CSES544
Data Management

Lectures 11
Datalog (Part 1 of 2)

CSEP 544 - Spring 2021

Announcement

« HW3 deadline extended to Tue, May 11

* Review was due today

* Next review: Wed, May 12

Motivation

« SQL designed relational queries;
Not good at iteration/recursion

» Data processing today require iteration.
Common solution: external driver

« Datalog is a language that allows both
recursion and relational queries

Datalog

» Designed in the 80’s: simple, concise,
elegant, very popular in research

 All techniques for recursive relational
queries were developed for datalog

 But: no standard, no reference
implementation; in HW4 we use Souffle

Outline

» Datalog rules

 Recursion

« Semantics

Next time: extensions, semi-naive algo.

CSEP 544 - Spring 2021

Actor(id, fname, Iname)

Casts(pid, mid) — Schema
Movie(id, name, year)

Datalog: Facts and Rules

CSEP 544 - Spring 2021

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

CSEP 544 - Spring 2021

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

CSEP 544 - Spring 2021

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940’.

CSEP 544 - Spring 2021 9

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940’.

Find Movies made in 1940

CSEP 544 - Spring 2021 10

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910). | | Q2(f, I) :- Actor(zf 1), Casts(z,x),
Movie(29000, ‘Arizona’, 1940). Movie(x,y,"1940').
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940’.

CSEP 544 - Spring 2021 11

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910). | | Q2(f, I) :- Actor(zf 1), Casts(z,x),
Movie(29000, ‘Arizona’, 1940). Movie(x,y,"1940').
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940’.

Find Actors who acted in Movies made in 1940

CSEP 544 - Spring 2021 12

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910). | | Q2(f, I) :- Actor(zf 1), Casts(z,x),
Movie(29000, ‘Arizona’, 1940). Movie(x,y,"1940').
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940’.

Q3(f,l) :- Actor(z,f,1), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

CSEP 544 - Spring 2021 13

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910). | | Q2(f, I) :- Actor(zf 1), Casts(z,x),
Movie(29000, ‘Arizona’, 1940). Movie(x,y,"1940').
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940’.

Q3(f,l) :- Actor(z,f,1), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

Find Actors who acted in a Movie in 1940 and in one in 1910

CSEP 544 - Spring 2021 14

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910). | | Q2(f, I) :- Actor(zf 1), Casts(z,x),
Movie(29000, ‘Arizona’, 1940). Movie(x,y,"1940').
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940’.

Q3(f,l) :- Actor(z,f,1), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

Extensional Database Predicates = EDB = Actor, Casts, Movie

Intensional Database Predicates = IDB = Q1, Q2, Q3
CSEP 544 - Spring 2021 15

Anatomy of a Rule

Q2(f, 1) :- Actor(z,f,1), Casts(z,x), Movie(x,y,’1940").

CSEP 544 - Spring 2021

16

Anatomy of a Rule

head body
S -
= N

Q2(f, 1) :- Actor(z,f,1), Casts(z,x), Movie(x,y,’1940").

CSEP 544 - Spring 2021

17

Anatomy of a Rule

head body
/\ A
- N
atom atom atom (aka predicate)

Q2(f, 1) - Actor(z,f,]), Casts(z,x), Movie(x,y, 1940’).

CSEP 544 - Spring 2021 18

Anatomy of a Rule

head body
/\ A
- N
atom atom atom (aka predicate)

Q2(f, 1) - Actor(z,f,]), Casts(z,x), Movie(x,y, 1940’).

f, | = head variables
X,y,z = existential variables

CSEP 544 - Spring 2021 19

More Datalog Terminology

Q(args) :- R1(args), R2(args),

« R(args,;) called an atom, or a relational predicate

More Datalog Terminology

Q(args) :- R1(args), R2(args),

« R(args,;) called an atom, or a relational predicate

* Ri(args,;) evaluates to true when relation R; contains
the tuple described by args;.
— Example: Actor(344759, ‘Douglas’, ‘Fowley’) is true

More Datalog Terminology

Q(args) :- R1(args), R2(args),

« R(args,;) called an atom, or a relational predicate

* Ri(args,;) evaluates to true when relation R; contains
the tuple described by args;.
— Example: Actor(344759, ‘Douglas’, ‘Fowley’) is true

* |n addition we can also have arithmetic predicates
— Example: z > 1940

More Datalog Terminology

Q(args) :- R1(args), R2(args),

« R(args,;) called an atom, or a relational predicate

* Ri(args,;) evaluates to true when relation R; contains
the tuple described by args;.
— Example: Actor(344759, ‘Douglas’, ‘Fowley’) is true
* |n addition we can also have arithmetic predicates
— Example: z > 1940

« Some systems use <- Q(args) <- R1(args), R2(args),

More Datalog Terminology

Q(args) :- R1(args), R2(args),

« R(args,;) called an atom, or a relational predicate

* Ri(args,;) evaluates to true when relation R; contains
the tuple described by args;.
— Example: Actor(344759, ‘Douglas’, ‘Fowley’) is true
* |n addition we can also have arithmetic predicates
— Example: z > 1940

« Some systems use <- Q(args) <- R1(args), R2(args),

« Some use AND Q(args) :- R1(args) AND R2(args)

Outline

» Datalog rules

 Recursion

« Semantics

Next time: extensions, semi-naive algo.

CSEP 544 - Spring 2021

Datalog program

» A datalog program = several rules
* Rules may be recursive

« Set semantics only

26

AP |IO]I=2 DN

Example

R encodes a graph

T(X,y) - R(X,y) What does

it compute?

T(X’y) - R(X’Z)’ T(Z’y)

PO ININ|=-
AP |IO]I=2 DN

Example

R encodes a graph

T(X,y) - R(X,y) What does

it compute?

T(X’y) - R(X’Z)’ T(Z’y)

Initially:

T is empty.

PO ININ|=-
AP |IO]I=2 DN

Example

R encodes a graph

T(X,y) - R(X,y) What does

it compute?

T(X’y) - R(X’Z)’ T(Z’y)

First iteration:
R Initially: T=

T is empty.

\

> First rule generates this

Al |=2IN|IN]|—-
alsalalwl=a]d

AP |IO]I=2 DN

J

Second rule

generates nothing
(because T is empty)

Example

R encodes a graph

T(x,y) - R(x,y) What does

it compute?

T(X’y) - R(X’Z)’ T(Z’y)

Second iteration:

_ First iteration: T=
R= Initially: T= ; f
1 2 T is empty. > | 3
First rule generates this

2 1 1| 2 1] 4

2 |1 3 | 4

2 3 2 |3 4 | 5

1 4 1 4 1 1

3| 4 2 | 2

3 4 4 | 5 1] 3
4 5 5 | 4 Second rule generates this

L1 5

R encodes a graph

AP |IO]I=2 DN

Initially:
T is empty.

Example

T(X’y) .~ R(X’y)
T(x,y) :- R(x,2)

, T(z,)y)

Second iteration:

What does
it compute?

Third iteration:

First iteration: T=
T=

1 2

2 1

2 3

1 4

3 4

4 5

1
2
2
1
3
4
1
2
1
2
1
3

aloalsralw|d]alalr]lr]lwla]N

T=

1 2 }Both rules
2 1
2 3 1D
1 4
> First rule
3 4
4 5
1 1
2 2
1 3
2 4 Second
1 5 rule
3 5
2 5

Example

T(X,y) - R(X,y) What does
T(X’y) - R(X’Z)’ T(Z’y)

R encodes a graph

it compute?

Third iteration:

Second iteration: T=
First iteration: T= 1| 2 Fourth
R= . 1| 2 , .
Initially: T= T 2 | 1 iteration
1 2 T is empty. 13 2 | 3 T =
1] 4 same
2 1 1 2 1 4 3 . ()
2 | 1 3 | 4 No
2 3 4 5
213 ‘1‘ f T 11| | new
1 4
1 4 2 | 2 | | facts.
3 4 2 2] 5
3 4 s - —— DONE
4 5 2 | 4 P
1 5
3 5
3 5
2 5

Example

T(X’y) - R(X’y)
T(X’y) - R(X’Z)’ T(Z’y)

R encodes a graph

Second iteration: T=
R= e First iteration: T= —— 1| 2
Initially: T= T 2 | 1
1 2 T is empty. > | 3 2 |3
1 4
2 1 1 2 1 4 3]
2 1 3 4 2 -
2 3 2 3 4 5)]
1 4 1| 4 1] 1 15
3 4 2 2] 3
3 4 4 5 1 3 >]
4 5 2 | 4
1 5
1 5
3 5
3 5
2 5

What does
it compute?

Third iteration:

Fourth
iteration

T=
(same)

No
new

facts.
DONE

lteration k computes pairs (x,y) connected by path of length < k

Three Equivalent Programs

R encodes a grap

T(va) - R(X’y)
T(va) - R(X’Z)’ T(Z’y)

Right linear

PO ININ|=-
AP |IO]I=2 DN

CSEP 544 - Spring 2021 35

Three Equivalent Programs

R encodes a grap

T(xy) - R(xy) Right linear
T(X’y) .- R(X’Z)’ T(Z’y)

T(x,y) = R(xy)
R= T(X,y) - T(Xaz), R(Z’y)

Left linear

PO ININ|=-
AP |IO]I=2 DN

CSEP 544 - Spring 2021 36

Three Equivalent Programs

R encodes a grap

T(xy) - R(xy) Right linear
T(X’y) .- R(X’Z)’ T(Z’y)

T(X’y) - R(X’y)

Left linear
R= Txy) - Txz), Rzy) 15
1 2
- T(xy) - R(xy) .
Non-linear
1 T(xy) - T(x2), T(2,y)
3 4
4 5

CSEP 544 - Spring 2021 37

Three Equivalent Programs

R encodes a grap

T(xy) - R(xy) Right linear
T(X’y) .- R(X’Z)’ T(Z’y)

T(X’y) - R(X’y)

Left li
R= T(xy) = T(x2) Rzy) |
1 2
2 | T(x.y) - R(x.y) Nonlinear
-|i
1 T(xy) - T(x,2), T(2,y)
3 4
4 5 Question: how many iterations does each require?

CSEP 544 - Spring 2021 38

Three Equivalent Programs

R encodes a grap

T(xy) - R(xy) Right linear
T(va) .- R(X’Z)’ T(Z’y)

T(va) - R(X’y)
T(va) - T(X’Z)’ R(Z’y)

Left linear

#iterations =
diameter

T(va) - R(X’y)

Non-Ii
log(diameter)

PO ININ|=-
AP |IO]I=2 DN

Question: how many iterations does each require?

CSEP 544 - Spring 2021 39

Multiple IDBs

R encodes a grap a

Find pairs of nodes (Xx,y)
connected by a path of even length

PO ININ|=-
AP |IO]I=2 DN

40

Multiple IDBs

R encodes a grap a

Find pairs of nodes (Xx,y)
connected by a path of even length

Odd(x,y) :- R(x,y)

Even(x,y) :- Odd(x,z), R(z,y)

Odd(x,y) :- Even(x,z), R(z,y)

AW IN|IN|[—~
alh|r|w|[=a|N

Two IDBs: Odd(x,y) and Even(x,y)

41

Discussion: Recursion in SQL

SQL has everything,
including some form of

with recursive T as(

recursion, BUT: select * from R
. - union

S_mgle IDB select distinct R.x, T.y
 Linear query only fromR, T

where R.y=T.x

e H i
as bag semantics) select * from T

(why??7?) which
diverges

42

Outline

» Datalog rules

 Recursion

« Semantics

Next time: extensions, semi-naive algo.

CSEP 544 - Spring 2021

Naive Evaluation Algorithm

« Every rule > SPJ query

"SPJ = select-project-join
*USPJ = union-select-project-join

Naive Evaluation Algorithm

« Every rule > SPJ query

T(x,z) :- R(x,y), T(y,z), C(y,’green’)

"SPJ = select-project-join
*USPJ = union-select-project-join

Naive Evaluation Algorithm

[y z
\

 Every rule > SPJ" query P

Oy="'greens

T(x,z) :- R(x,y), T(y,z), C(y,'green’) /) \ |

R T C

"SPJ = select-project-join
*USPJ = union-select-project-join

Naive Evaluation Algorithm

[y z
\

 Every rule > SPJ" query P

X Oy='greens
T(x,z) :- R(x,y), T(y,z), C(y,’green’) / \ gl
R T C

* Multiple rules same head - USPJ*

"SPJ = select-project-join
*USPJ = union-select-project-join

Naive Evaluation Algorithm

[y z
\

 Every rule > SPJ" query P

X Oy='greens
T(x,z) :- R(x,y), T(y,z), C(y,’green’) / \ gl

R T C

* Multiple rules same head - USPJ*

* Naive Algorithm:

"SPJ = select-project-join
*USPJ = union-select-project-join

IDBs =0
repeat IDBs = USPJs

until no more change

Naive Evaluation Algorithm

CSEP 544 - Spring 2021

49

Naive Evaluation Algorithm

repeat
T:=RUII,,(R®xT);
until [no more change]

CSEP 544 - Spring 2021 50

Naive Evaluation Algorithm

Optimization:
Use R only once,
before the loop
(SQL does this)

epeat
T:=RUII,,(R®xT);
until [no more change]

CSEP 544 - Spring 2021 51

Naive Evaluation Algorithm

Optimization:
Use R only once,
before the loop
(SQL does this)

epeat
T:=RUII,,(R®xT);
until [no more change]

Will discuss a more
general optimization
called Semi-Naive

next time

CSEP 544 - Spring 2021 52

Naive Evaluation Algorithm

* When multiple IDBs: need to compute
their new values in parallel.

Odd(x,y) - R(x,y)
Even(x,y) :- Odd(x,z),R(z,y)
Odd(x,y) :- Even(x,z),R(z,y)

53

Naive Evaluation Algorithm

* When multiple IDBs: need to compute
their new values in parallel.

Odd(x,y) - R(x,y)
Even(x,y) :- Odd(x,z),R(z,y)
Odd(x,y) :- Even(x,z),R(z,y)

Odd := @; Even := @;

repeat
EvenneW: — Hx’y(Odd X R);
Oddpew: = R U Il (Even = R);

Naive Evaluation Algorithm

* When multiple IDBs: need to compute
their new values in parallel.

Odd(x,y) - R(x,y)
Even(x,y) :- Odd(x,z),R(z,y)
Odd(x,y) :- Even(x,z),R(z,y)

Odd := @; Even := @;

repeat
EvenneW: — Hx’y(Odd X R);
Oddpew: = R U Il (Even = R);

Odd:= Oddnew
Even:=Evenpew

Naive Evaluation Algorithm

* When multiple IDBs: need to compute
their new values in parallel.

Odd(x,y) - R(x,y)
Even(x,y) :- Odd(x,z),R(z,y)
Odd(x,y) :- Even(x,z),R(z,y)

Odd = @; Even = @;
repeat
Evenpew: = I, ,,(0dd > R);
Oddpew: = R U Il (Even = R);
if 0dd=0ddpew A Even=Evenpew
then break

Odd:= Oddnew
Even:=Evenpew

Naive Evaluation Algorithm

he Nalve Evaluation Algorithm:

* Always terminates

* Always terminates in a number of steps
that is polynomial in the size of the
database

Before we show this, a digression: monotone queries

Monotone Queries

* A query with input relations R, S, T, ...
IS called monotone if, whenever we
iIncrease a relation, the query answer
also increases (or stays the same)

* |ncrease here means larger set

CSEP 544 - Spring 2021 58

Monotone Queries

* A query with input relations R, S, T, ...
IS called monotone if, whenever we
iIncrease a relation, the query answer
also increases (or stays the same)

* |ncrease here means larger set
 Mathematically

fFRCR,ScS', .. thenQ(R,S,..) € Q(RS’,..)

CSEP 544 - Spring 2021 59

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,price)

Which Queries are Monotone?

SELECT DISTINCT x.sno, x.name
FROM Supplier x, Supply y
WHERE x.sno = y.sno and y.pno = 2

60

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,price)

Which Queries are Monotone?

SELECT DISTINCT x.sno, x.name | MONOTONE
FROM Supplier x, Supply y
WHERE x.sno = y.sno and y.pno = 2

61

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,price)

Which Queries are Monotone?

SELECT DISTINCT x.sno, x.name MONOTONE
FROM Supplier x, Supply y

WHERE x.sno = y.sno and y.pno = 2

SELECT DISTINCT x.sno, x.name
FROM Supplier x, Supply y
WHERE x.sno = y.sno and y.pno != 2

62

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,price)

Which Queries are Monotone?

SELECT DISTINCT x.sno, x.name MONOTONE
FROM Supplier x, Supply y

WHERE x.sno = y.sno and y.pno = 2

SELECT DISTINCT x.sno, x.name
FROM Supplier x, Supply y MONOTONE

WHERE x.sno = y.sno and y.pno != 2

63

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,price)

Which Queries are Monotone?

SELECT DISTINCT x.sno, x.name | MONOTONE SELECT x.city, count(*)
FROM Supplier x, Supply y

FROM Supplier x
WHERE x.sno = y.sno and y.pno = 2 GROUP BY x.city

SELECT DISTINCT x.sno, x.name
FROM Supplier x, Supply y MONOTONE

WHERE x.sno = y.sno and y.pno != 2

64

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,price)

Which Queries are Monotone?

SELECT DISTINCT x.sno, x.name | MONOTONE SELECT x.city, count(*)
FROM Supplier x, Supply y FROM Supplier x
WHERE x.sno = y.sno and y.pno = 2 GROUP BY x.city

SELECT DISTINCT x.sno, x.name
FROM Supplier x, Supply y
WHERE x.sno = y.sno and y.pno != 2

MONOTONE NON-MONOTONE

65

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,price)

Which Queries are Monotone?

SELECT DISTINCT x.sno, x.name | MONOTONE SELECT x.city, count(*)
FROM Supplier x, Supply y FROM Supplier x
WHERE x.sno = y.sno and y.pno = 2 GROUP BY x.city

SELECT DISTINCT x.sno, x.name
FROM Supplier x, Supply y
WHERE x.sno = y.sno and y.pno != 2

MONOTONE NON-MONOTONE

SELECT x.sno, x.sname FROM Supplier x
WHERE x.sno IN (SELECT y.sno
FROM Supply y
WHERE y.pno =2)

66

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,price)

Which Queries are Monotone?

SELECT DISTINCT x.sno, x.name | MONOTONE SELECT x.city, count(*)
FROM Supplier x, Supply y FROM Supplier x
WHERE x.sno = y.sno and y.pno = 2 GROUP BY x.city

SELECT DISTINCT x.sno, x.name
FROM Supplier x, Supply y
WHERE x.sno = y.sno and y.pno != 2

MONOTONE NON-MONOTONE

SELECT x.sno, x.sname FROM Supplier x
WHERE x.sno IN (SELECT y.sno
FROM Supply y
WHERE y.pno =2)

MONOTONE

67

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,price)

Which Queries are Monotone?

SELECT DISTINCT x.sno, x.name | MONOTONE SELECT x.city, count(*)
FROM Supplier x, Supply y FROM Supplier x
WHERE x.sno = y.sno and y.pno = 2 GROUP BY x.city

SELECT DISTINCT x.sno, x.name
FROM Supplier x, Supply y
WHERE x.sno = y.sno and y.pno != 2

MONOTONE NON-MONOTONE

SELECT x.sno, x.sname FROM Supplier x
WHERE x.sno IN (SELECT y.sno
FROM Supply y
WHERE y.pno =2)

MONOTONE

SELECT x.sno, x.sname FROM Supplier x
WHERE x.sno NOT IN (SELECT y.sno

FROM Supply y
WHERE y.pno !1=2) 68

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,price)

Which Queries are Monotone?

SELECT DISTINCT x.sno, x.name | MONOTONE SELECT x.city, count(*)
FROM Supplier x, Supply y FROM Supplier x
WHERE x.sno = y.sno and y.pno = 2 GROUP BY x.city

SELECT DISTINCT x.sno, x.name
FROM Supplier x, Supply y
WHERE x.sno = y.sno and y.pno != 2

MONOTONE NON-MONOTONE

SELECT x.sno, x.sname FROM Supplier x
WHERE x.sno IN (SELECT y.sno
FROM Supply y
WHERE y.pno =2)

MONOTONE

SELECT x.sno, x.sname FROM Supplier x

WHERE x.sno NOT IN (SELECT y.sno
FROM Supply y
WHERE y.pno !1=2) NON-MONOTONE 69

Which Ops are Monotone?

Selection: 0y,eq
Projection: I1, 5 .
Join: =

Union: U
Difference: —

Grou p-by-su m. VA,B,Sum(C)

CSEP 544 - Spring 2021

70

Which Ops are Monotone?

Selection: 0,4 MONOTONE
Projection: I1, 5 . MONOTONE
Join: x MONOTONE
Union: U MONOTONE
Difference: — NON-MONOTONE

Grou p-by-su m. VA,B,Sum(C)
NON-MONOTONE

CSEP 544 - Spring 2021 71

Digression

* Understanding monotone v.s. non-
monotone queries gives you insights
into the complexity of SQL queries

* Rule of thumb: if the English formulation
of a query is non-monotone, then you
need to use a subquery OR aggregate
in SQL

Return SUPPLIERS who supply Return SUPPLIERS who supply
some product with price > $10000 only products with price > $10000

Back to Datalog

he Nalve Evaluation Algorithm:

* Always terminates

* Always terminates in a number of steps
that is polynomial in the size of the
database

Will show this next

73

Naive Evaluation Algorithm

Fact: every USPJ query is monotone
Proof: uses only o,11, x, U

74

Naive Evaluation Algorithm

Fact: every USPJ query is monotone
Proof: uses only o,11, x, U

Fact: the IDBs increase: IDB; € IDB; 4

Proof: by induction

75

Naive Evaluation Algorithm

Fact: every USPJ query is monotone
Proof: uses only o,11, x, U

Fact: the IDBs increase: IDB; € IDB; 4

Proof: by induction IDB,(= @) € IDB,

76

Naive Evaluation Algorithm

Fact: every USPJ query is monotone
Proof: uses only o,11, x, U

Fact: the IDBs increase: IDB; € IDB; 4
Proof: by induction IDB,(= @) € IDB,

Assuming IDB, € IDB;,; we have:
USPJ(IDB;) € USPJ(IDB;,)

77

Naive Evaluation Algorithm

Fact: every USPJ query is monotone
Proof: uses only o,11, x, U

Fact: the IDBs increase: IDB; € IDB; 4
Proof: by induction IDB,(= @) € IDB,

Assuming IDB, € IDB;,; we have:
IDB;,, = USPJ(IDB,;) € USPJ(IDB;,,) = IDB;.,

78

Naive Evaluation Algorithm

Consequence: The naive algorithm
terminates, in O(nX) steps, where:

 n = number of distinct values in the DB
» k = arity of widest IDB relation

Proof: IDBs increases to < O(nk) facts

Summary

« Datalog = light-weight syntax, recursion

* Powerful optimizations:
— Semi-naive; magic sets; asynchronous exec

 Limitation: monotone queries only

Next time: extensions to non-monotone

