
CSE544
Data Management

Lecture 14
LSM Trees

CSEP 544 - Spring 2021 1

Outline

• Briefly discuss Learned Indexes

• LSM Trees

CSEP 544 - Spring 2021 2

Learned Index Structures

• What are the arguments in favor of learned
index structures?
– B+ trees, hash tables: distribution agnostic
– GPU/TPU: efficient for regression model

• Why is an index a “model”?
– Index maps key value to position
– Regression model does the same

• What does Neumann’s blog say?
– Use a simple regression model

3

The Case for Learned Index Structures,
Kraska et al., SIGMOD’2018

Learned Index Structures

• What are the arguments in favor of learned
index structures?
– B+ trees, hash tables: distribution agnostic
– GPU/TPU: efficient for regression model

• Why is an index a “model”?
– Index maps key value to position
– Regression model does the same

• What does Neumann’s blog say?
– Use a simple regression model

4

The Case for Learned Index Structures,
Kraska et al., SIGMOD’2018

Learned Index Structures

• What are the arguments in favor of learned
index structures?
– B+ trees, hash tables: distribution agnostic
– GPU/TPU: efficient for regression model

• Why is an index a “model”?
– Index maps key value to position
– Regression model does the same

• What does Neumann’s blog say?
– Use a simple regression model

5

The Case for Learned Index Structures,
Kraska et al., SIGMOD’2018

Learned Index Structures

• What are the arguments in favor of learned
index structures?
– B+ trees, hash tables: distribution agnostic
– GPU/TPU: efficient for regression model

• Why is an index a “model”?
– Index maps key value to position
– Regression model does the same

• What does Neumann’s blog say?
– Use a simple regression model

6

The Case for Learned Index Structures,
Kraska et al., SIGMOD’2018

Learned Index Structures

CSEP 544 - Spring 2021 7

Discussion

CSEP 544 - Spring 2021 8

(in class)

Outline

• Briefly discuss Learned Indexes

• LSM Trees

CSEP 544 - Spring 2021 9

Slides based on
Monkey: Optimal Navigable Key-Value Store,
Dayan, Athanassoulis, Idreos,
SIGMOD’2017
Reading for Monday!!

Motivation

• Sorted arrays = best for reads
• Unsorted log file = best for writes
• B+ trees = good for read, so-so for write

• LSM trees = optimize the writes
• Notice:

– Primary (clustered) index only
– Key/value stores, but also relational DBs 10

More Motivation

Index for one attribute:
Person.name

Alice

Bob

Carl

…

More Motivation

Index for one attribute:
Person.name

Index for entire table:
Person(name,age,city)

Alice

Bob

Carl

…

Alice 22 Seattle

Bob 53 Kent

Carl 37 Pasco

…

More Motivation

Index for one attribute:
Person.name

Index for entire table:
Person(name,age,city)

Index for entire db:
Person, Dept, Project,…

Alice

Bob

Carl

…

Alice 22 Seattle

Bob 53 Kent

Carl 37 Pasco

…

Person Accounting 4th floor

Person Sales 2nd floor

Person …

Dept Alice 22 Seattle

Dept Bob 53 Kent

Dept Carl 37 Pasco

Project Compiler $55000

Project Database $77000

Project …

More Motivation

Index for one attribute:
Person.name

Index for entire table:
Person(name,age,city)

Index for entire db:
Person, Dept, Project,…

Alice

Bob

Carl

…

Alice 22 Seattle

Bob 53 Kent

Carl 37 Pasco

…

Accounting 4th floor

Sales 2nd floor

…

Alice 22 Seattle

Bob 53 Kent

Carl 37 Pasco

Compiler $55000

Database $77000

…

E.g. MySQL
on RocksDB

using MyRocks

Three Main Ideas for Writes

1. Store writes in a buffer in main memory
When full: spill to disk

2. Spilling to disk (instead of a B+ tree):
Sort and write to a sorted file.

3. When too many sorted files:
Merge them to a larger sorted file

15

LSM Trees

CSEP 544 - Spring 2021 16

Main memory

Write buffer

Files on disk

LSM Trees

CSEP 544 - Spring 2021 17

Main memory

Write buffer Level 1

Files on disk

LSM Trees

CSEP 544 - Spring 2021 18

Main memory

Write buffer Level 1

Files on disk

Level 2

LSM Trees

CSEP 544 - Spring 2021 19

Main memory

Write buffer Level 1

Files on disk

Level 2

Level 3

LSM Trees

CSEP 544 - Spring 2021 20

Main memory

Write buffer Level 1

Files on disk

Level 2

Level 3

Level L

…

LSM Trees

CSEP 544 - Spring 2021 21

Main memory

Write buffer Level 1

Files on disk

Level 2

Level 3

Level L

…

Level 0

LSM Trees

CSEP 544 - Spring 2021 22

Main memory

Write buffer Level 1

Files on disk

Level 2

Level 3

Level L

…

Level 0

T= size ratio
between levels

Discussion

• Spilling to next level is a bulk operation;
inserts a large number of values

• Better amortized cost than inserting
those values one by one into a B+ tree

• Typically done by offline process

CSEP 544 - Spring 2021 23

Read

• To read a key, we need to search it at
all levels

• Cost is worse than B+ tree

• Three ideas to speedup reads (next)

CSEP 544 - Spring 2021 24

Three Main Ideas for Reads

1. Bloom filter for each level

2. Fenceposts in main memory for each
level

3. Read single block for each level, do
binary search

CSEP 544 - Spring 2021 25

Reading

CSEP 544 - Spring 2021 26

Updates, Deletes

• Never!

• Instead, invalidate the record, and insert
a new record if update

CSEP 544 - Spring 2021 27

Next

• How do we optimize the main memory:
– Write buffer
– Bloom filters
– Fence pointers

• Merge policy
– Tiering or
– Leveling

CSEP 544 - Spring 2021 28

Optimizing Bloom Filters

Most memory used by Bloom filters
• Common practice:

– Ensure the same FPR for all levels
– FPR constant, space m increases by factor T

29

FPR= 𝑒!
!
"(#$

%) , n= #items at given level

Optimizing Bloom Filters

Most memory used by Bloom filters
• Common practice:

– Ensure the same FPR for all levels
– FPR constant, space m increases by factor T

• Paper observes:
– Cost per level is the same: reading 1 block
– Space increases but benefit is constant!
– Keep space constant, FPR increases by factor T

30

FPR= 𝑒!
!
"(#$

%) , n= #items at given level

Merge Policy

• Tiering (write optimized)
– Flush main memory buffer sorted to disk
– Accumulate multiple sorted files/level
– When more than T sorted files: merge

them and add 1 file to the next level

31

Merge Policy

• Tiering (write optimized)
– Flush main memory buffer sorted to disk
– Accumulate multiple sorted files/level
– When more than T sorted files: merge

them and add 1 file to the next level
• Leveling (read-optimized)

– Merge-sort main memory with level 1
– When a level becomes too large, move it to

the next level by sorting 32

Merge Policies

CSEP 544 - Spring 2021 33

Tiering Leveling

… …

Size Ratio: T = 3

Merge Policies

CSEP 544 - Spring 2021 34

Tiering Leveling

… …

merge

Size Ratio: T = 3

Merge Policies

CSEP 544 - Spring 2021 35

Tiering Leveling

… …

Size Ratio: T = 3

Merge Policies

CSEP 544 - Spring 2021 36

Tiering Leveling

… …

merge

Size Ratio: T = 3

Merge Policies

CSEP 544 - Spring 2021 37

Tiering Leveling

… …

Size Ratio: T = 3

Merge Policies

CSEP 544 - Spring 2021 38

Tiering Leveling

… …

Size Ratio: T = 3

Merge Policies

CSEP 544 - Spring 2021 39

Tiering Leveling

… …

merge

Size Ratio: T = 3

Merge Policies

CSEP 544 - Spring 2021 40

Tiering Leveling

… …

Size Ratio: T = 3

Merge Policies

CSEP 544 - Spring 2021 41

Tiering Leveling

… …

merge

Size Ratio: T = 3

Merge Policies

CSEP 544 - Spring 2021 42

Tiering Leveling

… …

Size Ratio: T = 3

Merge Policies
Tiering Leveling

… …

Size Ratio: T = 3

What happens when 𝑇 → ∞ ?

Merge Policies
Tiering Leveling

…

Then L = 1

What happens when 𝑇 → ∞ ?

Merge Policies
Tiering Leveling

…

Then L = 1

What happens when 𝑇 → ∞ ?

A log file!

Merge Policies
Tiering Leveling

…

Then L = 1

What happens when 𝑇 → ∞ ?

A log file! A sorted file!

Recap: Merge-Sort
• Problem: Sort a file of size B with memory M

• Will discuss only 2-pass sorting, for when B ≤ M2

CSEP 544 - Spring 2021 47

Merge-Sort: Step 1
• Phase one: load M pages in memory, sort

CSEP 544 - Spring 2021 48

DiskDisk

.
Size M pages

Main memory

Runs of length M
#Runs = B(R)/M

Merge-Sort: Step 2

• Merge M – 1 runs into a new run
• Result: runs of length M (M – 1) » M2

CSEP 544 - Spring 2021 49

DiskDisk

. .

.
. . .

Input M

Input 1

Input 2
. . . .

Output

Assuming B ≤ M2, we are done

Main memory

Merge-Sort

• Cost:
– Read+write+read = 3B(R)
– Assumption: B(R) <= M2

• Other considerations
– In general, a lot of optimizations are

possible

CSEP 544 - Spring 2021 50

Summary

• LSM trees: optimized for write-intensive
applications

• Three ideas for writes:
– Memory buffer, spill to disk, multiple levels

• Three ideas for reads:
– Bloom filters, fence posts, binary search

• When T is very large: log or sorted file

CSEP 544 - Spring 2021 51

