
CSE544
Data Management

Lectures 18
Transactions: Concurrency Control

CSEP 544 - Spring 2021 1

Reminders

• Last lecture!

• Please fill out the course evaluation
form

• Project report due by Tuesday, June 8
No late days!

2

Implementing Transactions

3
Notice: we will discuss about ½ of these slides in class.
If you want to learn more details, the skipped slides are easy to read

Review

• What is a transaction?
• What is a schedule?
• Types:

– Serializable
– View serializable
– Conflict serializable

• Types:
– Recoverable
– Avoid cascading aborts
– Strict (see book) 4

Review

• What is a transaction?
• What is a schedule?
• Types:

– Serializable
– View serializable
– Conflict serializable

• Types:
– Recoverable
– Avoid cascading aborts
– Strict (see book)

Serializable

View
Serializable

Conflict
Serializable

Recoverable

Avoid c.a.
Strict

Scheduler

A.k.a. Concurrency Control Manager
• The module that schedules the transaction
• TXN T requests: READ(X) or WRITE(X),
• Scheduler answers one of:

– Proceed
– Put in a wait queue, schedule another TXN T’
– Abort (!!)

CSEP 544 - Spring 2021 6

Implementing a Scheduler

Two major approaches:
• Locking Scheduler

– Aka “pessimistic concurrency control”
– SQLite, SQL Server, DB2

• Multiversion Concurrency Control (MVCC)
– Aka “optimistic concurrency control”
– Postgres, Oracle: Snapshot Isolation (SI)

7CSEP 544 - Spring 2021

Lock-based Implementation of
Transactions

CSEP 544 - Spring 2021 8

Locking Scheduler

Simple idea:
• Each element has a unique lock
• Each transaction must first acquire the

lock before reading/writing that element
• If the lock is taken, then wait
• The transaction must release the lock(s)

CSEP 544 - Spring 2021 9

Actions on Locks

CSEP 544 - Spring 2021 10

Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A

Let’s see this in action…

A Non-Serializable Schedule

CSEP 544 - Spring 2021 11

T1 T2
READ(A)
A := A+100
WRITE(A)

READ(A)
A := A*2
WRITE(A)
READ(B)
B := B*2
WRITE(B)

READ(B)
B := B+100
WRITE(B)

Example

CSEP 544 - Spring 2021 12

T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A); L1(B)

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(B);

Example

CSEP 544 - Spring 2021 13

T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A); L1(B)

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(B);

Schedule is conflict-serializable

But…

14

T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A);

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); READ(B)
B := B*2
WRITE(B); U2(B);

L1(B); READ(B)
B := B+100
WRITE(B); U1(B);

But…

15

T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A);

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); READ(B)
B := B*2
WRITE(B); U2(B);

L1(B); READ(B)
B := B+100
WRITE(B); U1(B);

Locks did not enforce conflict-serializability !!! What’s wrong ?

Two Phase Locking (2PL)

CSEP 544 - Spring 2021 16

In every transaction, all lock requests
must precede all unlock requests

The 2PL rule:

Example: 2PL transactions

17

T1 T2
L1(A); L1(B); READ(A)
A := A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); Conflict-serializable

Two Phase Locking (2PL)

18

Theorem: 2PL ensures conflict serializability

Two Phase Locking (2PL)
Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Two Phase Locking (2PL)

20

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:

Two Phase Locking (2PL)

21

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) why?

U1(A) happened
strictly before L2(A)

Two Phase Locking (2PL)

22

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) why?

Two Phase Locking (2PL)

23

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B) why?

L2(A) happened
strictly before U1(A)

Two Phase Locking (2PL)

24

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B) why?

Two Phase Locking (2PL)

25

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B) why?

Two Phase Locking (2PL)

26

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)

......etc.....

Two Phase Locking (2PL)

27

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)
L3(B)àU3(C)
U3(C)àL1(C)
L1(C)àU1(A)

Cycle in time:
Contradiction

A New Problem:
Non-recoverable Schedule

CSEP 544 - Spring 2021 28

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback

A New Problem:
Non-recoverable Schedule

29

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback
Non-recoverable schedule

Strict 2PL

CSEP 544 - Spring 2021 30

All locks are held until commit/abort:
All unlocks are done with commit/abort.

The Strict 2PL rule:

Strict 2PL

31

T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A);

L2(A); BLOCKED…
L1(B); READ(B)
B :=B+100
WRITE(B);
Rollback & U1(A);U1(B);

…GRANTED; READ(A)
A := A*2
WRITE(A);
L2(B); READ(B)
B := B*2
WRITE(B);
Commit & U2(A); U2(B);

Strict 2PL

• Lock-based systems always use strict 2PL
• Easy to implement:

– When TXN requests READ(X) or WRITE(X),
insert a lock requests on X

– When the transaction commits/aborts,
release all locks

• Conflict-serializable
• Strict

– Thus: avoids-cascading aborts
CSEP 544 - Spring 2021 32

Another problem: Deadlocks

• T1: R(A), W(B)
• T2: R(B), W(A)

• T1 holds the lock on A, waits for B
• T2 holds the lock on B, waits for A

This is a deadlock!
CSEP 544 - Spring 2021 33

Another problem: Deadlocks
• Deadlock = when waits-for graph has a cycle

• Check the graph periodically; if deadlock is detected
then pick a txn T and abort it; recheck more often.

34

T1
T2

T3T4

T5

T6

T7

Lock Modes
• S = shared lock (for READ)
• X = exclusive lock (for WRITE)

CSEP 544 - Spring 2021 35

None S X
None

S
X

Lock compatibility matrix:

Lock Modes
• S = shared lock (for READ)
• X = exclusive lock (for WRITE)

CSEP 544 - Spring 2021 36

None S X
None ✔ ✔ ✔

S ✔ ✔ ✖

X ✔ ✖ ✖

Lock compatibility matrix:

Lock Granularity
• Fine granularity locking (e.g., tuples)

– High concurrency
– High overhead in managing locks
– E.g., SQL Server

• Coarse grain locking (e.g., tables, entire database)
– Many false conflicts
– Less overhead in managing locks
– E.g., SQL Lite

• Solution: lock escalation changes granularity as needed

CSEP 544 - Spring 2021 37

Lock Performance

CSEP 544 - Spring 2021 38

Th
ro

ug
hp

ut
 (T

PS
)

Active Transactions

thrashing

TPS =
Transactions
per second

To avoid, use
admission control

Optimistic concurrency control

CSEP 544 - Spring 2021 39

Optimistic CC

• Proceeds more aggressively, but in
case of conflicts are more likely to
require abort

• Three main abstractions:
– Timestamps
– Multiversions
– Validation

• Will illustrate them separately
40

Timestamps

CSEP 544 - Spring 2021 41

Timestamps

• Each transaction receives a unique
timestamp TS(T)

Could be:

• The system’s clock
• A unique counter, incremented by the

scheduler
CSEP 544 - Spring 2021 42

Timestamps

CSEP 544 - Spring 2021 43

The timestamp order defines
the serialization order of the transaction

Main invariant:

Will generate a schedule that is view-equivalent
to a serial schedule, and strict

Timestamps
With each element X, associate
• RT(X) = the highest timestamp of any

transaction U that read X
• WT(X) = the highest timestamp of any

transaction U that wrote X
• C(X) = the commit bit: true when transaction

with highest timestamp that wrote X committed

44

Warning

Confusing notation:

• rT(X) = txn T reads element X

• RT(X) = the “read timestamp” of X

• TS(T) = the ”timestamp” of txn T
CSEP 544 - Spring 2021 45

Main Idea
• Scheduler receives a request, rT(X) or wT(X)
• Should it allow it to proceed? Wait? Abort?
• Consider these cases:

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Should we
allow this?

Main Idea
• Scheduler receives a request, rT(X) or wT(X)
• Should it allow it to proceed? Wait? Abort?
• Consider these cases:

START(U), ...,START(T), ..., wU(X), ..., rT(X)

Should we
allow this?

Suppose the
history was:

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Main Idea
• Scheduler receives a request, rT(X) or wT(X)
• Should it allow it to proceed? Wait? Abort?
• Consider these cases:

START(U), ...,START(T), ..., wU(X), ..., rT(X)

OK

Should we
allow this?

Suppose the
history was:

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Main Idea
• Scheduler receives a request, rT(X) or wT(X)
• Should it allow it to proceed? Wait? Abort?
• Consider these cases:

START(U), ...,START(T), ..., wU(X), ..., rT(X)

OK

Should we
allow this?

Suppose the
history was:

WT(X) ≤ TS(T)

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Main Idea
• Scheduler receives a request, rT(X) or wT(X)
• Should it allow it to proceed? Wait? Abort?
• Consider these cases:

START(T), ...,START(U), ..., wU(X), ..., rT(X)

START(U), ...,START(T), ..., wU(X), ..., rT(X)

OK

Should we
allow this?

Suppose the
history was:

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Main Idea
• Scheduler receives a request, rT(X) or wT(X)
• Should it allow it to proceed? Wait? Abort?
• Consider these cases:

START(T), ...,START(U), ..., wU(X), ..., rT(X)
Too late

START(U), ...,START(T), ..., wU(X), ..., rT(X)

OK

Should we
allow this?

Suppose the
history was:

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Main Idea
• Scheduler receives a request, rT(X) or wT(X)
• Should it allow it to proceed? Wait? Abort?
• Consider these cases:

START(T), ...,START(U), ..., wU(X), ..., rT(X)
Too late

START(U), ...,START(T), ..., wU(X), ..., rT(X)

OK

Should we
allow this?

Suppose the
history was:

WT(X) > TS(T)

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Main Idea
• Scheduler receives a request, rT(X) or wT(X)
• Should it allow it to proceed? Wait? Abort?
• Consider these cases:

• Similarly for the other cases

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Should we
allow this?

Details

Read too late:
• T wants to read X, and WT(X) > TS(T)

CSEP 544 - Spring 2021 54

START(T) … START(U) … wU(X) . . . rT(X)

Need to rollback T !

Details

Write too late:
• T wants to write X, and RT(X) > TS(T)

CSEP 544 - Spring 2021 55

START(T) … START(U) … rU(X) . . . wT(X)

Need to rollback T !

Details

Write too late, but we can still handle it:
• T wants to write X, and

RT(X) ≤ TS(T) but WT(X) > TS(T)

CSEP 544 - Spring 2021 56

START(T) … START(V) … wV(X) . . . wT(X)

Don’t write X at all !
(Thomas’ rule)

Simplified TS
Only for transactions that do not abort
Otherwise, may result in non-recoverable schedule

CSEP 544 - Spring 2021 57

Request is rT(X)
?

Request is wT(X)
?

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Simplified TS
Only for transactions that do not abort
Otherwise, may result in non-recoverable schedule

CSEP 544 - Spring 2021 58

Request is wT(X)
?

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Request is rT(X)
If WT(X) > TS(T) then ROLLBACK
Else READ and update RT(X) to larger of TS(T) or RT(X)

Simplified TS
Only for transactions that do not abort
Otherwise, may result in non-recoverable schedule

CSEP 544 - Spring 2021 59

Request is rT(X)
If WT(X) > TS(T) then ROLLBACK
Else READ and update RT(X) to larger of TS(T) or RT(X)

Request is wT(X)
If RT(X) > TS(T) then ROLLBACK
Else if WT(X) > TS(T) ignore write & continue (Thomas Write Rule)
Otherwise, WRITE and update WT(X) =TS(T)

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Simplified TS

• Fact: the simplified timestamp-based
scheduling with Thomas’ rule ensures
that the schedule is view-serializable

CSEP 544 - Spring 2021 60

Full TS

• Use the commit bit C(X) to keep track if
the transaction that last wrote X has
committed

CSEP 544 - Spring 2021 61

Full TS

Read dirty data:
• T wants to read X, and WT(X) < TS(T)
• Seems OK, but…

CSEP 544 - Spring 2021 62

START(U) … START(T) … wU(X). . . rT(X)… ABORT(U)

If C(X)=false, T needs to wait for it to become true

Full TS

Thomas’ rule needs to be revised:
• T wants to write X, and WT(X) > TS(T)
• Seems OK not to write at all, but …

CSEP 544 - Spring 2021 63

START(T) … START(U)… wU(X). . . wT(X)… ABORT(U)

If C(X)=false, T needs to wait for it to become true

Full TS

CSEP 544 - Spring 2021 64

Request is rT(X)
If WT(X) > TS(T) then ROLLBACK
Else If C(X) = false, then WAIT
Else READ and update RT(X) to larger of TS(T) or RT(X)

Request is wT(X)
If RT(X) > TS(T) then ROLLBACK
Else if WT(X) > TS(T)

Then If C(X) = false then WAIT
else IGNORE write (Thomas Write Rule)

Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false

Full TS

• Fact: full timestamp-based scheduling is
view-serializable and avoids cascasing
aborts

CSEP 544 - Spring 2021 65

Timestamps

Main takeaway:

• TS defines the serialization order

• Simplifies the scheduler:
– If action is consistent with serialization

order, then proceed
– Otherwise, ABORT

66

Multiversions

CSEP 544 - Spring 2021 67

Multiversion Timestamp
• When transaction T requests r(X)

but WT(X) > TS(T), then T must rollback

• Idea: keep multiple versions of X:
Xt, Xt-1, Xt-2, . . .

• Let T read an older version, with appropriate
timestamp

CSEP 544 - Spring 2021 68

TS(Xt) > TS(Xt-1) > TS(Xt-2) > . . .

Details
• When wT(X) occurs,

create a new version, denoted Xt where t = TS(T)

• When rT(X) occurs,
find most recent version Xt such that t <= TS(T)
Notes:
– WT(Xt) = t and it never changes
– RT(Xt) must still be maintained to check legality of writes

• Can delete Xt if we have a later version Xt1 and all active
transactions T have TS(T) > t1

CSEP 544 - Spring 2021 69

Example (in class)

CSEP 544 - Spring 2021 70

X3 X9 X12 X18

R6(X) -- what happens?
W14(X) – what happens?
R15(X) – what happens?
W5(X) – what happens?

When can we delete X3?

TS(T)=6

Example (in class)

CSEP 544 - Spring 2021 71

X3 X9 X12 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens?
W5(X) – what happens?

When can we delete X3?

TS(T)=6

Example (in class)

CSEP 544 - Spring 2021 72

X3 X9 X12 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens?
W5(X) – what happens?

When can we delete X3?

TS(T)=6

Example (in class)

CSEP 544 - Spring 2021 73

X3 X9 X12 X14 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens?
W5(X) – what happens?

When can we delete X3?

TS(T)=6

Example (in class)

CSEP 544 - Spring 2021 74

X3 X9 X12 X14 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens?
W5(X) – what happens?

When can we delete X3?

TS(T)=6

Example (in class)

CSEP 544 - Spring 2021 75

X3 X9 X12 X14 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens? Return X14
W5(X) – what happens?

When can we delete X3?

TS(T)=6

Example (in class)

CSEP 544 - Spring 2021 76

X3 X9 X12 X14 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens? Return X14
W5(X) – what happens?

When can we delete X3?

TS(T)=6

Example (in class)

CSEP 544 - Spring 2021 77

X3 X9 X12 X14 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens? Return X14
W5(X) – what happens? ABORT

When can we delete X3?

TS(T)=6

Example (in class)

CSEP 544 - Spring 2021 78

X3 X9 X12 X14 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens? Return X14
W5(X) – what happens? ABORT

When can we delete X3?

TS(T)=6

Example (in class)

CSEP 544 - Spring 2021 79

X3 X9 X12 X14 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens? Return X14
W5(X) – what happens? ABORT

When can we delete X3? When min TS(T)≥ 9

TS(T)=6

Multiversion

Takeaways:

• Reduces the number of aborts due to
late reads

• Simplifies rollback

• Handles “phantoms” 80

Validation

CSEP 544 - Spring 2021 81

Concurrency Control by
Validation

• TXN reads elements, performs all
updates on local copies

• At commit time:
– CC manager performs validation
– If OK, then it writes the local copies to disk
– If not OK then aborts

CSEP 544 - Spring 2021 82

Concurrency Control by
Validation

• Each transaction T defines:
– a read set RS(T) and
– a write set WS(T)

• Each TXN has three phases:
– Read elements RS(T): Time = START(T)
– Validate: Time = VAL(T)
– Writes elements WS(T). Time = FIN(T)

Main invariant: the serialization order is VAL(T)

Avoid rT(X) - wU(X) Conflicts

CSEP 544 - Spring 2021 84

U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

T: Read phase Validate ?

START(T)

IF RS(T) Ç WS(U) and FIN(U) > START(T)
Then ROLLBACK(T)

conflicts

Avoid wT(X) - wU(X) Conflicts

CSEP 544 - Spring 2021 85

U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

T: Read phase Validate ? Write phase ?

START(T) VAL(T)

IF WS(T) Ç WS(U) and FIN(U) > VAL(T)
Then ROLLBACK(T)

conflicts

Validation

Takeaways:

• READs/WRITEs proceed without delay

• Only delay happens at validation time

• May abort aggressively
86

Snapshot Isolation (SI)
A variant of multiversion/validation

• Very efficient, and very popular
• Oracle, PostgreSQL, SQL Server 2005

Warning: not serializable
• Earlier versions of postgres implemented SI for the

SERIALIZABLE isolation level
• Extension of SI to serializable has been implemented recently
• Will discuss only the standard SI (non-serializable)

CSEP 544 - Spring 2021 87

Snapshot Isolation Rules
• Each transactions receives a timestamp TS(T)

• Transaction T sees snapshot at time TS(T) of the database

• When T commits, updated pages are written to disk

• Write/write conflicts resolved by “first committer wins” rule
– Loser gets aborted

• Read/write conflicts are ignored

CSEP 544 - Spring 2021 88

Snapshot Isolation (Details)
• Multiversion concurrency control:

– Versions of X: Xt1, Xt2, Xt3, . . .

• When T reads X, return Xt,
where t is max s.t. t ≤ TS(T)

• When T writes X:
if other transaction updated X, abort

CSEP 544 - Spring 2021 89

What Works and What Not
• No dirty reads (Why ?)
• No inconsistent reads (Why ?)

– A: Each transaction reads a consistent snapshot

• No lost updates (“first committer wins”)

• Moreover: no reads are ever delayed

• However: read-write conflicts not caught ! “Write
skew”

CSEP 544 - Spring 2021 90

Write Skew

T1:
READ(X);
if X >= 50

then Y = -50; WRITE(Y)
COMMIT

T2:
READ(Y);
if Y >= 50

then X = -50; WRITE(X)
COMMIT

In our notation: R1(X), R2(Y), W1(Y), W2(X), C1,C2

Invariant: X + Y ≥ 0

Write Skew

T1:
READ(X);
if X >= 50

then Y = -50; WRITE(Y)
COMMIT

T2:
READ(Y);
if Y >= 50

then X = -50; WRITE(X)
COMMIT

In our notation: R1(X), R2(Y), W1(Y), W2(X), C1,C2

Invariant: X + Y ≥ 0

X0 Y0

Write Skew

T1:
READ(X);
if X >= 50

then Y = -50; WRITE(Y)
COMMIT

T2:
READ(Y);
if Y >= 50

then X = -50; WRITE(X)
COMMIT

In our notation: R1(X), R2(Y), W1(Y), W2(X), C1,C2

Invariant: X + Y ≥ 0

X0 Y0

Write Skew

T1:
READ(X);
if X >= 50

then Y = -50; WRITE(Y)
COMMIT

T2:
READ(Y);
if Y >= 50

then X = -50; WRITE(X)
COMMIT

In our notation: R1(X), R2(Y), W1(Y), W2(X), C1,C2

Invariant: X + Y ≥ 0

X0 Y0

Write Skew

T1:
READ(X);
if X >= 50

then Y = -50; WRITE(Y)
COMMIT

T2:
READ(Y);
if Y >= 50

then X = -50; WRITE(X)
COMMIT

In our notation: R1(X), R2(Y), W1(Y), W2(X), C1,C2

Invariant: X + Y ≥ 0

X0 Y0 Y1

Should have
aborted T1,

but SI doesn’t
keep RT(Y)

Write Skew

T1:
READ(X);
if X >= 50

then Y = -50; WRITE(Y)
COMMIT

T2:
READ(Y);
if Y >= 50

then X = -50; WRITE(X)
COMMIT

In our notation: R1(X), R2(Y), W1(Y), W2(X), C1,C2

Invariant: X + Y ≥ 0

X0 Y0 Y1 X2

Should have
aborted T1,

but SI doesn’t
keep RT(Y)

Write Skew

T1:
READ(X);
if X >= 50

then Y = -50; WRITE(Y)
COMMIT

T2:
READ(Y);
if Y >= 50

then X = -50; WRITE(X)
COMMIT

In our notation: R1(X), R2(Y), W1(Y), W2(X), C1,C2

Invariant: X + Y ≥ 0

X0 Y0 Y1 X2

Should have
aborted T1,

but SI doesn’t
keep RT(Y)

Write Skew

T1:
READ(X);
if X >= 50

then Y = -50; WRITE(Y)
COMMIT

T2:
READ(Y);
if Y >= 50

then X = -50; WRITE(X)
COMMIT

In our notation: R1(X), R2(Y), W1(Y), W2(X), C1,C2

Starting with X=50,Y=50, we end with X=-50, Y=-50.
Non-serializable !!!

Invariant: X + Y ≥ 0

X0 Y0 Y1 X2

Should have
aborted T1,

but SI doesn’t
keep RT(Y)

Discussions
• Snapshot isolation (SI) is like repeatable reads but

also avoids some (not all) phantoms

• If DBMS runs SI and the app needs serializable:
– use dummy writes for all reads to create write-write

conflicts… but that is confusing for developers

• Extension of SI to make it serializable is implemented
in postgres

CSEP 544 - Spring 2021 99

Phantom Problem
• So far we have assumed the database to

be a static collection of elements (=tuples)

• If tuples are inserted/deleted then the
phantom problem appears

CSEP 544 - Spring 2021 100

Phantom Problem

CSEP 544 - Spring 2021 101

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

Phantom Problem

CSEP 544 - Spring 2021 102

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

No: T1 sees a “phantom” product A3

Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

W2(A3);R1(A1);R1(A2);R1(A1);R1(A2);R1(A3)

Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

W2(A3);R1(A1);R1(A2);R1(A1);R1(A2);R1(A3)

Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

But this is conflict-serializable!

Phantom Problem

• A “phantom” is a tuple that is
invisible during part of a transaction execution
but not invisible during the entire execution

• In our example:
– T1: reads list of products
– T2: inserts a new product
– T1: re-reads: a new product appears !

CSEP 544 - Spring 2021 106

Phantom Problem

• In a static database:
– Conflict serializability implies serializability

• In a dynamic database, this may fail due
to phantoms

• Strict 2PL guarantees conflict
serializability, but not serializability

CSEP 544 - Spring 2021 107

Dealing With Phantoms

• Lock the entire table
• Lock the index entry for ‘blue’

– If index is available
• Or use predicate locks

– A lock on an arbitrary predicate

CSEP 544 - Spring 2021 108

Dealing with phantoms is expensive !

Summary of Serializability

• Serializable schedule = equivalent to a serial
schedule

• (strict) 2PL guarantees conflict serializability
– What is the difference?

• Static database:
– Conflict serializability implies serializability

• Dynamic database:
– Conflict serializability plus phantom management

implies serializability
CSEP 544 - Spring 2021 109

Weaker Isolation Levels

• Serializable are expensive to implement

• SQL allows the application to choose a
more efficient implementation, which is
not always serializable: weak isolation
levels

110

Isolation Levels in SQL
1. “Dirty reads”

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

CSEP 544 - Spring 2021 111

ACID

Lost Update

T1: READ(A)

T1: A := A+5

T1: WRITE(A)

T2: READ(A);

T2: A := A*1.3

T2: WRITE(A);

Write-Write Conflict

112Never allowed at any level

1. Isolation Level: Dirty Reads

• “Long duration” WRITE locks
– Strict 2PL

• No READ locks
– Read-only transactions are never delayed

CSEP 544 - Spring 2021 113

Possible problems: dirty and inconsistent reads

1. Isolation Level: Dirty Reads

T1: WRITE(A)

T1: ABORT

T2: READ(A)

CSEP 544 - Spring 2021

Write-Read Conflict

114

1. Isolation Level: Dirty Reads

T1: A := 20; B := 20;
T1: WRITE(A)

T1: WRITE(B)

T2: READ(A);
T2: READ(B);

Write-Read Conflict

115Inconsistent read

2. Isolation Level: Read
Committed

• “Long duration” WRITE locks
– Strict 2PL

• “Short duration” READ locks
– Only acquire lock while reading (not 2PL)

CSEP 544 - Spring 2021 116

Unrepeatable reads:
When reading same element twice,
may get two different values

2. Isolation Level: Read Committed

T1: WRITE(A)
COMMIT

T2: READ(A);

T2: READ(A);

CSEP 544 - Spring 2021

Read-Write Conflict

117Unrepeatable read

3. Isolation Level: Repeatable
Read

• “Long duration” WRITE locks
– Strict 2PL

• “Long duration” READ locks
– Strict 2PL

CSEP 544 - Spring 2021 118

This is not serializable yet !!!

Why ?

4. Isolation Level Serializable

• “Long duration” WRITE locks
– Strict 2PL

• “Long duration” READ locks
– Strict 2PL

• Predicate locking
– To deal with phantoms

CSEP 544 - Spring 2021 119

Beware!
In commercial DBMSs:
• Default level may not be serializable
• Default level differs between DBMSs
• Some engines support subset of levels!
• Also, some DBMSs do NOT use locking and

different isolation levels can lead to different pbs

Bottom line: Read the doc for your DBMS!

CSEP 544 - Spring 2021 120

Final Thoughts on
Transactions

• Benchmarks: TPC/C; typical throughput:
x100’s TXN/second

• New trend: multicores
– Current technology can scale to x10’s of cores,

but not beyond!
– Major bottleneck: latches that serialize the cores

• New trend: distributed TXN
– NoSQL: give up serialization
– Serializable: very difficult e.g.Spanner w/ Paxos

