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Data Management

SQL, Database Design
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Announcement

• HW1 is due on January 26
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Recap

Relational data model

SQL

• SELECT-FROM-WHERE

• NULLs

• Joins, self-joins, outer-joins

• Aggregates, Group-by
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Aggregates
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Aggregate Operator

Aggregate op: set of values to single value

Aggregates in SQL:

• sum(1, 4, 3, 4) = 1+4+3+4 = 12

• max(1, 4, 3, 4) = 4

• min(1, 4, 3, 4) = 1

• count(1, 4, 3, 4) = 4

• avg(1, 4, 3, 4) = 3
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May have duplicates



Count

sno sname scity sstate

11 ACME Seattle WA

12 Walmart Portland OR

13 Safeway Seattle WA

13 Walmart Seattle WA

Supplier

SELECT  count(*)

FROM     Part

SELECT  count(sstate)

FROM     Part

SELECT  count(DISTINCT sstate)

FROM     Part

4

4

2



GROUP-BY
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SELECT …

FROM     …

WHERE  …

GROUP BY …



Aggregates and Group-By
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Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

SELECT count(*)

FROM      Part

SELECT x.scity, count(*)

FROM     Supplier x, Supply y, Part z 

WHERE   x.sno = y.sno  and y.pno = z.pno

GROUP BY x.scity

Count # of Parts

Count # of Parts supplied by each city



Aggregates and Group-By
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Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

SELECT count(*) as C

FROM      Part

SELECT x.scity, count(*)

FROM     Supplier x, Supply y, Part z 

WHERE   x.sno = y.sno  and y.pno = z.pno

GROUP BY x.scity

Count # of Parts

Count # of Parts supplied by each city

C

1540



Aggregates and Group-By
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Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

SELECT count(*) as C

FROM      Part

SELECT x.scity, count(*) as C

FROM     Supplier x, Supply y, Part z 

WHERE   x.sno = y.sno  and y.pno = z.pno

GROUP BY x.scity

Count # of Parts

Count # of Parts supplied by each city

C

1540

City C

Seattle 300

NYC 240

…



Discussion

• GROUP-BY without an aggregate is 

equivalent to DISTINCT

• Every attribute in SELECT that is not 

aggregated must occur in GROUP-BY
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See last lecture



The HAVING Clause
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The HAVING Clause
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SELECT …

FROM    …

WHERE  …

GROUP BY …

HAVING [condition w/ aggregates]



HAVING Clause
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Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Compute the total quantity supplied by each supplier in ‘WA’



HAVING Clause
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Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

SELECT x.sno, x.sname, sum(y.qty)

FROM    Supplier x, Supply y

WHERE  x.sno=y.sno and x.sstate=‘WA’

GROUP BY x.sno, x.sname

Compute the total quantity supplied by each supplier in ‘WA’



HAVING Clause
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Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

SELECT x.sno, x.sname, sum(y.qty)

FROM    Supplier x, Supply y

WHERE  x.sno=y.sno and x.sstate=‘WA’

GROUP BY x.sno, x.sname

Compute the total quantity supplied by each supplier

who supplied > 100 parts

Compute the total quantity supplied by each supplier in ‘WA’



HAVING Clause
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Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Compute the total quantity supplied by each supplier in ‘WA’

SELECT x.sno, x.sname, sum(y.qty)

FROM    Supplier x, Supply y

WHERE  x.sno=y.sno and x.sstate=‘WA’

GROUP BY x.sno, x.sname

SELECT x.sno, x.sname, sum(y.qty)

FROM    Supplier x, Supply y

WHERE  x.sno=y.sno

GROUP BY x.sno, x.sname

HAVING count(*) > 100

Compute the total quantity supplied by each supplier

who supplied > 100 parts



Semantics
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SELECT …

FROM    …

WHERE  …

GROUP BY …

HAVING …

Paper SQL Has Problems. What is the logical order?



Semantics
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SELECT …

FROM    …

WHERE  …

GROUP BY …

HAVING …

Paper SQL Has Problems. What is the logical order?

FROM (joins)

WHERE (filter)

GROUP-BY (aggregate)

HAVING (filter)

SELECT (project)



Semantics
SELECT a1, …, ak, agg1, agg2

FROM    R1 AS x1, R2 AS x2, …, Rn AS xn

WHERE  condition1
GROUP BY a1, …, ak

HAVING condition2  -- may have aggs
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Semantics
SELECT a1, …, ak, agg1, agg2

FROM    R1 AS x1, R2 AS x2, …, Rn AS xn

WHERE  condition1
GROUP BY a1, …, ak

HAVING condition2  -- may have aggs

Step 1: FROM-WHERE

a1
… ak b1 … b1

Check 

WHERE condition1

in each row
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Semantics
SELECT a1, …, ak, agg1, agg2

FROM    R1 AS x1, R2 AS x2, …, Rn AS xn

WHERE  condition1
GROUP BY a1, …, ak

HAVING condition2  -- may have aggs

Step 1: FROM-WHERE

a1
… ak b1 … b1

24



Semantics

Step 2: GROUP BY

a1
… ak b1 … b1

u … v

u v

p q

p q

p q

All attributes a1, …, ak,

have the same value

inside each group

SELECT a1, …, ak, agg1, agg2

FROM    R1 AS x1, R2 AS x2, …, Rn AS xn

WHERE  condition1
GROUP BY a1, …, ak

HAVING condition2  -- may have aggs
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Semantics

Step 3: HAVING

a1
… ak b1 … b1

u … v

u v

p q

p q

p q

Check condition2

in each group

SELECT a1, …, ak, agg1, agg2

FROM    R1 AS x1, R2 AS x2, …, Rn AS xn

WHERE  condition1
GROUP BY a1, …, ak

HAVING condition2  -- may have aggs
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Semantics

Step 3: HAVING

a1
… ak b1 … b1

u … v

u v

p q

p q

p q

Check condition2

in each group

SELECT a1, …, ak, agg1, agg2

FROM    R1 AS x1, R2 AS x2, …, Rn AS xn

WHERE  condition1
GROUP BY a1, …, ak

HAVING condition2  -- may have aggs
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Semantics

Step 3: HAVING

a1
… ak b1 … b1

u … v

u v

p q

p q

p q

SELECT a1, …, ak, agg1, agg2

FROM    R1 AS x1, R2 AS x2, …, Rn AS xn

WHERE  condition1
GROUP BY a1, …, ak

HAVING condition2  -- may have aggs
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Semantics

Step 4: SELECT

a1
… ak b1 … b1

u … v

u v

p q

p q

p q

a1
… ak agg1 agg2

u … v

p q

Each group → one output

SELECT a1, …, ak, agg1, agg2

FROM    R1 AS x1, R2 AS x2, …, Rn AS xn

WHERE  condition1
GROUP BY a1, …, ak

HAVING condition2  -- may have aggs



Discussion

• GROUP-BY is very versatile in SQL

• No analogous in programming 

languages: use nested loops instead

30

SELECT x.sno, count(*)

FROM    Supplier x, Supply y

WHERE  x.sno=y.sno

GROUP BY x.sno
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Discussion

• GROUP-BY is very versatile in SQL

• No analogous in programming 

languages: use nested loops instead

31

SELECT x.sno, count(*)

FROM    Supplier x, Supply y

WHERE  x.sno=y.sno

GROUP BY x.sno

for x in Supplier:

  c = 0

  for y in Supply:

     if x.sno==y.sno:

          c = c+1
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Discussion

• GROUP-BY is very versatile in SQL

• No analogous in programming 

languages: use nested loops instead

• The empty group problem (next)

32

SELECT x.sno, count(*)

FROM    Supplier x, Supply y

WHERE  x.sno=y.sno

GROUP BY x.sno

for x in Supplier:

  c = 0

  for y in Supply:

     if x.sno==y.sno:

          c = c+1



Empty Groups
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Empty Groups Problem

• Every group is non-empty

• Consequences:

– count(*) > 0

– sum(…) > 0 (assuming numbers are >0)

• Sometimes we want to return 0 counts:

– Parts that never sold

– Suppliers that never supplied

• Use outer joins: count(…) skips NULLs

34CSEP 544 - Winter 2025



Empty Groups Problem

35

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Compute the number of parts supplied by each supplier
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Empty Groups Problem

36

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Compute the number of parts supplied by each supplier

Suppliers who never

supplied any part

will be missing:

count(*) > 0

SELECT x.sno, count(*)

FROM    Supplier x, Supply y

WHERE  x.sno=y.sno

GROUP BY x.sno
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Empty Groups Problem

37

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Compute the number of parts supplied by each supplier

Suppliers who never

supplied any part

will be missing:

count(*) > 0

SELECT x.sno, count(*)

FROM    Supplier x, Supply y

WHERE  x.sno=y.sno

GROUP BY x.sno

Now we can get

count(*)=0
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SELECT x.sno, count(y.sno)

FROM    Supplier x

   LEFT OUTER JOIN Supply y

ON  x.sno=y.sno

GROUP BY x.sno



Empty Groups Problem

38

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Compute the number of parts supplied by each supplier

Suppliers who never

supplied any part

will be missing:

count(*) > 0

SELECT x.sno, count(*)

FROM    Supplier x, Supply y

WHERE  x.sno=y.sno

GROUP BY x.sno

Now we can get

count(*)=0
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SELECT x.sno, count(y.sno)

FROM    Supplier x

   LEFT OUTER JOIN Supply y

ON  x.sno=y.sno

GROUP BY x.sno
Can we write

count(*)?



The WITH Clause
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WITH Clause
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WITH

 tbl1 AS (SELECT … FROM …),

 tbl2 AS (SELECT … FROM …),

 …

SELECT … FROM …[tbl1, tbl2,…] …



Example
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Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Warmup: find all parts supplied from Seattle



Example
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Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Warmup: find all parts supplied from Seattle

SELECT z.*

FROM Supplier x, Supply y, Part z

WHERE z.scity = ‘Seattle’;



Example
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Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Warmup: find all parts supplied from Seattle

SELECT z.*

FROM Supplier x, Supply y, Part z

WHERE z.scity = ‘Seattle’;

What is missing?



Example
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Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Warmup: find all parts supplied from Seattle

SELECT DISTINCT z.*

FROM Supplier x, Supply y, Part z

WHERE z.scity = ‘Seattle’;



Example
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Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Find the average psize of all parts supplied from Seattle

SELECT avg(z.psize)

FROM Supplier x, Supply y, Part z

WHERE z.scity = ‘Seattle’;

What is wrong?



Example
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Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Find the average psize of all parts supplied from Seattle

WITH Tmp AS (

  SELECT DISTINCT z.pno, z.psize

  FROM Supplier x, Supply y, Part z

  WHERE z.scity = ‘Seattle’)

SELECT avg(psize) 

FROM Tmp;



Subqueries
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Subqueries

• A subquery is a self-contained SQL 

query that occurs inside another query

• The subquery can be any of these 

clauses:

– FROM

– SELECT

– WHERE

– HAVING
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Subqueries in FROM Clause

• Subquery in FROM: the same as in WITH

• Sometimes WITH is easier to read

• Some DBMS may not support both
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Subqueries in FROM Clause
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WITH Tmp AS (SELECT DISTINCT z.pno, z.psize

     FROM Supplier x, Supply y, Part z

     WHERE z.scity = ‘Seattle’)

SELECT avg(psize) 

FROM Tmp;



Subqueries in FROM Clause
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WITH Tmp AS (SELECT DISTINCT z.pno, z.psize

     FROM Supplier x, Supply y, Part z

     WHERE z.scity = ‘Seattle’)

SELECT avg(psize) 

FROM Tmp;

SELECT avg(W.psize) 

FROM (SELECT DISTINCT z.pno, z.psize

   FROM Supplier x, Supply y, Part z

   WHERE z.scity = ‘Seattle’) as W;

same as:



Subqueries in SELECT

• SELECT: only scalar expressions

• May use subquery in SELECT if it returns 

a single value
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Subqueries in SELECT

53

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Compute the total quantity supplied by each supplier in Seattle
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Subqueries in SELECT

54

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Compute the total quantity supplied by each supplier in Seattle

SELECT x.sno, (SELECT sum(y.qty)

        FROM Supply y

        WHERE x.sno = y.sno) AS T

FROM    Supplier x

WHERE  x.scity = ‘Seattle’;

CSEP 544 - Winter 2025

?



Subqueries in SELECT

55

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Compute the total quantity supplied by each supplier in Seattle

SELECT x.sno, (SELECT sum(y.qty)

        FROM Supply y

        WHERE x.sno = y.sno) AS T

FROM    Supplier x

WHERE  x.scity = ‘Seattle’;
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Subqueries in SELECT
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Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Compute the total quantity supplied by each supplier in Seattle

SELECT x.sno, (SELECT sum(y.qty)

        FROM Supply y

        WHERE x.sno = y.sno) AS T

FROM    Supplier x

WHERE  x.scity = ‘Seattle’;

CSEP 544 - Winter 2025

SELECT x.sno, sum(y.qty) as T

FROM    Supplier x, Supply y

WHERE x.sno = y.sno  

       and x.scity = ‘Seattle’

GROUP BY x.sno



Subqueries in SELECT

57

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Compute the total quantity supplied by each supplier in Seattle

SELECT x.sno, (SELECT sum(y.qty)

        FROM Supply y

        WHERE x.sno = y.sno) AS T

FROM    Supplier x

WHERE  x.scity = ‘Seattle’;
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SELECT x.sno, sum(y.qty) as T

FROM    Supplier x, Supply y

WHERE x.sno = y.sno  

       and x.scity = ‘Seattle’

GROUP BY x.sno

Not equivalent!

WHY?



Subqueries in SELECT

58

Supplier(sno,sname,scity,sstate)

Supply(sno,pno,qty,price)

Part(pno,pname,psize,pcolor)

Compute the total quantity supplied by each supplier in Seattle

SELECT x.sno, (SELECT sum(y.qty)

        FROM Supply y

        WHERE x.sno = y.sno) AS T

FROM    Supplier x

WHERE  x.scity = ‘Seattle’;

CSEP 544 - Winter 2025

SELECT x.sno, sum(y.qty) as T

FROM    Supplier x LEFT OUTER JOIN Supply y

ON x.sno = y.sno  

       and x.scity = ‘Seattle’

GROUP BY x.sno

Now they

are equivalent



Subqueries in WHERE

Three SQL constructs:

• [NOT] EXISTS (SELECT…)

• X [NOT] IN (SELECT …)

• X > ALL | ANY (SELECT …)

CSEP 544 - Winter 2025 59



Subqueries in WHERE

60

Find all parts that have some supplier offering them for < $100

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)



Subqueries in WHERE

61

Find all parts that have some supplier offering them for < $100

SELECT DISTINCT a.pno, a.pname

FROM    Part a, Supply b

WHERE b.price < 100 and b.pno = a.pno

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)



Subqueries in WHERE

62

Find all parts that have some supplier offering them for < $100

SELECT DISTINCT a.pno, a.pname

FROM    Part a, Supply b

WHERE b.price < 100 and b.pno = a.pno

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM    Part a

WHERE EXISTS 

                 (SELECT * 

                  FROM Supply b

                  WHERE b.price < 100 

                         and b.pno = a.pno)



Subqueries in WHERE
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Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)



Subqueries in WHERE
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Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

Natural language is ambiguous.  

Question above is the same as:

Find all parts that are offered only for < $100



Subqueries in WHERE
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Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)



Subqueries in WHERE
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Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

Find the other parts:

   all parts that have some supplier offering them for >= $100



Subqueries in WHERE

67

Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM    Part a

WHERE EXISTS 

                 (SELECT * 

                  FROM Supply b

                  WHERE b.price >= 100 

                         and b.pno = a.pno)

Find the other parts:

   all parts that have some supplier offering them for >= $100



Subqueries in WHERE

68

Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM    Part a

WHERE NOT EXISTS 

                 (SELECT * 

                  FROM Supply b

                  WHERE b.price >= 100 

                         and b.pno = a.pno)

Find the other parts:

   all parts that have some supplier offering them for >= $100

Negate!



Understanding Quantifiers

69

Find all parts that have some supplier offering them for < $100
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Simplified schemaSupply(sno,pno,price)

Part(pno,pname)



Understanding Quantifiers

70

Find all parts that have some supplier offering them for < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 =  𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∃𝑧, 𝑤(𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ∧ 𝑤 < 100)



Understanding Quantifiers

71

Find all parts that have some supplier offering them for < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 =  𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∃𝑧, 𝑤(𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ∧ 𝑤 < 100)

“Exists” quantifier



Understanding Quantifiers

72

Find all parts that have some supplier offering them for < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 =  𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∃𝑧, 𝑤(𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ∧ 𝑤 < 100)

Find all parts where all supplier offering them charge < $100



Understanding Quantifiers

73

Find all parts that have some supplier offering them for < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 =  𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∃𝑧, 𝑤(𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ∧ 𝑤 < 100)

Find all parts where all supplier offering them charge < $100

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 =  𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑧, 𝑤 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ⇒ 𝑤 < 100  



Understanding Quantifiers

74

Find all parts that have some supplier offering them for < $100
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Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 =  𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∃𝑧, 𝑤(𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ∧ 𝑤 < 100)

Find all parts where all supplier offering them charge < $100

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 =  𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑧, 𝑤 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ⇒ 𝑤 < 100  

“For all” quantifier
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Find all parts that have some supplier offering them for < $100
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Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 =  𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∃𝑧, 𝑤(𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ∧ 𝑤 < 100)

Find all parts where all supplier offering them charge < $100

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 =  𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑧, 𝑤 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ⇒ 𝑤 < 100  
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Find all parts that have some supplier offering them for < $100
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Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 =  𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∃𝑧, 𝑤(𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ∧ 𝑤 < 100)

Find all parts where all supplier offering them charge < $100

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 =  𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑧, 𝑤 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ⇒ 𝑤 < 100  

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ¬(∃𝑧, 𝑤 ¬ 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ⇒ 𝑤 < 100 ) 
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Find all parts that have some supplier offering them for < $100
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Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 =  𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∃𝑧, 𝑤(𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ∧ 𝑤 < 100)

Find all parts where all supplier offering them charge < $100

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 =  𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑧, 𝑤 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ⇒ 𝑤 < 100  

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ¬(∃𝑧, 𝑤 ¬ 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ⇒ 𝑤 < 100 ) 

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ¬(∃𝑧, 𝑤 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ∧ 𝑤 ≥ 100 ) 



Understanding Quantifiers

78

Find all parts that have some supplier offering them for < $100
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Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 =  𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∃𝑧, 𝑤(𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ∧ 𝑤 < 100)

Find all parts where all supplier offering them charge < $100

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 =  𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑧, 𝑤 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑤 ⇒ 𝑤 < 100  

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ¬(∃𝑧, 𝑤 ¬ 𝑺𝒖𝒑𝒑𝒍𝒚 𝒛, 𝒙, 𝒘 ⇒ 𝒘 < 𝟏𝟎𝟎 ) 

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ¬(∃𝑧, 𝑤 𝑺𝒖𝒑𝒑𝒍𝒚 𝒛, 𝒙, 𝒘 ∧ 𝒘 ≥ 𝟏𝟎𝟎 ) 

¬ 𝐴 ⇒ 𝐵 = 𝐴 ∧ ¬𝐵



Understanding Quantifiers
Find all parts supplied by all suppliers

Simplified schema
Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)



Understanding Quantifiers
Find all parts supplied by all suppliers

Simplified schema

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 = 

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑢, 𝑣 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟(𝑢, 𝑣) ⇒ ∃𝑝 𝑆𝑢𝑝𝑝𝑙𝑦(𝑢, 𝑥, 𝑝 ) 

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)



Understanding Quantifiers
Find all parts supplied by all suppliers

Simplified schema

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 = 

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑢, 𝑣 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟(𝑢, 𝑣) ⇒ ∃𝑝 𝑆𝑢𝑝𝑝𝑙𝑦(𝑢, 𝑥, 𝑝 ) 

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ¬∃𝑢, 𝑣 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑢, 𝑣 ∧ ¬∃𝑝 𝑆𝑢𝑝𝑝𝑙𝑦(𝑢, 𝑥, 𝑝 ) 

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)



Understanding Quantifiers
Find all parts supplied by all suppliers

Simplified schema

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 = 

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑢, 𝑣 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟(𝑢, 𝑣) ⇒ ∃𝑝 𝑆𝑢𝑝𝑝𝑙𝑦(𝑢, 𝑥, 𝑝 ) 

= 𝑷𝒂𝒓𝒕 𝒙, 𝒚 ∧ ¬∃𝑢, 𝑣 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑢, 𝑣 ∧ ¬∃𝑝 𝑆𝑢𝑝𝑝𝑙𝑦(𝑢, 𝑥, 𝑝 ) 

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM    Part a

WHERE NOT EXISTS 

         (SELECT * 

           FROM Supplier c

           WHERE NOT EXISTS

               (SELECT * FROM Supply b

                 WHERE a.pno=b.pno and b.sno=c.sno))



Understanding Quantifiers
Find all parts supplied by all suppliers

Simplified schema

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 = 

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑢, 𝑣 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟(𝑢, 𝑣) ⇒ ∃𝑝 𝑆𝑢𝑝𝑝𝑙𝑦(𝑢, 𝑥, 𝑝 ) 

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ¬∃𝒖, 𝒗 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑢, 𝑣 ∧ ¬∃𝑝 𝑆𝑢𝑝𝑝𝑙𝑦(𝑢, 𝑥, 𝑝 ) 

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM    Part a

WHERE NOT EXISTS 

         (SELECT * 

           FROM Supplier c

           WHERE NOT EXISTS

               (SELECT * FROM Supply b

                 WHERE a.pno=b.pno and b.sno=c.sno))



Understanding Quantifiers
Find all parts supplied by all suppliers

Simplified schema

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 = 

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑢, 𝑣 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟(𝑢, 𝑣) ⇒ ∃𝑝 𝑆𝑢𝑝𝑝𝑙𝑦(𝑢, 𝑥, 𝑝 ) 

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ¬∃𝑢, 𝑣 𝑺𝒖𝒑𝒑𝒍𝒊𝒆𝒓 𝒖, 𝒗 ∧ ¬∃𝒑 𝑆𝑢𝑝𝑝𝑙𝑦(𝑢, 𝑥, 𝑝 ) 

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM    Part a

WHERE NOT EXISTS 

         (SELECT * 

           FROM Supplier c

           WHERE NOT EXISTS

               (SELECT * FROM Supply b

                 WHERE a.pno=b.pno and b.sno=c.sno))



Understanding Quantifiers
Find all parts supplied by all suppliers

Simplified schema

𝐴𝑛𝑠𝑤𝑒𝑟 𝑥, 𝑦 = 

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑢, 𝑣 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟(𝑢, 𝑣) ⇒ ∃𝑝 𝑆𝑢𝑝𝑝𝑙𝑦(𝑢, 𝑥, 𝑝 ) 

= 𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ¬∃𝑢, 𝑣 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑢, 𝑣 ∧ ¬∃𝒑 𝑺𝒖𝒑𝒑𝒍𝒚(𝒖, 𝒙, 𝒑)  

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM    Part a

WHERE NOT EXISTS 

         (SELECT * 

           FROM Supplier c

           WHERE NOT EXISTS

               (SELECT * FROM Supply b

                 WHERE a.pno=b.pno and b.sno=c.sno))



Subqueries in WHERE

• EXISTS( ….)

check if empty

• NOT EXISTS(…)

check if not empty

CSEP 544 - Winter 2025 86



Subqueries in WHERE

• EXISTS( ….)

check if empty

• X IN (…)

check if X in the set

• NOT EXISTS(…)

check if not empty

• X NOT IN (…)

check if X not in set
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Subqueries in WHERE

• EXISTS( ….)

check if empty

• X IN (…)

check if X in the set

• X > SOME (…)

∃Y in (…) and X>Y

• NOT EXISTS(…)

check if not empty

• X NOT IN (…)

check if X not in set

• X > ALL (…)

∀Y in (…):  X > Y
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Subqueries in WHERE

89

Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)



Subqueries in WHERE

90

Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM    Part a

WHERE NOT EXISTS 

          (SELECT * 

           FROM Supply b

           WHERE b.price >= 100 

                  and b.pno = a.pno)



Subqueries in WHERE

91

Find all parts where all supplier offering them charge < $100
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Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM    Part a

WHERE NOT EXISTS 

          (SELECT * 

           FROM Supply b

           WHERE b.price >= 100 

                  and b.pno = a.pno)

SELECT a.pno, a.pname

FROM    Part a

WHERE a.pno NOT IN 

          (SELECT b.pno 

           FROM Supply b

           WHERE b.price >= 100)



Subqueries in WHERE

92

Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM    Part a

WHERE NOT EXISTS 

          (SELECT * 

           FROM Supply b

           WHERE b.price >= 100 

                  and b.pno = a.pno)

SELECT a.pno, a.pname

FROM    Part a

WHERE a.pno NOT IN 

          (SELECT b.pno 

           FROM Supply b

           WHERE b.price >= 100)

If evaluated naively, which query is more efficient?



Subqueries in WHERE
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Find all parts where all supplier offering them charge < $100
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Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM    Part a

WHERE NOT EXISTS 

          (SELECT * 

           FROM Supply b

           WHERE b.price >= 100 

                  and b.pno = a.pno)

SELECT a.pno, a.pname

FROM    Part a

WHERE a.pno NOT IN 

          (SELECT b.pno 

           FROM Supply b

           WHERE b.price >= 100)

If evaluated naively, which query is more efficient?

Correlated

subquery



Subqueries in WHERE

94

Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM    Part a

WHERE NOT EXISTS 

          (SELECT * 

           FROM Supply b

           WHERE b.price >= 100 

                  and b.pno = a.pno)

SELECT a.pno, a.pname

FROM    Part a

WHERE a.pno NOT IN 

          (SELECT b.pno 

           FROM Supply b

           WHERE b.price >= 100)

If evaluated naively, which query is more efficient?

Correlated

subquery
Uncorrelated



Subqueries in WHERE

95

Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM    Part a

WHERE NOT EXISTS 

          (SELECT * 

           FROM Supply b

           WHERE b.price >= 100 

                  and b.pno = a.pno)

SELECT a.pno, a.pname

FROM    Part a

WHERE a.pno NOT IN 

          (SELECT b.pno 

           FROM Supply b

           WHERE b.price >= 100)



Subqueries in WHERE

96

Find all parts where all supplier offering them charge < $100

CSEP 544 - Winter 2025

Simplified schemaSupply(sno,pno,price)

Part(pno,pname)

SELECT a.pno, a.pname

FROM    Part a

WHERE NOT EXISTS 

          (SELECT * 

           FROM Supply b

           WHERE b.price >= 100 

                  and b.pno = a.pno)

SELECT a.pno, a.pname

FROM    Part a

WHERE a.pno NOT IN 

          (SELECT b.pno 

           FROM Supply b

           WHERE b.price >= 100)

SELECT a.pno, a.pname

FROM    Part a

WHERE 100 < ALL 

          (SELECT b.price 

           FROM Supply b

           WHERE b.pno = a.pno)



Discussion

• Queries w/ existential quantifiers can be 

unnested into SELECT-FROM-WHERE

• Queries w/ universal quantifier cannot

We will prove this next
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Monotone Queries
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Montone Functions
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Monotone:

𝑥3 + 𝑥2,

𝑒𝑥,

log(𝑥),

…

Non-Monotone:

𝑥3 − 𝑥2,

𝑒−𝑥,
1

𝑥
,

…

A function 𝑓: 𝑅 → 𝑅 is monotone if 𝑥 ≤ 𝑦 implies 𝑓 𝑥 ≤ 𝑓(𝑦)



Monotone Queries
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A query Q is monotone if 𝐼 ⊆ 𝐽 implies 𝑞 𝐼 ⊆ 𝑞(𝐽)



Monotone Queries

CSEP 544 - Winter 2025 101

Adding tuples to the input does 

not remove tuples from the output

A query Q is monotone if 𝐼 ⊆ 𝐽 implies 𝑞 𝐼 ⊆ 𝑞(𝐽)



Monotone Queries
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Find all parts that have some supplier offering them for < $100

Supply(sno,pno,price)

Part(pno,pname)

Is this query

monotone?
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Find all parts that have some supplier offering them for < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 200

s02 p100 50

s01 p200 300

pno pname

p100 phone

p200 mouse

p300 lamp 𝐼 

Supply Part



Monotone Queries

104

Find all parts that have some supplier offering them for < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 200

s02 p100 50

s01 p200 300

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

𝐼 

Supply Part



Monotone Queries

105

Find all parts that have some supplier offering them for < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 200

s02 p100 50

s01 p200 300

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

sno pno price

s01 p100 200

s02 p100 50

s01 p200 300

s03 p200 99

pno pname

p100 phone

p200 mouse

p300 lamp

𝐽 

𝐼 

Supply Part



Monotone Queries

106

Find all parts that have some supplier offering them for < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 200

s02 p100 50

s01 p200 300

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

sno pno price

s01 p100 200

s02 p100 50

s01 p200 300

s03 p200 99

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

𝐽 

𝐼 

Supply Part



Monotone Queries

107

Find all parts that have some supplier offering them for < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 200

s02 p100 50

s01 p200 300

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

sno pno price

s01 p100 200

s02 p100 50

s01 p200 300

s03 p200 99

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

𝐽 

Monotone

𝐼 

Supply Part



Monotone Queries

108

Find all parts where all supplier offering them charge < $100

Supply(sno,pno,price)

Part(pno,pname)

Is this query monotone?



Monotone Queries

109

Find all parts where all supplier offering them charge < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 20

s02 p100 50

s01 p300 30

pno pname

p100 phone

p200 mouse

p300 lamp 𝐼 

Supply Part



Monotone Queries

110

Find all parts where all supplier offering them charge < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 20

s02 p100 50

s01 p300 30

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

p300 lamp𝐼 

Supply Part



Monotone Queries

111

Find all parts where all supplier offering them charge < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 20

s02 p100 50

s01 p300 30

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

p300 lamp𝐼 

Supply Part

Why?



Monotone Queries

112

Find all parts where all supplier offering them charge < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 20

s02 p100 50

s01 p300 30

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

p300 lamp𝐼 

Supply Part

𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑧, 𝑝(𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑝 ⇒ 𝑝 < 100)

Why?



Monotone Queries

113

Find all parts where all supplier offering them charge < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 20

s02 p100 50

s01 p300 30

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

p300 lamp𝐼 

Supply Part

𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑧, 𝑝(𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑝 ⇒ 𝑝 < 100)

If 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑝  is FALSE, then 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑝 ⇒ 𝑝 < 100 is TRUE 

Why?



Monotone Queries
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Find all parts where all supplier offering them charge < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 20

s02 p100 50

s01 p300 30

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

p300 lamp𝐼 

Supply Part

𝑃𝑎𝑟𝑡 𝑥, 𝑦 ∧ ∀𝑧, 𝑝(𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑝 ⇒ 𝑝 < 100)

If 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑝  is FALSE, then 𝑆𝑢𝑝𝑝𝑙𝑦 𝑧, 𝑥, 𝑝 ⇒ 𝑝 < 100 is TRUE 

Hence (p200,mouse) is in the output

Why?



Monotone Queries
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Find all parts where all supplier offering them charge < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 20

s02 p100 50

s01 p300 30

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

p300 lamp𝐼 

Supply Part



Monotone Queries
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Find all parts where all supplier offering them charge < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 20

s02 p100 50

s01 p300 30

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

p300 lamp

sno pno price

s01 p100 200

s02 p100 50

s01 p200 300

s03 p100 199

pno pname

p100 phone

p200 mouse

p300 lamp

𝐽 

𝐼 

Supply Part



Monotone Queries
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Find all parts where all supplier offering them charge < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 20

s02 p100 50

s01 p300 30

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

p300 lamp

sno pno price

s01 p100 200

s02 p100 50

s01 p200 300

s03 p100 199

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

p300 lamp

𝐽 

𝐼 

Supply Part



Monotone Queries
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Find all parts where all supplier offering them charge < $100

Supply(sno,pno,price)

Part(pno,pname)

sno pno price

s01 p100 20

s02 p100 50

s01 p300 30

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

p300 lamp

sno pno price

s01 p100 200

s02 p100 50

s01 p200 300

s03 p100 199

pno pname

p100 phone

p200 mouse

p300 lamp

pno pname

p100 phone

p200 mouse

p300 lamp

𝐽 

Non-Monotone

𝐼 

Supply Part



A Theorem

Every SELECT-FROM-WHERE query without subqueries

and without aggregates is monotone



A Theorem

Proof. Consider a SQL query:

SELECT attrs

FROM T1, T2, ...

WHERE condition

Every SELECT-FROM-WHERE query without subqueries

and without aggregates is monotone



A Theorem

for each r1 in T1:

 for each t2 in T2:

   for each t3 in T3:

      …

      if (condition):

        output (a1,a2,…)

Proof. Consider a SQL query: Its nested loop semantics is:

SELECT attrs

FROM T1, T2, ...

WHERE condition

Every SELECT-FROM-WHERE query without subqueries

and without aggregates is monotone



A Theorem

for each r1 in T1:

 for each t2 in T2:

   for each t3 in T3:

      …

      if (condition):

        output (a1,a2,…)

Proof. Consider a SQL query: Its nested loop semantics is:

If we insert a tuple into one of the input relations Ti, 

we will not remove any tuples from the output.

SELECT attrs

FROM T1, T2, ...

WHERE condition

Every SELECT-FROM-WHERE query without subqueries

and without aggregates is monotone



An Application
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The query:

  Find all parts where all supplier offering them charge < $100

Cannot be unnested without using aggregates



Finding Witnesses

a.k.a. ARGMAX
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The Witness aka ARGMAX

• Find the city with the largest population

• Find product/products with largest price

• …

• SQL does not have ARGMAX

• Two solutions:

– Use intermediate relation in WITH

– Self-join and HAVING
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Using WITH
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For each supplier, find the most expensive product they supply

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)



Using WITH

CSEP 544 - Winter 2025 127

For each supplier, find the most expensive product they supply

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Finding the max price is easy:

SELECT x.sno, x.name, max(y.price)
FROM Supplier x, Supply y
WHERE x.sno = y.sno
GROUP BY x.sno, x.name



Using WITH
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For each supplier, find the most expensive product they supply

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Finding the max price is easy:

But we also want pno, pname:
SELECT x.sno, y.pno, x.name, max(y.price)
FROM Supplier x, Supply y
WHERE x.sno = y.sno
GROUP BY x.sno, x.name

Why does

this not work?



Using WITH
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For each supplier, find the most expensive product they supply

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Compute max price in temporary table

WITH Temp AS
  (SELECT x.sno, x.sname, max(y.price) as m
   FROM Supplier x, Supply y
   WHERE x.sno = y.sno
   GROUP BY x.sno, x.name)
. . . . . . 
SELECT t.sid, t.sname, v.pno, v.pname
FROM Temp t, Supply u, Part v
WHERE t.sno = u.sno 
       and u.pno = v.pno
       and t.m = u.price;



Using WITH
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For each supplier, find the most expensive product they supply

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Compute max price in temporary table

WITH Temp AS
  (SELECT x.sno, x.sname, max(y.price) as m
   FROM Supplier x, Supply y
   WHERE x.sno = y.sno
   GROUP BY x.sno, x.name)

SELECT t.sno, t.sname, v.pno, v.pname
FROM Temp t, Supply u, Part v
WHERE t.sno = u.sno 
       and u.pno = v.pno
       and t.m = u.price;



Using Self-joins and HAVING
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For each supplier, find the most expensive product they supply

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Join directly the temp table with Supply and Part

SELECT x.sno, x.sname, v.pno, v.pname
FROM Supplier x, Supply y, Supply u, Part v
WHERE x.sno = y.sno 
       and x.sno = u.sno 
       and u.pno = v.pno
HAVING max(y.price) = v.price
GROUP BY x.sno, x.sname, v.pno, v.pname



Using Self-joins and HAVING
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For each supplier, find the most expensive product they supply

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Join directly the temp table with Supply and Part

SELECT x.sno, x.sname, v.pno, v.pname
FROM Supplier x, Supply y, Supply u, Part v
WHERE x.sno = y.sno 
       and x.sno = u.sno 
       and u.pno = v.pno
HAVING max(y.price) = v.price
GROUP BY x.sno, x.sname, v.pno, v.pname

WITH Temp AS
  (SELECT x.sno, x.sname, 
                  max(y.price) as m
   FROM Supplier x, Supply y
   WHERE x.sno = y.sno
   GROUP BY x.sno, x.name)

SELECT t.sno, t.sname, v.pno, v.pname
FROM Temp t, Supply u, Part v
WHERE t.sno = u.sno 
       and u.pno = v.pno
       and t.m = u.price;



Using Self-joins and HAVING
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For each supplier, find the most expensive product they supply

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Join directly the temp table with Supply and Part

SELECT x.sno, x.sname, v.pno, v.pname
FROM Supplier x, Supply y, Supply u, Part v
WHERE x.sno = y.sno 
       and x.sno = u.sno 
       and u.pno = v.pno
HAVING max(y.price) = v.price
GROUP BY x.sno, x.sname, v.pno, v.pname

WITH Temp AS
  (SELECT x.sno, x.sname, 
                  max(y.price) as m
   FROM Supplier x, Supply y
   WHERE x.sno = y.sno
   GROUP BY x.sno, x.name)

SELECT t.sno, t.sname, v.pno, v.pname
FROM Temp t, Supply u, Part v
WHERE t.sno = u.sno 
       and u.pno = v.pno
       and t.m = u.price;



Using Self-joins and HAVING
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For each supplier, find the most expensive product they supply

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Join directly the temp table with Supply and Part

SELECT x.sno, x.sname, v.pno, v.pname
FROM Supplier x, Supply y, Supply u, Part v
WHERE x.sno = y.sno 
       and x.sno = u.sno 
       and u.pno = v.pno
HAVING max(y.price) = v.price
GROUP BY x.sno, x.sname, v.pno, v.pname

WITH Temp AS
  (SELECT x.sno, x.sname, 
                  max(y.price) as m
   FROM Supplier x, Supply y
   WHERE x.sno = y.sno
   GROUP BY x.sno, x.name)

SELECT t.sno, t.sname, v.pno, v.pname
FROM Temp t, Supply u, Part v
WHERE t.sno = u.sno 
       and u.pno = v.pno
       and t.m = u.price;



Using Self-joins and HAVING
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For each supplier, find the most expensive product they supply

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Join directly the temp table with Supply and Part

SELECT x.sno, x.sname, v.pno, v.pname
FROM Supplier x, Supply y, Supply u, Part v
WHERE x.sno = y.sno 
       and x.sno = u.sno 
       and u.pno = v.pno
HAVING max(y.price) = v.price
GROUP BY x.sno, x.sname, v.pno, v.pname

WITH Temp AS
  (SELECT x.sno, x.sname, 
                  max(y.price) as m
   FROM Supplier x, Supply y
   WHERE x.sno = y.sno
   GROUP BY x.sno, x.name)

SELECT t.sno, t.sname, v.pno, v.pname
FROM Temp t, Supply u, Part v
WHERE t.sno = u.sno 
       and u.pno = v.pno
       and t.m = u.price;

Implicit DISTINCT



Using Self-joins and HAVING
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For each supplier, find the most expensive product they supply

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Join directly the temp table with Supply and Part

SELECT x.sno, x.sname, v.pno, v.pname
FROM Supplier x, Supply y, Supply u, Part v
WHERE x.sno = y.sno 
       and x.sno = u.sno 
       and u.pno = v.pno
HAVING max(y.price) = v.price
GROUP BY x.sno, x.sname, v.pno, v.pname

WITH Temp AS
  (SELECT x.sno, x.sname, 
                  max(y.price) as m
   FROM Supplier x, Supply y
   WHERE x.sno = y.sno
   GROUP BY x.sno, x.name)

SELECT t.sno, t.sname, v.pno, v.pname
FROM Temp t, Supply u, Part v
WHERE t.sno = u.sno 
       and u.pno = v.pno
       and t.m = u.price;



Discussion

• Why doesn’t SQL have ARGMAX?

  [in class]

• Solution 1: use temp table

• Solution 2: self-join + HAVING

• Solution 3: NOT EXISTS

• … [perhaps more]
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Final Words on SQL

• In this class we only use the fragment 

discussed so far

– We will add WITH RECURSIVE next week

• Look up scalar function as needed:

– Substring operations, math functions, etc 

• We don’t discuss, and don’t use in HW: 

WINDOW function, GROUP SETs, etc
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Database Design
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Conceptual Model

Relational Model
+ Schema

+ Constraints

Conceptual Schema
+ Normalization

Physical Schema
+ Partitioning

+ Indexing



Conceptual Model

Relational Model
+ Schema

+ Constraints

Conceptual Schema
+ Normalization

Physical Schema
+ Partitioning

+ Indexing



Conceptual Model

• A high-level description of the schema

• Usually done with Entity-Relationship 

diagrams

CSEP 544 - Winter 2025 142



E/R Diagrams

143

Design a schema for a database of doctors and their patients



E/R Diagrams

144

Attributes Entity sets Relationship sets

Design a schema for a database of doctors and their patients



E/R Diagrams
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DoctorPatient

Attributes Entity sets Relationship sets

Design a schema for a database of doctors and their patients



E/R Diagrams
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DoctorPatient

name

zip name

pno

specialty

dno

Attributes Entity sets Relationship sets



E/R Diagrams
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patient_of DoctorPatient

name

zip name

pno

specialty

dno

Attributes Entity sets Relationship sets



E/R Diagrams
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patient_of DoctorPatient

name

zip name

pno

specialty

dno

since

Attributes Entity sets Relationship sets



E/R Diagrams

• Each entity set has a key

• ER relationships can include multiplicity
– One-to-one, one-to-many, etc. 

– Indicated with arrows

• Can model multi-way relationships

• Can model subclasses

• And more...
CSEP 544 - Winter 2025 149

Many many

Many One



Many-many Relationship

patient_of DoctorPatient

name

zip name

pno

specialty

dno

since

Patient

pno name zip

P311 Alice 98765

…

Patient_of

pno dno since

P311 D007 2001

…

Doctor

dno name spec

D007 Bob cardio

…



Many-one Relationship

patient_of DoctorPatient

name

zip name

pno

specialty

dno

since

Patient

pno name zip dno since

P311 Alice 98765 D007 2001

…

Doctor

dno name spec

D007 Bob cardio

…



Subclasses
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Product

name
category

price

isa isa

Educational ProductSoftware Product

Age Groupplatforms



Subclasses

153

Product

name
category

price

isa isa

Educational ProductSoftware Product

Age Groupplatforms

Name Price Category

Gizmo 99 gadget

Camera 49 photo

Toy 39 gadget

Product



Subclasses

154

Product

name
category

price

isa isa

Educational ProductSoftware Product

Age Groupplatforms

Name Price Category

Gizmo 99 gadget

Camera 49 photo

Toy 39 gadget

Name platforms

Gizmo unix

Product

Sw.Product



Subclasses

Product

name
category

price

isa isa

Educational ProductSoftware Product

Age Groupplatforms

Name Price Category

Gizmo 99 gadget

Camera 49 photo

Toy 39 gadget

Name platforms

Gizmo unix

Name
Age 

Group

Gizmo toddler

Toy senior

Product

Sw.Product

Ed.Product



Converting E/R to SQL

• Entity set → CREATE TABLE

• m-n Relationship → CREATE TABLE w/ FK

• m-1 Relationship → add FK

• isA → attribute is both Key and FK
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Note on HW1

• You need to create an E/R diagram

• Use entities, relationships, inheritance

• Convert them to SQL Tables correctly:

– Declare keys/foreign keys

– Don’t create separate tables for N-1 rels

– Don’t use postgres’ subclasses
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Conceptual Model

Relational Model
+ Schema

+ Constraints

Conceptual Schema
+ Normalization

Physical Schema
+ Partitioning

+ Indexing



FDs and Normal Forms

• A functional dependency is and 

expression A→B, which means that the 

values in the A column uniquely 

determine those in the B column
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FDs and Normal Forms

• A functional dependency is and 

expression A→B, which means that the 

values in the A column uniquely 

determine those in the B column
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A B C

a1 b1 c1

a1 b1 c2

a2 b1 c3

a3 b2 c4

a3 b1 c2



FDs and Normal Forms

• A functional dependency is and 

expression A→B, which means that the 

values in the A column uniquely 

determine those in the B column
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A B C

a1 b1 c1

a1 b1 c2

a2 b1 c3

a3 b2 c4

a3 b1 c2

A→B

C→B

A ↛C

C↛A



Boyce Codd Normal Form

• A super-key is a set of attributes X such 

that, for every attribute A:  X→A
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Boyce Codd Normal Form

• A super-key is a set of attributes X such 

that, for every attribute A:  X→A

• A key is a minimal super-key
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Boyce Codd Normal Form

• A super-key is a set of attributes X such 

that, for every attribute A:  X→A

• A key is a minimal super-key

• A relation is in BCNF if, for every non-

trivial FD X→A, X is a super-key
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Boyce Codd Normal Form

• A super-key is a set of attributes X such 

that, for every attribute A:  X→A

• A key is a minimal super-key

• A relation is in BCNF if, for every non-

trivial FD X→A, X is a super-key

• When the relation is not in BCNF then 

choose a violation X→A and split R into 

R(XA) and R(X[rest])
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Example
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Supply

sno

sname

price

pno

pname

sno→sname

pno→pname



Example
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Supply

sno

sname

price

pno

pname

Supply(sno,sname,price,pno,pname)

sno→sname

pno→pname



Example
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Supply

sno

sname

price

pno

pname

Supply(sno,sname,price,pno,pname)

T1(sno,sname) T2(sno,price,pno,pname)

sno→sname

pno→pname



Example
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Supply

sno

sname

price

pno

pname

Supply(sno,sname,price,pno,pname)

T1(sno,sname) T2(sno,price,pno,pname)

sno→sname

pno→pname

T3(pno,pname) T4(sno,price,pno)



Example
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Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

Supply

sno

sname

price

pno

pname

Supply(sno,sname,price,pno,pname)

T1(sno,sname) T2(sno,price,pno,pname)

sno→sname

pno→pname

T3(pno,pname) T4(sno,price,pno)



Discussion

• BCNF avoids “data anomalies”

• Check details on data anomalies, FDs, 

Armstrong Axioms, and the BCNF here

• You shouldn’t need this for HW1
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https://sites.google.com/cs.washington.edu/cse344-24au/lectures?authuser=0


Conceptual Model

Relational Model
+ Schema

+ Constraints

Conceptual Schema
+ Normalization

Physical Schema
+ Partitioning

+ Indexing



Indexes

• An index is an auxiliary file that allows 

direct access to the data file based on 

the value of an attribute

• It is usually a B+ tree or a hash-table
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Indexes
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Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

CREATE TABLE Supplier(sno int primary key, sname text);

CREATE INDEX Idx_sname on Supplier(sname)

s002 

acme

s003

macy

s171

macy

s242

macy

s555

macy

Supplier



Indexes
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Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

CREATE TABLE Supplier(sno int primary key, sname text);

CREATE INDEX Idx_sname on Supplier(sname)

s002 

acme

s003

macy

s171

macy

s242

macy

s555

macy

Supplier



Indexes
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Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

CREATE TABLE Supplier(sno int primary key, sname text);

CREATE INDEX Idx_sname on Supplier(sname)

s002 

acme

s003

macy

s171

macy

s242

macy

s555

macy

Supplier

Idx_sname



Indexes
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Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

CREATE TABLE Supplier(sno int primary key, sname text);

CREATE INDEX Idx_sname on Supplier(sname)

s002 

acme

s003

macy

s171

macy

s242

macy

s555

macy

Supplier

Idx_sname

macy



Indexes
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Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

CREATE TABLE Supplier(sno int primary key, sname text);

CREATE INDEX Idx_sname on Supplier(sname)

s002 

acme

s003

macy

s171

macy

s242

macy

s555

macy

Supplier

Idx_sname

macy



Indexes

• We say that an index is clustered if the 

data file is sorted in the order of the 

index attribute

• Most systems:

CREATE CLUSTERED INDEX …

• Postgres: first create index, then:

CLUSTER index_name
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Indexes
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Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

CREATE TABLE Supplier(sno int primary key, sname text);

CREATE INDEX Idx_sname on Supplier(sname);

CLUSTER Idx_sname;

s002 

acme

s002 

acme

… s003

macy

s171

macy

s242

macy

s555

macy

Supplier

Idx_sname

macy



When Does an Index Help?

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

CREATE TABLE Supplier(sno int primary key, sname text);

CREATE INDEX Idx_sname on Supplier(sname);

SELECT *

FROM Supplier

WHERE sid = ‘s007’;

SELECT *

FROM Supplier

WHERE sname = ‘macy’;



When Does an Index Help?

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

CREATE TABLE Supplier(sno int primary key, sname text);

CREATE INDEX Idx_sname on Supplier(sname);

SELECT *

FROM Supplier

WHERE sid = ‘s007’;

SELECT *

FROM Supplier

WHERE sname = ‘macy’;

SELECT *

FROM Supplier x,

            Supply y

WHERE x.sid=y.sid;

SELECT *

FROM Supplier x,

            Supply y

WHERE x.sid=y.sid

    and x.name = ‘macy’;



When Does an Index Help?

Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

CREATE TABLE Supplier(sno int primary key, sname text);

CREATE INDEX Idx_sname on Supplier(sname);

SELECT *

FROM Supplier

WHERE sid = ‘s007’;

SELECT *

FROM Supplier

WHERE sname = ‘macy’;

SELECT *

FROM Supplier x,

            Supply y

WHERE x.sid=y.sid;

NO

NO

YES

SELECT *

FROM Supplier x,

            Supply y

WHERE x.sid=y.sid

    and x.name = ‘macy’;

YES



Where Indexes Help

• Selection based on attribute value

• Join on the index attribute IF few tuples

• Join on two relations if both clustered
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Supplier(sno,sname)

Supply(sno,pno,price)

Part(pno,pname)

SELECT *

FROM Supplier x,Supply y
WHERE x.sid=y.sid and x.name = ‘macy’;

Index on

Supply(sid)

useful

SELECT *

FROM Supplier x,Supply y
WHERE x.sid=y.sid;

Clustered indexes on both

Supplier(sid) and Supply(sid)

useful



Where Indexes Hurt

• Each new index significantly slows 

down inserts, updates, deletes

• Advice for HW1:

– CREATE Tables w/o keys, fk’s, indexes

– Insert data

– Create key/fk’s using ALTER TABLE

– Create indexes

– Cluster if you want
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