
CSE544
Data Management

Lectures 5: Storage + Indexes

CSEP 544 - Spring 2021 1

Announcements

• HW1 due on Friday

• Review 3 due on Wednesday

CSEP 544 - Spring 2021 2

Where We are
• SQL+RA
• Relational data model
• Query Processor

– Storage/Indexes
– Execution
– Optimization
– Recursive queries: Datalog
– Advanced techniques (Bloom, LSM)

• Distributed Query Processing
• TXNs 3

Where We are
• SQL+RA
• Relational data model
• Query Processor

– Storage/Indexes
– Execution
– Optimization
– Recursive queries: Datalog
– Advanced techniques (Bloom, LSM)

• Distributed Query Processing
• TXNs 4

Architecture of DBMS

CSEP 544 - Spring 2021 5

[Architecture of a Database System, Hellerstein, Stonebraker, Hamilton]

Multiple Processes

CSEP 544 - Spring 2021 6

[Architecture of a Database System, Hellerstein, Stonebraker, Hamilton]

Why Multiple Processes

• DBMS listens to requests from clients

• Each request = one SQL command

• Handles multiple requests concurrently;
multiple processes

CSEP 544 - Spring 2021 7

Process Models

• Process per DBMS worker

• Thread per DBMS worker

• Process pool

8

Storage

CSEP 544 - Spring 2021 9

[Architecture of a Database System, Hellerstein, Stonebraker, Hamilton]

The Mechanics of Disk
Mechanical characteristics:
• Rotation speed (5400RPM)
• Number of platters (1-30)
• Number of tracks (<=10000)
• Number of bytes/track(105)

10

Platters

Spindle
Disk head

Arm movement

Arm assembly

Tracks

Sector

Cylinder

Unit of read or write:
disk block

Once in memory:
page

Typically: 4k or 8k or 16k

Disk Access Characteristics
• Disk latency

– Time between request and when data is in memory
= seek time + rotational latency

• Seek time = time for the head to reach cylinder
– 10ms – 40ms

• Rotational latency = time for sector to rotate
– Rotation time = 10ms
– Average latency = 10ms / 2

• Transfer time = typically 40-80MB/s

11
Disks access MUCH slower than main memory

Storage Technologies
• Hard Drive Disk HDD

– $
– Latency << main memory
– Block addressable
– Random >> sequential

• Solid State Drive SDD
– $$
– Latency < main memory
– Block addressable

(at least for writes)
– Random > sequential

• Non-volatile memory NVM
– $$$
– Latency ~ main memory
– Byte addressable
– Random ~ sequential

12

Architecture:
buffer pool

Same here

Requires new
architecture
(still research)

CSEP 544 - Spring 2021 13

https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

Still
dominant

https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

Data Storage

• DBMSs store data in files
• Most common organization is row-wise storage
• On disk, a file is split into

blocks
• Each block contains

a set of tuples

In the example, we have 4 blocks with 2 tuples each

14

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

block 1

block 2

block 3

Basic fact: disks always read/write an entire block at a time

Buffer Manager

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels
BUFFER POOL

choice of frame dictated
by replacement policy

• Data must be in RAM for DBMS to operate on it!
• Table of <frame#, pageid> pairs is maintained

Buffer Manager

16

Needs to decide on page replacement policy

• LRU
• Clock algorithm

Both work well in OS, but not always in DB

Arranging Pages on Disk
A disk is organized into blocks (a.k.a. pages)
• blocks on same track, followed by
• blocks on same cylinder, followed by
• blocks on adjacent cylinder

A file should (ideally) consists of sequential blocks on
disk, to minimize seek and rotational delay.

For a sequential scan, pre-fetching several pages at a
time is a big win!

CSEP 544 - Spring 2021 17

Storing Records On Disk

• Page format: records inside a page

• Record format: attributes inside a record

• File Organization

CSEP 544 - Spring 2021 18

Page Format

• 1 page = 1 disk block = fixed size (e.g. 8KB)
• Records:

– Fixed length
– Variable length

• Record id = RID
– Typically RID = (PageID, SlotNumber)

19

Need RID’s for indexes and for transactions

Page Format Approach 1
Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PageID,SlotNb)

Slot1 Slot2 SlotN
Free space N

Number of records

20

How do we insert a new record?

CSEP 544 - Spring 2021

Page Format Approach 1

Slot1 Slot2 SlotN SlotN+1
Free Sp. N

Number of records

21CSEP 544 - Spring 2021

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PageID,SlotNb)

How do we insert a new record?

Page Format Approach 1

Slot1 Slot2 SlotN SlotN+1
Free Sp. N

Number of records

22CSEP 544 - Spring 2021

How do we delete a record?

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PageID,SlotNb)

How do we insert a new record?

Page Format Approach 1

Slot1 Slot2 SlotN SlotN+1
Free Sp. N

Number of records

23How do we handle variable-length records?

How do we delete a record? Cannot remove record (why?)

Fixed-length records: packed representation
Divide page into slots. Each slot can hold one tuple
Record ID (RID) for each tuple is (PageID,SlotNb)

How do we insert a new record?

CSEP 544 - Spring 2021

Page Format Approach 2

Can handle variable-length records
Can move tuples inside a page without changing RIDs
RID is (PageID, SlotID) combination

Slot directory

24

Header contains slot directory
+ Need to keep track of nb of slots
+ Also need to keep track of free space (F)

Free space 4 F

CSEP 544 - Spring 2021

Record Formats
Fixed-length records => Each field has a fixed length
(i.e., it has the same length in all the records)

Field 1 Field 2 Field K

Information about field lengths and types is in the catalog

25

CSEP 544 - Spring 2021

Record Formats
Variable length records

Remark: NULLS require no space at all (why ?)

26

Field 1 Field 2 Field K

Record header

Notes for the PAX paper

27

Memory hierarchies:

Disk Main memory Cache*

*aka CPU cache; several! L3, L2, L1 cache

Buffer pool

CPU

1 page, e.g 8KB

1 cache line
e.g. 64 bytes

File Organizations

• Heap (random order) files: Suitable when typical
access is a file scan retrieving all records.

• Sequential file (sorted): Best if records must be
retrieved in some order, or by a `range’

• Index: Data structures to organize records via trees
or hashing.

28

File Organizations
Example: table STUDENT

• The STUDENT file can be:
– Heap file (tuples stored without any order)
– Sequential file (tuples sorted on some attribute(s))
– Clustered (primary) index file (relation+index)

• There can be several unclustered (secondary)
index files that store (key,rid) pairs

CSEP 544 - Spring 2021 29

Indexes
• Index: separate file with fast access by “key” value
• Contains pairs of the form (key, RID)

30

18

18

19

19

20

21

21

22

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

Index File
Search key: age Data File

(sequential file
sorted on sid)

Indexes
• Search key = can attribute or set of attributes

– not the same as the primary key; not a key

• Index = collection of data entries

• Data entry for key k can be:
– (k, RID)
– (k, list-of-RIDs)
– Record with key k; “clustered” or “primary” index

April 14, 2021 CSEP 544 - Spring 2021 31

How Indexes Help
We want to support these kinds of queries
Assume Student = a heap file

• Find student where sid=12345
– Use an index on Student(sid)

• Find students where age > 20
– Use an index on Student(age)

• Insert a new student
– Insert in the Student heap file -- easy
– Insert in indexes Student(sid), Student(age) – will discuss

CSEP 544 - Spring 2021 32

Clustered (aka Primary) Index
• Records in data file have same order as in index
• Dense index: sequence of (key,rid) pairs

CSEP 544 - Spring 2021 33

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

80

1 data entry

1 page

Index File Data File (Sequential file)

Clustered (aka Primary) Index
• Records in data file have same order as in index
• Sparse index: store a subset of (key,rid) pairs

CSEP 544 - Spring 2021 34

10

30

50

70

90

110

130

150

10

20

30

40

50

60

70

80Can store more search
keys in same number of

index files

Clustered Index with Duplicate
Keys

• Dense index:

April 14, 2021 CSEP 544 - Spring 2021 35

10

20

30

40

50

60

70

80

10

10

10

20

20

20

30

40

Clustered Index: Back to
Example

• Assume entire index fits in main memory

• Find student where sid=12345
– Index (dense or sparse) points directly to the page
– Read only 1 page from disk

• Find all students where age > 20
– Add a second index…

April 14, 2021 CSEP 544 - Spring 2021 36

Secondary Indexes
• Do not determine placement of records in data files
• Always dense (why ?)

April 14, 2021 CSEP 544 - Spring 2021 37

18

18

19

19

20

21

21

22

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

The Confusing Terminology of
Indexes…

• Clustered index:
– Means: keys close in the index are also close in the data
– Can co-exists with the data file (quite common)
– Can have only one clustered index (obviously!!)
– Sometimes called “primary index”

• Unclustered index:
– Means: orders in the index and the data differ
– Always a separate file
– Can have as many unclustered indexes as we want
– Sometimes called “secondary index”

• Some people use different convetion:
– Primary index = index on the primary key
– Secondary index = everything else

April 14, 2021 CSEP 544 - Spring 2021 38

The Confusing Terminology of
Indexes…

• Clustered index:
– Means: keys close in the index are also close in the data
– Can co-exists with the data file (quite common)
– Can have only one clustered index (obviously!!)
– Sometimes called “primary index”

• Unclustered index:
– Means: order in the index and order in the data differ
– Always a separate file
– Can have as many unclustered indexes as we want
– Sometimes called “secondary index”

• Some people use different convetion:
– Primary index = index on the primary key
– Secondary index = everything else

April 14, 2021 CSEP 544 - Spring 2021 39

The Confusing Terminology of
Indexes…

• Clustered index:
– Means: keys close in the index are also close in the data
– Can co-exists with the data file (quite common)
– Can have only one clustered index (obviously!!)
– Sometimes called “primary index”

• Unclustered index:
– Means: order in the index and order in the data differ
– Always a separate file
– Can have as many unclustered indexes as we want
– Sometimes called “secondary index”

• Some people use different convetion:
– Primary index = index on the primary key
– Secondary index = everything else

April 14, 2021 CSEP 544 - Spring 2021 40

Index Organization

• The index is a collection of (key, RID(s)) pairs
• Needs to support efficiently:

– Find the entry where key=[some value]
– Insert a new (key, RID)
– Delete a (key, RID)

• How would you design the index data
structure?

CSEP 544 - Spring 2021 41

CSEP 544 - Spring 2021

Index Organization

• The index is a collection of (key, RID(s)) pairs
• Needs to support efficiently:

– Find the entry where key=[some value]
– Insert a new (key, RID)
– Delete a (key, RID)

• How would you design the index data
structure?
– Ordered file – problem here (why?)

42

CSEP 544 - Spring 2021

Index Organization

• The index is a collection of (key, RID(s)) pairs
• Needs to support efficiently:

– Find the entry where key=[some value]
– Insert a new (key, RID)
– Delete a (key, RID)

• How would you design the index data
structure?
– Ordered file – problem here (why?)
– Hash table

43

CSEP 544 - Spring 2021

Index Organization

• The index is a collection of (key, RID(s)) pairs
• Needs to support efficiently:

– Find the entry where key=[some value]
– Insert a new (key, RID)
– Delete a (key, RID)

• How would you design the index data
structure?
– Ordered file – problem here (why?)
– Hash table
– B+ tree 44

BRIEF Review of Hash Tables
0
1 765
2
3
4
5
6
7 999
8
9

Arrays are very efficient:
• Find(T[7])

BRIEF Review of Hash Tables
0
1 765
2
3
4
5
6
7 999
8
9

Arrays are very efficient:
• Find(T[7])
• Set T[3] := 234

BRIEF Review of Hash Tables
0
1 765
2
3 234
4
5
6
7 999
8
9

Arrays are very efficient:
• Find(T[7])
• Set T[3] := 234

BRIEF Review of Hash Tables
0
1
2
3
4
5
6
7
8
9

Problem: the key is not 0,1,2,…9 but is a string k

BRIEF Review of Hash Tables
Alice
Fred
Bob

…
…
??
…
…
…
…

Problem: the key is not 0,1,2,…9 but is a string k

BRIEF Review of Hash Tables
0
1
2
3
4
5
6
7
8
9

h(k) = sum(k) mod 10

A (naïve) hash function:
Problem: the key is not 0,1,2,…9 but is a string k

BRIEF Review of Hash Tables
0
1
2
3
4
5
6
7
8
9

h(k) = sum(k) mod 10

A (naïve) hash function:

Example: h(“Fred”) =
= (ascii(“F”)+ascii(“r”)+…)

mod 10
= (70 + 114 + 101 + 100)

mod 10
= 5

Problem: the key is not 0,1,2,…9 but is a string k

BRIEF Review of Hash Tables
0
1
2
3
4
5
6
7
8
9

Separate chaining:

h(k) = sum(k) mod 10

A (naïve) hash function:

Fred

Example: h(“Fred”) =
= (ascii(“F”)+ascii(“r”)+…)

mod 10
= (70 + 114 + 101 + 100)

mod 10
= 5

Problem: the key is not 0,1,2,…9 but is a string k

BRIEF Review of Hash Tables
0
1
2
3
4
5
6
7
8
9

h(k) = sum(k) mod 10

A (naïve) hash function:

Alice Bob

Ann

h(“Alice”) = h(“Bob”) = 3
Called collisions

Fred

Separate chaining:Problem: the key is not 0,1,2,…9 but is a string k

BRIEF Review of Hash Tables
0
1
2
3
4
5
6
7
8
9

h(k) = sum(k) mod 10

A (naïve) hash function:

Alice Bob

Ann

Alice

Duplicates key OK

Fred

Separate chaining:Problem: the key is not 0,1,2,…9 but is a string k

BRIEF Review of Hash Tables
0
1
2
3
4
5
6
7
8
9

h(k) = sum(k) mod 10

A (naïve) hash function:

Alice Bob

Ann

Alice

Duplicates key OK

Operations:

find(Bob) = ??
insert(Jon) = ??
delete(Ann) = ??

Fred

Separate chaining:Problem: the key is not 0,1,2,…9 but is a string k

BRIEF Review of Hash Tables
0
1
2
3
4
5
6
7
8
9

h(k) = sum(k) mod 10

A (naïve) hash function:

Alice Bob

Ann

Alice

Duplicates key OK

Operations:

find(Bob) = ??
insert(Jon) = ??
delete(Ann) = ??

Fred

Separate chaining:Problem: the key is not 0,1,2,…9 but is a string k

BRIEF Review of Hash Tables
0
1
2
3
4
5
6
7
8
9

h(k) = sum(k) mod 10

A (naïve) hash function:

Alice Bob

Jon

Ann

Alice

Duplicates key OK

Operations:

find(Bob) = ??
insert(Jon) = ??
delete(Ann) = ??

Fred

Separate chaining:Problem: the key is not 0,1,2,…9 but is a string k

BRIEF Review of Hash Tables
0
1
2
3
4
5
6
7
8
9

h(k) = sum(k) mod 10

A (naïve) hash function:

Alice Bob

Ann

Alice

Duplicates key OK

Operations:

find(Bob) = ??
insert(Jon) = ??
delete(Ann) = ??

JonFred

Separate chaining:Problem: the key is not 0,1,2,…9 but is a string k

BRIEF Review of Hash Tables

• insert(k, v) = inserts a key k with value v
– Duplicate k’s may be OK or may not be OK

• find(k) = returns the value v associated to k,
or the list of all values associated to k

• delete(k)

CSEP 544 - Spring 2021 59

Discussion of Hash Tables
• Hash function:

– Should distribute values uniformly
– Never write your own! (why is x mod 10 bad?)

Use a standard library function
– Best: concatenate with fixed, random seed (in class)

• Hash table:
– Size of table: large enough to avoid collisions
– Typically: size of table ≈ size of data
– Why not make it small? Why not make it big?
– Problem: hash table allocated statically, at creation
– Book describes solutions to increase size dynamically

CSEP 544 - Spring 2021 60

CSEP 544 - Spring 2021

Hash-Based Index

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

Data File

Good for point queries but not range queries

61

CSEP 544 - Spring 2021

Hash-Based Index

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

H1

h1(sid) = 00

h1(sid) = 04

sid

Data File
Primary hash-based index

Good for point queries but not range queries

62

CSEP 544 - Spring 2021

Hash-Based Index

18

18

20

22

19

21

21

19

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

H2age

h2(age) = 00

h2(age) = 01 H1

h1(sid) = 00

h1(sid) = 04

sid

Data File
Primary hash-based index

Secondary
hash-based index
(age, rid) pairs

Good for point queries but not range queries

63

CSEP 544 - Spring 2021

B+ Trees

• Search trees (quick review in class)

• Idea in B Trees
– Make 1 node = 1 page (= 1 block)

• Idea in B+ Trees
– Keys are stored on the leaves (not internal nodes)
– Leaves are linked in a list, for range queries

64

CSEP 544 - Spring 2021

B+ Tree Example
80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 < 80

20 ≤40 < 60

65

CSEP 544 - Spring 2021

B+ Trees Properties

• For each node except the root, maintain
50% occupancy of keys

• Insert and delete must rebalance to
maintain constraints

66

B+ Trees Details
• Parameter d = the degree
• Each node has d <= m <= 2d keys (except root)

B+ Trees Details
• Parameter d = the degree
• Each node has d <= m <= 2d keys (except root)
• Each node also has m+1 pointers

Keys k < 30 Keys 30<=k<120 Keys 120<=k<240
Keys 240<=k

Left pointer of k:
to keys < k

Right pointer of k:
to keys >= k

30 120 240

B+ Trees Details
• Parameter d = the degree
• Each node has d <= m <= 2d keys (except root)
• Each node also has m+1 pointers

• Each leaf has d <= m <= 2d keys:
Keys k < 30 Keys 30<=k<120 Keys 120<=k<240

Keys 240<=k

Left pointer of k:
to keys < k

Right pointer of k:
to keys >= k

30 120 240

40 50 60 70

40 50 60

Next leaf

Data records 70

CSEP 544 - Spring 2021

B+ Tree Design

• How large d ? Make one node fit on
one block

• Example:
– Key size = 4 bytes
– Pointer size = 8 bytes
– Block size = 4096 bytes

• 2d x 4 + (2d+1) x 8 <= 4096
• d = 170

70

30 120 240

(e.g. d = 2)

B+ Trees in Practice

• Typical order: 100. Typical fill-factor: 67%.
– average fanout = 133

• Typical capacities
– Height 4: 1334 = 312,900,700 records
– Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool
– Level 1 = 1 page = 8 Kbytes
– Level 2 = 133 pages = 1 Mbyte
– Level 3 = 17,689 pages = 133 Mbytes

CSEP 544 - Spring 2021 71

CSEP 544 - Spring 2021

Insertion in a B+ Tree
Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, also keep K3 in right node
• When root splits, new root has 1 key only

parent

72

K2 K3 K5

P0 P2 P3 P5

Insert k1

CSEP 544 - Spring 2021

Insertion in a B+ Tree
Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, also keep K3 in right node
• When root splits, new root has 1 key only

parent

73

K1 K2 K3 K5

P0 P1 P2 P3 P5

Insert k1

CSEP 544 - Spring 2021

Insertion in a B+ Tree
Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, also keep K3 in right node
• When root splits, new root has 1 key only

parent

74

K1 K2 K3 K5

P0 P1 P2 P3 P5

Insert k4

CSEP 544 - Spring 2021

Insertion in a B+ Tree
Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, also keep K3 in right node
• When root splits, new root has 1 key only

parent

75

K1 K2 K3 K5

P0 P1 P2 P3 P5

Insert k4

CSEP 544 - Spring 2021

Insertion in a B+ Tree
Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, also keep K3 in right node
• When root splits, new root has 1 key only

K1 K2 K3 K4 K5

P0 P1 P2 P3 P4 P5

parent

76

Insert k4

CSEP 544 - Spring 2021

Insertion in a B+ Tree
Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, also keep K3 in right node
• When root splits, new root has 1 key only

K1 K2 K3 K4 K5

P0 P1 P2 P3 P4 P5

K1 K2

P0 P1 P2

K4 K5

P3 P4 p5

parent
K3

parent

77

Insert k4

CSEP 544 - Spring 2021

Insertion in a B+ Tree
Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, also keep K3 in right node
• When root splits, new root has 1 key only

K1 K2 K3 K4 K5

P0 P1 P2 P3 P4 P5

K1 K2

P0 P1 P2

K4 K5

P3 P4 p5

parent
K3

parent

78

Insert k4

CSEP 544 - Spring 2021

Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

Insert K=19

79

CSEP 544 - Spring 2021

Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 9019

After insertion

80

CSEP 544 - Spring 2021

Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 9019

Now insert 25

81

CSEP 544 - Spring 2021

Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019

After insertion

50

82

CSEP 544 - Spring 2021

Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019

But now have to split !

50

83

CSEP 544 - Spring 2021

Insertion in a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019

After the split

50

30 40 50

84

Deletion in a B+ Tree
Delete (K, P)
• Find leaf node where K belongs, delete

• Check for capacity; if above min capacity: Stop

• If node below capacity, search adjacent nodes (left, then
right) for extra key and rotate key(s) to current node. Stop

• If adjacent nodes 50% full, merge with on adjacent node
This removes a key/child from parent;
Repeat algorithm on parent node

85

CSEP 544 - Spring 2021

Deletion from a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019

Delete 30

50

30 40 50

86

CSEP 544 - Spring 2021

Deletion from a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 9019

After deleting 30

50

40 50

May change to
40, or not

87

CSEP 544 - Spring 2021

Deletion from a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 9019

Now delete 25

50

40 50

88

CSEP 544 - Spring 2021

Deletion from a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 9019

After deleting 25
Need to rebalance
Rotate

50

40 50

89

CSEP 544 - Spring 2021

Deletion from a B+ Tree
80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 60 65 80 85 9019 50

90

40

40 50

CSEP 544 - Spring 2021

Deletion from a B+ Tree
80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 9019

Now delete 40

50

40 50

91

CSEP 544 - Spring 2021

Deletion from a B+ Tree
80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 60 65 80 85 9019

After deleting 40
Rotation not possible
Need to merge nodes

50

50

92

CSEP 544 - Spring 2021

Deletion from a B+ Tree
80

19 60 100 120 140

10 15 18 19 20 50 60 65 80 85 90

10 15 18 20 60 65 80 85 9019

Final tree

50

93

Deletion: Summary

• If capacity ≥ min-capacity: Stop
• If neighbor capacity > min-capacity:

rotate, then Stop
• Merge with a neighbor (choose right or

left) and steal a key from parent
– Parent has one fewer keys:

Repeat process on the parent
– What if the parent was the root?

CSEP 544 - Spring 2021 94

Discussion

• Reads are very fast

• Inserts are slow, in the sense that they
requires several block writes

• LSM trees speed up writes, with only
minor penalty for reads (to discuss later)

CSEP 544 - Spring 2021 95

Clustered v.s. Unclustered B+
Trees

CSEP 544 - Spring 2021 96

Data entries
(Index File)
(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

Note: can also store data records directly as data entries

Searching a B+ Tree
• Exact key values:

– Start at the root
– Proceed down, to the leaf

• Range queries:
– Find lowest bound as above
– Then sequential traversal

• Less effective for multi-range
– Can only use one B+ tree,

ignore the other(s)
– Called access path selection

Select name
From Student
Where age = 25

Select name
From Student
Where 20 <= age
and age <= 30

97

Select name
From Student
Where age = 25

and GPA = 3.5

