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Outline

• Briefly discuss Learned Indexes

• LSM Trees
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Learned Index Structures

• What are the arguments in favor of learned 
index structures?
– B+ trees, hash tables: distribution agnostic
– GPU/TPU: efficient for regression model

• Why is an index a “model”?
– Index maps key value to position
– Regression model does the same

• What does Neumann’s blog say?
– Use a simple regression model
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Kraska et al., SIGMOD’2018
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Learned Index Structures
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Discussion
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Outline

• Briefly discuss Learned Indexes

• LSM Trees
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Slides based on
Monkey: Optimal Navigable Key-Value Store,
Dayan, Athanassoulis, Idreos,
SIGMOD’2017
Reading for Monday!!



Motivation

• Sorted arrays = best for reads
• Unsorted log file = best for writes
• B+ trees = good for read, so-so for write

• LSM trees = optimize the writes
• Notice:

– Primary (clustered) index only
– Key/value stores, but also relational DBs 10
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Index for one attribute:
Person.name
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More Motivation

Index for one attribute:
Person.name

Index for entire table:
Person(name,age,city)

Index for entire db:
Person, Dept, Project,…

Alice

Bob

Carl

…

Alice 22 Seattle

Bob 53 Kent

Carl 37 Pasco

…

Accounting 4th floor

Sales 2nd floor

…

Alice 22 Seattle

Bob 53 Kent

Carl 37 Pasco

Compiler $55000

Database $77000

…

E.g. MySQL
on RocksDB

using MyRocks



Three Main Ideas for Writes

1. Store writes in a buffer in main memory
When full: spill to disk

2. Spilling to disk (instead of a B+ tree):
Sort and write to a sorted file.

3. When too many sorted files:
Merge them to a larger sorted file

15



LSM Trees
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LSM Trees
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Main memory

Write buffer Level 1

Files on disk

Level 2

Level 3

Level L

…

Level 0

T= size ratio
between levels



Discussion

• Spilling to next level is a bulk operation; 
inserts a large number of values

• Better amortized cost than inserting 
those values one by one into a B+ tree

• Typically done by offline process
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Read

• To read a key, we need to search it at 
all levels

• Cost is worse than B+ tree

• Three ideas to speedup reads (next)
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Three Main Ideas for Reads

1. Bloom filter for each level

2. Fenceposts in main memory for each 
level

3. Read single block for each level, do 
binary search
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Reading
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Updates, Deletes

• Never!

• Instead, invalidate the record, and insert 
a new record if update
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Next

• How do we optimize the main memory:
– Write buffer
– Bloom filters
– Fence pointers

• Merge policy
– Tiering or
– Leveling
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Optimizing Bloom Filters 

Most memory used by Bloom filters
• Common practice:

– Ensure the same FPR for all levels
– FPR constant, space m increases by factor T
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Optimizing Bloom Filters 

Most memory used by Bloom filters
• Common practice:

– Ensure the same FPR for all levels
– FPR constant, space m increases by factor T

• Paper observes:
– Cost per level is the same: reading 1 block
– Space increases but benefit is constant!
– Keep space constant, FPR increases by factor T
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Merge Policy

• Tiering (write optimized)
– Flush main memory buffer sorted to disk
– Accumulate multiple sorted files/level
– When more than T sorted files: merge 

them and add 1 file to the next level
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Merge Policy

• Tiering (write optimized)
– Flush main memory buffer sorted to disk
– Accumulate multiple sorted files/level
– When more than T sorted files: merge 

them and add 1 file to the next level
• Leveling (read-optimized)

– Merge-sort main memory with level 1
– When a level becomes too large, move it to 

the next level by sorting 32



Merge Policies
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Merge Policies
Tiering Leveling

…

Then L = 1

What happens when 𝑇 → ∞ ?

A log file! A sorted file!



Recap: Merge-Sort
• Problem: Sort a file of size B with memory M

• Will discuss only 2-pass sorting, for when B ≤ M2
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Merge-Sort: Step 1
• Phase one: load M pages in memory, sort

CSEP 544 - Spring 2021 48

DiskDisk

. . .. . .
Size M pages

Main memory

Runs of length M
#Runs = B(R)/M



Merge-Sort: Step 2

• Merge M – 1 runs into a new run
• Result: runs of length M (M – 1) » M2
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DiskDisk

. . 

.
. . .

Input M

Input 1

Input 2
. . . .

Output

Assuming B ≤ M2, we are done

Main memory



Merge-Sort

• Cost:
– Read+write+read = 3B(R)
– Assumption: B(R) <= M2

• Other considerations
– In general, a lot of optimizations are 

possible
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Summary

• LSM trees: optimized for write-intensive 
applications

• Three ideas for writes:
– Memory buffer, spill to disk, multiple levels

• Three ideas for reads:
– Bloom filters, fence posts, binary search

• When T is very large: log or sorted file
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