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Announcements

• Project proposals due on Friday

• HW4 Datalog due next Tuesday

• Tim Kraska talks next Monday, 9-10am
– The talk is recommended (not mandatory)
– I will post the zoom link on Ed
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Outline

• Brief discussion of the LSM paper

• Parallel Query Processing – Basics

• Parallel Query Processing – Systems
– Next lecture (Wednesday)
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LSM Trees – Review
• What is the problem that LSM trees are addressing? 

And what is their principle?
– High throughput updates
– Compact data representation

• What does this graph represent?
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LSM Trees – Review

• Describe a lookup is an LSM tree



LSM Trees – Review
• What is the False FPR formula in a Bloom filter?

– 𝐹𝑃𝑅 = 𝑒!
!
" "#

# $ where
– M = # bits in the Bloom filter, N = # data entries

• How do current systems design the sizes M of the 
Bloom filters?
– Ensure same FPR at all levels
– M grows exponentially by factor T

• Paper says it’s a bad idea.  Why?
– Every Bloom filter saves only one I/O at each level.  
– Last Bloom filter is larger then other, but same benefit

8



LSM Trees – Review
• What is the False FPR formula in a Bloom filter?

– 𝐹𝑃𝑅 = 𝑒!
!
" "#

# $ where
– M = # bits in the Bloom filter, N = # data entries

• How do current systems design the sizes M of the 
Bloom filters?
– Ensure same FPR at all levels
– M grows exponentially by factor T

• Paper says it’s a bad idea.  Why?
– Every Bloom filter saves only one I/O at each level.  
– Last Bloom filter is larger then other, but same benefit

9



LSM Trees – Review
• What is the False FPR formula in a Bloom filter?

– 𝐹𝑃𝑅 = 𝑒!
!
" "#

# $ where
– M = # bits in the Bloom filter, N = # data entries

• How do current systems design the sizes M of the 
Bloom filters?
– Ensure same FPR at all levels
– M grows exponentially by factor T

• Paper says it’s a bad idea.  Why?
– Every Bloom filter saves only one I/O at each level.  
– Last Bloom filter is larger then other, but same benefit

10



LSM Trees – Review
• What is the False FPR formula in a Bloom filter?

– 𝐹𝑃𝑅 = 𝑒!
!
" "#

# $ where
– M = # bits in the Bloom filter, N = # data entries

• How do current systems design the sizes M of the 
Bloom filters?
– Ensure same FPR at all levels
– M grows exponentially by factor T

• Paper says it’s a bad idea.  Why?
– Every Bloom filter saves only one I/O at each level.  
– Last Bloom filter is larger then other, but same benefit

11



LSM Trees – Review

• Describe the two merge strategies
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LSM Trees – Review

• What is the takeaway of the design 
space of LSM Trees?



Outline

• Brief discussion of the LSM paper

• Parallel Query Processing – Basics

• Parallel Query Processing – Systems
– Next lecture (Wednesday)
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Distributed/Parallel Query 
Processing

Parallel DBs since the 80s

New, strong technology pulls:

• Multi-core
• Cloud computing
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Architectures for Parallel 
Databases

• Shared memory

• Shared disk

• Shared nothing
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Shared Memory
• SMP = 

symmetric multiprocessor
• Nodes share RAM and disk
• 10x … 100x processors

• Example: SQL Server runs on 
a single machine and can 
leverage many threads to 
speed up a query

• Easy to use and program
• Expensive to scale

17

Interconnection 
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Shared Disk
• All nodes access same disks
• 10x processors

• Example: Oracle

• No more memory contention

• Harder to program
• Still hard to scale

18

Interconnection 
Network

P P P
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Shared Nothing
• Cluster of commodity machines
• Called "clusters" or "blade servers”
• Each machine: own memory&disk
• Up to x1000-x10000 nodes
• Example: redshift, spark, snowflake

Because all machines today have many 
cores and many disks, shared-nothing 
systems typically run many "nodes” on a 
single physical machine.

• Easy to maintain and scale
• Most difficult to administer and tune.

Interconnection 
Network

P P P

D D D

M M M



Performance Metrics
Nodes = processors = computers

• Speedup: 
– More nodes, same data è higher speed

• Scaleup:
– More nodes, more data è same speed

Warning: sometimes Scaleup is used to mean Speedup



Linear v.s. Non-linear 
Speedup
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# nodes (=P)

Speedup

×1 ×5 ×10 ×15

Ideal



Linear v.s. Non-linear Scaleup
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# nodes (=P) AND data size 

Batch
Scaleup

×1 ×5 ×10 ×15

Ideal



Why Sub-linear?

• Startup cost
– Cost of starting an operation on many nodes

• Interference
– Contention for resources between nodes

• Skew
– Slowest node becomes the bottleneck
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Distributed Query Processing 
Algorithms
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Horizontal Data Partitioning
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Horizontal Data Partitioning

27

sid name … … sid name … …

sid name … …

sid name … …

Table

fragment
chunk

partition

R

R1

R2

R3

…



Horizontal Data Partitioning
• Block Partition, a.k.a. Round Robin: 

– Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP) 

• Hash partitioned on attribute A:
– Tuple t goes to chunk i, where i = h(t.A) mod P + 1

• Range partitioned on attribute A:
– Partition the range of A into  -∞ = v0 < v1 < … < vP = ∞
– Tuple t goes to chunk i, if vi-1 < t.A < vi
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Notations

29

When a relation R is distributed to p servers,
we draw the picture like this:

R1 R2 RP

Here R1 is the fragment of R stored on server 1, etc

𝑅 = 𝑅! ∪ 𝑅" ∪⋯∪ 𝑅#

p = number of servers (nodes) that hold the chunks



Uniform Load and Skew

• |R| = N tuples, then |R1| + |R2| + … + |Rp| = N

• We say the load is uniform when:
|R1| ≈ |R2| ≈ … ≈ |Rp| ≈ N/p

• Skew means that some load is much larger:
maxi |Ri| >> N/p

30We design algorithms for uniform load, discuss skew later



Parallel Algorithm

• Selection σ

• Join ⨝

• Group by  ɣ
31



Parallel Selection
Data: R(K, A, B, C)
Query: σA=v(R), or σv1<A<v2(R)

• Block partitioned:
– All servers need to scan

• Hash partitioned:
– Point query: only one server needs to scan
– Range query: all servers need to scan

• Range partitioned:
– Only some servers need to scan
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Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)
Discuss in class how to compute in each case:

• R is hash-partitioned on A
– Each server i computes locally γA,sum(C)(Ri)

• R is block-partitioned or hash-partitioned on K
– Need to reshuffle data on A first (next slide)
– Then compute locally γA,sum(C)(Ri)
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Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)
Discuss in class how to compute in each case:

• R is hash-partitioned on A
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– Then compute locally γA,sum(C)(Ri)
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Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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.  .  .



Basic Parallel GroupBy
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.  .  .

Reshuffle R
on attribute A



Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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Basic Parallel GroupBy

Data: R(K, A, B, C)
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Basic Parallel GroupBy

Data: R(K, A, B, C)
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Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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R1’ R2’ RP’.  .  .

R1 R2 RP

.  .  .

Reshuffle R
on attribute A

This is done in one
communication step



Reshuffling

• Nodes send data over the network

• Many-many communications possible

• Throughput:
– Better than disk
– Worse than main memory
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Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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R1’ R2’ RP’.  .  .

R1 R2 RP

.  .  .

Reshuffle R
on attribute A

This is done in one
communication step

Can you think
of an optimization?



GroupBy/Union Commutativity
city … qant

Seattle 10

LA 20

Seattle 30

NY 40

city … qant

LA 22

NY 33

LA 44

Austin 55

city … qant

Seattle 66

LA 77

NY 88

LA 99

SELECT city, sum(quant)
FROM R
GROUP BY city 
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Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:  
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2:  receive fragments, union them,  then group-by 
Rj’ = T1,j ∪ … ∪ Tp,j
Answerj =  γA, sum(B) (Rj’)
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Basic Parallel GroupBy
Data: R(K, A, B, C)
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Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2:  receive fragments, union them,  then group-by 
Rj’ = T1,j ∪ … ∪ Tp,j
Answerj =  γA, sum(C) (Rj’)

CSEP 544 - Spring 2021 53



Pushing Aggregates Past 
Union

Which other rules can we push past 
union?
• Sum?
• Count?
• Avg?
• Max?
• Median?

CSEP 544 - Spring 2021 54
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Distributive Algebraic Holistic

sum(a1+a2+…+a9)=
sum(sum(a1+a2+a3)+

sum(a4+a5+a6)+
sum(a7+a8+a9))

avg(B) = 
sum(B)/count(B)

median(B)



SELECT a, sum(b) as sb
FROM R WHERE c > 0
GROUP BY a 

Example Query with Group By



SELECT a, sum(b) as sb
FROM R WHERE c > 0
GROUP BY a 

Example Query with Group By

σc>0

g a, sum(b)→sb

R



Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

SELECT a, sum(b) as sb
FROM R WHERE c > 0
GROUP BY a 

Example Query with Group By

σc>0

g a, sum(b)→sb

R



Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

SELECT a, sum(b) as sb    FROM R   WHERE c > 0 GROUP BY a 



Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

σc>0

scan

σc>0

scan

SELECT a, sum(b) as sb    FROM R   WHERE c > 0 GROUP BY a 



Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

σc>0

scan

g a, sum(b)→b

σc>0

scan

g a, sum(b)→b

SELECT a, sum(b) as sb    FROM R   WHERE c > 0 GROUP BY a 



Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

SELECT a, sum(b) as sb    FROM R   WHERE c > 0 GROUP BY a 



Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

SELECT a, sum(b) as sb    FROM R   WHERE c > 0 GROUP BY a 



Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

hash on a

g a, sum(b)→sb

σc>0

scan

g a, sum(b)→b

hash on a

g a, sum(b)→ sb

σc>0

scan

g a, sum(b)→b

hash on a

g a, sum(b)→ sb

SELECT a, sum(b) as sb    FROM R   WHERE c > 0 GROUP BY a 



Speedup and Scaleup
Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?
• Same (chunk sizes remain the same)
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Speedup and Scaleup
Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?
• Same (chunk sizes remain the same)
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Parallel/Distributed Join

Three “algorithms”:

• Hash-partitioned

• Broadcast

• Combined: “skew-join” or other names
CSEP 544 - Spring 2021 68



Hash Join:  R ⋈A=B S

R1, S1 R2, S2 RP, SP .  .  .

Initially, R and S are block partitioned. 
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(A, C), S(B, D)
Query: R ⋈A=B S
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Hash Join:  R ⋈A=B S

R’1, S’1 R’2, S’2 R’P, S’P .  .  .

R1, S1 R2, S2 RP, SP .  .  .

Reshuffle R on R.A
and S on S.B

Each server computes
the join locally

Initially, R and S are block partitioned. 
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(A, C), S(B, D)
Query: R ⋈A=B S



Hash Join:  R ⋈A=B S

• Step 1
– Every server holding any chunk of R partitions 

its chunk using a hash function h(t.A)
– Every server holding any chunk of S partitions 

its chunk using a hash function h(t.B)

• Step 2: 
– Each server computes the join of its local 

fragment of R with its local fragment of S
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Broadcast Join

• When joining R and S
• If |R| >> |S|

– Leave R where it is
– Replicate entire S relation across nodes

• Also called a small join or a broadcast join
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Broadcast Join
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Query:  R ⋈ S

.  .  .
SR1 R2 RP 



Broadcast Join
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.  .  .

Keep R in place

Broadcast S

SR1 R2 RP 

Query:  R ⋈ S



Broadcast Join
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R1 R2 RP 

.  .  .

Keep R in place

Broadcast S

SR1 R2 RP 

Same place…

Query:  R ⋈ S



Broadcast Join
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R1, S R2, S RP, S

.  .  .

Keep R in place

Broadcast S

SR1 R2 RP 

Broadcast S

Same place…

Query:  R ⋈ S



Example Query Execution
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SELECT * 
FROM Order o, Line i
WHERE o.item = i.item

AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order oLine i

Find all orders from today, along with the items ordered

Order(oid, item, date), Line(item, …)



Query Execution
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Node 1 Node 2 Node 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

Node 1 Node 2 Node 3

join

select

scan

date = today()

o.item = i.item

Order o

Order(oid, item, date), Line(item, …)



Query Execution
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Node 1 Node 2 Node 3

scan
Item i

Node 1 Node 2 Node 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Line i

Order(oid, item, date), Line(item, …)



Query Execution
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Node 1 Node 2 Node 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

Order(oid, item, date), Line(item, …)



Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

SELECT * 
FROM R, S, T 
WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100 

Example 2
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σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T
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… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100 



σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T
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… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100 



σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T
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… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100 



σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T
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… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100 



Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

Broadcasting S and T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T
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… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100 



Skew-Join

• Hash-join:
– Both relations are partitioned (good)
– May have skew (bad)

• Broadcast join
– One relation must be broadcast (bad)
– No worry about skew (good)

• Skew join (has other names):
– Combine both: in class
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