CSE544
 Data Management

Lectures 13: Indexes and Bloom Filters

Outline

- B+ Trees
- Bloom Filters
- Next time:
- Learned indexes (paper!), LSM trees
- Note: Tim Kraska's talk May 24, 9am

Terminology

A dictionary is a main memory data structure that supports:

- Insert(k,v) = insert a key, value pair
- Find(k) = find value of key k
- Variations: key may not be unique
- An index is a disk bound dictionary

A Bloom Filter is a main memory data structure that supports

- Insert(k) = insert k (no value)
- Member(k) = check k; false positives OK!

Best Dictionary for Find

Sorted array!
Find(k) $=\log (\mathrm{n})$ steps

Best Dictionary for Find

Sorted array!

Find(k) $=\log (\mathrm{n})$ steps
$k=15$
$v=$ not shown

Very bad for insert(k,v)

Best Dictionary for Insert

A log file! (many other names) Insert(k,v) $=O(1)$ steps

Best Dictionary for Insert

A log file! (many other names) Insert(k,v) $=O(1)$ steps

Compromise: Search Trees

$\operatorname{Find}(\mathrm{k})=\mathrm{O}(\log (\mathrm{n}))$ steps Insert(k,v) $=\mathrm{O}(\log (\mathrm{n}))$ steps

Compromise: Search Trees

- Main challenge: ensure height=O(log n)
- Many techniques:
- Red/black trees
- Splay trees
- B-trees: special case 2-3 trees

B Trees, B+ Trees

- B-tree on disk
- Make 1 node = 1 page (= 1 block)
- B trees to $\mathrm{B}+$ trees:
- Keys are stored on the leaves (not internal nodes)
- Leaves are linked in a list: for range queries

B+ Tree Example

$$
d=2
$$

Find the key 40

B+ Trees Properties

- For each node except the root, maintain 50% occupancy of keys
- Insert and delete must rebalance to maintain constraints

B+ Trees Details

- Parameter* d = the degree
- Each node has $\mathbf{d}<=\mathbf{m}<=\mathbf{2 d}$ keys (except root)
* Textbooks define the order of the B tree as $2 \mathrm{~d}+1$

B+ Trees Details

- Parameter* $\mathrm{d}=$ the degree
- Each node has $\mathbf{d}<=\mathbf{m}<=\mathbf{2 d}$ keys (except root)
- Each node also has m+1 pointers

Left pointer of k : to keys < k

* Textbooks define the order of the B tree as $2 \mathrm{~d}+1$

B+ Trees Details

- Parameter* $\mathrm{d}=$ the degree
- Each node has $\mathbf{d}<=\mathbf{m}<=\mathbf{2 d}$ keys (except root)
- Each node also has m+1 pointers

Left pointer of k : to keys < k

Keys $\mathrm{k}<30$ Keys $30<=\mathrm{k}<120$ Keys $120<=\mathrm{k}<240$ Keys $240<=\mathrm{k}$

- Each leaf has $\mathbf{d}<=\mathbf{m}<=\mathbf{2 d}$ keys:

B+ Tree Design

- How large d? Make one node fit on one block
- Example:

- Key size $=4$ bytes
- Pointer size $=8$ bytes
- Block size $=4096$ bytes
- $2 \mathrm{~d} \times 4+(2 \mathrm{~d}+1) \times 8$ <= 4096
- $d=170$

$B+$ Trees in Practice

- Typical order: 100. Typical fill-factor: 67\%.
- average fanout = 133
- Typical capacities
- Height 4: $133^{4}=312,900,700$ records
- Height 3: $133^{3}=2,352,637$ records
- Can often hold top levels in buffer pool
- Level $1=1$ page $=8$ Kbytes
- Level $2=133$ pages $=1$ Mbyte
- Level $3=17,689$ pages $=133$ Mbytes

Insertion in a B+ Tree

Insert (K, P)

- Find leaf where K belongs, insert

Insert k1

- If no overflow (2d keys or less), halt

Insertion in a B+ Tree

Insert (K, P)

- Find leaf where K belongs, insert

Insert k1

- If no overflow (2d keys or less), halt

Insertion in a B+ Tree

Insert (K, P)

- Find leaf where K belongs, insert
- If no overflow (2d keys or less), halt

Insert k4

Insertion in a B+ Tree

Insert (K, P)

- Find leaf where K belongs, insert
- If no overflow (2d keys or less), halt
- If overflow ($2 \mathrm{~d}+1$ keys), split node, insert in parent:

Insert k4

Insertion in a B+ Tree

Insert (K, P)

- Find leaf where K belongs, insert
- If no overflow (2d keys or less), halt
- If overflow ($2 \mathrm{~d}+1$ keys), split node, insert in parent:

Insert k4

Insertion in a B+ Tree

Insert (K, P)

- Find leaf where K belongs, insert
- If no overflow (2d keys or less), halt
- If overflow ($2 \mathrm{~d}+1$ keys), split node, insert in parent:

Insert k4

Insertion in a B+ Tree

Insert (K, P)

- Find leaf where K belongs, insert
- If no overflow (2d keys or less), halt
- If overflow ($2 \mathrm{~d}+1$ keys), split node, insert in parent:

Insert k4

- If leaf, also keep K3 in right node
- When root splits, new root has 1 key only

Insertion in a B+ Tree

 Insert K=19

Insertion in a B+ Tree

After insertion

Insertion in a B+ Tree

Now insert 25

Insertion in a B+ Tree

After insertion

Insertion in a B+ Tree

But now have to split !

Insertion in a B+ Tree

After the split

Insert: Summary

- Find the leaf, insert it there
- If current node p too big:
- Split it into two nodes: p, p^{\prime}
- Insert(k, p') where k = some separator
- Recurse on the parent (may split again)
- If root node p splits:
- New root: key k, children p, p'

Deletion in a B+ Tree

Delete (K, P)

- Find leaf node where K belongs, delete
- Check for capacity; if above min capacity: Stop
- If node below capacity, try to rotate from sibling then Stop
- If adjacent nodes are at minimum capacity, then merge: This removes a key/child from parent; Recurse on parent

Deletion from a B+ Tree

Delete 30

Deletion from a B+ Tree

After deleting 30

Deletion from a B+ Tree

Now delete 25

Deletion from a B+ Tree

After deleting 25
Need to rebalance Rotate

Deletion from a B+ Tree

Deletion from a B+ Tree

Now delete 40

Deletion from a B+ Tree

After deleting 40
Rotation not possible Need to merge nodes

CSEP 544 - Spring 2021

Deletion from a B+ Tree

Final tree

Deletion: Summary

- Find key in the leaf node, delete it
- If current node p below min-capacity:
- Try to rotate and Stop
- merge with a neighbor, recurse on parent
- If root node p below min-capacity:
- Delete the root node! (Has 1 child only)

Discussion

- Reads are very fast
- Inserts are slow in two settings:
- Initial data upload
- Write-intensive workloads

Problem 1: Initial Data Upload

- Suppose you are inserting 10^{6} records
- For each insert:
- At least one random write
- At worst $O(\log n)$ random writes
- Better: insert the data first, construct index later, using bulk index creation

Bulk Index Creation

Sort data first, then build the tree

50	15	65	20	80	18	60	90	10	85	19	\ldots	\ldots			∞

Bulk Index Creation

Sort data first, then build the tree

10	15	18	19	20	50	60	65	80	85	90	\ldots	\ldots			∞

Merge-sort: no random accesses

50	15	65	20	80	18	60	90	10	85	19	\ldots	\ldots			∞

Bulk Index Creation

Sort data first, then build the tree

Merge-sort: no random accesses

50	15	65	20	80	18	60	90	10	85	19	\ldots	\ldots			∞

Bulk Index Creation

Sort data first, then build the tree

Merge-sort: no random accesses

50	15	65	20	80	18	60	90	10	85	19	\ldots	\ldots			∞

Bulk Index Creation

Sort data first, then build the tree

Problem 2:
 Write-intensive workloads:

- Company inserts 1000 orders/second
- Adding 1000 records to a log file: fast
- Inserting 1000 in a B+ tree:
- 1000 random writes (or more)
- Slow
- LSM tree: buffer new records, then bulk insert.

Reading for Wednesday

Learned indexes

- Idea: if the index is clustered then it is a monotone function from keys to positions in the sorted file; replace the $B+$ tree with a regression model for this mapping

Clustered v.s. Unclustered

Outline

- B+ Trees

- Bloom Filters

- Next time:
- Learned indexes (paper!), LSM trees
- Note: Tim Kraska's talk May 24, 9am

Slides on Bloom Filters

Based in part on:

- Broder, Andrei; Mitzenmacher, Michael (2005), "Network Applications of Bloom Filters: A Survey", Internet Mathematics 1 (4): 485-509
- Bloom, Burton H. (1970), "Space/time tradeoffs in hash coding with allowable errors", Communications of the ACM 13 (7): 422-42

Problem Setting

- Want a very small, and very fast dictionary H
- Insert(k,H), member(k,H)
- No values, just membership test

Problem Setting

- Want a very small, and very fast dictionary H
- Insert(k,H), member(k,H)
- No values, just membership test
- False positives are OK
- find $(k, H)=$ true: k may or may not be in H
- find $(k, H)=$ false: k is not in H

Problem Setting

- Want a very small, and very fast dictionary H
- Insert(k,H), member(k,H)
- No values, just membership test
- False positives are OK
- find $(k, H)=$ true: k may or may not be in H
- find $(k, H)=$ false: k is not in H
- Goal: minimize false positive rate, FPR

Bit Map

- Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a data set
- Hash function $\mathrm{h}: \mathrm{S} \rightarrow\{1,2, \ldots, \mathrm{~m}\}$
- Typically, m=8n

$$
S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
$$

$$
\mathrm{S}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\} \quad \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & 1 \\
\hline
\end{array}
$$

Bit Map = a Set

- Insert(x, H) = set bit h(x) to 1
- Collisions are possible
- Member $(\mathrm{y}, \mathrm{H})=$ check if bit $\mathrm{h}(\mathrm{y})$ is 1
- False positives are possible
- No deletions

$$
S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \quad \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline
\end{array}
$$

Analysis

- Insert S into H
- Check membership of some y:
- What is the probability member $(\mathrm{y}, \mathrm{H})=$ true?
- This is the False Positive Rate, FPR

$$
\mathrm{S}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\} \quad \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & 1 \\
\hline
\end{array}
$$

Analysis

- Insert S into H
- Check membership of some y :
- What is the probability member $(\mathrm{y}, \mathrm{H})=$ true?
- This is the False Positive Rate, FPR
- Will compute in two steps
- Will denote $\mathrm{j}=\mathrm{h}(\mathrm{y})$
- FPR $=\operatorname{Prob}($ bit $(\mathrm{j})=$ true $)$

$$
\mathrm{S}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\} \quad \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\
\hline
\end{array}
$$

Analysis

- Recall |H| = m
- Let's insert only x_{i} into H
- What is the probability that bit j is 0 ?

$$
S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \quad \begin{array}{l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
$$

Analysis

- Recall |H| = m
- Let's insert only x_{i} into H
- What is the probability that bit j is 0 ?
- Answer: $\mathrm{p}=1-1 / \mathrm{m}$

$$
S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \quad \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline
\end{array}
$$

Analysis

- Recall $|\mathrm{H}|=\mathrm{m}, \mathrm{S}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$
- Let's insert all elements from S in H
- What is the probability that bit j is 0 ?

$$
S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \quad \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline
\end{array}
$$

Analysis

- Recall $|\mathrm{H}|=\mathrm{m}, \mathrm{S}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$
- Let's insert all elements from S in H
- What is the probability that bit j is 0 ?
- Answer: $\mathrm{p}=(1-1 / m)^{\mathrm{n}}$

$$
S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \quad \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline
\end{array}
$$

Analysis

- Recall $|\mathrm{H}|=\mathrm{m}, \mathrm{S}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$
- Let's insert all elements from S in H
- What is the probability that bit j is 0 ?
- Answer: p = (1-1/m) $)^{n}$
$1 / \mathrm{m}$ very small!

$$
S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \quad \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline
\end{array}
$$

Analysis

- Recall $|\mathrm{H}|=\mathrm{m}, \mathrm{S}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$
- Let's insert all elements from S in H
- What is the probability that bit j is 0 ?
- Answer: $\mathrm{p}=(1-1 / \mathrm{m})^{\mathrm{n}} \approx \mathrm{e}^{-\mathrm{n} / \mathrm{m}}$
$1 / \mathrm{m}$ very small!

$$
S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \quad \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline
\end{array}
$$

False Positive Rate

- FPR $=\operatorname{Prob}($ member $(\mathrm{y}, \mathrm{H})=$ true $)$ is:

$$
1-(1-1 / m)^{n} \approx 1-e^{-n / m}
$$

$$
\mathrm{S}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\} \quad \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
\hline
\end{array}
$$

Analysis: Example

- Example: $m=8 n$, then FPR $\approx 1-e^{-n / m}=1-e^{-1 / 8} \approx 0.11$
- 11% false positive rate
- Bloom filters improve that (next)

Bloom Filters

- Introduced by Burton Bloom in 1970
- Improve the false positive ratio
- Idea: use k independent hash functions

Bloom Filter = Dictionary

- Insert(x, H):
- set bits $h_{1}(x), \ldots, h_{k}(x)$ to 1
- Member(y, H):
- check if all bits $h_{1}(y), \ldots, h_{k}(y)$ are 1

Example Bloom Filter k=3

\section*{| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Insert(x,H)

0	1	0	0	1	0	1	0	1	0	1	0

Member(y,H)

0	1	0	0	1	0	1	0	1	0	1	0

$\mathrm{y}_{1}=$ is not in H (why ?); y_{2} may be in H (why ?)

Choosing k

Two competing forces:

- If k = large
- Test more bits for member $(\mathrm{y}, \mathrm{H}) \rightarrow$ low FPR
- More bits in H are $1 \rightarrow$ high FPR
- If $k=$ small
- More bits in H are $0 \rightarrow$ lower FPR
- Test fewer bits for member $(\mathrm{y}, \mathrm{H}) \rightarrow$ high FPR

$$
S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \quad \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline
\end{array}
$$

Analysis

- Recall $|\mathrm{H}|=\mathrm{m}$, \#hash functions $=k$
- Let's insert only x_{i} into H
- What is the probability that bit j is 0 ?

$$
S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \quad \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline
\end{array}
$$

Analysis

- Recall $|\mathrm{H}|=\mathrm{m}$, \#hash functions = k
- Let's insert only x_{i} into H
- What is the probability that bit j is 0 ?
- Answer: $\mathrm{p}=(1-1 / m)^{\mathrm{k}}$

$$
S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \quad \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline
\end{array}
$$

Analysis

- Recall $|\mathrm{H}|=\mathrm{m}$, \#hash functions = k
- Let's insert only x_{i} into H
- What is the probability that bit j is 0 ?
- Answer: $p=(1-1 / m)^{k} \approx e^{-k / m}$

$$
S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \quad \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline
\end{array}
$$

Analysis

- Recall $|\mathrm{H}|=\mathrm{m}$, \#hash functions = k
- Let's insert all elements from S in H
- What is the probability that bit j is 0 ?

$$
\mathrm{S}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\} \quad \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & 1 \\
\hline
\end{array}
$$

Analysis

- Recall $|\mathrm{H}|=\mathrm{m}$, \#hash functions = k
- Let's insert all elements from S in H
- What is the probability that bit j is 0 ?
- Answer:

$$
\operatorname{Prob}(\operatorname{bit}(\mathrm{j})=0)=(1-1 / \mathrm{m})^{\mathrm{kn}} \approx \mathrm{e}^{-\mathrm{kn} / \mathrm{m}}
$$

$$
\operatorname{Prob}(\operatorname{bit}(j)=0)=(1-1 / m)^{\mathrm{kn}} \approx e^{-\mathrm{kn} / \mathrm{m}}
$$

 False Positive Rate

 False Positive Rate}

- What is the probability that member $(\mathrm{y}, \mathrm{H})=$ true?

$\operatorname{Prob}(\operatorname{bit}(j)=0)=(1-1 / m)^{k n} \approx e^{-k n / m}$

False Positive Rate

- What is the probability that member $(\mathrm{y}, \mathrm{H})=$ true?
- Answer: it is the probability that all k bits $h_{1}(y), \ldots, h_{k}(y)$ are 1 , which is:

$$
f=(1-p)^{k} \approx\left(1-e^{-k n / m}\right)^{k}
$$

FPR $=(1-\mathrm{p})^{\mathrm{k}} \approx\left(1-\mathrm{e}^{-\mathrm{kn} / m}\right)^{\mathrm{k}}$

Optimizing k

- m, n are fixed
- We choose k to minimize FPR:

$\mathrm{k}=\ln 2 \times \mathrm{m} / \mathrm{n}$

Proof:
$\ln (\mathrm{FPR})=k \cdot \ln \left(1-e^{-\frac{k n}{m}}\right)=\frac{m}{n} \cdot \frac{k n}{m} \ln \left(1-e^{-\frac{k n}{m}}\right)=-\frac{m}{n} \ln x \cdot \ln (1-x)$, where $x=e^{-\frac{k n}{m}}$.
We need to maximize the function $\mathrm{g}(\mathrm{x})=\ln x \cdot \ln (1-x)$
Notice that $f(x) \stackrel{\text { def }}{=} \ln \ln x$ is concave, hence:

$$
\ln (g(x))=\ln (\ln x \cdot \ln (1-x))=f(x)+f(1-x) \leq 2 \cdot f\left(\frac{x+(1-x)}{2}\right)=2 \cdot \mathrm{f}\left(\frac{1}{2}\right)
$$

Thus, $g(x)$ is maximized when $x=1-x$, hence $x=\frac{1}{2}$

FPR $=(1-\mathrm{p})^{\mathrm{k}} \approx\left(1-\mathrm{e}^{-\mathrm{kn} / m}\right)^{\mathrm{k}}$

Bloom Filter Summary

m, n are fixed \rightarrow choose $\mathrm{k}=\mathrm{ln} 2 \times \mathrm{m} / \mathrm{n}$

$$
\text { FPR }=(1-p)^{k} \approx\left(1-e^{-k n / m}\right)^{k}
$$

Bloom Filter Summary

m, n are fixed \rightarrow choose $\mathrm{k}=\ln 2 \times \mathrm{m} / \mathrm{n}$
Probability that some bit j is $1 \quad p \approx e^{-k n / m}=1 / 2$

FPR $=(1-p)^{k} \approx\left(1-e^{-k n / m}\right)^{k}$

Bloom Filter Summary

m, n are fixed \rightarrow choose $\mathrm{k}=\ln 2 \times \mathrm{m} / \mathrm{n}$
Probability that some bit j is $1 \quad p \approx e^{-k n / m}=1 / 2$

Expectation:

$m / 2$ bits $1, m / 2$ bits 0

FPR $=(1-p)^{k} \approx\left(1-e^{-k n / m}\right)^{k}$

Bloom Filter Summary

m, n are fixed \rightarrow choose $\mathrm{k}=\ln 2 \times \mathrm{m} / \mathrm{n}$
Probability that some bit jis $1 \quad p \approx e^{-k n / m}=1 / 2$
Expectation:

$\mathrm{m} / 2$ bits $1, \mathrm{~m} / 2$ bits 0

$$
\text { FPR }=(1-p)^{\mathrm{k}} \approx(1 / 2)^{\mathrm{k}}=(1 / 2)^{(\ln 2) \mathrm{m} / \mathrm{n}} \approx(0.6185)^{\mathrm{m} / \mathrm{n}}
$$

FR $=(1-p)^{k} \approx\left(1-e^{-k n / m}\right)^{k}$

Bloom Filter Summary

m, n are fixed \rightarrow choose $\mathrm{k}=\ln 2 \times \mathrm{m} / \mathrm{n}$
Probability that some bit j is $1 \quad p \approx e^{-k n / m}=1 / 2$
Expectation:

$\mathrm{m} / 2$ bits $1, \mathrm{~m} / 2$ bits 0

FR $=(1-p)^{k} \approx(1 / 2)^{k}=(1 / 2)^{(\ln 2) m / n} \approx(0.6185)^{m / n}$
Another way: $1-\mathrm{p} \approx \mathrm{e}^{-\mathrm{p}}=\mathrm{e}^{-\ln 2}(1-p)^{k} \approx e^{-\frac{m}{n}\left(\ln ^{2} 2\right)}$

Bloom Filter Summary

- In practice one sets $m=c n$, for some constant c
- Thus, we use c bits for each element in S
- Then $\mathrm{f} \approx(0.6185)^{\mathrm{c}}=$ constant
- Example: $m=8 n$, then
$\mathrm{k}=8(\ln 2)=5.545$ (use 6 hash functions)
$\mathrm{f} \approx(0.6185)^{\mathrm{m} / \mathrm{n}}=(0.6185)^{8} \approx 0.02$ (2% false positives)
Compare to a hash table: $f \approx 1-e^{-n / m}=1-e^{-1 / 8} \approx 0.11$

FPR v.s. \#bits/element

From https://corte.si/posts/code/bloom-filter-rules-of-thumb/

Bits per element vs. false positive probability

