed so far

– We will add WITH RECURSIVE next week

• Look up scalar function as needed:

– Substring operations, math functions, etc

• We don’t discuss, and don’t use in HW:

WINDOW function, GROUP SETs, etc

CSEP 544 - Winter 2025 138

Database Design

CSEP 544 - Winter 2025 139

Conceptual Model

Relational Model
+ Schema

+ Constraints

Conceptual Schema
+ Normalization

Physical Schema
+ Partitioning

+ Indexing

Conceptual Model

Relational Model
+ Schema

+ Constraints

Conceptual Schema
+ Normalization

Physical Schema
+ Partitioning

+ Indexing

Conceptual Model

• A high-level description of the schema

• Usually done with Entity-Relationship

diagrams

CSEP 544 - Winter 2025 142

E/R Diagrams

143

Design a schema for a database of doctors and their patients

E/R Diagrams

144

Attributes Entity sets Relationship sets

Design a schema for a database of doctors and their patients

E/R Diagrams

145

DoctorPatient

Attributes Entity sets Relationship sets

Design a schema for a database of doctors and their patients

E/R Diagrams

146

DoctorPatient

name

zip name

pno

specialty

dno

Attributes Entity sets Relationship sets

E/R Diagrams

147

patient_of DoctorPatient

name

zip name

pno

specialty

dno

Attributes Entity sets Relationship sets

E/R Diagrams

148

patient_of DoctorPatient

name

zip name

pno

specialty

dno

since

Attributes Entity sets Relationship sets

E/R Diagrams

• Each entity set has a key

• ER relationships can include multiplicity
– One-to-one, one-to-many, etc.

– Indicated with arrows

• Can model multi-way relationships

• Can model subclasses

• And more...
CSEP 544 - Winter 2025 149

Many many

Many One

Many-many Relationship

patient_of DoctorPatient

name

zip name

pno

specialty

dno

since

Patient

pno name zip

P311 Alice 98765

…

Patient_of

pno dno since

P311 D007 2001

…

Doctor

dno name spec

D007 Bob cardio

…

Many-one Relationship

patient_of DoctorPatient

name

zip name

pno

specialty

dno

since

Patient

pno name zip dno since

P311 Alice 98765 D007 2001

…

Doctor

dno name spec

D007 Bob cardio

…

Subclasses

152

Product

name
category

price

isa isa

Educational ProductSoftware Product

Age Groupplatforms

Subclasses

153

Product

name
category

price

isa isa

Educational ProductSoftware Product

Age Groupplatforms

Name Price Category

Gizmo 99 gadget

Camera 49 photo

Toy 39 gadget

Product

Subclasses

154

Product

name
category

price

isa isa

Educational ProductSoftware Product

Age Groupplatforms

Name Price Category

Gizmo 99 gadget

Camera 49 photo

Toy 39 gadget

Name platforms

Gizmo unix

Product

Sw.Product

Subclasses

Product

name
category

price

isa isa

Educational ProductSoftware Product

Age Groupplatforms

Name Price Category

Gizmo 99 gadget

Camera 49 photo

Toy 39 gadget

Name platforms

Gizmo unix

Name
Age

Group

Gizmo toddler

Toy senior

Product

Sw.Product

Ed.Product

Converting E/R to SQL

• Entity set → CREATE TABLE

• m-n Relationship → CREATE TABLE w/ FK

• m-1 Relationship → add FK

• isA → attribute is both Key and FK

CSEP 544 - Winter 2025 156

Note on HW1

• You need to create an E/R diagram

• Use entities, relationships, inheritance

• Convert them to SQL Tables correctly:

– Declare keys/foreign keys

– Don’t create separate tables for N-1 rels

– Don’t use postgres’ subclasses

CSEP 544 - Winter 2025 157

Conceptual Model

Relational Model
+ Schema

+ Constraints

Conceptual Schema
+ Normalization

Physical Schema
+ Partitioning

+ Indexing

FDs and Normal Forms

• A functional dependency is and

expression A→B, which means that the

values in the A column uniquely

determine those in the B column

CSEP 544 - Winter 2025 159

FDs and Normal Forms

• A functional dependency is and

expression A→B, which means that the

values in the A column uniquely

determine those in the B column

CSEP 544 - Winter 2025 160

A B C

a1 b1 c1

a1 b1 c2

a2 b1 c3

a3 b2 c4

a3 b1 c2

FDs and Normal Forms

• A functional dependency is and

expression A→B, which means that the

values in the A column uniquely

determine those in the B column

CSEP 544 - Winter 2025 161

A B C

a1 b1 c1

a1 b1 c2

a2 b1 c3

a3 b2 c4

a3 b1 c2

A→B

C→B

A ↛C

C↛A

Boyce Codd Normal Form

• A super-key is a set of attributes X such

that, for every attribute A: X→A

CSEP 544 - Winter 2025 162

Boyce Codd Normal Form

• A super-key is a set of attributes X such

that, for every attribute A: X→A

• A key is a minimal super-key

CSEP 544 - Winter 2025 163

Boyce Codd Normal Form

• A super-key is a set of attributes X such

that, for every attribute A: X→A

• A key is a minimal super-key

• A relation is in BCNF if, for every non-

trivial FD X→A, X is a super-key

CSEP 544 - Winter 2025 164

Boyce Codd Normal Form

• A super-key is a set of attributes X such

that, for every attribute A: X→A

• A key is a minimal super-key

• A relation is in BCNF if, for every non-

trivial FD X→A, X is a super-key

• When the relation is not in BCNF then

choose a violation X→A and split R into

R(XA) and R(X[rest])
CSEP 544 - Winter 2025 165

Example

CSEP 544 - Winter 2025 166

Supply

sno

sname

price

pno

pname

sno→sname

pno→pname

Example

CSEP 544 - Winter 2025 167

Supply

sno

sname

price

pno

pname

Supply(sno,sname,price,pno,pname)

sno→sname

pno→pname

Example

CSEP 544 - Winter 2025 168

Supply

sno

sname

price

pno

pname

Supply(sno,sname,price,pno,pname)

T1(sno,sname) T2(sno,price,pno,pname)

sno→sname

pno→pname

Example

CSEP 544 - Winter 2025 169

Supply

sno

sname

price

pno

pname

Supply(sno,sname,price,pno,pname)

T1(sno,sname) T2(sno,price,pno,pname)

sno→sname

pno→pname

T3(pno,pname) T4(sno,price,pno)

Example

CSEP 544 - Winter 2025 170

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Supply

sno

sname

price

pno

pname

Supply(sno,sname,price,pno,pname)

T1(sno,sname) T2(sno,price,pno,pname)

sno→sname

pno→pname

T3(pno,pname) T4(sno,price,pno)

Discussion

• BCNF avoids “data anomalies”

• Check details on data anomalies, FDs,

Armstrong Axioms, and the BCNF here

• You shouldn’t need this for HW1

CSEP 544 - Winter 2025 171

https://sites.google.com/cs.washington.edu/cse344-24au/lectures?authuser=0

Conceptual Model

Relational Model
+ Schema

+ Constraints

Conceptual Schema
+ Normalization

Physical Schema
+ Partitioning

+ Indexing

Indexes

• An index is an auxiliary file that allows

direct access to the data file based on

the value of an attribute

• It is usually a B+ tree or a hash-table

CSEP 544 - Winter 2025 173

Indexes

CSEP 544 - Winter 2025 174

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

CREATE TABLE Supplier(sno int primary key, sname text);

CREATE INDEX Idx_sname on Supplier(sname)

s002

acme

s003

macy

s171

macy

s242

macy

s555

macy

Supplier

Indexes

CSEP 544 - Winter 2025 175

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

CREATE TABLE Supplier(sno int primary key, sname text);

CREATE INDEX Idx_sname on Supplier(sname)

s002

acme

s003

macy

s171

macy

s242

macy

s555

macy

Supplier

Indexes

CSEP 544 - Winter 2025 176

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

CREATE TABLE Supplier(sno int primary key, sname text);

CREATE INDEX Idx_sname on Supplier(sname)

s002

acme

s003

macy

s171

macy

s242

macy

s555

macy

Supplier

Idx_sname

Indexes

CSEP 544 - Winter 2025 177

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

CREATE TABLE Supplier(sno int primary key, sname text);

CREATE INDEX Idx_sname on Supplier(sname)

s002

acme

s003

macy

s171

macy

s242

macy

s555

macy

Supplier

Idx_sname

macy

Indexes

CSEP 544 - Winter 2025 178

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

CREATE TABLE Supplier(sno int primary key, sname text);

CREATE INDEX Idx_sname on Supplier(sname)

s002

acme

s003

macy

s171

macy

s242

macy

s555

macy

Supplier

Idx_sname

macy

Indexes

• We say that an index is clustered if the

data file is sorted in the order of the

index attribute

• Most systems:

CREATE CLUSTERED INDEX …

• Postgres: first create index, then:

CLUSTER index_name

CSEP 544 - Winter 2025 179

Indexes

CSEP 544 - Winter 2025 180

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

CREATE TABLE Supplier(sno int primary key, sname text);

CREATE INDEX Idx_sname on Supplier(sname);

CLUSTER Idx_sname;

s002

acme

s002

acme

… s003

macy

s171

macy

s242

macy

s555

macy

Supplier

Idx_sname

macy

When Does an Index Help?

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

CREATE TABLE Supplier(sno int primary key, sname text);

CREATE INDEX Idx_sname on Supplier(sname);

SELECT *

FROM Supplier

WHERE sid = ‘s007’;

SELECT *

FROM Supplier

WHERE sname = ‘macy’;

When Does an Index Help?

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

CREATE TABLE Supplier(sno int primary key, sname text);

CREATE INDEX Idx_sname on Supplier(sname);

SELECT *

FROM Supplier

WHERE sid = ‘s007’;

SELECT *

FROM Supplier

WHERE sname = ‘macy’;

SELECT *

FROM Supplier x,

 Supply y

WHERE x.sid=y.sid;

SELECT *

FROM Supplier x,

 Supply y

WHERE x.sid=y.sid

 and x.name = ‘macy’;

When Does an Index Help?

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

CREATE TABLE Supplier(sno int primary key, sname text);

CREATE INDEX Idx_sname on Supplier(sname);

SELECT *

FROM Supplier

WHERE sid = ‘s007’;

SELECT *

FROM Supplier

WHERE sname = ‘macy’;

SELECT *

FROM Supplier x,

 Supply y

WHERE x.sid=y.sid;

NO

NO

YES

SELECT *

FROM Supplier x,

 Supply y

WHERE x.sid=y.sid

 and x.name = ‘macy’;

YES

Where Indexes Help

• Selection based on attribute value

• Join on the index attribute IF few tuples

• Join on two relations if both clustered

CSEP 544 - Winter 2025 184

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

SELECT *

FROM Supplier x,Supply y
WHERE x.sid=y.sid and x.name = ‘macy’;

Index on

Supply(sid)

useful

SELECT *

FROM Supplier x,Supply y
WHERE x.sid=y.sid;

Clustered indexes on both

Supplier(sid) and Supply(sid)

useful

Where Indexes Hurt

• Each new index significantly slows

down inserts, updates, deletes

• Advice for HW1:

– CREATE Tables w/o keys, fk’s, indexes

– Insert data

– Create key/fk’s using ALTER TABLE

– Create indexes

– Cluster if you want
CSEP 544 - Winter 2025 185

	Slide 1: CSEP544 Data Management
	Slide 2: Announcement
	Slide 3: Recap
	Slide 4: Aggregates
	Slide 5: Aggregate Operator
	Slide 6: Aggregate Operator
	Slide 7: Count
	Slide 8: GROUP-BY
	Slide 9: Aggregates and Group-By
	Slide 10: Aggregates and Group-By
	Slide 11: Aggregates and Group-By
	Slide 12: Discussion
	Slide 13: The HAVING Clause
	Slide 14: The HAVING Clause
	Slide 15: HAVING Clause
	Slide 16: HAVING Clause
	Slide 17: HAVING Clause
	Slide 18: HAVING Clause
	Slide 19: Semantics
	Slide 20: Semantics
	Slide 21: Semantics
	Slide 22: Semantics
	Slide 23: Semantics
	Slide 24: Semantics
	Slide 25: Semantics
	Slide 26: Semantics
	Slide 27: Semantics
	Slide 28: Semantics
	Slide 29: Semantics
	Slide 30: Discussion
	Slide 31: Discussion
	Slide 32: Discussion
	Slide 33: Empty Groups
	Slide 34: Empty Groups Problem
	Slide 35: Empty Groups Problem
	Slide 36: Empty Groups Problem
	Slide 37: Empty Groups Problem
	Slide 38: Empty Groups Problem
	Slide 39: The WITH Clause
	Slide 40: WITH Clause
	Slide 41: Example
	Slide 42: Example
	Slide 43: Example
	Slide 44: Example
	Slide 45: Example
	Slide 46: Example
	Slide 47: Subqueries
	Slide 48: Subqueries
	Slide 49: Subqueries in FROM Clause
	Slide 50: Subqueries in FROM Clause
	Slide 51: Subqueries in FROM Clause
	Slide 52: Subqueries in SELECT
	Slide 53: Subqueries in SELECT
	Slide 54: Subqueries in SELECT
	Slide 55: Subqueries in SELECT
	Slide 56: Subqueries in SELECT
	Slide 57: Subqueries in SELECT
	Slide 58: Subqueries in SELECT
	Slide 59: Subqueries in WHERE
	Slide 60: Subqueries in WHERE
	Slide 61: Subqueries in WHERE
	Slide 62: Subqueries in WHERE
	Slide 63: Subqueries in WHERE
	Slide 64: Subqueries in WHERE
	Slide 65: Subqueries in WHERE
	Slide 66: Subqueries in WHERE
	Slide 67: Subqueries in WHERE
	Slide 68: Subqueries in WHERE
	Slide 69: Understanding Quantifiers
	Slide 70: Understanding Quantifiers
	Slide 71: Understanding Quantifiers
	Slide 72: Understanding Quantifiers
	Slide 73: Understanding Quantifiers
	Slide 74: Understanding Quantifiers
	Slide 75: Understanding Quantifiers
	Slide 76: Understanding Quantifiers
	Slide 77: Understanding Quantifiers
	Slide 78: Understanding Quantifiers
	Slide 79: Understanding Quantifiers
	Slide 80: Understanding Quantifiers
	Slide 81: Understanding Quantifiers
	Slide 82: Understanding Quantifiers
	Slide 83: Understanding Quantifiers
	Slide 84: Understanding Quantifiers
	Slide 85: Understanding Quantifiers
	Slide 86: Subqueries in WHERE
	Slide 87: Subqueries in WHERE
	Slide 88: Subqueries in WHERE
	Slide 89: Subqueries in WHERE
	Slide 90: Subqueries in WHERE
	Slide 91: Subqueries in WHERE
	Slide 92: Subqueries in WHERE
	Slide 93: Subqueries in WHERE
	Slide 94: Subqueries in WHERE
	Slide 95: Subqueries in WHERE
	Slide 96: Subqueries in WHERE
	Slide 97: Discussion
	Slide 98: Monotone Queries
	Slide 99: Montone Functions
	Slide 100: Monotone Queries
	Slide 101: Monotone Queries
	Slide 102: Monotone Queries
	Slide 103: Monotone Queries
	Slide 104: Monotone Queries
	Slide 105: Monotone Queries
	Slide 106: Monotone Queries
	Slide 107: Monotone Queries
	Slide 108: Monotone Queries
	Slide 109: Monotone Queries
	Slide 110: Monotone Queries
	Slide 111: Monotone Queries
	Slide 112: Monotone Queries
	Slide 113: Monotone Queries
	Slide 114: Monotone Queries
	Slide 115: Monotone Queries
	Slide 116: Monotone Queries
	Slide 117: Monotone Queries
	Slide 118: Monotone Queries
	Slide 119: A Theorem
	Slide 120: A Theorem
	Slide 121: A Theorem
	Slide 122: A Theorem
	Slide 123: An Application
	Slide 124: Finding Witnesses a.k.a. ARGMAX
	Slide 125: The Witness aka ARGMAX
	Slide 126: Using WITH
	Slide 127: Using WITH
	Slide 128: Using WITH
	Slide 129: Using WITH
	Slide 130: Using WITH
	Slide 131: Using Self-joins and HAVING
	Slide 132: Using Self-joins and HAVING
	Slide 133: Using Self-joins and HAVING
	Slide 134: Using Self-joins and HAVING
	Slide 135: Using Self-joins and HAVING
	Slide 136: Using Self-joins and HAVING
	Slide 137: Discussion
	Slide 138: Final Words on SQL
	Slide 139: Database Design
	Slide 140
	Slide 141
	Slide 142: Conceptual Model
	Slide 143: E/R Diagrams
	Slide 144: E/R Diagrams
	Slide 145: E/R Diagrams
	Slide 146: E/R Diagrams
	Slide 147: E/R Diagrams
	Slide 148: E/R Diagrams
	Slide 149: E/R Diagrams
	Slide 150: Many-many Relationship
	Slide 151: Many-one Relationship
	Slide 152: Subclasses
	Slide 153: Subclasses
	Slide 154: Subclasses
	Slide 155: Subclasses
	Slide 156: Converting E/R to SQL
	Slide 157: Note on HW1
	Slide 158
	Slide 159: FDs and Normal Forms
	Slide 160: FDs and Normal Forms
	Slide 161: FDs and Normal Forms
	Slide 162: Boyce Codd Normal Form
	Slide 163: Boyce Codd Normal Form
	Slide 164: Boyce Codd Normal Form
	Slide 165: Boyce Codd Normal Form
	Slide 166: Example
	Slide 167: Example
	Slide 168: Example
	Slide 169: Example
	Slide 170: Example
	Slide 171: Discussion
	Slide 172
	Slide 173: Indexes
	Slide 174: Indexes
	Slide 175: Indexes
	Slide 176: Indexes
	Slide 177: Indexes
	Slide 178: Indexes
	Slide 179: Indexes
	Slide 180: Indexes
	Slide 181: When Does an Index Help?
	Slide 182: When Does an Index Help?
	Slide 183: When Does an Index Help?
	Slide 184: Where Indexes Help
	Slide 185: Where Indexes Hurt

