CSE544 Data Management

Lectures 9
 Query Optimization (Part 1)

Announcements

- HW2 is due tomorrow!
- HW3 will be posted on Wednesday
- Review 5 (How good?) due Wednesday
- Mini-project guidelines posted

Query Optimization Motivation

Query Optimization

Goal:

- Given a query plan, find a cheaper (cheapest?) equivalent plan
- Why difficult:
- Need to explore a large number of plans
- Need to estimate the cost of each plan

Query Optimization

Three major components:

1. Cardinality and cost estimation
2. Search space
3. Plan enumeration algorithms

Query Optimization

Three major components:

1. Cardinality and cost estimation
2. Search space
3. Plan enumeration algorithms

Cardinality Estimation

Problem: given statistics on base tables and a query, estimate size of the answer

Very difficult, because:

- Need to do it very fast
- Need to use very little memory

Statistics on Base Data

- Number of tuples (cardinality)
- Number of physical pages
- Indexes, number of keys in the index $V(R, a)$
- Histogram on single attribute (1d)
- Histogram on two attributes (2d)

Computed periodically, often using sampling

Assumptions

- Uniformity
- Independence
- Containment of values
- Preservation of values

Size Estimation

Selection: size decreases by selectivity factor θ

$$
T\left(\sigma_{\text {pred }}(R)\right)=\theta_{\text {pred }} * T(R)
$$

Size Estimation

Selection: size decreases by selectivity factor θ

$$
\begin{aligned}
& T\left(\sigma_{\text {pred }}(R)\right)=\theta_{\text {pred }} * T(R) \\
& T\left(R \bowtie_{A=B} S\right)=\theta_{A=B} * T(R) * T(S)
\end{aligned}
$$

$T\left(\sigma_{\text {pred }}(R)\right)=\theta_{\text {pred }} * T(R)$

Selectivity Factors

Uniformity assumption
Equality:

$$
\sigma_{A=c}(R)
$$

$T\left(\sigma_{\text {pred }}(R)\right)=\theta_{\text {pred }} * T(R)$

Selectivity Factors

Uniformity assumption
Equality:

$\sigma_{A=c}(R)$

- $\theta_{A=c}=1 / V(R, A)$
$T\left(\sigma_{\text {pred }}(R)\right)=\theta_{\text {pred }} * T(R)$

Selectivity Factors

Uniformity assumption
Equality:

- $\theta_{A=c}=1 / V(R, A)$

$$
\sigma_{A=c}(R)
$$

$$
\sigma_{\mathrm{c} 1<\mathrm{A}<\mathrm{c} 2}(\mathrm{R})
$$

Range:

- $\theta_{c 1<A<c 2}=(c 2-c 1) /(\max (R, A)-\min (R, A))$
$T\left(\sigma_{\text {pred }}(R)\right)=\theta_{\text {pred }} * T(R)$

Selectivity Factors

Uniformity assumption Equality:

- $\theta_{A=c}=1 / V(R, A)$

$$
\sigma_{A=c}(R)
$$

$$
\sigma_{\mathrm{c} 1<\mathrm{A}<\mathrm{c} 2}(\mathrm{R})
$$

Range:

- $\theta_{c 1<A<c 2}=(c 2-c 1) /(\max (R, A)-\min (R, A))$

Conjunction
$\sigma_{A=c \text { and } B=d}(R)$
$T\left(\sigma_{\text {pred }}(R)\right)=\theta_{\text {pred }} * T(R)$

Selectivity Factors

Uniformity assumption Equality:

- $\theta_{A=c}=1 / \mathrm{V}(\mathrm{R}, \mathrm{A})$

$$
\sigma_{A=c}(R)
$$

$$
\sigma_{\mathrm{c} 1<\mathrm{A}<\mathrm{c} 2}(\mathrm{R})
$$

Range:

- $\theta_{c 1<A<c 2}=(c 2-c 1) /(\max (R, A)-\min (R, A))$

Conjunction
$\sigma_{A=c \text { and } B=d}(R)$
Independence assumption

- $\theta_{\text {pred1 and pred2 }}=\theta_{\text {pred1 }}{ }^{*} \theta_{\text {pred2 }}=1 / V(R, A) * 1 / V(R, B)$

Selectivity Factors

$R \bowtie_{R . A=S . B} S$

Join

$$
T\left(R \bowtie_{A=B} S\right)=\theta_{A=B} * T(R) * T(S)
$$

Selectivity Factors

$R \bowtie_{\text {R.A=S.B }} S$

Join

- $\theta_{\text {R.A }=\mathrm{S} . \mathrm{B}}=1 /(\operatorname{MAX}(\mathrm{V}(\mathrm{R}, \mathrm{A}), \mathrm{V}(\mathrm{S}, \mathrm{B}))$

Why? Will explain next...

$$
T\left(R \bowtie_{A=B} S\right)=\theta_{A=B} * T(R) * T(S)
$$

Selectivity Factors

$$
R \bowtie_{R . A=S . B} S
$$

Containment of values: if $V(R, A) \leq V(S, \bar{B})$, then the set of A values of R is included in the set of B values of S

- Note: this indeed holds when A is a foreign key in R, and B is a key in S

$$
T\left(R \bowtie_{A=B} S\right)=\theta_{A=B} * T(R) * T(S)
$$

Selectivity Factors

$R \bowtie_{\text {R.A=S.B }} S$
Assume $\mathrm{V}(\mathrm{R}, \mathrm{A}) \leq \mathrm{V}(\mathrm{S}, \mathrm{B})$

- Tuple t in R joins with $T(S) / V(S, B)$ tuples in S

$$
T\left(R \bowtie_{A=B} S\right)=\theta_{A=B} * T(R) * T(S)
$$

Selectivity Factors

$R \bowtie_{\text {R.A=S.B }} S$
Assume $\mathrm{V}(\mathrm{R}, \mathrm{A}) \leq \mathrm{V}(\mathrm{S}, \mathrm{B})$

- Tuple t in R joins with $T(S) / V(S, B)$ tuples in S
- Hence $T\left(R \bowtie_{A=B} S\right)=T(R) T(S) / V(S, B)$

$$
T\left(R \bowtie_{A=B} S\right)=\theta_{A=B} * T(R) * T(S)
$$

Selectivity Factors

$R \bowtie_{R . A=S . B} S$
Assume $\mathrm{V}(\mathrm{R}, \mathrm{A}) \leq \mathrm{V}(\mathrm{S}, \mathrm{B})$

- Tuple t in R joins with $T(S) / V(S, B)$ tuples in S
- Hence $T\left(R \bowtie_{A=B} S\right)=T(R) T(S) / V(S, B)$

In general:

- $T\left(R \bowtie_{A=B} S\right)=T(R) T(S) / \max (V(R, A), V(S, B))$
- $\theta_{\text {R.A }=S . B}=1 /(\max (V(R, A), V(S, B))$

Final Assumption

Preservation of values:
For any other attribute C :

- $V\left(R \bowtie_{A=B} S, C\right)=V(R, C)$ or
- $V\left(R \bowtie_{A=B} S, C\right)=V(S, C)$
- This is needed higher up in the plan

Computing the Cost of a Plan

- Estimate cardinalities bottom-up
- Estimate cost by using estimated cardinalities
- Examples next...

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 1

$\Pi_{\text {sname }}$
$\sigma_{\text {pno }}=2 \wedge$ scity='Seattle' \wedge sstate='WA
$\operatorname{sid}=\operatorname{sid}$

Supply

```
SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
    and y.pno = 2
    and x.scity = 'Seattle'
    and x.sstate = 'WA'
```


Supplier

```
T(Supply) = 10000
B(Supply) = 100
V(Supply, pno)=2500
```

```
T (Supplier) \(=1000\)
\(B(\) Supplier \()=100\)
\(V(\) Supplier, scity \()=20\)
\(\mathrm{M}=11\)
\(V(\) Supplier, state \()=10\)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Logical Query Plan 1}
\(\Pi_{\text {sname }}\)
\(\sigma_{\text {pno }}=2 \wedge\) scity \(=\) 'Seattle' \(\wedge\) sstate \(=' W A '\)
\[
T=10000
\]
```

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = 'Seattle'
and x.sstate = 'WA'

```

\section*{Supplier}
\[
\begin{aligned}
& \mathrm{T}(\text { Supply })=10000 \\
& \mathrm{~B}(\text { Supply })=100 \\
& \mathrm{~V}(\text { Supply, pno })=2500
\end{aligned}
\]
```

T (Supplier) $=1000$
$B($ Supplier $)=100$
$V($ Supplier, scity $)=20$
$M=11$
$V($ Supplier, state $)=10$

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 1

$\Pi_{\text {sname }}$


```
SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
    and y.pno = 2
    and x.scity = 'Seattle'
    and x.sstate = 'WA'
```

Because key / foreign-key

Supply

Supplier

$$
\begin{aligned}
& \mathrm{T}(\text { Supplier })=1000 \\
& \mathrm{~B}(\text { Supplier })=100 \\
& \mathrm{~V}(\text { Supplier, scity })=20 \\
& \mathrm{~V}(\text { Supplier, state })=10
\end{aligned}
$$

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 1

$\Pi_{\text {sname }}$

Estimated (why?)

$\sigma_{\text {pno }}=2 \wedge$ scity='Seattle' \wedge sstate $=‘ W A$

$$
T=10000
$$

Because key / foreign-key

Also: $\theta=1 / \max (\mathrm{V}($ Supply,sid $) *($ Supplier,sid $)=1 / \mathrm{V}($ Supplier,sid $)$

Supply

$T($ Supply $)=10000$
$B($ Supply $)=100$
$V($ Supply, pno $)=2500$

Supplier

$\begin{array}{l}\mathrm{T}(\text { Supplier })=1000 \\ \mathrm{~B}(\text { Supplier })=100 \\ \text { V(Supplier, scity) }=20 \\ \text { V(Supplier, state) })=10\end{array} \quad \mathrm{M}=11$

$V($ Supplier, state $)=10$

```
SELECT sname
```

SELECT sname
FROM Supplier x, Supply y
FROM Supplier x, Supply y
WHERE x.sid = y.sid
WHERE x.sid = y.sid
and y.pno = 2
and y.pno = 2
and x.scity = 'Seattle'
and x.scity = 'Seattle'
and x.sstate = 'WA'

```
    and x.sstate = 'WA'
```

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Estimated (why?) _ogical Query Plan 1
 $\Pi_{\text {sname }}$

$\sigma_{\text {pno }}=2 \wedge$ scity='Seattle' \wedge sstate='WA

$$
T=10000
$$

$$
\operatorname{sid}=\operatorname{sid}
$$

Supply

T (Supply) $=10000$
B(Supply) $=100$
$\mathrm{V}($ Supply, pno) $=2500$

```
SELECT sname
```

SELECT sname
FROM Supplier x, Supply y
FROM Supplier x, Supply y
WHERE x.sid = y.sid
WHERE x.sid = y.sid
and y.pno = 2
and y.pno = 2
and x.scity = 'Seattle'
and x.scity = 'Seattle'
and x.sstate = 'WA'

```
    and x.sstate = 'WA'
```


Supplier

```
\(\mathrm{T}(\) Supplier \()=1000\)
\(B\) (Supplier) \(=100\)
\(V(\) Supplier, scity \()=20\)
\(\mathrm{M}=11\)
\(V(\) Supplier, state \()=10\)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Logical Query Plan 2}
\(\Pi_{\text {sname }}\)

```

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = 'Seattle'
and x.sstate = 'WA'

```


\section*{Supply}
\(\sigma_{\text {scity }}=\) 'Seattle' \(\wedge\) sstate='WA'

\section*{Supplier}
\[
\begin{aligned}
& \mathrm{T}(\text { Supplier })=1000 \\
& \mathrm{~B}(\text { Supplier })=100 \\
& \text { V(Supplier, scity) }=20 \\
& \text { V(Supplier, state })=10
\end{aligned}
\]

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Logical Query Plan 2}

```

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = 'Seattle'
and x.sstate = 'WA'

```


\section*{Supply}
\(\sigma_{\text {scity }}=\) 'Seattle' \(\wedge\) sstate='WA'

\section*{Supplier}
\[
\begin{aligned}
& \mathrm{T}(\text { Supplier })=1000 \\
& \text { B(Supplier) }=100 \\
& \text { V(Supplier, scity) }=20 \\
& \text { V(Supplier, state })=10
\end{aligned}
\]

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Logical Query Plan 2}
    \(\sigma_{\mathrm{pno}=2}\)

\section*{Supply}
\(T(\) Supply \()=10000\)
\(B\) (Supply) \(=100\)
\(\mathrm{V}(\) Supply, pno) \(=2500\)
```

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = 'Seattle'
and x.sstate = 'WA'

```
                                    Very wrong!
                                    Why?
    \(\sigma_{\text {scity }}=\) 'Seattle' \(\wedge\) sstate='WA'

\section*{Supplier}
```

T (Supplier) $=1000$
$B($ Supplier $)=100$
$V($ Supplier, scity $)=20$
$M=11$
$V($ Supplier, state $)=10$

```

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Logical Query Plan 2}

```

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = 'Seattle'
and x.sstate = 'WA'

```

Very wrong! Why?

\section*{Supply}
\(T(\) Supply \()=10000\)
\(B\) (Supply) \(=100\)
\(\mathrm{V}(\) Supply, pno) \(=2500\)
\(\sigma_{\text {scity }}=\) 'Seattle' \(\wedge\) sstate='WA'

\section*{Supplier}
\[
\begin{aligned}
& \mathrm{T}(\text { Supplier })=1000 \\
& \text { B(Supplier) }=100 \\
& \text { V(Supplier, scity) }=20 \\
& \text { V(Supplier, state })=10
\end{aligned}
\]

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Logical Query Plan 2}


\section*{Supplier}
\[
\begin{aligned}
& \mathrm{T}(\text { Supply })=10000 \\
& \mathrm{~B}(\text { Supply })=100 \\
& \mathrm{~V}(\text { Supply, pno })=2500
\end{aligned}
\]

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Physical Plan 1}

\[
T<1
\]
\(\sigma_{\mathrm{pno}}=2 \wedge\) scity='Seattle' \(\wedge\) sstate='WA'
\[
T=10000
\]
Total cost:

Scan

> Supply

Scan Supplier
\[
\begin{aligned}
& \mathrm{T}(\text { Supply })=10000 \\
& \mathrm{~B}(\text { Supply })=100 \\
& \mathrm{~V}(\text { Supply, pno })=2500
\end{aligned}
\]
\[
\begin{array}{l|l}
\mathrm{T}(\text { Supplier })=1000 & \\
\text { B(Supplier) }=100 & \\
\text { V(Supplier, scity) }=20 & \mathrm{M}=11 \\
\text { V(Supplier, state) }=10 &
\end{array}
\]

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Physical Plan 1}

\[
T<1
\]
\(\sigma_{\mathrm{pno}}=2 \wedge\) scity='Seattle' \(\wedge\) sstate='WA'
\[
T=10000
\]
Supply

Scan Supplier
\[
\begin{aligned}
& \mathrm{T}(\text { Supply })=10000 \\
& \mathrm{~B}(\text { Supply })=100 \\
& \mathrm{~V}(\text { Supply, pno })=2500
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{T}(\text { Supplier })=1000 \\
& \mathrm{~B}(\text { Supplier })=100 \\
& \text { V(Supplier, scity) }=20 \\
& \text { V(Supplier, state })=10
\end{aligned}
\]

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Physical Plan 2 \\ \(\Pi_{\text {sname }}\)}


Cost of Supply(pno) = Cost of Supplier(scity) = Total cost:
\(\begin{array}{ll}\text { Unclustered } \\ \text { index lookup }\end{array} \quad \sigma_{\text {pno }}=2\) Supply(pno)
\(T(\) Supply \()=10000\)
\(B\) (Supply) \(=100\)
\(\mathrm{V}(\) Supply, pno \()=2500\)
\(\sigma_{\text {sstate }}={ }^{\prime} W A^{\prime}\)
\(\mathrm{T}=50\)
\(\sigma_{\text {scity }}=\) 'Seattle' Supplier

Unclustered index lookup
Supplier(scity)

T (Supplier) \(=1000\)
\(B(\) Supplier \()=100\)
\(V(\) Supplier, scity \()=20\)
\(\mathrm{M}=11\)
\(V(\) Supplier, state \()=10\)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Physical Plan 2 \\ \(\Pi_{\text {sname }}\)}

Cost of Supply(pno) = 4 Cost of Supplier(scity) = Total cost:
\(\begin{aligned} & \text { Unclustered } \\ & \text { index lookup }\end{aligned} \sigma_{\text {pno }}=2\) Supply(pno)

Supply
```

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno)=2500

```
\(\sigma_{\text {sstate }}={ }^{\prime} W A^{\prime}\) \(\mathrm{T}=50\)
\(\sigma_{\text {scity }}=\) 'Seattle' Supplier

Unclustered index lookup
Supplier(scity)

T (Supplier) \(=1000\)
\(B(\) Supplier \()=100\)
\(V(\) Supplier, scity \()=20\)
\(M=11\)
\(V(\) Supplier, state \()=10\)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Physical Plan 2 \\ \(\Pi_{\text {sname }}\)}

Cost of Supply(pno) = 4 Cost of Supplier(scity) \(=50\) Total cost: 54
\(\begin{array}{ll}\text { Unclustered } \\ \text { index lookup }\end{array} \quad \sigma_{\text {pno }}=2\) Supply(pno)

\section*{Supply}

T (Supplier) \(=1000\)
\(B(\) Supplier \()=100\)
\(V(\) Supplier, scity \()=20\)
\(\mathrm{M}=11\)
\(V(\) Supplier, state \()=10\)
\(T\) (Supply) \(=10000\)
\(B\) (Supply) \(=100\)
\(\mathrm{V}(\) Supply, pno \()=2500\)

\[
\begin{array}{cl}
\sigma_{\text {sstate }}=' W A^{\prime} \\
\mathrm{T}=50
\end{array} \quad \begin{array}{ll} 
\\
\sigma_{\text {scity=‘Seattle' }} & \begin{array}{l}
\text { Unclustered } \\
\text { index lookup }
\end{array} \\
\text { Supplier } & \text { Supplier(scity) }
\end{array}
\]

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Physical Plan 3}
\(\Pi_{\text {sname }}\)
\[
T=4
\]

Cost of Supply(pno) = Cost of Index join = Total cost:
\(\begin{aligned} & \text { Unclustered } \\ & \text { index lookup }\end{aligned} \quad \sigma_{\text {pno }}=2\)
Supply(pno)

\section*{Supply}

\section*{Supplier}
\[
\begin{aligned}
& \mathrm{T}(\text { Supplier })=1000 \\
& \text { B(Supplier) }=100 \\
& \text { V(Supplier, scity) }=20 \\
& \text { V(Supplier, state })=10
\end{aligned}
\]

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Physical Plan 3}
\(\Pi_{\text {sname }}\)
\[
T=4
\]

Cost of Supply(pno) = 4
Cost of Index join = Total cost:
\(\begin{array}{ll}\text { Unclustered } \\ \text { index lookup }\end{array} \quad \sigma_{\text {pno }}=2\)
Supply(pno)

\section*{Supply}

\section*{Supplier}
\[
\begin{aligned}
& \mathrm{T}(\text { Supplier })=1000 \\
& \text { B(Supplier) }=100 \\
& \text { V(Supplier, scity) }=20 \\
& \text { V(Supplier, state) }=10
\end{aligned}
\]

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

\section*{Physical Plan 3}
\(\Pi_{\text {sname }}\)
\[
T=4
\]

Unclustered \(\sigma_{\text {pno }}=2\)
Supply(pno)

\section*{Supply}

Cost of Supply(pno) = 4 Cost of Index join = 4 Total cost: 8
\(T(\) Supply \()=10000\)
\(B(\) Supply \()=100\)
\(V(\) Supply, pno \()=2500\)

\section*{Supplier}
\[
\begin{aligned}
& \mathrm{T}(\text { Supplier })=1000 \\
& \mathrm{~B}(\text { Supplier })=100 \\
& \text { V(Supplier, scity) }=20 \\
& \text { V(Supplier, state) }=10
\end{aligned}
\]

\section*{Discussion}
- We considered only IO cost; real systems need to consider IO+CPU
- Each system has its own hacks
- We assumed that all index pages were in memory: sometimes we need to add the cost of fetching index pages from disk

\section*{Histograms}
- \(T(R), V(R, A)\) too coarse
- Histogram: separate stats per bucket
- In each bucket store:
- T(bucket)
- V(bucket,A) - optional

\section*{Histograms}

Employee(ssn, name, age)
\(\mathrm{T}(\) Employee \()=25000, \mathrm{~V}(\) Empolyee, age \()=50\)
\(\sigma_{\text {age }=48}(\) Empolyee \()=\) ?

\section*{Histograms}

Employee(ssn, name, age)
\(\mathrm{T}(\) Employee \()=25000, \mathrm{~V}(\) Empolyee, age \()=50\)
\(\sigma_{\text {age }=48}(\) Empolyee \()=\) ?
Estimate: \(\mathrm{T}(\) Employee \() / \mathrm{V}(\) Employee, age \()=500\)

\section*{Histograms}

Employee(ssn, name, age)
\(\mathrm{T}(\) Employee \()=25000, \mathrm{~V}(\) Empolyee, age \()=50\)
\(\sigma_{\text {age }=48}(\) Empolyee \()=\) ?
Estimate: T (Employee) \(/ \mathrm{V}(\) Employee,age \()=500\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Age: & \(0 . .20\) & \(20 . .29\) & \(30-39\) & \(40-49\) & \(50-59\) & \(>60\) \\
\hline \(\mathrm{~T}=\) & 200 & 800 & 5000 & 12000 & 6500 & 500 \\
\hline
\end{tabular}

\section*{Histograms}

Employee(ssn, name, age)
\(\mathrm{T}(\) Employee \()=25000, \mathrm{~V}(\) Empolyee, age \()=50\)
\(\sigma_{\text {age }=48}(\) Empolyee \()=\) ?
Estimate: T (Employee) \(/ \mathrm{V}(\) Employee,age \()=500\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Age: & 0.20 & 20.29 & \(30-39\) & \(40-49\) & \(50-59\) & \(>60\) \\
\hline \(\mathrm{~T}=\) & 200 & 800 & 5000 & 12000 & 6500 & 500 \\
\hline \multicolumn{6}{c|}{} \\
\multicolumn{6}{c|}{ Assume V \(=10\)} \\
\hline
\end{tabular}

\section*{Histograms}

Employee(ssn, name, age)
\(\mathrm{T}(\) Employee \()=25000, \mathrm{~V}(\) Empolyee, age \()=50\)
\(\sigma_{\text {age }=48}(\) Empolyee \()=\) ?
Estimate: T (Employee) \(/ \mathrm{V}(\) Employee,age \()=500\)
\begin{tabular}{c|c|c|c|c|c|c|}
\hline Age: & 0.20 & 20.29 & \(30-39\) & \(40-49\) & \(50-59\) & \(>60\) \\
\hline \(\mathrm{~T}=\) & 200 & 800 & 5000 & 12000 & 6500 & 500 \\
\hline
\end{tabular}
Estimate: 12000/10 = 1200

\section*{Histograms}

Employee(ssn, name, age)
\(\mathrm{T}(\) Employee \()=25000, \mathrm{~V}(\) Empolyee, age \()=50\) \(\sigma_{\text {age }=48}(\) Empolyee \()=\) ?

Estimate: T (Employee) \(/ \mathrm{V}(\) Employee,age \()=500\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Age: & \(0 . .20\) & \(20 . .29\) & \(30-39\) & \(40-49\) & \(50-59\) & \(>60\) \\
\hline \(\mathrm{~T}=\) & 200 & 800 & 5000 & 12000 & 6500 & 500 \\
\hline \(\mathrm{~V}=\) & 3 & 10 & 7 & 6 & 5 & 4 \\
\hline
\end{tabular}

Estimate: \(12000 / 10=1200\)

\section*{Histograms}

Employee(ssn, name, age)
\(\mathrm{T}(\) Employee \()=25000, \mathrm{~V}(\) Empolyee, age \()=50\) \(\sigma_{\text {age }=48}(\) Empolyee \()=\) ?

Estimate: T (Employee) \(/ \mathrm{V}(\) Employee,age \()=500\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Age: & \(0 . .20\) & \(20 . .29\) & \(30-39\) & \(40-49\) & \(50-59\) & \(>60\) \\
\hline \(\mathrm{~T}=\) & 200 & 800 & 5000 & 12000 & 6500 & 500 \\
\hline \(\mathrm{~V}=\) & 3 & 10 & 7 & 6 & 5 & 4 \\
\hline
\end{tabular}

Estimate: \(12000 / 10=1200-12000 / 6=2000\)

\section*{Types of Histograms}
- Eq-Width
- Eq-Depth
- Compressed: store outliers separately
- V-Optimal histograms

\section*{Employee(ssn, name, age)}

\section*{Histograms}

Eq-width:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Age: & \(0 . .20\) & \(20 . .29\) & \(30-39\) & \(40-49\) & \(50-59\) & \(>60\) \\
\hline Tuples & 200 & 800 & 5000 & 12000 & 6500 & 500 \\
\hline
\end{tabular}

Eq-depth:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Age: & \(0 . .32\) & \(33 . .41\) & \(42-46\) & \(47-52\) & \(53-58\) & \(>60\) \\
\hline Tuples & 1800 & 2000 & 2100 & 2200 & 1900 & 1800 \\
\hline
\end{tabular}

Compressed: store separately highly frequent values: \((48,1900)\)

\section*{V-Optimal Histograms}
- Error:
\[
\sum_{v \in \operatorname{Domain}(A)}\left(\left|\sigma_{A=v}(R)\right|-e s t_{H i s t}\left(\sigma_{A=v}(R)\right)\right)^{2}
\]
- Bucket boundaries \(=\operatorname{argmin}_{\text {Hist }}\) (Error)
- Dynamic programming
- Modern databases systems use Voptimal histograms or some variations

\section*{Discussion}
- Cardinality estimation = still unsolved
- Histograms:
- Small number of buckets (why?)
- Updated only periodically (why?)
- No 2d histograms (except db2) why?
- Samples:
- Fail for low selectivity estimates, joins
- Cross-join correlation - still unsolved```

