
CSE544
Data Management

Lectures 15
Parallel Query Processing

CSEP 544 - Spring 2021 1

Announcements

• Project proposals due on Friday

• HW4 Datalog due next Tuesday

• Tim Kraska talks next Monday, 9-10am
– The talk is recommended (not mandatory)
– I will post the zoom link on Ed

CSEP 544 - Spring 2021 2

Outline

• Brief discussion of the LSM paper

• Parallel Query Processing – Basics

• Parallel Query Processing – Systems
– Next lecture (Wednesday)

CSEP 544 - Spring 2021 3

LSM Trees – Review
• What is the problem that LSM trees are addressing?

And what is their principle?
– High throughput updates
– Compact data representation

• What does this graph represent?

4

LSM Trees – Review
• What is the problem that LSM trees are addressing?

And what is their principle?
– High throughput updates, compact data representation
– Principle: buffer updates in main memory, batch-merge

• What does this graph represent?

5

LSM Trees – Review
• What is the problem that LSM trees are addressing?

And what is their principle?
– High throughput updates, compact data representation
– Principle: buffer updates in main memory, batch-merge

• What does this graph represent?

6

LSM Trees – Review

• Describe a lookup is an LSM tree

LSM Trees – Review
• What is the False FPR formula in a Bloom filter?

– 𝐹𝑃𝑅 = 𝑒!
!
" "#

$ where
– M = # bits in the Bloom filter, N = # data entries

• How do current systems design the sizes M of the
Bloom filters?
– Ensure same FPR at all levels
– M grows exponentially by factor T

• Paper says it’s a bad idea. Why?
– Every Bloom filter saves only one I/O at each level.
– Last Bloom filter is larger then other, but same benefit

8

LSM Trees – Review
• What is the False FPR formula in a Bloom filter?

– 𝐹𝑃𝑅 = 𝑒!
!
" "#

$ where
– M = # bits in the Bloom filter, N = # data entries

• How do current systems design the sizes M of the
Bloom filters?
– Ensure same FPR at all levels
– M grows exponentially by factor T

• Paper says it’s a bad idea. Why?
– Every Bloom filter saves only one I/O at each level.
– Last Bloom filter is larger then other, but same benefit

9

LSM Trees – Review
• What is the False FPR formula in a Bloom filter?

– 𝐹𝑃𝑅 = 𝑒!
!
" "#

$ where
– M = # bits in the Bloom filter, N = # data entries

• How do current systems design the sizes M of the
Bloom filters?
– Ensure same FPR at all levels
– M grows exponentially by factor T

• Paper says it’s a bad idea. Why?
– Every Bloom filter saves only one I/O at each level.
– Last Bloom filter is larger then other, but same benefit

10

LSM Trees – Review
• What is the False FPR formula in a Bloom filter?

– 𝐹𝑃𝑅 = 𝑒!
!
" "#

$ where
– M = # bits in the Bloom filter, N = # data entries

• How do current systems design the sizes M of the
Bloom filters?
– Ensure same FPR at all levels
– M grows exponentially by factor T

• Paper says it’s a bad idea. Why?
– Every Bloom filter saves only one I/O at each level.
– Last Bloom filter is larger then other, but same benefit

11

LSM Trees – Review

• Describe the two merge strategies

CSEP 544 - Spring 2021 12

LSM Trees – Review

• What is the takeaway of the design
space of LSM Trees?

Outline

• Brief discussion of the LSM paper

• Parallel Query Processing – Basics

• Parallel Query Processing – Systems
– Next lecture (Wednesday)

CSEP 544 - Spring 2021 14

Distributed/Parallel Query
Processing

Parallel DBs since the 80s

New, strong technology pulls:

• Multi-core
• Cloud computing

CSEP 544 - Spring 2021 15

Architectures for Parallel
Databases

• Shared memory

• Shared disk

• Shared nothing

CSEP 544 - Spring 2021 16

Shared Memory
• SMP =

symmetric multiprocessor
• Nodes share RAM and disk
• 10x … 100x processors

• Example: SQL Server runs on
a single machine and can
leverage many threads to
speed up a query

• Easy to use and program
• Expensive to scale

17

Interconnection
Network

P P P

Global Shared
Memory

D D D

Shared Disk
• All nodes access same disks
• 10x processors

• Example: Oracle

• No more memory contention

• Harder to program
• Still hard to scale

18

Interconnection
Network

P P P

D D D

M M M

Shared Nothing
• Cluster of commodity machines
• Called "clusters" or "blade servers”
• Each machine: own memory&disk
• Up to x1000-x10000 nodes
• Example: redshift, spark, snowflake

Because all machines today have many
cores and many disks, shared-nothing
systems typically run many "nodes” on a
single physical machine.

• Easy to maintain and scale
• Most difficult to administer and tune.

Interconnection
Network

P P P

D D D

M M M

Performance Metrics
Nodes = processors = computers

• Speedup:
– More nodes, same data è higher speed

• Scaleup:
– More nodes, more data è same speed

Warning: sometimes Scaleup is used to mean Speedup

Linear v.s. Non-linear
Speedup

CSEP 544 - Spring 2021 21

nodes (=P)

Speedup

×1 ×5 ×10 ×15

Ideal

Linear v.s. Non-linear Scaleup

CSEP 544 - Spring 2021 22
nodes (=P) AND data size

Batch
Scaleup

×1 ×5 ×10 ×15

Ideal

Why Sub-linear?

• Startup cost
– Cost of starting an operation on many nodes

• Interference
– Contention for resources between nodes

• Skew
– Slowest node becomes the bottleneck

CSEP 544 - Spring 2021 23

Distributed Query Processing
Algorithms

24

Horizontal Data Partitioning

25

sid name … …
Table

R

Horizontal Data Partitioning

26

sid name … …
Table

R

Horizontal Data Partitioning

27

sid name … … sid name … …

sid name … …

sid name … …

Table

fragment
chunk

partition

R

R1

R2

R3

…

Horizontal Data Partitioning
• Block Partition, a.k.a. Round Robin:

– Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)

• Hash partitioned on attribute A:
– Tuple t goes to chunk i, where i = h(t.A) mod P + 1

• Range partitioned on attribute A:
– Partition the range of A into -∞ = v0 < v1 < … < vP = ∞
– Tuple t goes to chunk i, if vi-1 < t.A < vi

CSEP 544 - Spring 2021 28

Notations

29

When a relation R is distributed to p servers,
we draw the picture like this:

R1 R2 RP

Here R1 is the fragment of R stored on server 1, etc

𝑅 = 𝑅! ∪ 𝑅" ∪⋯∪ 𝑅#

p = number of servers (nodes) that hold the chunks

Uniform Load and Skew

• |R| = N tuples, then |R1| + |R2| + … + |Rp| = N

• We say the load is uniform when:
|R1| ≈ |R2| ≈ … ≈ |Rp| ≈ N/p

• Skew means that some load is much larger:
maxi |Ri| >> N/p

30We design algorithms for uniform load, discuss skew later

Parallel Algorithm

• Selection σ

• Join ⨝

• Group by ɣ
31

Parallel Selection
Data: R(K, A, B, C)
Query: σA=v(R), or σv1<A<v2(R)

• Block partitioned:
– All servers need to scan

• Hash partitioned:
– Point query: only one server needs to scan
– Range query: all servers need to scan

• Range partitioned:
– Only some servers need to scan

CSEP 544 - Spring 2021 32

Parallel Selection
Data: R(K, A, B, C)
Query: σA=v(R), or σv1<A<v2(R)

• Block partitioned:
– All servers need to scan

• Hash partitioned:
– Point query: only one server needs to scan
– Range query: all servers need to scan

• Range partitioned:
– Only some servers need to scan

CSEP 544 - Spring 2021 33

Parallel Selection
Data: R(K, A, B, C)
Query: σA=v(R), or σv1<A<v2(R)

• Block partitioned:
– All servers need to scan

• Hash partitioned:
– Point query: only one server needs to scan
– Range query: all servers need to scan

• Range partitioned:
– Only some servers need to scan

CSEP 544 - Spring 2021 34

Parallel Selection
Data: R(K, A, B, C)
Query: σA=v(R), or σv1<A<v2(R)

• Block partitioned:
– All servers need to scan

• Hash partitioned:
– Point query: only one server needs to scan
– Range query: all servers need to scan

• Range partitioned:
– Only some servers need to scan

CSEP 544 - Spring 2021 35

Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)
Discuss in class how to compute in each case:

• R is hash-partitioned on A
– Each server i computes locally γA,sum(C)(Ri)

• R is block-partitioned or hash-partitioned on K
– Need to reshuffle data on A first (next slide)
– Then compute locally γA,sum(C)(Ri)

36

Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)
Discuss in class how to compute in each case:

• R is hash-partitioned on A
– Each server i computes locally γA,sum(C)(Ri)

• R is block-partitioned or hash-partitioned on K
– Need to reshuffle data on A first (next slide)
– Then compute locally γA,sum(C)(Ri)

37

Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)
Discuss in class how to compute in each case:

• R is hash-partitioned on A
– Each server i computes locally γA,sum(C)(Ri)

• R is block-partitioned or hash-partitioned on K
– Need to reshuffle data on A first (next slide)
– Then compute locally γA,sum(C)(Ri)

38

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

CSEP 544 - Spring 2021 39

R1 R2 RP

. . .

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

CSEP 544 - Spring 2021 40

R1 R2 RP

. . .

Reshuffle R
on attribute A

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

CSEP 544 - Spring 2021 41

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

CSEP 544 - Spring 2021 42

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

CSEP 544 - Spring 2021 43

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

CSEP 544 - Spring 2021 44

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

This is done in one
communication step

Reshuffling

• Nodes send data over the network

• Many-many communications possible

• Throughput:
– Better than disk
– Worse than main memory

CSEP 544 - Spring 2021 45

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

CSEP 544 - Spring 2021 46

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

This is done in one
communication step

Can you think
of an optimization?

GroupBy/Union Commutativity
city … qant

Seattle 10

LA 20

Seattle 30

NY 40

city … qant

LA 22

NY 33

LA 44

Austin 55

city … qant

Seattle 66

LA 77

NY 88

LA 99

SELECT city, sum(quant)
FROM R
GROUP BY city

GroupBy/Union Commutativity
city … qant

Seattle 10

LA 20

Seattle 30

NY 40

city … qant

LA 22

NY 33

LA 44

Austin 55

city … qant

Seattle 66

LA 77

NY 88

LA 99

SELECT city, sum(quant)
FROM R
GROUP BY city

𝜸𝒄𝒊𝒕𝒚,𝒔𝒖𝒎 𝒒 𝑹𝟏 ∪ 𝑹𝟐 ∪ 𝑹𝟑 =
= 𝜸𝒄𝒊𝒕𝒚,𝒔𝒖𝒎(𝒒) 𝜸𝒄𝒊𝒕𝒚,𝒔𝒖𝒎(𝒒) 𝑹𝟏 ∪ 𝜸𝒄𝒊𝒕𝒚,𝒔𝒖𝒎(𝒒) 𝑹𝟐 ∪ 𝜸𝒄𝒊𝒕𝒚,𝒔𝒖𝒎(𝒒) 𝑹𝟑

GroupBy/Union Commutativity
city … qant

Seattle 10

LA 20

Seattle 30

NY 40

city … qant

LA 22

NY 33

LA 44

Austin 55

city … qant

Seattle 66

LA 77

NY 88

LA 99

SELECT city, sum(quant)
FROM R
GROUP BY city

𝜸𝒄𝒊𝒕𝒚,𝒔𝒖𝒎 𝒒 𝑹𝟏 ∪ 𝑹𝟐 ∪ 𝑹𝟑 =
= 𝜸𝒄𝒊𝒕𝒚,𝒔𝒖𝒎(𝒒) 𝜸𝒄𝒊𝒕𝒚,𝒔𝒖𝒎(𝒒) 𝑹𝟏 ∪ 𝜸𝒄𝒊𝒕𝒚,𝒔𝒖𝒎(𝒒) 𝑹𝟐 ∪ 𝜸𝒄𝒊𝒕𝒚,𝒔𝒖𝒎(𝒒) 𝑹𝟑

Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2: receive fragments, union them, then group-by
Rj’ = T1,j ∪ … ∪ Tp,j
Answerj = γA, sum(B) (Rj’)

CSEP 544 - Spring 2021 50

Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2: receive fragments, union them, then group-by
Rj’ = T1,j ∪ … ∪ Tp,j
Answerj = γA, sum(B) (Rj’)

CSEP 544 - Spring 2021 51

Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2: receive fragments, union them, then group-by
Rj’ = T1,j ∪ … ∪ Tp,j
Answerj = γA, sum(B) (Rj’)

CSEP 544 - Spring 2021 52

Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2: receive fragments, union them, then group-by
Rj’ = T1,j ∪ … ∪ Tp,j
Answerj = γA, sum(C) (Rj’)

CSEP 544 - Spring 2021 53

Pushing Aggregates Past
Union

Which other rules can we push past
union?
• Sum?
• Count?
• Avg?
• Max?
• Median?

CSEP 544 - Spring 2021 54

Pushing Aggregates Past
Union

Which other rules can we push past
union?
• Sum?
• Count?
• Avg?
• Max?
• Median?

CSEP 544 - Spring 2021 55

Distributive Algebraic Holistic

sum(a1+a2+…+a9)=
sum(sum(a1+a2+a3)+

sum(a4+a5+a6)+
sum(a7+a8+a9))

avg(B) =
sum(B)/count(B)

median(B)

SELECT a, sum(b) as sb
FROM R WHERE c > 0
GROUP BY a

Example Query with Group By

SELECT a, sum(b) as sb
FROM R WHERE c > 0
GROUP BY a

Example Query with Group By

σc>0

g a, sum(b)→sb

R

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

SELECT a, sum(b) as sb
FROM R WHERE c > 0
GROUP BY a

Example Query with Group By

σc>0

g a, sum(b)→sb

R

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

σc>0

scan

σc>0

scan

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

σc>0

scan

g a, sum(b)→b

σc>0

scan

g a, sum(b)→b

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

hash on a

g a, sum(b)→sb

σc>0

scan

g a, sum(b)→b

hash on a

g a, sum(b)→ sb

σc>0

scan

g a, sum(b)→b

hash on a

g a, sum(b)→ sb

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Speedup and Scaleup
Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?
• Same (chunk sizes remain the same)

CSEP 544 - Spring 2021 65

Speedup and Scaleup
Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?
• Same (chunk sizes remain the same)

CSEP 544 - Spring 2021 66

Speedup and Scaleup
Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?
• Same (chunk sizes remain the same)

CSEP 544 - Spring 2021 67But only if the data is without skew!

Parallel/Distributed Join

Three “algorithms”:

• Hash-partitioned

• Broadcast

• Combined: “skew-join” or other names
CSEP 544 - Spring 2021 68

Hash Join: R ⋈A=B S

R1, S1 R2, S2 RP, SP . . .

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(A, C), S(B, D)
Query: R ⋈A=B S

Hash Join: R ⋈A=B S

R1, S1 R2, S2 RP, SP . . .

Reshuffle R on R.A
and S on S.B

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(A, C), S(B, D)
Query: R ⋈A=B S

Hash Join: R ⋈A=B S

R’1, S’1 R’2, S’2 R’P, S’P . . .

R1, S1 R2, S2 RP, SP . . .

Reshuffle R on R.A
and S on S.B

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(A, C), S(B, D)
Query: R ⋈A=B S

Hash Join: R ⋈A=B S

R’1, S’1 R’2, S’2 R’P, S’P . . .

R1, S1 R2, S2 RP, SP . . .

Reshuffle R on R.A
and S on S.B

Each server computes
the join locally

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(A, C), S(B, D)
Query: R ⋈A=B S

Hash Join: R ⋈A=B S

• Step 1
– Every server holding any chunk of R partitions

its chunk using a hash function h(t.A)
– Every server holding any chunk of S partitions

its chunk using a hash function h(t.B)

• Step 2:
– Each server computes the join of its local

fragment of R with its local fragment of S

CSEP 544 - Spring 2021 73

Broadcast Join

• When joining R and S
• If |R| >> |S|

– Leave R where it is
– Replicate entire S relation across nodes

• Also called a small join or a broadcast join

CSEP 544 - Spring 2021 74

Broadcast Join

CSEP 544 - Spring 2021 75

Query: R ⋈ S

. . .
SR1 R2 RP

Broadcast Join

CSEP 544 - Spring 2021 76

. . .

Keep R in place

Broadcast S

SR1 R2 RP

Query: R ⋈ S

Broadcast Join

CSEP 544 - Spring 2021 77

R1 R2 RP

. . .

Keep R in place

Broadcast S

SR1 R2 RP

Same place…

Query: R ⋈ S

Broadcast Join

CSEP 544 - Spring 2021 78

R1, S R2, S RP, S

. . .

Keep R in place

Broadcast S

SR1 R2 RP

Broadcast S

Same place…

Query: R ⋈ S

Example Query Execution

CSEP 544 - Spring 2021 79

SELECT *
FROM Order o, Line i
WHERE o.item = i.item

AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order oLine i

Find all orders from today, along with the items ordered

Order(oid, item, date), Line(item, …)

Query Execution

CSEP 544 - Spring 2021 80

Node 1 Node 2 Node 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

Node 1 Node 2 Node 3

join

select

scan

date = today()

o.item = i.item

Order o

Order(oid, item, date), Line(item, …)

Query Execution

CSEP 544 - Spring 2021 81

Node 1 Node 2 Node 3

scan
Item i

Node 1 Node 2 Node 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Line i

Order(oid, item, date), Line(item, …)

Query Execution

CSEP 544 - Spring 2021 82

Node 1 Node 2 Node 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

Order(oid, item, date), Line(item, …)

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

SELECT *
FROM R, S, T
WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

Example 2

83

σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T

CSEP 544 - Spring 2021 84

… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T

CSEP 544 - Spring 2021 85

… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T

CSEP 544 - Spring 2021 86

… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T

CSEP 544 - Spring 2021 87

… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

Broadcasting S and T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

CSEP 544 - Spring 2021 88

… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

Skew-Join

• Hash-join:
– Both relations are partitioned (good)
– May have skew (bad)

• Broadcast join
– One relation must be broadcast (bad)
– No worry about skew (good)

• Skew join (has other names):
– Combine both: in class

89

