CSES544
Data Management

Lectures 15
Parallel Query Processing

CSEP 544 - Spring 2021

Announcements

* Project proposals due on Friday
« HW4 Datalog due next Tuesday

* Tim Kraska talks next Monday, 9-10am

— The talk is recommended (not mandatory)
— | will post the zoom link on Ed

CSEP 544 - Spring 2021

Outline

 Brief discussion of the LSM paper

» Parallel Query Processing — Basics

» Parallel Query Processing — Systems
— Next lecture (Wednesday)

CSEP 544 - Spring 2021

LSM Trees — Review

« What is the problem that LSM trees are addressing?
And what is their principle?

« What does this graph represent?
100

~+—— The Pareto curve, beyond which lookup cost cannot be
improved without harming update cost, and vice versa.

|
1
|
1
\
\
\

50

\ Wired Tiger

x Cassandra, HBase

S

RocksDB, LevelDB, cLSM

LSM Trees — Review

« What is the problem that LSM trees are addressing?
And what is their principle?

— High throughput updates, compact data representation

— Principle: buffer updates in main memory, batch-merge
« What does this graph represent?

100

~+—— The Pareto curve, beyond which lookup cost cannot be
improved without harming update cost, and vice versa.

|
1
|
1
\
\
\

50

\ Wired Tiger

x Cassandra, HBase

S

RocksDB, LevelDB, cLSM

LSM Trees — Review

What is the problem that LSM trees are addressing?

And what is their principle?

— High throughput updates, compact data representation
— Principle: buffer updates in main memory, batch-merge
« What does this graph represent?

Lookup cost (I/0s)

100

50

~+—— The Pareto curve, beyond which lookup cost cannot be
\ improved without harming update cost, and vice versa.

|

I

\

\

\

\

\, WiredTiger

x Cassandra, HBase
x\\\xRocksDB, Level DB, cLSM

0.05
Update cost (amortized I/Os)

LSM Trees — Review

* Describe a lookup is an LSM tree

|
ve

e s -

o s e ————— ——————————————— —————

LI

fence
lookup buffer filters pointers
s N
e CdJ — 0 —/
> |:| — |] —
-U—1-
- Y,

M = Mpyufrer + Mgiters + M,

MW e

pointers

P-B-T9
P-B-T!

P-B-T?2

P-B-TL:N-$

Total = N

LSM Trees — Review

« What is the False FPR formula in a Bloom filter?

 How do current systems design the sizes M of the
Bloom filters?

« Paper says it's a bad idea. Why?

LSM Trees — Review

« What is the False FPR formula in a Bloom filter?

M
_ FPR = ¢ 7™ 2 where

— M = # bits in the Bloom filter, N = # data entries

 How do current systems design the sizes M of the
Bloom filters?

« Paper says it's a bad idea. Why?

LSM Trees — Review

« What is the False FPR formula in a Bloom filter?

M
_ FPR = ¢ 7™ 2 where

— M = # bits in the Bloom filter, N = # data entries
 How do current systems design the sizes M of the

Bloom filters?

— Ensure same FPR at all levels

— M grows exponentially by factor T

« Paper says it's a bad idea. Why?

10

LSM Trees — Review

« What is the False FPR formula in a Bloom filter?

M
_ FPR = ¢ 7™ 2 where

— M = # bits in the Bloom filter, N = # data entries
 How do current systems design the sizes M of the

Bloom filters?

— Ensure same FPR at all levels

— M grows exponentially by factor T
« Paper says it's a bad idea. Why?

— Every Bloom filter saves only one I/O at each level.

— Last Bloom filter is larger then other, but same benefit

11

step 2 step 1

step 3

LSM Trees — Review

* Describe the two merge strategies

level Tiered LSM-Tree Leveled LSM-Tree
0 = < insert 13 . - insert 13
1 3119 5 1|3 flush &
2 |2]4]|8 flush |24 merge
0
merge &
1 3(19 1|10 7113] ove 13| 7]10]13[19 move
2

merge

N = O

LSM Trees — Review

* What is the takeaway of the design
space of LSM Trees?

o

Lookup cost (I/Os)

NE . e_‘M fl}fers
Mbuffer

xLog Merge Policy Size Ratio T
\
‘\\ ———- Tiering o 2
\ — Leveling O 4
\\ ?> 0O 8
\ . * T)
\ Y lim
\\ @%
Sy &
I Lev .
= \e_]"lg Sorted
%ﬁ\ Array
ke
O(p) O (4 e)

Update cost (I/Os)

Outline

 Brief discussion of the LSM paper

» Parallel Query Processing — Basics

» Parallel Query Processing — Systems
— Next lecture (Wednesday)

CSEP 544 - Spring 2021

14

Distributed/Parallel Query
Processing

Parallel DBs since the 80s
New, strong technology pulls:

* Multi-core
» Cloud computing

CSEP 544 - Spring 2021

15

Architectures for Parallel
Databases

* Shared memory

 Shared disk

* Shared nothing

CSEP 544 - Spring 2021

16

Shared Memory

« SMP =
symmetric multiprocessor

* Nodes share RAM and disk

" ' — « 10x ... 100x processors
Interconnection
. Network - Example: SQL Server runs on
a single machine and can
leverage many threads to
GIObaI Shared Speed up a query
Memory

 Easy to use and program
 EXxpensive to scale

O |

Shared Disk

M

M

M

Network

[Interconnection

]

)=

All nodes access same disks

10x processors

Example: Oracle

No more memory contention

Harder to program
Still hard to scale

18

Shared Nothing

Interconnection
Network

» Cluster of commodity machines

« Called "clusters" or "blade servers”
« Each machine: own memory&disk
Up to x1000-x10000 nodes
Example: redshift, spark, snowflake

Because all machines today have many
cores and many disks, shared-nothing
systems typically run many "nodes” on a
single physical machine.

« [Easy to maintain and scale
 Most difficult to administer and tune.

Performance Metrics
Nodes = processors = computers

* Speedup:

— More nodes, same data =» higher speed

» Scaleup:
— More nodes, more data = same speed

Warning: sometimes Scaleup is used to mean Speedup

Linear v.s. Non-linear
Speedup

Speedup

\6"’6\

x1 x5 x10 x15

nodes (=P)
CSEP 544 - Spring 2021 21

Linear v.s. Non-linear Scaleup

Batch
Scaleup

Ideal

nodes (=P) AND data size
CSEP 544 - Spring 2021 22

Why Sub-linear?

« Startup cost
— Cost of starting an operation on many nodes

* Interference
— Contention for resources between nodes

o« Skew

— Slowest node becomes the bottleneck

CSEP 544 - Spring 2021

Distributed Query Processing
Algorithms

24

Horizontal Data Partitioning

sid | name

Horizontal Data Partitioning

sid | name

Horizontal Data Partitioning

sid

name

—

-

sid

name

Ry

R;

Rs

fragment
chunk
partition

27

Horizontal Data Partitioning

* Block Partition, a.k.a. Round Robin:
— Partition tuples arbitrarily s.t. size(R¢)= ... = size(Rp)

* Hash partitioned on attribute A:
— Tuple t goes to chunk i, where i = h(t.A) mod P + 1

* Range partitioned on attribute A:
— Partition the range of Ainto -0 =vy<v,<...<Vvp=
— Tuple t goes to chunk i, if v,y <t. A<y,

CSEP 544 - Spring 2021 28

Notations

p = number of servers (nodes) that hold the chunks

When a relation R is distributed to p servers,
we draw the picture like this:

R, R, Ry

Here R, is the fragment of R stored on server 1, etc

R=R,UR,U--URp

29

Uniform Load and Skew
* |R[=N tuples, then |[R4| + |Ry| + ... + |R;| =N

* We say the load is uniform when:
IRi| =Ry = ... = [Rp| = N/p

« Skew means that some load is much larger:
max; |R;| >> N/p

We design algorithms for uniform load, discuss skew later

Parallel Algorithm

« Selection o

e Join X

 Group by y

31

Parallel Selection

Data: R(K, A, B, C)
Query: Oa=v(R), Or O0y1<a<2(R)

* Block partitioned:

* Hash partitioned:

» Range partitioned:

CSEP 544 - Spring 2021

32

Parallel Selection

Data: R(K, A, B, C)
Query: Oa=v(R), Or O0y1<a<2(R)

* Block partitioned:
— All servers need to scan

* Hash partitioned:

» Range partitioned:

CSEP 544 - Spring 2021

33

Parallel Selection

Data: R(K, A, B, C)
Query: Oa=v(R), Or O0y1<a<2(R)

* Block partitioned:
— All servers need to scan

* Hash partitioned:
— Point query: only one server needs to scan
— Range query: all servers need to scan

« Range partitioned:

CSEP 544 - Spring 2021

34

Parallel Selection

Data: R(K, A, B, C)
Query: Oa=v(R), Or O0y1<a<2(R)

* Block partitioned:
— All servers need to scan

* Hash partitioned:
— Point query: only one server needs to scan
— Range query: all servers need to scan

» Range partitioned:
— Only some servers need to scan

CSEP 544 - Spring 2021

35

Parallel GroupBy

Data: R(K, A, B, C)

Query: VA,sum(C)(R)
Discuss in class how to compute in each case:

* R is hash-partitioned on A

* R is block-partitioned or hash-partitioned on K

36

Parallel GroupBy

Data: R(K, A, B, C)

Query: VA,sum(C)(R)
Discuss in class how to compute in each case:

* R is hash-partitioned on A
— Each server i computes locally ya symc)(Ri)

* R is block-partitioned or hash-partitioned on K

37

Parallel GroupBy

Data: R(K, A, B, C)

Query: VA,sum(C)(R)
Discuss in class how to compute in each case:

* R is hash-partitioned on A
— Each server i computes locally ya symc)(Ri)

* R is block-partitioned or hash-partitioned on K
— Need to reshuffle data on A first (next slide)
— Then compute locally ya symc)(Ri)

38

Basic Parallel GroupBy

Data: R(K, A, B, C)

Query: Yasumc)(R)
* R is block-partitioned or hash-partitioned on K

R, R, R,

CSEP 544 - Spring 2021 39

Basic Parallel GroupBy

Data: R(K, A, B, C)

Query: Yasumc)(R)
* R is block-partitioned or hash-partitioned on K

Reshuffle R
on attribute A

R, R, R,

CSEP 544 - Spring 2021 40

Basic Parallel GroupBy
Data: R(K, A, B, C)

Query: Yasumc)(R)
* R is block-partitioned or hash-partitioned on K

Reshuffle R
on attribute A

CSEP 544 - Spring 2021 41

Basic Parallel GroupBy

Data:
Query:
« Ris bloc

Reshuffle R
on attribute A

R(K, A, B, C)

VA,sum(C)(R)
K-partitioned or hash-partitioned on K

Ry

R,

R,

CSEP 544 - Spring 2021

R,

42

Basic Parallel GroupBy

Data: R(K, A, B, C)

Query: Yasumc)(R)
* R is block-partitioned or hash-partitioned on K

Ry R, oL Rp’
Reshuffle R
on attribute A

R, R, Re

CSEP 544 - Spring 2021 43

Basic Parallel GroupBy

Data: R(K, A, B, C)

Query: Yasumc)(R)
* R is block-partitioned or hash-partitioned on K

R’I’ RZ’ L. RP’
Reshuffle R This is d(_)ne.ln one
on attribute A communication step
R1 RZ Rp

CSEP 544 - Spring 2021 44

Reshuffling

* Nodes send data over the network
 Many-many communications possible

* Throughput:
— Better than disk
— Worse than main memory

CSEP 544 - Spring 2021

45

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: Yasumc)(R)

* R is block-partitioned or hash-partitioned on K

R,
Reshuffle R
on attribute A
R,

R,

R,

R,

This is done in one
communication step

Rp

| Can you think
CSEP 544 - Spring 2021 of an optimization?

Group

Seattle 10
LA 20
Seattle 30
NY 40
city . gant
LA 22
NY 33
LA 44
Austin 55
city . gant
Seattle 66
LA 77
NY 88
LA 99

By/Union Commutativity

SELECT city, sum(quant)
FROM R
GROUP BY city

GroupBy/Union Commutativity

Seattle 10
LA 20
Seattle 30
NY 40

SELECT city, sum(quant)

z E FROM R

Austin 95 GROUP BY Clty

city gant

Seattle 66
LA 77
NY 88
LA 99

Y city,sum(q) (Rl UR, U RB) —

GroupBy/Union Commutativity

city gant

Seattle 10

LA 20

Seattle 30

NY 40

city gant .

— - SELECT city, sum(quant)
Y E FROM R

LA 44

Austin 55 GROUP BY Clty
city gant

Seattle 66

LA 77

NY 88

LA 99

Y city,sum(q) (R 1tUR UR 3) —
— YCity,sum(q) (YCity,sum(q) (R 1) U YCity,sum(q) (R 2) U YCity,sum(q) (R 3))

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: VA,sum(C)(R)

CSEP 544 - Spring 2021

50

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: VA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = VA,sum(C)(Ri)

CSEP 544 - Spring 2021 51

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: VA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = VA,sum(C)(Ri)

Step 1: partitions tuples in T, using hash function h(A):
Tiq, Tio, ... T
then send fragme1nt T2 to ser{)/erj

CSEP 544 - Spring 2021 52

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: VA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = VA,sum(C)(Ri)

Step 1: partitions tuples in T, using hash function h(A):
Ti1, Tio, ..o, T
then send fragm’e1nt Tzi,j to server j

Step 2: receive fragments, union them, then group-by
Rj’ - T1,J U " U Tp,J
Answerj = YA, sum(C) (Rj’)

CSEP 544 - Spring 2021 53

Pushing Aggregates Past

Union
Which other rules can we push past
union?
e Sum?
* Count?
* Avg?
 Max?
 Median?

CSEP 544 - Spring 2021

Pushing Aggregates Past
Union

Which other rules can we push past

union? Distributive Algebraic Holistic
sum(astayt...+ag)= avg(B) = median(B)

° Sum? sum(sam(2a1+ag+ga3)+ sum(B)/count(B)

sum(astastag)t

¢ COU nt? sum(a;+ag+ag))

* Avg?

« Max?

* Median?

CSEP 544 - Spring 2021 55

Example Query with Group By

SELECT a, sum(b) as sb
FROM RWHERE c>0
GROUP BY a

Example Query with Group By

SELECT a, sum(b) as sb
FROM RWHERE c>0
GROUP BY a

Y a, sum(b)—sb

Gc>0

R

Example Query with Group By

SELECT a, sum(b) as sb
FROM RWHERE c>0
GROUP BY a

Machine 1 Machine 2

1/3 of R 1/3 of R

Y a, sum(b)—sb

Gc>0

R

Machine 3

1/3 of R

SELECT a, sum(b)assb FROMR WHERE c > 0 GROUP BY a

Machine 1 Machine 2 Machine 3

1/3 of R 1/3 of R 1/3 of R

SELECT a, sum(b)assb FROMR WHERE c > 0 GROUP BY a

SCan SCan SCan

Machine 1 Machine 2 Machine 3

1/3 of R 1/3 of R 1/3 of R

SELECT a, sum(b)assb FROMR WHERE c > 0 GROUP BY a

Coa>

Machine 1

1/3 of R

Y a, sum(b)—b

c>0

A
v

SCan

Y

Machine 2

1/3 of R

Y a, sum(b)—b

—

Machine 3

1/3 of R

SELECT a, sum(b)assb FROMR WHERE c > 0 GROUP BY a

Y a, sum(b)—b

)
i)

c>0

A
v

SCan

Y

Machine 1

1/3 of R

hash on a

¢

Y a sum(b)—b

)

c>0

A
v

SCan

Y

Machine 2

1/3 of R

Y a, sum(b)—b

£
i

c>0

Al
v

SCan

Y

Machine 3

1/3 of R

SELECT a, sum(b)assb FROMR WHERE c > 0 GROUP BY a

D

hash on a hash on a hash on a

Y a, sur;@ Y a, sum(b)—b @m(b)—m

scan scan scan

Machine 1 Machine 2 Machine 3

)
£
YUY

)
)
U

Y
Y

1/3 of R 1/3 of R 1/3 of R

SELECT a, sum(b)assb FROMR WHERE c > 0 GROUP BY a

Y a, sum(b)—sb

@ona

Coa>

Machine 1

1/3 of R

Y a, sum(b)— sb

Y a, sum@

hash on a

(b)—b @m(b)—m

Machine 2 Machine 3

hash on a

)
i)

y d, sum

Y'Y

A
v

Y

1/3 of R 1/3 of R

Speedup and Scaleup

Consider the query Va sum(c)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

If we double both P and size of R, what is the runtime?

CSEP 544 - Spring 2021 65

Speedup and Scaleup

Consider the query Va sum(c)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
« Half (chunk sizes become %)

If we double both P and size of R, what is the runtime??
* Same (chunk sizes remain the same)

CSEP 544 - Spring 2021 66

Speedup and Scaleup

Consider the query Va sum(c)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
« Half (chunk sizes become %)

If we double both P and size of R, what is the runtime??
* Same (chunk sizes remain the same)

[But only if the data is without skew! } 67

Parallel/Distributed Join

hree “algorithms”:

* Hash-partitioned

 Broadcast

 Combined: “skew-join” or other names

CSEP 544 - Spring 2021

68

Hash Join: R X,z S

Data: R(A, C), S(B, D)
Query: R X5 S
R1, S1 R2, 82 e Rp, Sp

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)

Some servers hold R-chunks, some hold S-chunks, some hold both

Hash Join: R ™,_g S

Data: R(A, C), S(B, D)
Query: R X5 S

Reshuffle R on R.A
and Son S.B

R11 S1 R2a 82 - RF” SP

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)

Some servers hold R-chunks, some hold S-chunks, some hold both

Hash Join: R ™,_g S

Data: R(A, C), S(B, D)
Query: R X5 S
R,1, 8,1 R’g, 8’2 .. R’p, S’p

Reshuffle R on R.A
and Son S.B

R11 S1 R2a 82 - RP’ SP

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)

Some servers hold R-chunks, some hold S-chunks, some hold both

Hash Join: R ™,_g S

Data: R(A, C), S(B, D)
Query: R X5 S

Each server computes R4, S’y R’5, S5 Co. R’p, S’p
the join locally
Reshuffle R on R.A
and Son S.B
R11 S1 R2a 82 - RP’ SP

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)

Some servers hold R-chunks, some hold S-chunks, some hold both

Hash Join: R X,z S

o Step 1
— Every server holding any chunk of R partitions
its chunk using a hash function h(t.A)

— Every server holding any chunk of S partitions
its chunk using a hash function h(t.B)

« Step 2:
— Each server computes the join of its local
fragment of R with its local fragment of S

CSEP 544 - Spring 2021 73

Broadcast Join

 When joining Rand S
* IfIR[>>[S]
— Leave R where itis
— Replicate entire S relation across nodes

* Also called a small join or a broadcast join

CSEP 544 - Spring 2021

74

Query: R S

Broadcast Join

CSEP 544 - Spring 2021

75

Query: R S

Broadcast Join

Keep R in place

R, R, Rp S

Broadcast S

CSEP 544 - Spring 2021 76

Query: R S

Broadcast Join

R R, Rp
R R, Rp S

CSEP 544 - Spring 2021 77

Query: R S

Broadcast Join

RiS) [Re Re, S

Keep R in place

Ri

Broadcast S

CSEP 544 - Spring 2021 78

Order(oid, item, date), Line(item, ...)

Example Query Execution

Find all orders from today, along with the items ordered

SELECT * o.item = i.item

FROM Order o, Line i
WHERE o.item = i.item) @
date = today()

AND o.date = today()

CSEP 544 - Spring 2021 79

Order(oid, item, date), Line(item, ...)

Query Executi

Node 1

hash

h(o.item)
select
date=today()

scan
Order o

Node 1

Node 2

hash
\ h(o.item)

d

ate=today()

scan
Order o

Node 2

CSEP 544 - Spring 2021

~

o.item = i.item

date = today()

<scan> Order o /

Node 3

|

hash

CselecD>

Scan

h(o.item)

date=today()

Order o

Node 3

80

Order(oid, item, date), Line(item, ...) . ™~

o.item = i.item

Query Executi® o

Node 1 Node 2 Node 3
hash hash hash
h(i.item) h(i.item) h(i.item)
scan . scan scan
ltem | ltem i ltem |
Node 1 Node 2 Node 3

CSEP 544 - Spring 2021 81

Order(oid, item, date), Line(item, ...)

Query Execution

’ o.item = i.item o.item = i.item o.item = i.item

Node 1 Node 2 Node 3

contains all orders and all

lines where hash(item) = 3

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 1

CSEP 544 - Spring 2021 82

Example 2

SELECT *
FROMR, S, T
WHERE R.b = S.cAND S.d = T.e AND (R.a - T.f) > 100

Machine 1 Machine 2 Machine 3

1/30fR, S, T 1/30fR, S, T 1/30f R®S, T

... WHERE R.b = S.cAND S.d = T.e AND (R.a - T.f) > 100

Machine 1 Machine 2 Machine 3

1/30fR, S, T 1/30fR, S, T 1/30fR, S, T

CSEP 544 - Spring 2021 84

... WHERE R.b = S.cAND S.d = T.e AND (R.a - T.f) > 100

Shuffing R, S, and T

@R @ DA D ERD @ DA D | GRDEEDETD

Machine 1 Machine 2 Machine 3

1/30fR, S, T 1/30fR, S, T

CSEP 544 - Spring 2021 85

1/30fR, S, T

... WHERE R.b = S.cAND S.d = T.e AND (R.a - T.f) > 100

Shuffling intermediate result from R < S
(G(s.9p D)
R~ S R~ S

Shuffling R, S, and T

Machine 2 Machine 3

h(S.d)

RS

Machine 1

1/30fR, S, T 1/30fR, S, T

CSEP 544 - Spring 2021 86

1/30fR, S, T

... WHERE R.b =S.cAND S.d = T.e AND

R.a-T.f) > 100

——————————————

Shuffling intermediate result from R < S

h(S.d)

RS

@D || @D
@D | | &3

Shuffling R, S, and T

Machine 1

1/30fR, S, T

Machine 3

Machine 2
1/30f R, S, T 1/30f R, S, T

CSEP 544 - Spring 2021 87

... WHERE R.b = S.cAND S.d = T.e AND (R.a - T.f) > 100

R
|
|
|
1
|
|

a— 11> a— 11>

0] 0) !
|

1

1

|

LI 1
1

|

1

1

1

1

1

1

1

1

]

1

1

]

1

1

RS

RS
(sean B

5

Broadcasting S and T .

roadcas) Oroadcas

roadcas) Obroadcas

Machine 1 Machine 2 Machine 3
1/30f R, S, T 1/30f R, S, T 1/30f R, S, T
CSEP 544 - Spring 2021 88

Skew-Join

» Hash-join:
— Both relations are partitioned (good)
— May have skew (bad)

* Broadcast join
— One relation must be broadcast (bad)
— No worry about skew (good)

* Skew join (has other names):
— Combine both: in class

89

