CSE544 Data Management

Lectures 15 Parallel Query Processing

Announcements

• Project proposals due on Friday

• HW4 Datalog due next Tuesday

Tim Kraska talks next Monday, 9-10am
 The talk is recommended (not mandatory)
 I will post the zoom link on Ed

Outline

Brief discussion of the LSM paper

Parallel Query Processing – Basics

Parallel Query Processing – Systems
 – Next lecture (Wednesday)

• What is the problem that LSM trees are addressing? And what is their principle?

• What does this graph represent?

- What is the problem that LSM trees are addressing? And what is their principle?
 - High throughput updates, compact data representation
 - Principle: buffer updates in main memory, batch-merge
- What does this graph represent?

- What is the problem that LSM trees are addressing? And what is their principle?
 - High throughput updates, compact data representation
 - Principle: buffer updates in main memory, batch-merge
- What does this graph represent?

Describe a lookup is an LSM tree

• What is the False FPR formula in a Bloom filter?

• How do current systems design the sizes M of the Bloom filters?

• Paper says it's a bad idea. Why?

• What is the False FPR formula in a Bloom filter?

-
$$FPR = e^{-\frac{M}{N}\ln^2 2}$$
 where

- M = # bits in the Bloom filter, N = # data entries
- How do current systems design the sizes M of the Bloom filters?

• Paper says it's a bad idea. Why?

• What is the False FPR formula in a Bloom filter?

-
$$FPR = e^{-\frac{M}{N}\ln^2 2}$$
 where

- M = # bits in the Bloom filter, N = # data entries

- How do current systems design the sizes M of the Bloom filters?
 - Ensure same FPR at all levels
 - M grows exponentially by factor T
- Paper says it's a bad idea. Why?

• What is the False FPR formula in a Bloom filter?

-
$$FPR = e^{-\frac{M}{N}\ln^2 2}$$
 where

- M = # bits in the Bloom filter, N = # data entries

- How do current systems design the sizes M of the Bloom filters?
 - Ensure same FPR at all levels
 - M grows exponentially by factor T
- Paper says it's a bad idea. Why?
 - Every Bloom filter saves only one I/O at each level.
 - Last Bloom filter is larger then other, but same benefit

Describe the two merge strategies

 What is the takeaway of the design space of LSM Trees?

Outline

• Brief discussion of the LSM paper

Parallel Query Processing – Basics

Parallel Query Processing – Systems
 – Next lecture (Wednesday)

Distributed/Parallel Query Processing

Parallel DBs since the 80s

New, strong technology pulls:

- Multi-core
- Cloud computing

Architectures for Parallel Databases

• Shared memory

Shared disk

Shared nothing

Shared Memory

- SMP = symmetric multiprocessor
- Nodes share RAM and disk
- 10x ... 100x processors
- Example: SQL Server runs on a single machine and can leverage many threads to speed up a query
- Easy to use and program
- Expensive to scale

Shared Disk

- All nodes access same disks
- 10x processors
- Example: Oracle

- No more memory contention
- Harder to program
- Still hard to scale

Shared Nothing

- Cluster of commodity machines
- Called "clusters" or "blade servers"
- Each machine: own memory&disk
- Up to x1000-x10000 nodes
- Example: redshift, spark, snowflake

Because all machines today have many cores and many disks, shared-nothing systems typically run many "nodes" on a single physical machine.

- Easy to maintain and scale
- Most difficult to administer and tune.

Performance Metrics

Nodes = processors = computers

- Speedup:
 - More nodes, same data → higher speed
- Scaleup:
 - More nodes, more data \rightarrow same speed

Warning: sometimes Scaleup is used to mean Speedup

Linear v.s. Non-linear Scaleup Batch Scaleup Ideal ×10 ×1 ×5 ×15 # nodes (=P) AND data size CSEP 544 - Spring 2021 22

Why Sub-linear?

• Startup cost

- Cost of starting an operation on many nodes

- Interference
 - Contention for resources between nodes
- Skew

Slowest node becomes the bottleneck

Distributed Query Processing Algorithms

Table

R

sid	name	

Table

sid	name	

R

	Tabla	
	lane	
		/
_	\sim	1

R

sid	name	

sid	name	

sid	name	

. . .

- Block Partition, a.k.a. Round Robin:
 Partition tuples arbitrarily s.t. size(R₁)≈ ... ≈ size(R_P)
- Hash partitioned on attribute A:
 - Tuple t goes to chunk i, where $i = h(t.A) \mod P + 1$
- Range partitioned on attribute A:
 - Partition the range of A into $-\infty = v_0 < v_1 < ... < v_P = \infty$
 - Tuple t goes to chunk i, if $v_{i-1} < t.A < v_i$

Notations

p = number of servers (nodes) that hold the chunks

When a relation R is distributed to p servers, we draw the picture like this:

Here R_1 is the fragment of R stored on server 1, etc

$$R = R_1 \cup R_2 \cup \cdots \cup R_P$$

Uniform Load and Skew

- |R| = N tuples, then $|R_1| + |R_2| + ... + |R_p| = N$
- We say the load is uniform when:
 |R₁| ≈ |R₂| ≈ ... ≈ |R_p| ≈ N/p
- Skew means that some load is much larger: max_i |R_i| >> N/p

We design algorithms for uniform load, discuss skew later

Parallel Algorithm

• Selection σ

• Join 🖂

• Group by γ

- Block partitioned:
- Hash partitioned:

• Range partitioned:

- Block partitioned:
 All servers need to scan
- Hash partitioned:

• Range partitioned:

- Block partitioned:
 - All servers need to scan
- Hash partitioned:
 - Point query: only one server needs to scan
 - Range query: all servers need to scan
- Range partitioned:

- Block partitioned:
 - All servers need to scan
- Hash partitioned:
 - Point query: only one server needs to scan
 - Range query: all servers need to scan
- Range partitioned:
 - Only some servers need to scan

Parallel GroupBy

Data: $R(\underline{K}, A, B, C)$ Query: $\gamma_{A,sum(C)}(R)$ Discuss in class how to compute in each case:

- R is hash-partitioned on A
- R is block-partitioned or hash-partitioned on K
Parallel GroupBy

Data: $R(\underline{K}, A, B, C)$ Query: $\gamma_{A,sum(C)}(R)$ Discuss in class how to compute in each case:

- R is hash-partitioned on A
 - Each server i computes locally $\gamma_{A,sum(C)}(R_i)$
- R is block-partitioned or hash-partitioned on K

Parallel GroupBy

Data: $R(\underline{K}, A, B, C)$ Query: $\gamma_{A,sum(C)}(R)$ Discuss in class how to compute in each case:

- R is hash-partitioned on A
 - Each server i computes locally $\gamma_{A,sum(C)}(R_i)$
- R is block-partitioned or hash-partitioned on K
 - Need to reshuffle data on A first (next slide)
 - Then compute locally $\gamma_{A,sum(C)}(R_i)$

Data: R(<u>K</u>, A, B, C)

Query: $\gamma_{A,sum(C)}(R)$

Data: R(<u>K</u>, A, B, C)

Query: $\gamma_{A,sum(C)}(R)$

CSEP 544 - Spring 2021

- Data: R(<u>K</u>, A, B, C)
- Query: $\gamma_{A,sum(C)}(R)$
- R is block-partitioned or hash-partitioned on K

CSEP 544 - Spring 2021

Data: R(<u>K</u>, A, B, C)

Query: $\gamma_{A,sum(C)}(R)$

Data: R(<u>K</u>, A, B, C)

Query: $\gamma_{A,sum(C)}(R)$

Data: R(<u>K</u>, A, B, C)

Query: $\gamma_{A,sum(C)}(R)$

Reshuffling

Nodes send data over the network

Many-many communications possible

- Throughput:
 - Better than disk
 - Worse than main memory

Data: R(<u>K</u>, A, B, C)

Query: $\gamma_{A,sum(C)}(R)$

GroupBy/Union Commutativity

city	 qant
Seattle	10
LA	20
Seattle	30
NY	40

city	 qant
LA	22
NY	33
LA	44
Austin	55

city	 qant
Seattle	66
LA	77
NY	88
LA	99

SELECT city, sum(quant)

FROM R

GROUP BY city

GroupBy/Union Commutativity

city	 qant
Seattle	10
LA	20
Seattle	30
NY	40

city	 qant
LA	22
NY	33
LA	44
Austin	55

SELECT city, sum(quant)
FROM R
GROUP BY city

city	 qant
Seattle	66
LA	77
NY	88
LA	99

 $\gamma_{city,sum(q)}(R_1 \cup R_2 \cup R_3) =$

GroupBy/Union Commutativity

city	 qant
Seattle	10
LA	20
Seattle	30
NY	40

city	 qant
LA	22
NY	33
LA	44
Austin	55

SELECT city, sum(quant) FROM R GROUP BY city

city	 qant
Seattle	66
LA	77
NY	88
LA	99

 $\begin{array}{c} & & & \\ & & & \\ \end{array} \\ = \gamma_{city,sum(q)} \left(\gamma_{city,sum(q)}(R_1) \cup \gamma_{city,sum(q)}(R_2) \cup \gamma_{city,sum(q)}(R_3) \right) \end{array}$

Data: R(<u>K</u>, A, B, C) Query: $\gamma_{A,sum(C)}(R)$

Data: R(<u>K</u>, A, B, C) Query: $\gamma_{A,sum(C)}(R)$

Step 0: [Optimization] each server i computes local group-by: $T_i = \gamma_{A,sum(C)}(R_i)$

Data: R(<u>K</u>, A, B, C) Query: $\gamma_{A,sum(C)}(R)$

Step 0: [Optimization] each server i computes local group-by: $T_i = \gamma_{A,sum(C)}(R_i)$

Step 1: partitions tuples in T_i using hash function h(A): $T_{i,1}, T_{i,2}, ..., T_{i,p}$ then send fragment $T_{i,i}$ to server j

Data: R(<u>K</u>, A, B, C) Query: $\gamma_{A,sum(C)}(R)$

Step 0: [Optimization] each server i computes local group-by: $T_i = \gamma_{A,sum(C)}(R_i)$

Step 1: partitions tuples in T_i using hash function h(A): $T_{i,1}, T_{i,2}, ..., T_{i,p}$ then send fragment $T_{i,j}$ to server j

Step 2: receive fragments, union them, then group-by $R_{j}^{'} = T_{1,j} \cup ... \cup T_{p,j}$ Answer_j = $\gamma_{A, sum(C)} (R_{j}^{'})$

Pushing Aggregates Past Union

Which other rules can we push past union?

- Sum?
- Count?
- Avg?
- Max?
- Median?

Pushing Aggregates Past Union

Which other rules can we push past union?

• Sum?

- Count?
- Ava?
- Avg?
- Max?
- Median?

Distributive	Algebraic	Holistic
$sum(a_1+a_2++a_9)=sum(sum(a_1+a_2+a_3)+sum(a_4+a_5+a_6)+sum(a_7+a_8+a_9))$	avg(B) = sum(B)/count(B)	median(B)

Example Query with Group By

Example Query with Group By

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

γ a, sum(b)→sb | σ_{c>0} | R

Example Query with Group By

Machine 2

Machine 1

1/3 of R

 γ a, sum(b) \rightarrow sb $\sigma_{c>0}$ R Machine 3

Speedup and Scaleup

Consider the query $\gamma_{A,sum(C)}(R)$ Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

If we double both P and size of R, what is the runtime?

Speedup and Scaleup

Consider the query $\gamma_{A,sum(C)}(R)$ Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

• Half (chunk sizes become ¹/₂)

If we double both P and size of R, what is the runtime?

• Same (chunk sizes remain the same)

Speedup and Scaleup

Consider the query $\gamma_{A,sum(C)}(R)$ Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

• Half (chunk sizes become ¹/₂)

If we double both P and size of R, what is the runtime?

• Same (chunk sizes remain the same)

But only if the data is without skew!

Parallel/Distributed Join

Three "algorithms":

Hash-partitioned

Broadcast

• Combined: "skew-join" or other names

Data:R(A, C), S(B, D)Query: $R \bowtie_{A=B} S$

Initially, R and S are block partitioned. Notice: they may be stored in DFS (recall MapReduce)

Data:R(A, C), S(B, D)Query: $R \bowtie_{A=B} S$

Initially, R and S are block partitioned. Notice: they may be stored in DFS (recall MapReduce)

Data:R(A, C), S(B, D)Query: $R \bowtie_{A=B} S$

Initially, R and S are block partitioned. Notice: they may be stored in DFS (recall MapReduce)

Data:R(A, C), S(B, D)Query: $R \bowtie_{A=B} S$

Initially, R and S are block partitioned. Notice: they may be stored in DFS (recall MapReduce)
Hash Join: $R \bowtie_{A=B} S$

- Step 1
 - Every server holding any chunk of R partitions its chunk using a hash function h(t.A)
 - Every server holding any chunk of S partitions its chunk using a hash function h(t.B)
- Step 2:
 - Each server computes the join of its local fragment of R with its local fragment of S

- When joining R and S
- If |R| >> |S|
 - Leave R where it is
 - Replicate entire S relation across nodes
- Also called a small join or a broadcast join

Query: $R \bowtie S$

Broadcast Join

. . .

CSEP 544 - Spring 2021

. . .

Example Query Execution

Find all orders from today, along with the items ordered

CSEP 544 - Spring 2021

CSEP 544 - Spring 2021

Order(oid, item, date), Line(item, ...)

Example 2

SELECT * FROM R, S, T WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

\dots WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

CSEP 544 - Spring 2021

... WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

... WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

... WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

... WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

Skew-Join

- Hash-join:
 - Both relations are partitioned (good)
 - May have skew (bad)
- Broadcast join
 - One relation must be broadcast (bad)
 - No worry about skew (good)
- Skew join (has other names):
 - Combine both: in class