CSE544 Data Management

Lectures 11
Datalog (Part 1 of 2)

Announcement

HW3 deadline extended to Tue, May 11

Review was due today

Next review: Wed, May 12

Motivation

SQL designed relational queries;
 Not good at iteration/recursion

Data processing today require iteration.
 Common solution: external driver

Datalog is a language that allows both recursion and relational queries

Datalog

 Designed in the 80's: simple, concise, elegant, very popular in research

 All techniques for recursive relational queries were developed for datalog

 But: no standard, no reference implementation; in HW4 we use Souffle

Outline

Datalog rules

Recursion

Semantics

Next time: extensions, semi-naïve algo.

Schema

Datalog: Facts and Rules

Datalog: Facts and Rules

Facts = tuples in the database

Rules = queries

Datalog: Facts and Rules

Facts = tuples in the database

Rules = queries

Actor(344759, 'Douglas', 'Fowley').

Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, 'A Night in Armour', 1910).

Movie(29000, 'Arizona', 1940).

Movie(29445, 'Ave Maria', 1940).

Datalog: Facts and Rules

Facts = tuples in the database

Rules = queries

Actor(344759, 'Douglas', 'Fowley').

Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, 'A Night in Armour', 1910).

Movie(29000, 'Arizona', 1940).

Movie(29445, 'Ave Maria', 1940).

Q1(y):- Movie(x,y,z), z='1940'.

Datalog: Facts and Rules

Facts = tuples in the database

Rules = queries

Actor(344759, 'Douglas', 'Fowley').

Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, 'A Night in Armour', 1910).

Movie(29000, 'Arizona', 1940).

Movie(29445, 'Ave Maria', 1940).

Q1(y):- Movie(x,y,z), z='1940'.

Find Movies made in 1940

Datalog: Facts and Rules

Facts = tuples in the database

Rules = queries

Actor(344759, 'Douglas', 'Fowley').

Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, 'A Night in Armour', 1910).

Movie(29000, 'Arizona', 1940).

Movie(29445, 'Ave Maria', 1940).

Q1(y):- Movie(x,y,z), z='1940'.

Q2(f, I) :- Actor(z,f,I), Casts(z,x), Movie(x,y,'1940').

Datalog: Facts and Rules

Facts = tuples in the database

Rules = queries

Actor(344759, 'Douglas', 'Fowley').

Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, 'A Night in Armour', 1910).

Movie(29000, 'Arizona', 1940).

Movie(29445, 'Ave Maria', 1940).

Q1(y) :- Movie(x,y,z), z='1940'.

Q2(f, I) :- Actor(z,f,I), Casts(z,x), Movie(x,y,'1940').

Find Actors who acted in Movies made in 1940

Datalog: Facts and Rules

Facts = tuples in the database

Rules = queries

Actor(344759, 'Douglas', 'Fowley').

Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, 'A Night in Armour', 1910).

Movie(29000, 'Arizona', 1940).

Movie(29445, 'Ave Maria', 1940).

Q1(y) :- Movie(x,y,z), z='1940'.

Q2(f, I) :- Actor(z,f,I), Casts(z,x), Movie(x,y,'1940').

Q3(f,I):- Actor(z,f,I), Casts(z,x1), Movie(x1,y1,1910), Casts(z,x2), Movie(x2,y2,1940)

Datalog: Facts and Rules

Facts = tuples in the database

Rules = queries

Actor(344759, 'Douglas', 'Fowley').

Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, 'A Night in Armour', 1910).

Movie(29000, 'Arizona', 1940).

Movie(29445, 'Ave Maria', 1940).

Q1(y) :- Movie(x,y,z), z='1940'.

Q2(f, I) :- Actor(z,f,I), Casts(z,x), Movie(x,y,'1940').

Q3(f,I):- Actor(z,f,I), Casts(z,x1), Movie(x1,y1,1910), Casts(z,x2), Movie(x2,y2,1940)

Find Actors who acted in a Movie in 1940 and in one in 1910

Datalog: Facts and Rules

Facts = tuples in the database

Rules = queries

Actor(344759, 'Douglas', 'Fowley').

Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, 'A Night in Armour', 1910).

Movie(29000, 'Arizona', 1940).

Movie(29445, 'Ave Maria', 1940).

Q1(y):- Movie(x,y,z), z='1940'.

Q2(f, I) :- Actor(z,f,I), Casts(z,x), Movie(x,y,'1940').

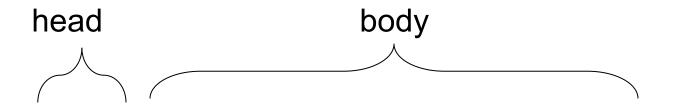
15

Q3(f,I):- Actor(z,f,I), Casts(z,x1), Movie(x1,y1,1910), Casts(z,x2), Movie(x2,y2,1940)

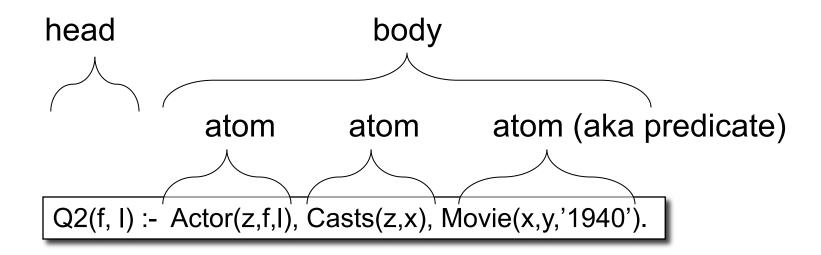
Extensional Database Predicates = EDB = Actor, Casts, Movie Intensional Database Predicates = IDB = Q1, Q2, Q3

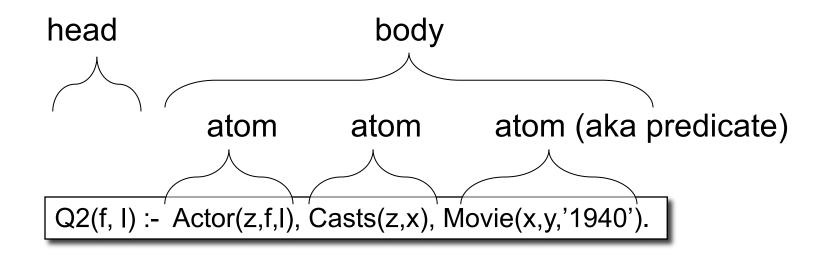
CSEP 544 - Spring 2021

Q2(f, I) :- Actor(z,f,I), Casts(z,x), Movie(x,y,'1940').



Q2(f, I) :- Actor(z,f,I), Casts(z,x), Movie(x,y,'1940').





f, I = head variables x,y,z = existential variables

```
Q(args) :- R1(args), R2(args), ....
```

R_i(args_i) called an <u>atom</u>, or a <u>relational predicate</u>

Q(args) :- R1(args), R2(args),

- R_i(args_i) called an <u>atom</u>, or a <u>relational predicate</u>
- R_i(args_i) evaluates to true when relation R_i contains the tuple described by args_i.
 - Example: Actor(344759, 'Douglas', 'Fowley') is true

Q(args) :- R1(args), R2(args),

- R_i(args_i) called an <u>atom</u>, or a <u>relational predicate</u>
- R_i(args_i) evaluates to true when relation R_i contains the tuple described by args_i.
 - Example: Actor(344759, 'Douglas', 'Fowley') is true
- In addition we can also have arithmetic predicates
 - Example: z > '1940'.

Q(args) :- R1(args), R2(args),

- R_i(args_i) called an <u>atom</u>, or a <u>relational predicate</u>
- R_i(args_i) evaluates to true when relation R_i contains the tuple described by args_i.
 - Example: Actor(344759, 'Douglas', 'Fowley') is true
- In addition we can also have arithmetic predicates
 - Example: z > '1940'.
- Some systems use <-

```
Q(args) <- R1(args), R2(args), ....
```

Q(args) :- R1(args), R2(args),

- R_i(args_i) called an <u>atom</u>, or a <u>relational predicate</u>
- R_i(args_i) evaluates to true when relation R_i contains the tuple described by args_i.
 - Example: Actor(344759, 'Douglas', 'Fowley') is true
- In addition we can also have arithmetic predicates
 - Example: z > '1940'.
- Some systems use <-
- Some use AND

```
Q(args) <- R1(args), R2(args), ....
```

Q(args):-R1(args)ANDR2(args)....

Outline

Datalog rules

Recursion

Semantics

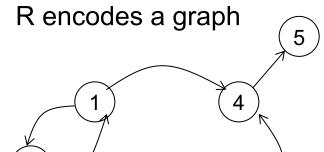
Next time: extensions, semi-naïve algo.

Datalog program

A datalog program = several rules

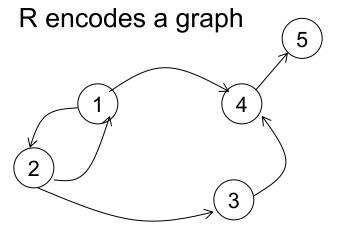
Rules may be recursive

Set semantics only



R=

2
1
3
4
4
5



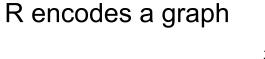
T(x,y) :-	R(x,y)
-----------	--------

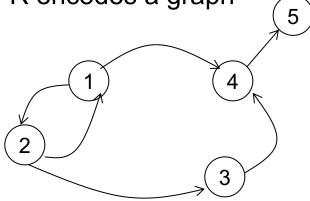
T(x,y) := R(x,z), T(z,y)

What does it compute?

 	_
_	_
 _	
 •	

1	2
2	1
2	3
1	4
3	4
4	5





R=

1	2
2	1
2	3
1	4
3	4
4	5

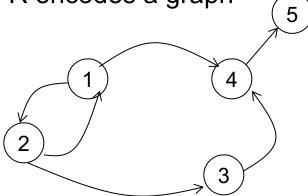
Initially:

T is empty.

T(x,y) := R(x,y)

T(x,y) := R(x,z), T(z,y)

What does it compute?



R=

1	2
2	1
2	3
1	4
3	4
4	5

Initially:

T is empty.

Example

T(x,y) := R(x,y)

T(x,y) := R(x,z), T(z,y)

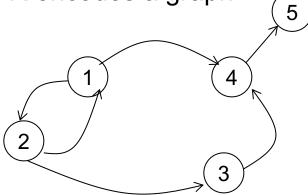
What does it compute?

First iteration:

T =

1	2	
2	1	
2	3	First mile menerates this
1	4	First rule generates this
3	4	
4	5	

Second rule generates nothing (because T is empty)



R=

1	2
2	1
2	3
1	4
3	4
4	5

Initially:

T is empty.

Example

$$T(x,y) := R(x,y)$$

T(x,y) := R(x,z), T(z,y)

What does it compute?

Second iteration:

First iteration:

T =

1	2
2	1
2	3
1	4
3	4
4	5

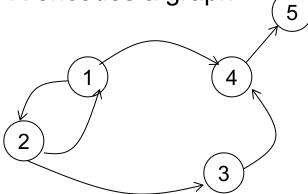
T = 1

1	2	
2	1	
2	3	
1	4	
3	4	
4	5	
1	1	
2	2	
1	3	
2	4	

First rule generates this

Second rule generates this

New facts



R=

1	2
2	1
2	3
1	4
3	4
4	5

Initially:

T is empty.

Example

T(x,y) := R(x,y)

T(x,y) := R(x,z), T(z,y)

What does it compute?

First iteration:

Second iteration:

T =

1	2
2	1
2	3
1	4
3	4
4	5
1	1
2	2
1	3
2	4
1	5

Third iteration:

T =

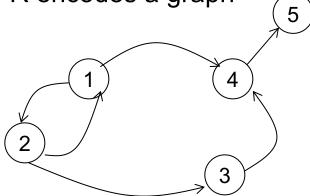
1	2
2	1
2	3
1	4
3	4
4	5
1	1
2	2
4	_

First rule

Both rules

Second rule

New fact



R=

1	2
2	1
2	3
1	4
3	4
4	5

Initially:

T is empty.

Example

T(x,y) := R(x,y)

T(x,y) := R(x,z), T(z,y)

What does

it compute?

First iteration:

T =

1	2
2	1
2	3
1	4
3	4
4	5

Second iteration:

T =

1	2
2	1
2	3
1	4
3	4
4	5
1	1
2	2
1	3
2	4
1	5

Third iteration:

T =

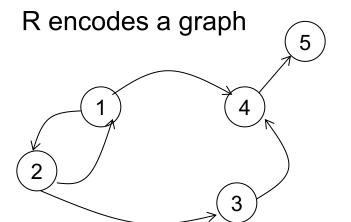
١.	_	
	1	2
	2	1
	2	3
	1	4
	3	4
	4	5
	1	1
	2	2
	1	3
	2	4
	1	5

Fourth iteration T =(same)

No new facts. DONE

First iteration:

T =



2

3

4

4

5

R=

3

Initially:

T is empty.

—	, ,			,	`
1 ((x,y)) <u>-</u>	K($X_{\cdot}V$	")
- 1	(* <i>` ' J J </i>	•	1	~ ` ' ' ' ' ' '	

T(x,y) := R(x,z), T(z,y)

What does it compute?

Second iteration:

Τ=

1	2
2	1
2	3
1	4
3	4
4	5
1	1
2	1 2
2	2
2	2

Third iteration:

T =

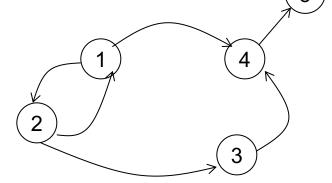
1	2
2	1
2	3
1	4
3	4
4	5
1	1
2	2
1	3
2	4
1	5
3	5

Fourth iteration T = (same)

No new facts. DONE

Iteration k computes pairs (x,y) connected by path of length $\leq k$

Three Equivalent Programs R encodes a graph 5



$$T(x,y) := R(x,y)$$

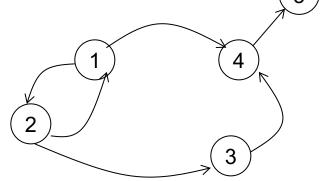
T(x,y) := R(x,z), T(z,y)

Right linear

$\overline{}$	
$\overline{}$	
•	

1	2
2	1
2	3
1	4
3	4
4	5

Three Equivalent Programs R encodes a graph 5



R=

1	2
2	1
2	3
1	4
3	4
4	5

$$T(x,y) := R(x,y)$$

T(x,y) := R(x,z), T(z,y)

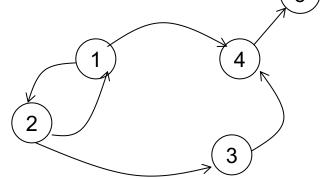
Right linear

$$T(x,y) := R(x,y)$$

T(x,y) := T(x,z), R(z,y)

_eft linear

Three Equivalent Programs R encodes a graph 5



R=

1	2
2	1
2	3
1	4
3	4
4	5

$$T(x,y) := R(x,y)$$

T(x,y) := R(x,z), T(z,y)

Right linear

$$T(x,y) := R(x,y)$$

T(x,y) := T(x,z), R(z,y)

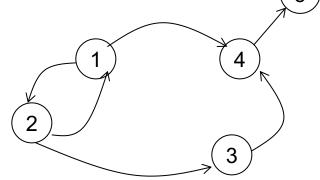
_eft linear

$$T(x,y) := R(x,y)$$

T(x,y) := T(x,z), T(z,y)

Non-linear

Three Equivalent Programs R encodes a graph 5



1	2
2	1
2	3
1	4
3	4
4	5

$$T(x,y) := R(x,y)$$

T(x,y) := R(x,z), T(z,y)

$$T(x,y) := R(x,y)$$

T(x,y) := T(x,z), R(z,y)

$$T(x,y) := R(x,y)$$

T(x,y) := T(x,z), T(z,y)

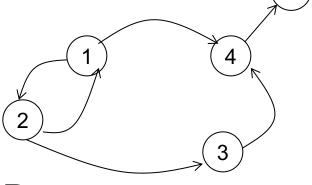
Right linear

_eft linear

Non-linear

Question: how many iterations does each require?

Three Equivalent Programs R encodes a graph 5



$$T(x,y) := R(x,y)$$

T(x,y) := R(x,z), T(z,y)

Right linear

$$\int \int |\mathsf{T}(\mathsf{x},\mathsf{y})| - \mathsf{R}(\mathsf{x},\mathsf{y})$$

T(x,y) := T(x,z), R(z,y)

_eft linear

1	2
2	1
2	3
1	4
3	4
4	5

#iterations = log(diameter)

$$T(x,y) := R(x,y)$$

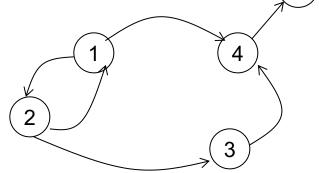
T(x,y) := T(x,z), T(z,y)

Non-linear

Question: how many iterations does each require?

Multiple IDBs

R encodes a graph 5



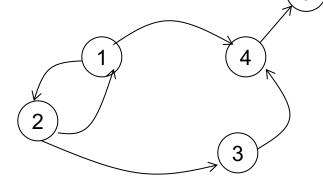
R=

1	2
2	1
2	3
1	4
3	4
4	5

Find pairs of nodes (x,y) connected by a path of even length

Multiple IDBs

R encodes a graph 5



Find pairs of nodes (x,y) connected by a path of <u>even</u> length

R=

1	2
2	1
2	3
1	4
3	4
4	5

Odd(x,y) := R(x,y)

Even(x,y):- Odd(x,z), R(z,y)

Odd(x,y) := Even(x,z), R(z,y)

Two IDBs: Odd(x,y) and Even(x,y)

Discussion: Recursion in SQL

SQL has everything, including some form of recursion, BUT:

- Single IDB
- Linear query only
- Has bag semantics (why???) which diverges

```
with recursive T as(
    select * from R
    union
    select distinct R.x, T.y
    from R, T
    where R.y=T.x
) select * from T;
```

Outline

Datalog rules

Recursion

Semantics

Next time: extensions, semi-naïve algo.

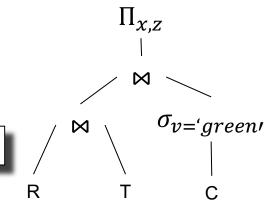
Every rule → SPJ* query

Every rule → SPJ* query

T(x,z):- R(x,y), T(y,z), C(y,'green')

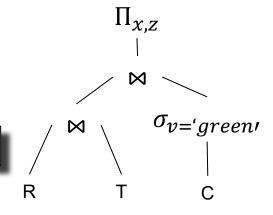
Every rule → SPJ* query

T(x,z) := R(x,y), T(y,z), C(y,'green')

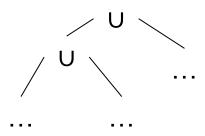


Every rule → SPJ* query

$$T(x,z) := R(x,y), T(y,z), C(y,'green')$$

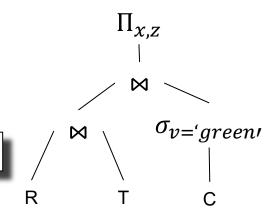


Multiple rules same head → USPJ⁺

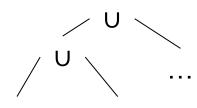


^{*}SPJ = select-project-join *USPJ = union-select-project-join

Every rule → SPJ* query



Multiple rules same head → USPJ⁺



Naïve Algorithm:

$$IDBs := \emptyset$$
repeat $IDBs := USPJs$
until no more change

```
T(x,y) := R(x,y)

T(x,y) := R(x,z), T(z,y)
```

```
T(x,y) := R(x,y)

T(x,y) := R(x,z), T(z,y)
```

```
T \coloneqq \emptyset;
repeat
T := R \cup \Pi_{x,y}(R \bowtie T);
until [no more change]
```

```
T(x,y) := R(x,y)
```

T(x,y) := R(x,z), T(z,y)

Optimization:
Use R only once,
before the loop
(SQL does this)

$$T := \emptyset$$
;

repeat

$$T:=R\cup\Pi_{x,y}(R\bowtie T);$$

until [no more change]

$$T(x,y) := R(x,y)$$

$$T(x,y) := R(x,z), T(z,y)$$

Optimization:
Use R only once,
before the loop
(SQL does this)

Will discuss a more general optimization called Semi-Naïve next time

$$T := \emptyset$$
;

repeat

$$T:=R\cup\Pi_{x,y}(R\bowtie T);$$

until [no more change]

```
Odd(x,y) :- R(x,y)
Even(x,y) :- Odd(x,z),R(z,y)
Odd(x,y) :- Even(x,z),R(z,y)
```

```
Odd(x,y) :- R(x,y)

Even(x,y) :- Odd(x,z),R(z,y)

Odd(x,y) :- Even(x,z),R(z,y)
```

```
Odd := \emptyset; Even := \emptyset;

repeat

Even<sub>new</sub>: = \Pi_{x,y}(Odd \bowtie R);

Odd<sub>new</sub>: = R \cup \Pi_{x,y}(Even \bowtie R);
```

```
Odd(x,y) :- R(x,y)
Even(x,y) :- Odd(x,z),R(z,y)
Odd(x,y) :- Even(x,z),R(z,y)
```

```
Odd := \emptyset; Even := \emptyset;

repeat

Even<sub>new</sub>: = \Pi_{x,y}(Odd \bowtie R);

Odd<sub>new</sub>: = R \cup \Pi_{x,y}(Even \bowtie R);
```

```
Odd:=Odd<sub>new</sub>
Even:=Even<sub>new</sub>
```

```
Odd(x,y) :- R(x,y)

Even(x,y) :- Odd(x,z),R(z,y)

Odd(x,y) :- Even(x,z),R(z,y)
```

```
Odd := \emptyset; Even := \emptyset;

repeat

Even<sub>new</sub>: = \Pi_{x,y}(Odd \bowtie R);

Odd<sub>new</sub>: = R \cup \Pi_{x,y}(Even \bowtie R);

if Odd=Odd<sub>new</sub> \land Even=Even<sub>new</sub>

then break

Odd:=Odd<sub>new</sub>

Even:=Even<sub>new</sub>
```

The Naïve Evaluation Algorithm:

- Always terminates
- Always terminates in a number of steps that is polynomial in the size of the database

Before we show this, a digression: monotone queries

Monotone Queries

- A query with input relations R, S, T, ... is called *monotone* if, whenever we increase a relation, the query answer also increases (or stays the same)
- Increase here means <u>larger set</u>

Monotone Queries

- A query with input relations R, S, T, ... is called *monotone* if, whenever we increase a relation, the query answer also increases (or stays the same)
- Increase here means <u>larger set</u>
- Mathematically

If
$$R \subseteq R', S \subseteq S', \dots$$
 then $Q(R, S, \dots) \subseteq Q(R', S', \dots)$

Which Queries are Monotone?

SELECT DISTINCT x.sno, x.name FROM Supplier x, Supply y WHERE x.sno = y.sno and y.pno = 2

Which Queries are Monotone?

SELECT DISTINCT x.sno, x.name FROM Supplier x, Supply y WHERE x.sno = y.sno and y.pno = 2

MONOTONE

Which Queries are Monotone?

SELECT DISTINCT x.sno, x.name FROM Supplier x, Supply y WHERE x.sno = y.sno and y.pno = 2 **MONOTONE**

SELECT DISTINCT x.sno, x.name FROM Supplier x, Supply y WHERE x.sno = y.sno and y.pno != 2

Which Queries are Monotone?

SELECT DISTINCT x.sno, x.name FROM Supplier x, Supply y WHERE x.sno = y.sno and y.pno = 2 **MONOTONE**

SELECT DISTINCT x.sno, x.name FROM Supplier x, Supply y WHERE x.sno = y.sno and y.pno != 2

MONOTONE

Which Queries are Monotone?

SELECT DISTINCT x.sno, x.name FROM Supplier x, Supply y WHERE x.sno = y.sno and y.pno = 2 **MONOTONE**

SELECT x.city, count(*)
FROM Supplier x
GROUP BY x.city

SELECT DISTINCT x.sno, x.name FROM Supplier x, Supply y WHERE x.sno = y.sno and y.pno != 2

MONOTONE

Which Queries are Monotone?

SELECT DISTINCT x.sno, x.name FROM Supplier x, Supply y WHERE x.sno = y.sno and y.pno = 2

MONOTONE

SELECT x.city, count(*) FROM Supplier x **GROUP BY x.city**

SELECT DISTINCT x.sno, x.name FROM Supplier x, Supply y WHERE x.sno = y.sno and y.pno != 2

MONOTONE

NON-MONOTONE

Which Queries are Monotone?

SELECT DISTINCT x.sno, x.name FROM Supplier x, Supply y WHERE x.sno = y.sno and y.pno = 2

MONOTONE

SELECT x.city, count(*)
FROM Supplier x
GROUP BY x.city

SELECT DISTINCT x.sno, x.name FROM Supplier x, Supply y WHERE x.sno = y.sno and y.pno != 2

MONOTONE

NON-MONOTONE

SELECT x.sno, x.sname FROM Supplier x
WHERE x.sno IN (SELECT y.sno
FROM Supply y
WHERE y.pno = 2)

Which Queries are Monotone?

SELECT DISTINCT x.sno, x.name FROM Supplier x, Supply y WHERE x.sno = y.sno and y.pno = 2

MONOTONE

SELECT x.city, count(*) FROM Supplier x GROUP BY x.city

SELECT DISTINCT x.sno, x.name FROM Supplier x, Supply y WHERE x.sno = y.sno and y.pno != 2

MONOTONE

NON-MONOTONE

SELECT x.sno, x.sname FROM Supplier x
WHERE x.sno IN (SELECT y.sno
FROM Supply y
WHERE y.pno = 2)

MONOTONE

Which Queries are Monotone?

SELECT DISTINCT x.sno, x.name FROM Supplier x, Supply y WHERE x.sno = y.sno and y.pno = 2

MONOTONE

SELECT x.city, count(*) FROM Supplier x GROUP BY x.city

SELECT DISTINCT x.sno, x.name FROM Supplier x, Supply y WHERE x.sno = y.sno and y.pno != 2

MONOTONE

NON-MONOTONE

SELECT x.sno, x.sname FROM Supplier x
WHERE x.sno IN (SELECT y.sno
FROM Supply y
WHERE y.pno = 2)

MONOTONE

SELECT x.sno, x.sname FROM Supplier x
WHERE x.sno NOT IN (SELECT y.sno
FROM Supply y
WHERE y.pno != 2)

Which Queries are Monotone?

SELECT DISTINCT x.sno, x.name FROM Supplier x, Supply y WHERE x.sno = y.sno and y.pno = 2

MONOTONE

SELECT x.city, count(*) FROM Supplier x GROUP BY x.city

SELECT DISTINCT x.sno, x.name FROM Supplier x, Supply y WHERE x.sno = y.sno and y.pno != 2

MONOTONE

NON-MONOTONE

SELECT x.sno, x.sname FROM Supplier x
WHERE x.sno IN (SELECT y.sno
FROM Supply y
WHERE y.pno = 2)

MONOTONE

SELECT x.sno, x.sname FROM Supplier x
WHERE x.sno NOT IN (SELECT y.sno
FROM Supply y
WHERE y.pno != 2)

NON-MONOTONE

Which Ops are Monotone?

- Selection: σ_{pred}
- Projection: $\Pi_{A,B,...}$
- Join: ⋈
- Union: U
- Difference: –
- Group-by-sum: $\gamma_{A,B,sum(C)}$

Which Ops are Monotone?

• Selection: σ_{pred}

MONOTONE

• Projection: $\Pi_{A,B,...}$

MONOTONE

• Join: ⋈

MONOTONE

Union: U

MONOTONE

• Difference: –

NON-MONOTONE

• Group-by-sum: $\gamma_{A,B,sum(C)}$

NON-MONOTONE

Digression

- Understanding monotone v.s. nonmonotone queries gives you insights into the complexity of SQL queries
- Rule of thumb: if the English formulation of a query is non-monotone, then you need to use a subquery OR aggregate in SQL

Return SUPPLIERS who supply some product with price > \$10000

Return SUPPLIERS who supply only products with price > \$10000

Back to Datalog

The Naïve Evaluation Algorithm:

- Always terminates
- Always terminates in a number of steps that is polynomial in the size of the database

Will show this next

Fact: every USPJ query is monotone

Proof: uses only σ , Π , \bowtie , \bigcup

Fact: every USPJ query is monotone

Proof: uses only σ , Π , \bowtie , \bigcup

Fact: the IDBs increase: $IDB_t \subseteq IDB_{t+1}$

Proof: by induction

Fact: every USPJ query is monotone

Proof: uses only σ , Π , \bowtie , \bigcup

Fact: the IDBs increase: $IDB_t \subseteq IDB_{t+1}$

Proof: by induction $IDB_0 (= \emptyset) \subseteq IDB_1$

Fact: every USPJ query is monotone

Proof: uses only σ , Π , \bowtie , \bigcup

Fact: the IDBs increase: $IDB_t \subseteq IDB_{t+1}$

Proof: by induction $IDB_0 (= \emptyset) \subseteq IDB_1$

Assuming $IDB_t \subseteq IDB_{t+1}$ we have: $USPJ(IDB_t) \subseteq USPJ(IDB_{t+1})$

Fact: every USPJ query is monotone

Proof: uses only σ , Π , \bowtie , \bigcup

Fact: the IDBs increase: $IDB_t \subseteq IDB_{t+1}$

Proof: by induction $IDB_0 (= \emptyset) \subseteq IDB_1$

Assuming $IDB_t \subseteq IDB_{t+1}$ we have: $IDB_{t+1} = USPJ(IDB_t) \subseteq USPJ(IDB_{t+1}) = IDB_{t+2}$

Consequence: The naïve algorithm *terminates*, in O(n^k) steps, where:

n = number of distinct values in the DB

k = arity of widest IDB relation

Proof: IDBs increases to ≤ O(n^k) facts

Summary

Datalog = light-weight syntax, recursion

- Powerful optimizations:
 - Semi-naïve; magic sets; asynchronous exec

Limitation: monotone queries only

Next time: extensions to non-monotone