
CSE544
Data Management

Lecture 8
Query Execution – Part 2

CSEP 544 - Spring 2021 1

Outline

• Steps involved in processing a query

• Main Memory Operators

• Query execution

• External Memory Operators

CSEP 544 - Spring 2021 2

Query Execution

Interpret RA

• Pros/cons?
– Portable, simple
– Slow

• dominant 1980-2010
– Why?
– I/O cost dominates

Compile RA

• Pros/Cons?
– Faster
– Architecture specific

• Renewed interest
– Why?
– Large buffer pool

3

Query Execution

Interpret RA

• Pros/cons?
– Portable, simple
– Slow

• dominant 1980-2010
– Why?
– I/O cost dominates

Compile RA

• Pros/Cons?
– Faster
– Architecture specific

• Renewed interest
– Why?
– Large buffer pool

4

Query Execution

Interpret RA

• Pros/cons?
– Portable, simple
– Slow

• dominant 1980-2010
– Why?
– I/O cost dominates

Compile RA

• Pros/Cons?
– Faster
– Architecture specific

• Renewed interest
– Why?
– Large buffer pool

5

Operator Interface
Volcano model:
• open(), next(), close()
• Pull model
• Volcano optimizer: G.

Graefe’s (Wisconsin) à
SQL Server

• Supported by most
DBMS today

• Will discuss next

6

Operator Interface
Volcano model:
• open(), next(), close()
• Pull model
• Volcano optimizer: G.

Graefe’s (Wisconsin) à
SQL Server

• Supported by most
DBMS today

• Will discuss next

Data-driven model:
• open(),produce(),

consume(),close()
• Push model
• Introduced by Thomas

Neumann in Hyper (at
TU Munich), later
acquired by Tableau

• Reading for Wednesday

7

Key Takeaway

• Compiled/interpreted & Volcano/data-driven
are somewhat independent dimensions
– We discuss the volcano/data-driven models

• Paper uses Futamura’s project to explain the
compiled code of each model
– Less important for databases, won’t discuss much

CSEP 544 - Spring 2021 8

Recap: Volcano Model

Each operator exports three methods:

• Open()

• Next()

• Close()
CSEP 544 - Spring 2021 9

Recap: Hash Join

CSEP 544 - Spring 2021 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

Probe
phase

Build
phase

Supply ⨝sid=sid Supplier

Volcano Model

CSEP 544 - Spring 2021 11

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

open()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

Volcano Model

CSEP 544 - Spring 2021 12

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

open()

open()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

Volcano Model

CSEP 544 - Spring 2021 13

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

open()

open()

open()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

Volcano Model

CSEP 544 - Spring 2021 14

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

open()

open()

open()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

open()

Volcano Model

CSEP 544 - Spring 2021 15

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

open()

open()

open()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

next()

Volcano Model

CSEP 544 - Spring 2021 16

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

open()

open()

open()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

next()
next()

Volcano Model

CSEP 544 - Spring 2021 17

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

open()

open()

open()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

next()
next()

next()

Probe phase
finished

Volcano Model

CSEP 544 - Spring 2021 18

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

open()

open()

open()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

close()

Volcano Model

CSEP 544 - Spring 2021 19

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

open()

open()

open()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

open()

Volcano Model

CSEP 544 - Spring 2021 20

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

next()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

Volcano Model

CSEP 544 - Spring 2021 21

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

next()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

next()

next()

Volcano Model

CSEP 544 - Spring 2021 22

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

next()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

next()

next()

next()

Volcano Model

CSEP 544 - Spring 2021 23

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

next()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

next()

next()

next()
next()

Volcano Model

CSEP 544 - Spring 2021 24

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

next()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

next()

Volcano Model

CSEP 544 - Spring 2021 25

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

next()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

next()

next()

next()

Volcano Model

CSEP 544 - Spring 2021 26

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

next()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

next()

next()

next()
next()

next()

Volcano Model

CSEP 544 - Spring 2021 27

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

next()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

Data-Driven Model

Each operator exports four methods:
• Open()

• Produce()

• Consume()

• Close() CSEP 544 - Spring 2021 28

called once
by parent

called repeatedly
by children

Data-Driven

CSEP 544 - Spring 2021 29

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

produce()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

Data-Driven

CSEP 544 - Spring 2021 30

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

produce()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

produce()

Data-Driven

CSEP 544 - Spring 2021 31

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

produce()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

produce()

produce()

Data-Driven

CSEP 544 - Spring 2021 32

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

produce()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

produce()

produce()

produce()

Data-Driven

CSEP 544 - Spring 2021 33

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

produce()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

produce()

produce()

produce()

consume()

Data-Driven

CSEP 544 - Spring 2021 34

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

produce()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

produce()

produce()

produce()

consume()
consume()

Data-Driven

CSEP 544 - Spring 2021 35

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

produce()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

produce()

produce()

produce()

consume()
consume()

consume()

Data-Driven

CSEP 544 - Spring 2021 36

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

produce()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

produce()

produce()
Build phase done

Data-Driven

CSEP 544 - Spring 2021 37

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

produce()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

produce()

produce()

produce()

Data-Driven

CSEP 544 - Spring 2021 38

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

produce()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

produce()

produce()

produce()

consume()

Data-Driven

CSEP 544 - Spring 2021 39

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

produce()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

produce()

produce()

produce()

consume()

consume()

Data-Driven

CSEP 544 - Spring 2021 40

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

produce()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

produce()

produce()

produce()

consume()
consume()

Data-Driven

CSEP 544 - Spring 2021 41

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

produce()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

produce()

produce()

produce()

consume()
consume()

consume()

Data-Driven

CSEP 544 - Spring 2021 42

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

produce()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

produce()

produce()

produce()

consume()
consume()

consume()

consume()

Data-Driven

CSEP 544 - Spring 2021 43

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

produce()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

produce()

produce()

produce()

consume()
consume()

consume()

Data-Driven

CSEP 544 - Spring 2021 44

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

produce()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

produce()

produce()

produce()

consume()
consume()

consume()

consume()

Data-Driven

CSEP 544 - Spring 2021 45

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

produce()

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

produce()

produce()

produce()

consume()
consume()

consume()

consume()

consume()

Call-back

• For any non-commutative operator like
hash-join, consume() must treat
differently calls from left and right child

• Paper’s solution: call-back function

CSEP 544 - Spring 2021 46

[How to Architect a Query Compiler]

[How to Architect a Query Compiler]

Left/right
convention
reversed

[How to Architect a Query Compiler]

Left/right
convention
reversed

[How to Architect a Query Compiler]

Left/right
convention
reversed

[How to Architect a Query Compiler]

Left/right
convention
reversed

[How to Architect a Query Compiler]

[How to Architect a Query Compiler]

[How to Architect a Query Compiler]

[How to Architect a Query Compiler]

[How to Architect a Query Compiler]

Final Thoughts

• Volcano model:
– next() returns single tuple – inefficient

• Vectorized model:
– next() returns a bundle, e.g. 1000 tuples

• Partial evaluation:
– specialize a function to some parameters

• Futamura projection:
– specialize an interpreter to a program

57

Outline

• Steps involved in processing a query

• Main Memory Operators

• Query execution

• External Memory Operators

CSEP 544 - Spring 2021 58

External Memory Algorithms

• Selection and index-join

• Nested loop join

• Partitioned hash-join, a.k.a. grace join

• Merge-join
CSEP 544 - Spring 2021 59

Cost Parameters

• In database systems the data is on disk
• Parameters:

– B(R) = # of blocks (i.e., pages) for relation R
– T(R) = # of tuples in relation R
– V(R, a) = # of distinct values of attribute a
– M = # pages available in main memory

• Cost = total number of I/Os
• Convention: writing the final result to disk is

not included
CSEP 544 - Spring 2021 60

Cost Parameters

Supplier(sid,sname,scity,sstate)
Block size = 8KB

• B(Supplier) = 1,000,000 blocks = 8GB
• T(Supplier) = 50,000,000 records ~ 50 / block
• V(Supplier, sid) =
• V(Supplier, sname) =
• V(Supplier, scity) =
• V(Supplier, sstate) =
• M =

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Cost Parameters

Supplier(sid,sname,scity,sstate)
Block size = 8KB

• B(Supplier) = 1,000,000 blocks = 8GB
• T(Supplier) = 50,000,000 records ~ 50 / block
• V(Supplier, sid) = 50,000,000 why?
• V(Supplier, sname) =
• V(Supplier, scity) =
• V(Supplier, sstate) =
• M =

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Cost Parameters

Supplier(sid,sname,scity,sstate)
Block size = 8KB

• B(Supplier) = 1,000,000 blocks = 8GB
• T(Supplier) = 50,000,000 records ~ 50 / block
• V(Supplier, sid) = 50,000,000 why?
• V(Supplier, sname) = 40,000,000 meaning?
• V(Supplier, scity) =
• V(Supplier, sstate) =
• M =

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Cost Parameters

Supplier(sid,sname,scity,sstate)
Block size = 8KB

• B(Supplier) = 1,000,000 blocks = 8GB
• T(Supplier) = 50,000,000 records ~ 50 / block
• V(Supplier, sid) = 50,000,000 why?
• V(Supplier, sname) = 40,000,000 meaning?
• V(Supplier, scity) = 860
• V(Supplier, sstate) =
• M =

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Cost Parameters

Supplier(sid,sname,scity,sstate)
Block size = 8KB

• B(Supplier) = 1,000,000 blocks = 8GB
• T(Supplier) = 50,000,000 records ~ 50 / block
• V(Supplier, sid) = 50,000,000 why?
• V(Supplier, sname) = 40,000,000 meaning?
• V(Supplier, scity) = 860
• V(Supplier, sstate) = 50 why?
• M =

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Cost Parameters

Supplier(sid,sname,scity,sstate)
Block size = 8KB

• B(Supplier) = 1,000,000 blocks = 8GB
• T(Supplier) = 50,000,000 records ~ 50 / block
• V(Supplier, sid) = 50,000,000 why?
• V(Supplier, sname) = 40,000,000 meaning?
• V(Supplier, scity) = 860
• V(Supplier, sstate) = 50 why?
• M = 10,000,000 = 80GB why so little?

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Selection
Selection on equality: sa=v(R)
V(R, a) = # of distinct values of attribute a
• Sequential scan:

– cost = B(R)
• Index-based selection:

– Unclustered index on a: cost = T(R) / V(R,a)
– Clustered index on a: cost = B(R) / V(R,a)

• Assumptions:
– Values are uniformly distributed
– Ignore the cost of reading the index (why?)

CSEP 544 - Spring 2021 67

SELECT *
FROM Supplier
WHERE scity = ‘Seattle’

Selection
Selection on equality: sa=v(R)
V(R, a) = # of distinct values of attribute a
• Sequential scan:

– cost = B(R)
• Index-based selection:

– Unclustered index on a: cost = T(R) / V(R,a)
– Clustered index on a: cost = B(R) / V(R,a)

• Assumptions:
– Values are uniformly distributed
– Ignore the cost of reading the index (why?)

CSEP 544 - Spring 2021 68

SELECT *
FROM Supplier
WHERE scity = ‘Seattle’

Selection
Selection on equality: sa=v(R)
V(R, a) = # of distinct values of attribute a
• Sequential scan:

– cost = B(R)
• Index-based selection:

– Unclustered index on a: cost = T(R) / V(R,a)
– Clustered index on a: cost = B(R) / V(R,a)

• Assumptions:
– Values are uniformly distributed
– Ignore the cost of reading the index (why?)

CSEP 544 - Spring 2021 69

SELECT *
FROM Supplier
WHERE scity = ‘Seattle’

Selection
Selection on equality: sa=v(R)
V(R, a) = # of distinct values of attribute a
• Sequential scan:

– cost = B(R)
• Index-based selection:

– Unclustered index on a: cost = T(R) / V(R,a)
– Clustered index on a: cost = B(R) / V(R,a)

• Assumptions:
– Values are uniformly distributed
– Ignore the cost of reading the index (why?)

CSEP 544 - Spring 2021 70

SELECT *
FROM Supplier
WHERE scity = ‘Seattle’

Selection
Selection on equality: sa=v(R)
V(R, a) = # of distinct values of attribute a
• Sequential scan:

– cost = B(R)
• Index-based selection:

– Unclustered index on a: cost = T(R) / V(R,a)
– Clustered index on a: cost = B(R) / V(R,a)

• Assumptions:
– Values are uniformly distributed
– Ignore the cost of reading the index (why?)

CSEP 544 - Spring 2021 71

SELECT *
FROM Supplier
WHERE scity = ‘Seattle’

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

Selection
Selection on equality: sa=v(R)
V(R, a) = # of distinct values of attribute a
• Sequential scan:

– cost = B(R)
• Index-based selection:

– Unclustered index on a: cost = T(R) / V(R,a)
– Clustered index on a: cost = B(R) / V(R,a)

• Assumptions:
– Values are uniformly distributed
– Ignore the cost of reading the index (why?)

CSEP 544 - Spring 2021 72

SELECT *
FROM Supplier
WHERE scity = ‘Seattle’

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

2000

Selection
Selection on equality: sa=v(R)
V(R, a) = # of distinct values of attribute a
• Sequential scan:

– cost = B(R)
• Index-based selection:

– Unclustered index on a: cost = T(R) / V(R,a)
– Clustered index on a: cost = B(R) / V(R,a)

• Assumptions:
– Values are uniformly distributed
– Ignore the cost of reading the index (why?)

CSEP 544 - Spring 2021 73

SELECT *
FROM Supplier
WHERE scity = ‘Seattle’

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

2000

5000

100

The 2% Rule

Rule of thumb:

• If you read more than 2% of the data,
then it’s faster to do a full sequential
scan than to use an unclustered index

Lesson: don’t build unclustered indexes
when V(R,a) is small

74

75

Percentage tuples retrieved

Cost

0 100

SELECT *
FROM R
WHERE R.K>? and R.K<?

CSEP 544 - Spring 2021

76

Percentage tuples retrieved

Cost

0 100

Sequential scan

CSEP 544 - Spring 2021

SELECT *
FROM R
WHERE R.K>? and R.K<?

77

Percentage tuples retrieved

Cost

0 100

Sequential scan

Clustered index

CSEP 544 - Spring 2021

SELECT *
FROM R
WHERE R.K>? and R.K<?

78

Percentage tuples retrieved

Cost

0 100

Sequential scan

Clustered indexUn
clu

st
er

ed
in

de
x

CSEP 544 - Spring 2021

SELECT *
FROM R
WHERE R.K>? and R.K<?

Index Nested Loop Join

R ⋈S
• Assume S has index on join attribute
• Iterate over R, probe each tuple in S
• Cost:

– Clustered: B(R) + T(R)B(S) / V(S,a)
– Unclustered: B(R) + T(R)T(S) / V(S,a)

CSEP 544 - Spring 2021 79

External Memory Algorithms

• Selection and index-join

• Nested loop join

• Partitioned hash-join, a.k.a. grace join

• Merge-join
CSEP 544 - Spring 2021 80

Nested Loop Joins

R ⋈ S

• Naïve nested loop join: T(R) + T(R) * B(S)
– WHY?

• Switch order: B(S) + B(R) * T(S)

• We can be much cleverer by using the
available main memory: M

CSEP 544 - Spring 2021 81

Block Nested Loop Join
• Group of (M-2) pages of S is called a “block”

for each (M-2) pages ps of S do
for each page pr of R do

for each tuple s in ps
for each tuple r in pr do

if r and s join then output(r,s)

Main memory
hash-join

(M-1)ps ⋈ pr

Block Nested Loop Join
• Group of (M-2) pages of S is called a “block”

for each (M-2) pages ps of S do
for each page pr of R do

for each tuple s in ps
for each tuple r in pr do

if r and s join then output(r,s)

Main memory
hash-join

(M-1)ps ⋈ pr

B(S) + B(S)B(R)/(M-2) disk I/Os. WHY?

Block Nested Loop Join

. . .
. . .

R & S
Hash table for block of S

(M-2 pages)

Input buffer for R Output buffer

. . .

Join Result

. . .

B(S) + B(S)B(R)/(M-2) disk I/Os.

External Memory Algorithms

• Selection and index-join

• Nested loop join

• Partitioned hash-join, a.k.a. grace join

• Merge-join
CSEP 544 - Spring 2021 85

Partitioned Hash-Join
a.k.a. Grace Join

• R ⋈ S, both bigger than main memory
• Step 1:

– Hash partition both R and S
– Store buckets on disk

• Step 2:
– Read one S-bucket in main memory
– Join with corresponding R-bucket
– Repeat for all buckets

86

Step 1: Hash-partition

• Partition R into buckets, on disk

87

M main memory buffers Disk

Relation R

INPUT

Partitions

1
2

M-1

Disk

. . .

1

2

B(R)

Step 1: Hash-partition

• Partition R into buckets, on disk

88

M main memory buffers Disk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1B(R)

Disk

. . .

1

2

Step 1: Hash-partition

• Partition R into buckets, on disk

89

M main memory buffers Disk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1B(R)

Disk

. . .

1

2

Step 1: Hash-partition

• Partition R into buckets, on disk

90

M main memory buffers Disk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1B(R)

Disk

. . .

1

2

Step 1: Hash-partition

• Partition R into buckets, on disk

91

M main memory buffers Disk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1B(R)

Disk

. . .

1

2

Step 1: Hash-partition

• Partition R into buckets, on disk

92

M main memory buffers Disk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1B(R)

Disk

. . .

1

2

Step 1: Hash-partition

• Partition R into buckets, on disk

93

M main memory buffers Disk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1B(R)

Disk

. . .

1

2

Step 1: Hash-partition

• Partition R into buckets, on disk

94

M main memory buffers Disk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1B(R)

Disk

. . .

1

2

Step 1: Hash-partition

• Partition R into buckets, on disk

95

M main memory buffers Disk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1B(R)

Disk

. . .

1

2

Step 1: Hash-partition

• Partition R into buckets, on disk

96

M main memory buffers Disk

Relation R
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1B(R)

bucket

Disk

. . .

1

2

Step 1: Hash-partition

• Partition R into buckets, on disk
• Partition S

97

M main memory buffers Disk

Relation S
OUTPUT

2INPUT

1

hashfunction
h M-1

Partitions

1
2

M-1B(S)

bucket

Disk

. . .

1

2

Step 2: Join Buckets
R ⋈ S
• Read one S-backed; hash-partition it using h2 (¹ h)

CSEP 544 - Spring 2021 98

Buckets
of R & S

Input buffer
for Ri

Hash table for partition
Si (< M-1 pages)

B main memory buffersDisk

Output
buffer

Disk

Join Result

h2

One entire S-bucket fits in M if B(S) / M ≤ M,
or B(S) ≤ M2. WHY?

Step 2: Join Buckets
R ⋈ S
• Read one S-backed; hash-partition it using h2 (¹ h)
• Scan corresponding R bucket and join

CSEP 544 - Spring 2021 99

Buckets
of R & S

Input buffer
for Ri

Hash table for partition
Si (< M-1 pages)

B main memory buffersDisk

Output
buffer

Disk

Join Result

One entire S-bucket fits in M if B(S) / M ≤ M,
or B(S) ≤ M2. WHY?

Step 2: Join Buckets
R ⋈ S
• Read one S-backed; hash-partition it using h2 (¹ h)
• Scan corresponding R bucket and join

CSEP 544 - Spring 2021 100

Buckets
of R & S

Input buffer
for Ri

Hash table for partition
Si (< M-1 pages)

B main memory buffersDisk

Output
buffer

Disk

Join Result

h2

One entire S-bucket fits in M if B(S) / M ≤ M,
or B(S) ≤ M2. WHY?

Step 2: Join Buckets
R ⋈ S
• Read one S-backed; hash-partition it using h2 (¹ h)
• Scan corresponding R bucket and join

CSEP 544 - Spring 2021 101

Buckets
of R & S

Input buffer
for Ri

Hash table for partition
Si (< M-1 pages)

B main memory buffersDisk

Output
buffer

Disk

Join Result

h2

One entire S-bucket fits in M if B(S) / M ≤ M,
or B(S) ≤ M2. WHY?

Step 2: Join Buckets
R ⋈ S
• Read one S-backed; hash-partition it using h2 (¹ h)
• Scan corresponding R bucket and join

CSEP 544 - Spring 2021 102

Buckets
of R & S

Input buffer
for Ri

Hash table for partition
Si (< M-1 pages)

B main memory buffersDisk

Output
buffer

Disk

Join Result

h2

One entire S-bucket fits in M if B(S) / M ≤ M,
or B(S) ≤ M2. WHY?

Step 2: Join Buckets
R ⋈ S
• Read one S-backed; hash-partition it using h2 (¹ h)
• Scan corresponding R bucket and join

CSEP 544 - Spring 2021 103

Buckets
of R & S

Input buffer
for Ri

Hash table for partition
Si (< M-1 pages)

B main memory buffersDisk

Output
buffer

Disk

Join Result

h2

One entire S-bucket fits in M if B(S) / M ≤ M,
or B(S) ≤ M2. WHY?

Step 2: Join Buckets
R ⋈ S
• Read one S-backed; hash-partition it using h2 (¹ h)
• Scan corresponding R bucket and join

CSEP 544 - Spring 2021 104

Buckets
of R & S

Input buffer
for Ri

Hash table for partition
Si (< M-1 pages)

B main memory buffersDisk

Output
buffer

Disk

Join Result

h2

One entire S-bucket fits in M if B(S) / M ≤ M,
or B(S) ≤ M2. WHY?

Partitioned Hash Join

• Cost: 3B(R) + 3B(S)
• Assumption: min(B(R), B(S)) ≤ M2

CSEP 544 - Spring 2021 105

Hybrid Hash Join Algorithm
• Assume we have extra memory available

• Partition S into k buckets
t buckets S1 , …, St stay in memory
k-t buckets St+1, …, Sk to disk

• Partition R into k buckets
– First t buckets join immediately with S
– Rest k-t buckets go to disk

• Finally, join k-t pairs of buckets:
(Rt+1,St+1), (Rt+2,St+2), …, (Rk,Sk)

CSEP 544 - Spring 2021 106

Hybrid Hash Join Algorithm
How to choose k and t ?
• The first t buckets must fin in M: t/k * B(S) ≤ M

CSEP 544 - Spring 2021 107

Hybrid Hash Join Algorithm
How to choose k and t ?
• The first t buckets must fin in M: t/k * B(S) ≤ M
• Need room for k-t additional pages: k-t ≤ M

CSEP 544 - Spring 2021 108

Hybrid Hash Join Algorithm
How to choose k and t ?
• The first t buckets must fin in M: t/k * B(S) ≤ M
• Need room for k-t additional pages: k-t ≤ M
• Thus: t/k * B(S) + k-t ≤ M

CSEP 544 - Spring 2021 109

Hybrid Hash Join Algorithm
How to choose k and t ?
• The first t buckets must fin in M: t/k * B(S) ≤ M
• Need room for k-t additional pages: k-t ≤ M
• Thus: t/k * B(S) + k-t ≤ M

Assuming t/k * B(S) ≫ k-t: t/k = M/B(S)

CSEP 544 - Spring 2021 110

Hybrid Hash Join Algorithm
• How many I/Os ?

• Cost of partitioned hash join: 3B(R) + 3B(S)

• Hybrid join saves 2 I/Os for a t/k fraction of buckets
• Hybrid join saves 2t/k(B(R) + B(S)) I/Os

Cost: (3-2t/k)(B(R) + B(S)) = (3-2M/B(S))(B(R) + B(S))

CSEP 544 - Spring 2021 111

External Memory Algorithms

• Selection and index-join

• Nested loop join

• Partitioned hash-join, a.k.a. grace join

• Merge-join
CSEP 544 - Spring 2021 112

Merge-Sort
• Problem: Sort a file of size B with memory M

• Will discuss only 2-pass sorting, for when B ≤ M2

CSEP 544 - Spring 2021 113

Merge-Sort: Step 1
• Phase one: load M pages in memory, sort

CSEP 544 - Spring 2021 114

DiskDisk

.
Size M pages

Main memory

Runs of length M
#Runs = B(R)/M

Merge-Sort: Step 2

• Merge M – 1 runs into a new run
• Result: runs of length M (M – 1) » M2

CSEP 544 - Spring 2021 115

DiskDisk

. .

.
. . .

Input M

Input 1

Input 2
. . . .

Output

Assuming B ≤ M2, we are done

Main memory

Merge-Sort

• Cost:
– Read+write+read = 3B(R)
– Assumption: B(R) <= M2

• Other considerations
– In general, a lot of optimizations are

possible

CSEP 544 - Spring 2021 116

Summary

• Three EM join algorithms:
– Nested loop join
– Hash-partitioned aka Grace Join
– Merge join

• Easy adaptation to other operators:
– Group-by, union, difference

• 2 pass can be extended to N pass

CSEP 544 - Spring 2021 117

