CSE544 Data Management Lecture 14

Outline

• Briefly discuss Learned Indexes

Learned Index Structures

• What are the arguments in favor of learned index structures?

• Why is an index a "model"?

• What does Neumann's blog say?

Learned Index Structures

- What are the arguments in favor of learned index structures?
 - B+ trees, hash tables: distribution agnostic
 - GPU/TPU: efficient for regression model
- Why is an index a "model"?

• What does Neumann's blog say?

Learned Index Structures

- What are the arguments in favor of learned index structures?
 - B+ trees, hash tables: distribution agnostic
 - GPU/TPU: efficient for regression model
- Why is an index a "model"?
 - Index maps key value to position
 - Regression model does the same
- What does Neumann's blog say?

Learned Index Structures

- What are the arguments in favor of learned index structures?
 - B+ trees, hash tables: distribution agnostic
 - GPU/TPU: efficient for regression model
- Why is an index a "model"?
 - Index maps key value to position
 - Regression model does the same
- What does Neumann's blog say?

– Use a *simple* regression model

Learned Index Structures

Discussion

(in class)

Outline

• Briefly discuss Learned Indexes

LSM Trees

Slides based on Monkey: Optimal Navigable Key-Value Store, Dayan, Athanassoulis, Idreos, SIGMOD'2017 Reading for Monday!!

Motivation

- Sorted arrays = best for reads
- Unsorted log file = best for writes
- B+ trees = good for read, so-so for write

- LSM trees = optimize the writes
- Notice:
 - Primary (clustered) index only
 - Key/value stores, but also relational DBs

Index for one attribute: Person.name

Index for one attribute: Person.name

Index for entire table: Person(name,age,city)

Alice	22	Seattle
Bob	53	Kent
Carl	37	Pasco

Index for one attribute: Person.name

Index for entire table: Person(name,age,city)

Index for entire db: Person, Dept, Project,...

Alice

Bob

Carl

Index for one attribute: Person.name

Index for entire table: Person(name,age,city)

Index for entire db: Person, Dept, Project,... E.g. MySQL on RocksDB

using MyRocks

Accounting	4 th floor	
Sales	2 nd floor	
Alice	22	Seattle
Bob	53	Kent
Carl	37	Pasco
Compiler	\$55000	
Database	\$77000	

Three Main Ideas for Writes

- 1. Store writes in a buffer in main memory When full: spill to disk
- Spilling to disk (instead of a B+ tree): Sort and write to a sorted file.

3. When too many sorted files: Merge them to a larger sorted file

Files on disk

Write buffer

Main memory

Discussion

 Spilling to next level is a bulk operation; inserts a large number of values

 Better amortized cost than inserting those values one by one into a B+ tree

• Typically done by offline process

Read

To read a key, we need to search it at all levels

• Cost is worse than B+ tree

• Three ideas to speedup reads (next)

Three Main Ideas for Reads

- 1. Bloom filter for each level
- 2. Fenceposts in main memory for each level
- 3. Read single block for each level, do binary search

Reading

Updates, Deletes

• Never!

 Instead, invalidate the record, and insert a new record if update

Next

- How do we optimize the main memory:
 - Write buffer
 - Bloom filters
 - Fence pointers
- Merge policy
 - Tiering or
 - Leveling

FPR= $e^{-\frac{m}{n}(\ln^2 2)}$, n= #items at given level

Optimizing Bloom Filters

Most memory used by Bloom filters

- Common practice:
 - Ensure the same FPR for all levels
 - FPR constant, space m increases by factor T

FPR= $e^{-\frac{m}{n}(\ln^2 2)}$, n= #items at given level

Optimizing Bloom Filters

Most memory used by Bloom filters

- Common practice:
 - Ensure the same FPR for all levels
 - FPR constant, space m increases by factor T
- Paper observes:
 - Cost per level is the same: reading 1 block
 - Space increases but benefit is constant!
 - Keep space constant, FPR increases by factor T

Merge Policy

- Tiering (write optimized)
 - Flush main memory buffer sorted to disk
 - Accumulate multiple sorted files/level
 - When more than T sorted files: merge them and add 1 file to the next level

Merge Policy

- Tiering (write optimized)
 - Flush main memory buffer sorted to disk
 - Accumulate multiple sorted files/level
 - When more than T sorted files: merge them and add 1 file to the next level
- Leveling (read-optimized)
 - Merge-sort main memory with level 1
 - When a level becomes too large, move it to the next level by sorting

. . .

Merge Policies

Merge Policies

. . .

Merge Policies

. . .

Merge Policies

. . .

Merge Policies

. . .

Merge Policies

. . .

Merge Policies

Merge Policies

Merge Policies

Then
$$L = 1$$

Merge Policies

Then
$$L = 1$$

Merge Policies

Then
$$L = 1$$

Recap: Merge-Sort

- Problem: Sort a file of size B with memory M
- Will discuss only 2-pass sorting, for when $B \le M^2$

Merge-Sort: Step 1

• Phase one: load M pages in memory, sort

Merge-Sort: Step 2

- Merge M 1 runs into a new run
- Result: runs of length M (M 1) \approx M²

Assuming $B \leq M^2$, we are done

Merge-Sort

- Cost:
 - -Read+write+read = 3B(R)
 - Assumption: $B(R) \le M^2$
- Other considerations

 In general, a lot of optimizations are possible

Summary

- LSM trees: optimized for write-intensive applications
- Three ideas for writes:

– Memory buffer, spill to disk, multiple levels

• Three ideas for reads:

- Bloom filters, fence posts, binary search

• When T is very large: log or sorted file