
CSE544
Data Management

Lectures 13:
Indexes and Bloom Filters

CSEP 544 - Spring 2021 1

Outline

• B+ Trees

• Bloom Filters

• Next time:
– Learned indexes (paper!), LSM trees
– Note: Tim Kraska’s talk May 24, 9am

CSEP 544 - Spring 2021 2

Terminology
A dictionary is a main memory data structure that
supports:

– Insert(k,v) = insert a key,value pair
– Find(k) = find value of key k

• Variations: key may not be unique
• An index is a disk bound dictionary
A Bloom Filter is a main memory data structure that
supports

– Insert(k) = insert k (no value)
– Member(k) = check k; false positives OK!

3

Best Dictionary for Find

CSEP 544 - Spring 2021 4

Sorted array!
Find(k) = log(n) steps

Best Dictionary for Find

CSEP 544 - Spring 2021 5

Sorted array!
Find(k) = log(n) steps

Very bad for insert(k,v)

10 15 18 20 30 40 50 60 65 80 85 90

Insert(45,v)

k = 15
v = not shown

Best Dictionary for Insert

CSEP 544 - Spring 2021 6

A log file! (many other names)
Insert(k,v) = O(1) steps

Best Dictionary for Insert

CSEP 544 - Spring 2021 7

A log file! (many other names)
Insert(k,v) = O(1) steps

50 15 65 20 80 40 18 60 90 10 85 30

Very bad for find(k)
Insert(45,v)

Compromise: Search Trees
Find(k) = O(log(n)) steps
Insert(k,v) = O(log(n)) steps

40

18

10

15

30

20

80

60

50 65

85

90

10 15 18 20 30 40 50 60 65 80 85 90

Compromise: Search Trees

• Main challenge: ensure height=O(log n)
• Many techniques:

– Red/black trees
– Splay trees
– …
– B-trees: special case 2-3 trees

CSEP 544 - Spring 2021 9

CSEP 544 - Spring 2021

B Trees, B+ Trees

• B-tree on disk
– Make 1 node = 1 page (= 1 block)

• B trees to B+ trees:
– Keys are stored on the leaves (not internal

nodes)
– Leaves are linked in a list: for range queries

10

CSEP 544 - Spring 2021

B+ Tree Example
80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 < 80

20 ≤40 < 60

11

CSEP 544 - Spring 2021

B+ Trees Properties

• For each node except the root, maintain
50% occupancy of keys

• Insert and delete must rebalance to
maintain constraints

12

B+ Trees Details
• Parameter* d = the degree
• Each node has d <= m <= 2d keys (except root)

* Textbooks define the order of the B tree as 2d+1

B+ Trees Details
• Parameter* d = the degree
• Each node has d <= m <= 2d keys (except root)
• Each node also has m+1 pointers

Keys k < 30 Keys 30<=k<120 Keys 120<=k<240
Keys 240<=k

Left pointer of k:
to keys < k

Right pointer of k:
to keys >= k

30 120 240

* Textbooks define the order of the B tree as 2d+1

B+ Trees Details
• Parameter* d = the degree
• Each node has d <= m <= 2d keys (except root)
• Each node also has m+1 pointers

• Each leaf has d <= m <= 2d keys:
Keys k < 30 Keys 30<=k<120 Keys 120<=k<240

Keys 240<=k

Left pointer of k:
to keys < k

Right pointer of k:
to keys >= k

30 120 240

40 50 60 70

40 50 60

Next leaf

Data records 70

CSEP 544 - Spring 2021

B+ Tree Design

• How large d ? Make one node fit on
one block

• Example:
– Key size = 4 bytes
– Pointer size = 8 bytes
– Block size = 4096 bytes

• 2d x 4 + (2d+1) x 8 <= 4096
• d = 170

16

30 120 240

(e.g. d = 2)

B+ Trees in Practice

• Typical order: 100. Typical fill-factor: 67%.
– average fanout = 133

• Typical capacities
– Height 4: 1334 = 312,900,700 records
– Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool
– Level 1 = 1 page = 8 Kbytes
– Level 2 = 133 pages = 1 Mbyte
– Level 3 = 17,689 pages = 133 Mbytes

CSEP 544 - Spring 2021 17

CSEP 544 - Spring 2021

Insertion in a B+ Tree
Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, also keep K3 in right node
• When root splits, new root has 1 key only

parent

18

K2 K3 K5

P0 P2 P3 P5

Insert k1

CSEP 544 - Spring 2021

Insertion in a B+ Tree
Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, also keep K3 in right node
• When root splits, new root has 1 key only

parent

19

K1 K2 K3 K5

P0 P1 P2 P3 P5

Insert k1

CSEP 544 - Spring 2021

Insertion in a B+ Tree
Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, also keep K3 in right node
• When root splits, new root has 1 key only

parent

20

K1 K2 K3 K5

P0 P1 P2 P3 P5

Insert k4

CSEP 544 - Spring 2021

Insertion in a B+ Tree
Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, also keep K3 in right node
• When root splits, new root has 1 key only

parent

21

K1 K2 K3 K5

P0 P1 P2 P3 P5

Insert k4

CSEP 544 - Spring 2021

Insertion in a B+ Tree
Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, also keep K3 in right node
• When root splits, new root has 1 key only

K1 K2 K3 K4 K5

P0 P1 P2 P3 P4 P5

parent

22

Insert k4

CSEP 544 - Spring 2021

Insertion in a B+ Tree
Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, also keep K3 in right node
• When root splits, new root has 1 key only

K1 K2 K3 K4 K5

P0 P1 P2 P3 P4 P5

K1 K2

P0 P1 P2

K4 K5

P3 P4 p5

parent
K3

parent

23

Insert k4

CSEP 544 - Spring 2021

Insertion in a B+ Tree
Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, also keep K3 in right node
• When root splits, new root has 1 key only

K1 K2 K3 K4 K5

P0 P1 P2 P3 P4 P5

K1 K2

P0 P1 P2

K4 K5

P3 P4 p5

parent
K3

parent

24

Insert k4

CSEP 544 - Spring 2021

Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

Insert K=19

25

CSEP 544 - Spring 2021

Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 9019

After insertion

26

CSEP 544 - Spring 2021

Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 9019

Now insert 25

27

CSEP 544 - Spring 2021

Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019

After insertion

50

28

CSEP 544 - Spring 2021

Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019

But now have to split !

50

29

CSEP 544 - Spring 2021

Insertion in a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019

After the split

50

30 40 50

30

Insert: Summary

• Find the leaf, insert it there
• If current node p too big:

– Split it into two nodes: p, p’
– Insert(k,p’) where k = some separator
– Recurse on the parent (may split again)

• If root node p splits:
– New root: key k, children p, p’

31All leaf nodes remain at the same depth

Deletion in a B+ Tree
Delete (K, P)
• Find leaf node where K belongs, delete

• Check for capacity; if above min capacity: Stop

• If node below capacity, try to rotate from sibling then Stop

• If adjacent nodes are at minimum capacity, then merge:
This removes a key/child from parent; Recurse on parent

32

CSEP 544 - Spring 2021

Deletion from a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019

Delete 30

50

30 40 50

33

CSEP 544 - Spring 2021

Deletion from a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 9019

After deleting 30

50

40 50

May change to
40, or not

34

CSEP 544 - Spring 2021

Deletion from a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 9019

Now delete 25

50

40 50

35

CSEP 544 - Spring 2021

Deletion from a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 9019

After deleting 25
Need to rebalance
Rotate

50

40 50

36

CSEP 544 - Spring 2021

Deletion from a B+ Tree
80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 60 65 80 85 9019 50

37

40

40 50

CSEP 544 - Spring 2021

Deletion from a B+ Tree
80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 9019

Now delete 40

50

40 50

38

CSEP 544 - Spring 2021

Deletion from a B+ Tree
80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 60 65 80 85 9019

After deleting 40
Rotation not possible
Need to merge nodes

50

50

39

CSEP 544 - Spring 2021

Deletion from a B+ Tree
80

19 60 100 120 140

10 15 18 19 20 50 60 65 80 85 90

10 15 18 20 60 65 80 85 9019

Final tree

50

40

Deletion: Summary

• Find key in the leaf node, delete it
• If current node p below min-capacity:

– Try to rotate and Stop
– merge with a neighbor, recurse on parent

• If root node p below min-capacity:
– Delete the root node! (Has 1 child only)

41All leaf nodes remain at the same depth

Discussion

• Reads are very fast

• Inserts are slow in two settings:
– Initial data upload
– Write-intensive workloads

CSEP 544 - Spring 2021 42

Problem 1: Initial Data Upload

• Suppose you are inserting 106 records

• For each insert:
– At least one random write
– At worst O(log n) random writes

• Better: insert the data first, construct
index later, using bulk index creation

43

Bulk Index Creation
Sort data first, then build the tree

50 15 65 20 80 18 60 90 10 85 19 … … ∞

Bulk Index Creation
Sort data first, then build the tree

50 15 65 20 80 18 60 90 10 85 19 … … ∞

10 15 18 19 20 50 60 65 80 85 90 … … ∞

Merge-sort: no random accesses

Bulk Index Creation
Sort data first, then build the tree

10 15 18 19 20 50 60 65 80 85 90

50 15 65 20 80 18 60 90 10 85 19 … … ∞

10 15 18 19 20 50 60 65 80 85 90 … … ∞

Merge-sort: no random accesses

Split into leaves

Bulk Index Creation
Sort data first, then build the tree

10 15 18 19 20 50 60 65 80 85 90

19 60 100 120 140

50 15 65 20 80 18 60 90 10 85 19 … … ∞

10 15 18 19 20 50 60 65 80 85 90 … … ∞

Merge-sort: no random accesses

Split into leaves

Bulk Index Creation
Sort data first, then build the tree

10 15 18 19 20 50 60 65 80 85 90

80

19 60 100 120 140

50 15 65 20 80 18 60 90 10 85 19 … … ∞

10 15 18 19 20 50 60 65 80 85 90 … … ∞

Merge-sort: no random accesses

Split into leaves

Problem 2:
Write-intensive workloads:

• Company inserts 1000 orders/second
• Adding 1000 records to a log file: fast
• Inserting 1000 in a B+ tree:

– 1000 random writes (or more)
– Slow

• LSM tree: buffer new records, then bulk
insert.

CSEP 544 - Spring 2021 49

Reading for Wednesday

Learned indexes

• Idea: if the index is clustered then it is a
monotone function from keys to
positions in the sorted file; replace the
B+ tree with a regression model for this
mapping

CSEP 544 - Spring 2021 50

Clustered v.s. Unclustered

51

Data entries
(Index File)
(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED
Mapping from

keys to positions
is monotone

Outline

• B+ Trees

• Bloom Filters

• Next time:
– Learned indexes (paper!), LSM trees
– Note: Tim Kraska’s talk May 24, 9am

CSEP 544 - Spring 2021 52

Slides on Bloom Filters

Based in part on:
• Broder, Andrei; Mitzenmacher, Michael

(2005), "Network Applications of Bloom
Filters: A Survey", Internet Mathematics 1 (4):
485–509

• Bloom, Burton H. (1970), "Space/time trade-
offs in hash coding with allowable errors",
Communications of the ACM 13 (7): 422–42

53CSEP 544 - Spring 2021

Problem Setting

• Want a very small, and very fast
dictionary H
– Insert(k,H), member(k,H)
– No values, just membership test

CSEP 544 - Spring 2021 54

Problem Setting

• Want a very small, and very fast
dictionary H
– Insert(k,H), member(k,H)
– No values, just membership test

• False positives are OK
– find(k,H) = true: k may or may not be in H
– find(k,H) = false: k is not in H

CSEP 544 - Spring 2021 55

Problem Setting

• Want a very small, and very fast
dictionary H
– Insert(k,H), member(k,H)
– No values, just membership test

• False positives are OK
– find(k,H) = true: k may or may not be in H
– find(k,H) = false: k is not in H

• Goal: minimize false positive rate, FPR
CSEP 544 - Spring 2021 56

Bit Map

• Let S = {x1, x2, . . ., xn} be a data set

• Hash function h : S à {1, 2, …, m}
– Typically, m=8n

57

S = {x1, x2, . . ., xn}

1 2 m
0 0 1 0 1 1 0 0 1 1 0 0H=

Bit Map = a Set

• Insert(x, H) = set bit h(x) to 1
– Collisions are possible

• Member(y, H) = check if bit h(y) is 1
– False positives are possible

• No deletions

58CSEP 544 - Spring 2021

0 0 1 0 1 1 0 0 0 1 0 1S = {x1, x2, ..., xn}

Analysis

• Insert S into H

• Check membership of some y:
– What is the probability member(y,H)=true?
– This is the False Positive Rate, FPR

59

S = {x1, x2, ..., xn} 0 0 1 0 1 1 0 0 0 1 0 1

Analysis

• Insert S into H

• Check membership of some y:
– What is the probability member(y,H)=true?
– This is the False Positive Rate, FPR

• Will compute in two steps
– Will denote j=h(y)
– FPR = Prob(bit(j)=true)

60

S = {x1, x2, ..., xn} 0 0 1 0 1 1 0 0 0 1 0 1

Analysis

• Recall |H| = m
• Let’s insert only xi into H

• What is the probability that bit j is 0 ?

61CSEP 544 - Spring 2021

0 0 0 0 1 0 0 0 0 0 0 0S = {x1, x2, ..., xn}

Analysis

• Recall |H| = m
• Let’s insert only xi into H

• What is the probability that bit j is 0 ?

• Answer: p = 1 – 1/m

62CSEP 544 - Spring 2021

0 0 0 0 1 0 0 0 0 0 0 0S = {x1, x2, ..., xn}

Analysis

• Recall |H| = m, S = {x1, x2, . . ., xn}
• Let’s insert all elements from S in H

• What is the probability that bit j is 0 ?

63CSEP 544 - Spring 2021

0 0 1 0 1 1 0 0 0 1 0 1S = {x1, x2, ..., xn}

Analysis

• Recall |H| = m, S = {x1, x2, . . ., xn}
• Let’s insert all elements from S in H

• What is the probability that bit j is 0 ?

• Answer: p = (1 – 1/m)n

64

0 0 1 0 1 1 0 0 0 1 0 1S = {x1, x2, ..., xn}

Analysis

• Recall |H| = m, S = {x1, x2, . . ., xn}
• Let’s insert all elements from S in H

• What is the probability that bit j is 0 ?

• Answer: p = (1 – 1/m)n

65

0 0 1 0 1 1 0 0 0 1 0 1S = {x1, x2, ..., xn}

1/m very small!

Analysis

• Recall |H| = m, S = {x1, x2, . . ., xn}
• Let’s insert all elements from S in H

• What is the probability that bit j is 0 ?

• Answer: p = (1 – 1/m)n ≈ e-n/m

66

0 0 1 0 1 1 0 0 0 1 0 1S = {x1, x2, ..., xn}

1/m very small!

False Positive Rate

• FPR = Prob(member(y,H)=true) is:

1 – (1 – 1/m)n ≈ 1 – e-n/m

67

0 0 1 0 1 1 0 0 0 1 0 1S = {x1, x2, ..., xn}

Analysis: Example

• Example: m = 8n, then
FPR ≈ 1 – e-n/m = 1-e-1/8 ≈ 0.11

• 11% false positive rate
• Bloom filters improve that (next)

CSEP 544 - Spring 2021 68

0 0 1 0 1 1 0 0 0 1 0 1S = {x1, x2, ..., xn}

Bloom Filters

• Introduced by Burton Bloom in 1970

• Improve the false positive ratio

• Idea: use k independent hash functions

69CSEP 544 - Spring 2021

Bloom Filter = Dictionary

• Insert(x, H):
– set bits h1(x), . . ., hk(x) to 1

• Member(y, H):
– check if all bits h1(y), . . ., hk(y) are 1

70CSEP 544 - Spring 2021

Example Bloom Filter k=3

Insert(x,H)

Member(y,H)

y1 = is not in H (why ?); y2 may be in H (why ?)

Choosing k

Two competing forces:
• If k = large

– Test more bits for member(y,H) è low FPR
– More bits in H are 1 è high FPR

• If k = small
– More bits in H are 0 è lower FPR
– Test fewer bits for member(y,H) è high FPR

72CSEP 544 - Spring 2021

Analysis

• Recall |H| = m, #hash functions = k
• Let’s insert only xi into H

• What is the probability that bit j is 0 ?

73CSEP 544 - Spring 2021

0 0 1 0 1 1 0 0 0 1 0 1S = {x1, x2, ..., xn}

Analysis

• Recall |H| = m, #hash functions = k
• Let’s insert only xi into H

• What is the probability that bit j is 0 ?

• Answer: p = (1 – 1/m)k

74CSEP 544 - Spring 2021

0 0 1 0 1 1 0 0 0 1 0 1S = {x1, x2, ..., xn}

Analysis

• Recall |H| = m, #hash functions = k
• Let’s insert only xi into H

• What is the probability that bit j is 0 ?

• Answer: p = (1 – 1/m)k ≈ e-k/m

75CSEP 544 - Spring 2021

0 0 1 0 1 1 0 0 0 1 0 1S = {x1, x2, ..., xn}

Analysis

• Recall |H| = m, #hash functions = k
• Let’s insert all elements from S in H

• What is the probability that bit j is 0 ?

76CSEP 544 - Spring 2021

0 0 1 0 1 1 0 0 0 1 0 1S = {x1, x2, ..., xn}

Analysis

• Recall |H| = m, #hash functions = k
• Let’s insert all elements from S in H

• What is the probability that bit j is 0 ?

• Answer:
Prob(bit(j)=0) = (1 – 1/m)kn ≈ e-kn/m

77CSEP 544 - Spring 2021

0 0 1 0 1 1 0 0 0 1 0 1S = {x1, x2, ..., xn}

False Positive Rate

• What is the probability that
member(y,H)=true?

78CSEP 544 - Spring 2021

Prob(bit(j)=0) = (1 – 1/m)kn ≈ e-kn/m

False Positive Rate

• What is the probability that
member(y,H)=true?

• Answer: it is the probability that all k bits
h1(y), …, hk(y) are 1, which is:

79

f = (1-p)k ≈ (1 – e-kn/m)k

Prob(bit(j)=0) = (1 – 1/m)kn ≈ e-kn/m

Optimizing k

• m, n are fixed
• We choose k to minimize FPR:

k = ln 2 × m /n

FPR = (1-p)k ≈ (1 – e-kn/m)k

Proof:
𝑙𝑛 FPR = 𝑘 ⋅ ln 1 − 𝑒!

!"
= "

#
⋅ $#
"
ln 1 − 𝑒!

!"
= −"

#
ln 𝑥 ⋅ ln 1 − 𝑥 , where 𝑥 = 𝑒!

!"
.

We need to maximize the function g x = ln 𝑥 ⋅ ln 1 − 𝑥
Notice that 𝑓 𝑥 ≝ ln ln 𝑥 is concave, hence:
ln 𝑔 𝑥 = ln ln 𝑥 ⋅ ln 1 − 𝑥 = 𝑓 𝑥 + 𝑓 1 − 𝑥 ≤ 2 ⋅ 𝑓 %& '!%

(
= 2 ⋅ f '

(
,

Thus, 𝑔 𝑥 is maximized when 𝑥 = 1 − 𝑥, hence 𝑥 = '
(

Bloom Filter Summary
m, n are fixed à choose k = ln 2 × m /n

81

FPR = (1-p)k ≈ (1 – e-kn/m)k

Bloom Filter Summary
m, n are fixed à choose k = ln 2 × m /n

82

p ≈ e-kn/m = ½Probability that some bit j is 1

FPR = (1-p)k ≈ (1 – e-kn/m)k

Bloom Filter Summary
m, n are fixed à choose k = ln 2 × m /n

83

p ≈ e-kn/m = ½Probability that some bit j is 1

Expectation: m/2 bits 1, m/2 bits 0

FPR = (1-p)k ≈ (1 – e-kn/m)k

Bloom Filter Summary
m, n are fixed à choose k = ln 2 × m /n

84

(1-p)k ≈ (½)k =(½)(ln 2)m/n ≈ (0.6185)m/n

p ≈ e-kn/m = ½Probability that some bit j is 1

Expectation: m/2 bits 1, m/2 bits 0

FPR=

FPR = (1-p)k ≈ (1 – e-kn/m)k

Bloom Filter Summary
m, n are fixed à choose k = ln 2 × m /n

85

(1-p)k ≈ (½)k =(½)(ln 2)m/n ≈ (0.6185)m/n

p ≈ e-kn/m = ½Probability that some bit j is 1

Expectation: m/2 bits 1, m/2 bits 0

FPR=

FPR = (1-p)k ≈ (1 – e-kn/m)k

Another way: 1-p ≈ e-p = e-ln 2 (1 − 𝑝)𝑘 ≈ 𝑒!
"
#(%&

! ')

Bloom Filter Summary

• In practice one sets m = cn, for some constant c
– Thus, we use c bits for each element in S
– Then f ≈ (0.6185)c = constant

• Example: m = 8n, then
k = 8(ln 2) = 5.545 (use 6 hash functions)
f ≈ (0.6185)m/n = (0.6185)8 ≈ 0.02 (2% false positives)
Compare to a hash table: f ≈ 1 – e-n/m = 1-e-1/8 ≈ 0.11

86CSEP 544 - Spring 2021

FPR v.s. #bits/element
From https://corte.si/posts/code/bloom-filter-rules-of-thumb/

c=

8 bits/elm:
FPR=2%

https://corte.si/posts/code/bloom-filter-rules-of-thumb/

