
CSE544Database
Management Systems

Lecture 4: Data Models

CSEP 544 - Spring 2021 1

References

• M. Stonebraker and J. Hellerstein. What
Goes Around Comes Around. In
"Readings in Database Systems" (aka
the Red Book). 4th ed.

CSEP 544 - Spring 2021 2

Data Model Motivation
• Applications need to model real-world data

• User somehow needs to define data to be stored
in DBMS

• Data model enables a user to define the data
using high-level constructs without worrying about
many low-level details of how data will be stored
on disk

CSEP 544 - Spring 2021 3

Outline
• Early data models

• Physical and logical independence in the
relational model

• Conceptual design

• Data models that followed the relational model

CSEP 544 - Spring 2021 4

Early Proposal 1: IMS*
• What is it?

5* IBM Information Management System

Early Proposal 1: IMS*
• Hierarchical data model

• Record
– Type: collection of named fields with data types
– Instance: must match type definition
– Each instance has a key
– Record types arranged in a tree

• IMS database is collection of instances of record
types organized in a tree

6* IBM Information Management System

IMS Example
• Figure 2 from “What goes around comes around”

CSEP 544 - Spring 2021 7

What does
this mean?

IMS Example
• Figure 2 from “What goes around comes around”

CSEP 544 - Spring 2021 8

What does
this mean?

Supp Part Part … Supp Part Part … …

File on disk:

IMS Example
• Figure 2 from “What goes around comes around”

CSEP 544 - Spring 2021 9

What does
this mean?

File on disk:

Part Supp Supp … Part Supp Supp … …

Supp Part Part … Supp Part Part … …

IMS Limitations

IMS Limitations
• Tree-structured data model

– Redundant data; existence depends on parent

IMS Limitations
• Tree-structured data model

– Redundant data; existence depends on parent

• Record-at-a-time user interface
– User must specify algorithm to access data

IMS Limitations
• Tree-structured data model

– Redundant data; existence depends on parent

• Record-at-a-time user interface
– User must specify algorithm to access data

• Very limited physical independence
– Phys. organization limits possible operations
– Application programs break if organization changes

• Some logical independence but limited

Data Manipulation Language:
DL/1

How does a programmer retrieve data in IMS?

CSEP 544 - Spring 2021 14

Data Manipulation Language:
DL/1

How does a programmer retrieve data in IMS?

• Each record has a hierarchical sequence key (HSK)

• HSK defines semantics of commands:
– get_next; get_next_within_parent

• DL/1 is a record-at-a-time language
– Programmers construct algorithm, worry about optimization

CSEP 544 - Spring 2021 15

Data storage
How is data physically stored in IMS?

16

Data storage
How is data physically stored in IMS?

• Root records
– Stored sequentially (sorted on key)
– Indexed in a B-tree using the key of the record
– Hashed using the key of the record

• Dependent records
– Physically sequential
– Various forms of pointers

• Selected organizations restrict DL/1 commands
– No updates allowed due to sequential organization
– No “get-next” for hashed organization

17

Data Independence

What is it?

18

Data Independence

What is it?

• Physical data independence: Applications
are insulated from changes in physical
storage details

• Logical data independence: Applications
are insulated from changes to logical
structure of the data

19

Lessons from IMS

• Physical/logical data independence needed

• Tree structure model is restrictive

• Record-at-a-time programming forces user to
do optimization

CSEP 544 - Spring 2021 20

Early Proposal 2: CODASYL
What is it?

CSEP 544 - Spring 2021 21

Early Proposal 2: CODASYL
What is it?
• Networked data model

• Primitives are also record types with keys
• Record types are organized into network
• Multiple parents; arcs = “sets”
• More flexible than hierarchy

• Record-at-a-time data manipulation language

CSEP 544 - Spring 2021 22

CODASYL Example
• Figure 5 from “What goes around comes around”

CSEP 544 - Spring 2021 23

CODASYL Limitations

• No data independence: application programs
break if organization changes

• Record-at-a-time: “navigate the hyperspace”

CSEP 544 - Spring 2021 24

Outline
• Early data models

• Physical and logical independence in the relational
model

• Conceptual design

• Data models that followed the relational model

CSEP 544 - Spring 2021 25

Relational Model Overview
Ted Codd 1970

• What was the motivation? What is the model?

Relational Model Overview
Ted Codd 1970

• Motivation: logical and physical data independence

• Store data in a simple data structure (table)
• Access data through set-at-a-time language
• No physical storage proposal

Great Debate

• Pro relational
– What were the arguments?

• Against relational
– What were the arguments?

• How was it settled?

CSEP 544 - Spring 2021 28

Great Debate
• Pro relational

– CODASYL is too complex
– No data independence
– Record-at-a-time hard to optimize
– Trees/networks not flexible enough

• Against relational
– COBOL programmers cannot understand relational languages
– Impossible to implement efficiently

• Ultimately settled by the market place

CSEP 544 - Spring 2021 29

Data Independence

How it is achieved today:

• Physical independence: SQL to Plan

• Logical independence: Views in SQL

CSEP 544 - Spring 2021 30

Physical Data Independence

• In SQL we express What data we want
to retrieve

• The optimizers figures out How to
retrieve it

CSEP 544 - Spring 2021 31

Query Plan
SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and

x.price > 100 and z.city = ‘Seattle’

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

We say What
we want

Logical Query Plan

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and

x.price > 100 and z.city = ‘Seattle’

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

We say What
we want

Physical Query Plan

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and

x.price > 100 and z.city = ‘Seattle’

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

We say What
we want

Index-join

hash-join

hash-based

Says How
to get it

on-the-fly

on-the-fly

Query Optimizer

• Rewrite one relational algebra
expression to a better one

CSEP 544 - Spring 2021 35

Logical Data Independence

A View is a Relation defined by a SQL query

It can be used as a normal relation

CSEP 544 - Spring 2021 36

View Example

CSEP 544 - Spring 2021 37

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

CREATE VIEW Big_Parts AS
SELECT * FROM Part
WHERE psize > 10;

View definition:

View Example

CSEP 544 - Spring 2021 38

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

CREATE VIEW Big_Parts AS
SELECT * FROM Part
WHERE psize > 10;

Big_Parts(pno,pname,psize,pcolor)

View definition:

Virtual table:

View Example

CSEP 544 - Spring 2021 39

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

CREATE VIEW Big_Parts AS
SELECT * FROM Part
WHERE psize > 10;

Big_Parts(pno,pname,psize,pcolor)

SELECT *
FROM Big_Parts
WHERE pcolor='blue';

View definition:

Virtual table:

Querying the view:

Two Types of Views
• Virtual views:

– Default in SQL, and what Stonebraker means in the paper
– CREATE VIEW xyz AS …
– Computed at query time

• Materialized views:
– Some SQL engines support them
– CREATE MATERIALIZED VIEW xyz AS
– Computed at definition time

CSEP 544 - Spring 2021 40

Levels of Abstraction

41

Disk

Physical Schema

Conceptual Schema

External Schema External Schema External Schema

a.k.a logical schema
describes stored data
in terms of data model

includes storage details
file organization
indexes

views
access control

Recap: Data Independence

• Physical data independence:
Applications are insulated from changes
in physical storage details

• Logical data independence:
Applications are insulated from changes
to logical structure of the data

42

Outline
• Early data models

• Physical and logical independence in the relational
model

• Conceptual design

• Data models that followed the relational model

CSEP 544 - Spring 2021 43

Conceptual Schema Design

CSEP 544 - Spring 2021 44

Doctorpatien_ofPatient

name

zip name dno

Conceptual Model:

Relational Model:
plus FD’s
(FD = functional dependency)

Normalization:
Eliminates anomalies

Entity-Relationship Diagram

45name
Attributes Entity sets

Patient patient_of

Relationship sets

Entity-Relationship Diagram

46

DoctorPatient

name
Attributes Entity sets

Patient patient_of

Relationship sets

Entity-Relationship Diagram

47

DoctorPatient

name

zip name

pno

specialty

dno

name
Attributes Entity sets

Patient patient_of

Relationship sets

Entity-Relationship Diagram

48

patient_of DoctorPatient

name

zip name

pno

specialty

dno

name
Attributes Entity sets

Patient patient_of

Relationship sets

Entity-Relationship Diagram

49

patient_of DoctorPatient

name

zip name

pno

specialty

dno
since

name
Attributes Entity sets

Patient patient_of

Relationship sets

Entity-Relationship Model
• Typically, each entity has a key

• ER relationships can include multiplicity
– One-to-one, one-to-many, etc.
– Indicated with arrows

• Can model multi-way relationships

• Can model subclasses

• And more...
CSEP 544 - Spring 2021 50

Many One

E/R To Relations

patient_of DoctorPatient

name

zip name

pno

specialty

dno
since

Patient
pno name zip
P311 Alice 98765
…

Patient_of
pno dno since
P311 D007 2001
…

Doctor
dno name spec
D007 Bob cardio
…

Notice Many-One Relationship

patient_of DoctorPatient

name

zip name

pno

specialty

dno
since

Patient
pno name zip dno since
P311 Alice 98765 D007 2001
…

Doctor
dno name spec
D007 Bob cardio
…

Subclasses to
Relations

53

Product

name
category

price

isa isa

Educational ProductSoftware Product

Age Groupplatforms

Subclasses to
Relations

54

Product

name
category

price

isa isa

Educational ProductSoftware Product

Age Groupplatforms

Name Price Category

Gizmo 99 gadget

Camera 49 photo

Toy 39 gadget

Product

Subclasses to
Relations

55

Product

name
category

price

isa isa

Educational ProductSoftware Product

Age Groupplatforms

Name Price Category

Gizmo 99 gadget

Camera 49 photo

Toy 39 gadget

Name platforms

Gizmo unix

Product

Sw.Product

Subclasses to
Relations

Product

name
category

price

isa isa

Educational ProductSoftware Product

Age Groupplatforms

Name Price Category

Gizmo 99 gadget

Camera 49 photo

Toy 39 gadget

Name platforms

Gizmo unix

Name Age
Group

Gizmo toddler

Toy senior

Product

Sw.Product

Ed.Product

E/R Diagram to Relations
• Each entity set becomes a relation with a key

• Each relationship set becomes a relation
except many-one relationships: just add the fk

• Each isA relationship becomes another relation,
with both a key and foreign key

CSEP 544 - Spring 2021 57

Outline
• Early data models

• Physical and logical independence in the relational
model

• Conceptual design

• Data models that followed the relational model

CSEP 544 - Spring 2021 58

Other Data Models
• Entity-Relationship: 1970’s

– Successful in logical database design
• Extended Relational: 1980’s
• Semantic: late 1970’s and 1980’s
• Object-oriented: late 1980’s and early 1990’s

– Address impedance mismatch: relational dbs çè OO languages
– Interesting but ultimately failed (several reasons, see references)

• Object-relational: late 1980’s and early 1990’s
– User-defined types, ops, functions, and access methods

• Semi-structured: late 1990’s to the present
• Key-value pairs: the NoSQL databases since 2000s

CSEP 544 - Spring 2021 59

Semistructured vs Relational
• Relational data model

– “Schema first”

• Semistructured data model: XML, Json, Protobuf
– ”Schema last”
– Hierarchical (trees)

CSEP 544 - Spring 2021 60

XML Syntax

61
Semistructured, self-describing schema

<article mdate="2011-01-11" key="journals/acta/GoodmanS83">
<author>Nathan Goodman</author>
<author>Oded Shmueli</author>
<title>NP-complete Problems Simplified on Tree Schemas.</title>
<pages>171-178</pages>
<year>1983</year>
<volume>20</volume>
<journal>Acta Inf.</journal>
<url>db/journals/acta/acta20.html#GoodmanS83</url>
<ee>http://dx.doi.org/10.1007/BF00289414</ee>

</article>

JSon

62
Semistructured, self-describing schema

Example from: http://www.jsonexample.com/
myObject = {

"first": "John",
"last": "Doe",
"salary": 70000,
"registered": true,
"interests": ["Reading", “Biking”, "Hacking"]

}

http://www.jsonexample.com/

Discussion

• Stonebraker (circa 1998)
– “schema last” is a niche market

• Today (circa 2020)
– Major vendors scramble to offer efficient

schema discovery while ingesting Json
• Why? What changed?

63

Discussion

• Stonebraker (circa 1998)
– “schema last” is a niche market

• Today (circa 2020)
– Major vendors scramble to offer efficient

schema discovery while ingesting Json
• Why? What changed?

– Today datasets are available in text format,
often in Json; ingest first, process later

64

NoSQL Data Model(s)

• Web boom in the 2000’s created a
scalability crises
– DBMS are single server and don’t scale;

e.g. MySQL
• NoSQL answer:

– “Shard” data, i.e. distribute on a cluster
– Simple data mode: key/value pairs

CSEP 544 - Spring 2021 65

Key-Value Pair Data Model

• Data model: (key,value) pairs

• Operations: get(key), put(key,value)

• Distribution / Partitioning – w/ hash function

No physical data independence!

Conclusion
• Data model: a formalism to describe/query the data

• Relational data model: tables+relational language; no
description of physical store

• Data independence: efficiency needs to be realized
separately, by the query optimizer

• Many competing “more efficient” data models have
been proposed, and will be proposed, but fail
because of lack of data independence

67

