
CSE544
Data Management

Lectures 1-3:
Introduction, SQL

CSEP 544 - Spring 2021 1

Outline

• Introduction, class overview

• Database management systems (DBMS)

• The relational model

• SQL (continued on Wed.)
CSEP 544 - Spring 2021 2

Course Staff

• Instructor: Dan Suciu
– Office hours: Tuesdays, 5:30-6:20

• TAs (Office hours TBD)
– Maureen Daum
– Brandon Ko
– Kyle Yan

CSEP 544 - Spring 2021 3

Goals of the Class
• Relational Data Model

– Data models, data independence, declarative query
language.

• Relational Database Systems
– Storage, query execution and optimization
– Parallel data processing, column-oriented db etc.

• Transactions
– Optimistic/pessimistic concurrency control
– [ARIES recovery system – will likely run out of time]

4

Readings
• Paper reviews

– Mix of old seminal papers and new papers
– Papers are available on class website

• Lecture notes (the slides)
– Posted on class website after each lecture

• Background from:
– Database Management Systems. Third Ed.

Ramakrishnan and Gehrke. McGraw-Hill.
5

Class Resources

Website: lectures, assignments
• http://www.cs.washington.edu/csep544

Canvas: zoom, videos

Ed: discussion board

CSEP 544 - Spring 2021 6

http://www.cs.washington.edu/csep544

Evaluation

• Assignments 50%

• Reviews 20%

• Mini-Project 20%

• Intangibles 10%
CSEP 544 - Spring 2021 7

Assignments – 50%

• HW1: Data analysis in postgres
• HW2: Data analysis in Snowflake
• HW3: Query Execution and SimpleDB
• HW4: Datalog
• HW5: Spark

CSEP 544 - Spring 2021 8

Paper reviews – 20%

• Recommended length: ½ page – 1 page
– Summary of main points
– Critical discussion

• Grading: credit/partial-credit/no-credit
• Submit review before the lecture

• First review due on Wednesday!

9

MiniProject – 20%

Topic of your own choosing, open ended
• Suggestion 1: based on a paper

– Repeat 1-2 experiments
– Try variations
– Compare with another system
– Something else

• Suggestion 2: based on your work
– Evaluate a technology that you need at work

CSEP 544 - Spring 2021 10

Intangibles 10%

• Class participation

• Exceptionally good reviews, or
homework, or project

• Etc, etc

CSEP 544 - Spring 2021 11

How to Turn In

• Homeworks: gitlab

• Project: gitlab

• Reviews: google forms

12

Now onward to the world of databases!

CSEP 544 - Spring 2021 13

Data Management

• Entities: employees, positions (ceo, manager,
cashier), stores, products, sells, customers.

• Relationships: employee positions, staff of each
store, inventory of each store.

CSEP 544 - Spring 2021 14

Database Management
System

• A DBMS is a software system designed
to provide data management services

• Examples of DBMS
– Oracle, DB2 (IBM), SQL Server (Microsoft),
– PostgreSQL, MySQL,…
– Snowflake, Redshift, SQL Azure, BigQuery

15

DBMS Functionality
• Create & persistently store large datasets

• Efficiently query & update

• Change structure (e.g., add attributes)

• Concurrency control: enable simultaneous updates

• Crash recovery

• Access control, security, integrity
16

Single Client

17

Application and database
on the same computer

E.g. sqlite, postgres

E.g. data analytics

Two-tier Architecture
Client-Server

18

Connection:
ODBC, JDBC

Applications:
Java

Database server
E.g. Oracle, DB2,…

E.g. accounting, banking, …

Three-tier Architecture

connection
(ODBC, JDBC)

http

Application server
E.g. java,python,

ruby-on-rails

Database server
E.g. Oracle

E.g. Web commerce

browser

Cloud Databases

ODBC, JDBC http

Sharded database
E.g. Spark, Snowflake

E.g. large-scale analytics or…

…social networks

App
server

Workloads

• OLTP – online transaction processing

• OLAP – online analytics processing,
a.k.a. Decision Support

CSEP 544 - Spring 2021 21

Most of
this course

Relational Data Model

CSEP 544 - Spring 2021 22

Relational Data Model
• A Database is a collection of relations

• A Relation is a set of tuples
– Also called Table

• A Tuple t is an element of Dom1 x Dom2 x … x Domn
– Domi is the domain of attribute i
– n is number of attributes of the relation
– Also called Row or Record

CSEP 544 - Spring 2021 23

Discussion
• Rows in a relation:

– Ordering immaterial (a relation is a set)
– All rows are distinct – set semantics
– Query answers may have duplicates – bag semantics

• Columns in a tuple:
– Ordering is immaterial
– Applications refer to columns by their names

• Domain of each column is a primitive type

Data independence!

CSEP 544 - Spring 2021 24

Or is it?

CSEP 544 - Spring 2021

Schema

• Relation schema: describes column heads
– Relation name
– Name of each field (or column, or attribute)
– Domain of each field
– The arity of the relation = # attributes

• Database schema: set of all relation schemas

25

CSEP 544 - Spring 2021

Instance

• Relation instance: concrete table content
– Set of records matching the schema
– The cardinality or size of the relation = # tuples

• Database instance: set of relation instances

26

What is the schema?
What is the instance?

CSEP 544 - Spring 2021 27

sno sname scity sstate
1005 ACME Seattle WA
1006 Freddie Austin TX
1007 Joe’s Seattle WA
1008 ACME Austin TX

Supplier

What is the schema?
What is the instance?

CSEP 544 - Spring 2021 28

Relation schema
Supplier(sno: integer, sname: string, scity: string, sstate: string)

Supplier

instance

sno sname scity sstate
1005 ACME Seattle WA
1006 Freddie Austin TX
1007 Joe’s Seattle WA
1008 ACME Austin TX

What is the schema?
What is the instance?

29

Relation schema
Supplier(sno: integer, sname: string, scity: string, sstate: string)

Supplier

instance

sno sname scity sstate
1005 ACME Seattle WA
1006 Freddie Austin TX
1007 Joe’s Seattle WA
1008 ACME Austin TX

In class: discuss keys, foreign keys, FD

Relational Query Language

• Set-at-a-time:
– Query inputs and outputs are relations

• Two variants of the query language:
– SQL: declarative
– Relational algebra: specifies order of operations

CSEP 544 - Spring 2021 30

SQL

CSEP 544 - Spring 2021 31

SQL

• Standard query language

• Introduced late 70’s, now it ballooned

• We briefly review “core SQL” (whatever
that means); study more on you own!

• Read by Wed: A case against SQL 32

Structured Query Language: SQL

• Data definition language: DDL
– Statements to create, modify tables and views
– CREATE TABLE …,

CREATE VIEW …,
ALTER TABLE…

• Data manipulation language: DML
– Statements to issue queries, insert, delete data
– SELECT-FROM-WHERE…,

INSERT…,
UPDATE…,
DELETE…

Our focus

CSEP 544 - Spring 2021

SQL Query

SELECT <attributes>
FROM <one or more relations>
WHERE <conditions>

Basic form: (plus many many more bells and whistles)

34

Quick Review of SQL

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

CSEP 544 - Spring 2021 35

Quick Review of SQL

What does
this query
compute?

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT z.pno, z.pname, x.scity
FROM Supplier x, Supply y, Part z
WHERE x.sno = y.sno

and y.pno = z.pno
and x.sstate = ‘WA’
and y.price < 100

CSEP 544 - Spring 2021 36

Terminology

• Selection/filter: return a subset of the rows:
– SELECT * FROM Supplier

WHERE scity = ’Seattle’

• Projection: return subset of the columns:
– SELECT DISTINCT scity FROM Supplier;

• Join: refers to combining two or more tables
– SELECT * FROM Supplier, Supply, Part …

37

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Filtering is
called selection in RA

Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

CSEP 544 - Spring 2021 38

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT y.pno
FROM Supplier x, Supply y
WHERE x.scity = ‘Seattle’

and x.scity = ‘Portland’
and x.sno = y.sno

CSEP 544 - Spring 2021 39

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT y.pno
FROM Supplier x, Supply y
WHERE x.scity = ‘Seattle’

and x.scity = ‘Portland’
and x.sno = y.sno

CSEP 544 - Spring 2021 40

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

This doesn’t work…
Why?

Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT y.pno
FROM Supplier x, Supply y
WHERE (x.scity = ‘Seattle’

or x.scity = ‘Portland’)
and x.sno = y.sno

CSEP 544 - Spring 2021 41

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Does this work?

Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT y.pno
FROM Supplier x, Supply y
WHERE (x.scity = ‘Seattle’

or x.scity = ‘Portland’)
and x.sno = y.sno

CSEP 544 - Spring 2021 42

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Does this work?

Nope!

Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno

CSEP 544 - Spring 2021 43

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Need TWO Suppliers
and TWO Supplies

Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno

CSEP 544 - Spring 2021 44

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Need TWO Suppliers
and TWO Supplies

one in Seattle
the other in Portland

Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno

CSEP 544 - Spring 2021 45

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Need TWO Suppliers
and TWO Supplies

one in Seattle
the other in Portland

the SAME part

Nested-Loop Semantics of SQL

CSEP 544 - Spring 2021 46

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Nested-Loop Semantics of SQL

CSEP 544 - Spring 2021 47

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions

then Answer = Answer È {(a1,…,ak)}
return Answer

Nested-Loop Semantics of SQL

CSEP 544 - Spring 2021 48

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions

then Answer = Answer È {(a1,…,ak)}
return Answer

This SEMANTICS!
It is NOT how the
engine computes

the query!

NULLs in SQL

• A NULL value means missing, or
unknown, or undefined, or inapplicable

CSEP 544 - Spring 2021 49

NULLs in WHERE Clause

Boolean predicate:
• Atomic: Expr1 op Expr2
• AND / OR / NOT

Example:
price < 100 and (pcolor=‘red’ or psize=2)

CSEP 544 - Spring 2021 50

Part(pno,pname,price,psize,pcolor)

How do we compute the predicate when values are NULL?

Three-Valued Logic

• False=0, Unknown=0.5, True=1
• A op B is

– False or True when both A, B are not null
– Unknown otherwise

• AND, OR, NOT are min, max.
• Return only tuples whose condition is True

Part(pno,pname,price,psize,pcolor)

Three-Valued Logic

• False=0, Unknown=0.5, True=1
• A op B is

– False or True when both A, B are not null
– Unknown otherwise

• AND, OR, NOT are min, max.
• Return only tuples whose condition is True

Part(pno,pname,price,psize,pcolor)

select *
from Part
where price < 100
and (psize=2 or pcolor=‘red’)

Three-Valued Logic

• False=0, Unknown=0.5, True=1
• A op B is

– False or True when both A, B are not null
– Unknown otherwise

• AND, OR, NOT are min, max.
• Return only tuples whose condition is True

Part(pno,pname,price,psize,pcolor)

pno pname price psize pcolor
1 iPad 500 13 blue
2 Scooter 99 NULL NULL
3 Charger NULL NULL red
1 iPad 50 2 NULL

select *
from Part
where price < 100
and (psize=2 or pcolor=‘red’)

Three-Valued Logic

• False=0, Unknown=0.5, True=1
• A op B is

– False or True when both A, B are not null
– Unknown otherwise

• AND, OR, NOT are min, max.
• Return only tuples whose condition is True

Part(pno,pname,price,psize,pcolor)

pno pname price psize pcolor
1 iPad 500 13 blue
2 Scooter 99 NULL NULL
3 Charger NULL NULL red
1 iPad 50 2 NULL

select *
from Part
where price < 100
and (psize=2 or pcolor=‘red’)

Three-Valued Logic

• False=0, Unknown=0.5, True=1
• A op B is

– False or True when both A, B are not null
– Unknown otherwise

• AND, OR, NOT are min, max.
• Return only tuples whose condition is True

Part(pno,pname,price,psize,pcolor)

pno pname price psize pcolor
1 iPad 500 13 blue
2 Scooter 99 NULL NULL
3 Charger NULL NULL red
1 iPad 50 2 NULL

select *
from Part
where price < 100
and (psize=2 or pcolor=‘red’)

Three-Valued Logic

• False=0, Unknown=0.5, True=1
• A op B is

– False or True when both A, B are not null
– Unknown otherwise

• AND, OR, NOT are min, max.
• Return only tuples whose condition is True

Part(pno,pname,price,psize,pcolor)

pno pname price psize pcolor
1 iPad 500 13 blue
2 Scooter 99 NULL NULL
3 Charger NULL NULL red
1 iPad 50 2 NULL

select *
from Part
where price < 100
and (psize=2 or pcolor=‘red’)

Three-Valued Logic

• False=0, Unknown=0.5, True=1
• A op B is

– False or True when both A, B are not null
– Unknown otherwise

• AND, OR, NOT are min, max.
• Return only tuples whose condition is True

-- problem: (A or not(A)) ≠ true
-- does NOT return all Products
select *
from Product
where (price <= 100) or (price > 100)

Three-Valued Logic

• False=0, Unknown=0.5, True=1
• A op B is

– False or True when both A, B are not null
– Unknown otherwise

• AND, OR, NOT are min, max.
• Return only tuples whose condition is True

-- returns ALL Products
select *
from Product
where (price <= 100) or (price > 100)

or isNull(price)

-- problem: (A or not(A)) ≠ true
-- does NOT return all Products
select *
from Product
where (price <= 100) or (price > 100)

Likbkin’s Critique Of SQL

• Libkin’s slides: A Case Against SQL
• In class: discuss some of the main

inconsistencies in SQL

CSEP 544 - Spring 2021 59

More SQL: Aggregates

CSEP 544 - Spring 2021 60

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

What do these
queries compute?

SELECT count(*)
FROM Part

More SQL: Aggregates

CSEP 544 - Spring 2021 61

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

What do these
queries compute?

SELECT count(*)
FROM Part

SELECT x.scity, avg(psize)
FROM Supplier x, Supply y, Part z
WHERE x.sno = y.sno and y.pno = z.pno
GROUP BY x.scity

More SQL: Aggregates

CSEP 544 - Spring 2021 62

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

What do these
queries compute?

SELECT count(*)
FROM Part

SELECT x.scity, avg(psize)
FROM Supplier x, Supply y, Part z
WHERE x.sno = y.sno and y.pno = z.pno
GROUP BY x.scity

SELECT x.scity, avg(psize)
FROM Supplier x, Supply y, Part z
WHERE x.sno = y.sno and y.pno = z.pno
GROUP BY x.scity
HAVING count(*) > 200

Discussion

• SQL Aggregates = simple data analytics
• Semantics:

1. FROM-WHERE (nested-loop semantics)
2. Group answers by GROUP BY attrs
3. Apply HAVING predicates on groups
4. Apply SELECT aggregates on groups

• Aggregate functions:
– count, sum, min, max, avg

• DISTINCT same as GROUP BY
63

Outer joins

64

Retrieve all product
names, categories,
and stores where they
were purchased.
Include products
that never sold

Product(name, category)
Purchase(prodName, store)

prodName
is foreign Key

Outer joins

SELECT x.name, x.category, y.store
FROM Product x, Purchase y
WHERE x.name = y.prodName

Retrieve all product
names, categories,
and stores where they
were purchased.
Include products
that never sold

Product(name, category)
Purchase(prodName, store)

prodName
is foreign Key

Outer joins

Name Category
Gizmo gadget

Camera Photo
OneClick Photo

ProdName Store
Gizmo Wiz

Camera Ritz
Camera Wiz

Product Purchase

SELECT x.name, x.category, y.store
FROM Product x, Purchase y
WHERE x.name = y.prodName

Retrieve all product
names, categories,
and stores where they
were purchased.
Include products
that never sold

Product(name, category)
Purchase(prodName, store)

prodName
is foreign Key

Outer joins

Name Category
Gizmo gadget

Camera Photo
OneClick Photo

ProdName Store
Gizmo Wiz

Camera Ritz
Camera Wiz

Product Purchase Output

missing

SELECT x.name, x.category, y.store
FROM Product x, Purchase y
WHERE x.name = y.prodName

Retrieve all product
names, categories,
and stores where they
were purchased.
Include products
that never sold

Name Category Store
Gizmo gadget Wiz

Camera Photo Ritz
Camera Photo Wiz

Product(name, category)
Purchase(prodName, store)

prodName
is foreign Key

Outer joins

Name Category
Gizmo gadget

Camera Photo
OneClick Photo

ProdName Store
Gizmo Wiz

Camera Ritz
Camera Wiz

Product Purchase Output

Now it’s present

SELECT x.name, x.category, y.store
FROM Product x LEFT OUTER JOIN Purchase y
ON x.name = y.prodName

Retrieve all product
names, categories,
and stores where they
were purchased.
Include products
that never sold

Name Category Store
Gizmo gadget Wiz

Camera Photo Ritz
Camera Photo Wiz
OneClick Photo NULL

Product(name, category)
Purchase(prodName, store)

prodName
is foreign Key

Left Outer Join (Details)

from R left outer join S on C1 where C2

1. Compute cross product R×S

2. Filter on C1

3. Add all R records without a match

4. Filter on C2
CSEP 544 - Spring 2021 69

Left Outer Join (Details)

CSEP 544 - Spring 2021 70

select ...
from R left outer join S on C1
where C2

Tmp = {}
for x in R do // left outer join using C1

for y in S do
if C1 then Tmp = Tmp È {(x,y)}

for x in R do
if not (x in Tmp) then Tmp = Tmp È {(x,NULL)}

Answer = {} // apply condition C2
for (x,y) in Tmp if C2 then Answer = Answer È {(x,y)}
return Answer

ON v.s. WHERE

• Outer join condition in the ON clause
• Different from the WHERE clause
• Compare:

71

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName

AND y.price < 10

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
WHERE y.price < 10

Product(name, category)
Purchase(prodName, store, price)

prodName
is foreign Key

ON v.s. WHERE

• Outer join condition in the ON clause
• Different from the WHERE clause
• Compare:

72

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName

AND y.price < 10

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
WHERE y.price < 10

Includes products
that were never
purchased with

price < 10

prodName
is foreign Key

Product(name, category)
Purchase(prodName, store, price)

ON v.s. WHERE

• Outer join condition in the ON clause
• Different from the WHERE clause
• Compare:

73

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName

AND y.price < 10

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
WHERE y.price < 10

Includes products
that were never
purchased with

price < 10

Includes products
that were never

purchased,
then checks price <10

prodName
is foreign Key

Product(name, category)
Purchase(prodName, store, price)

ON v.s. WHERE

• Outer join condition in the ON clause
• Different from the WHERE clause
• Compare:

74

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName

AND y.price < 10

SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
WHERE y.price < 10

Includes products
that were never
purchased with

price < 10

Includes products
that were never

purchased,
then checks price <10

Same as
inner join!

prodName
is foreign Key

Product(name, category)
Purchase(prodName, store, price)

Joins

• Inner join = includes only matching
tuples (i.e. regular join)

• Left outer join = includes everything
from the left

• Right outer join = includes everything
from the right

• Full outer join = includes everything

CSEP 544 - Spring 2021 75

Other use of Relational Data

• Sparse vectors, matrics

• Graph databases

CSEP 544 - Spring 2021 76

Sparse Matrix

CSEP 544 - Spring 2021 77

𝐴 =
5 0 −2
0 0 −1
0 7 0

How can we represent
it as a relation?

Sparse Matrix

CSEP 544 - Spring 2021 78

𝐴 =
5 0 −2
0 0 −1
0 7 0

Row Col Val
1 1 5
1 3 -2
2 3 -1
3 2 7

Matrix Multiplication in SQL

CSEP 544 - Spring 2021 79

𝐶 = 𝐴 ⋅ 𝐵

Matrix Multiplication in SQL

CSEP 544 - Spring 2021 80

𝐶 = 𝐴 ⋅ 𝐵 𝐶!" =&
#

𝐴!# ⋅ 𝐵#"

Matrix Multiplication in SQL

CSEP 544 - Spring 2021 81

𝐶 = 𝐴 ⋅ 𝐵 𝐶!" =&
#

𝐴!# ⋅ 𝐵#"

SELECT A.row, B.col, sum(A.val*B.val)
FROM A, B
WHERE A.col = B.row
GROUP BY A.row, B.col;

Discussion

• Matrix multiplication = join + group-by
• Many operations can be written in SQL
• E.g. try at home: write in SQL

𝑇𝑟 𝐴 ⋅ 𝐵 ⋅ 𝐶
where the trace is defined as:

𝑇𝑟 𝑋 = ∑! 𝑋!!
• Surprisingly, 𝐴 + 𝐵 is a bit harder…

82

Matrix Addition in SQL

CSEP 544 - Spring 2021 83

𝐶 = 𝐴 + 𝐵

Matrix Addition in SQL

CSEP 544 - Spring 2021 84

𝐶 = 𝐴 + 𝐵

SELECT A.row, A.col, A.val + B.val as val
FROM A, B
WHERE A.row = B.row and A.col = B.col

Matrix Addition in SQL

CSEP 544 - Spring 2021 85

𝐶 = 𝐴 + 𝐵

SELECT A.row, A.col, A.val + B.val as val
FROM A, B
WHERE A.row = B.row and A.col = B.col

Why is this wrong?

Solution 1: Outer Joins

CSEP 544 - Spring 2021 86

𝐶 = 𝐴 + 𝐵

SELECT
(CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,
(CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,
(CASE WHEN A.val is null THEN 0 ELSE A.val END) +
(CASE WHEN B.val is null THEN 0 ELSE B.val END) as val
FROM A full outer join B ON A.row = B.row and A.col = B.col;

Solution 1: Outer Joins

CSEP 544 - Spring 2021 87

𝐶 = 𝐴 + 𝐵

SELECT
(CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,
(CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,
(CASE WHEN A.val is null THEN 0 ELSE A.val END) +
(CASE WHEN B.val is null THEN 0 ELSE B.val END) as val
FROM A full outer join B ON A.row = B.row and A.col = B.col;

Solution 1: Outer Joins

CSEP 544 - Spring 2021 88

𝐶 = 𝐴 + 𝐵

SELECT
(CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,
(CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,
(CASE WHEN A.val is null THEN 0 ELSE A.val END) +
(CASE WHEN B.val is null THEN 0 ELSE B.val END) as val
FROM A full outer join B ON A.row = B.row and A.col = B.col;

Solution 1: Outer Joins

CSEP 544 - Spring 2021 89

𝐶 = 𝐴 + 𝐵

SELECT
(CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,
(CASE WHEN A.col is null THEN B.col ELSE A.col END) as col,
(CASE WHEN A.val is null THEN 0 ELSE A.val END) +
(CASE WHEN B.val is null THEN 0 ELSE B.val END) as val
FROM A full outer join B ON A.row = B.row and A.col = B.col;

Solution 2: Group By

CSEP 544 - Spring 2021 90

𝐶 = 𝐴 + 𝐵

SELECT m.row, m.col, sum(m.val)
FROM (SELECT * FROM A

UNION ALL
SELECT * FROM B) as m

GROUP BY m.row, m.col;

Graph Databases

• Graph databases systems are a niche
category of products specialized for
processing large graphs

• E.g. Neo4J, TigerGraph
• A graph is a special case of a relation,

and can be processed using SQL

CSEP 544 - Spring 2021 91

Graph Databases
A graph:

1

2

4

3

5

Graph Databases

src dst
1 2
2 1
2 3

1 4

3 4
4 5

EdgeA graph: A relation:

1

2

4

3

5

Graph Databases

1

2

4

3

src dst
1 2
2 1
2 3

1 4

3 4
4 5

Edge

5

A graph:

Find nodes at distance 2: 𝑥, 𝑧 ∃𝑦 𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒(𝑦, 𝑧)}

A relation:

Graph Databases

src dst
1 2
2 1
2 3

1 4

3 4
4 5

EdgeA graph:

Find nodes at distance 2: 𝑥, 𝑧 ∃𝑦 𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒(𝑦, 𝑧)}

SELECT DISTINCT e1.src as X, e2.dst as Z
FROM Edge e1, Edge e2
WHERE e1.dst = e2.src;

A relation:

1

2

4

3

5

Crash Course in Formal Logic

• The Relational Data Model is founded
on first order logic (”What goes around”)

• SQL was designed as a more friendly
language than FO

• Complex SQL queries are sometimes
best understood in the framework of FO

96

Crash Course in Formal Logic
Atomic predicates:
• Likes(x,y)
• Product(x,y,z)

-- pid, name, color
• Product(x,y,’red’)

Connectives: ∧, ∨, ¬, ⇒, ∃, ∀

Crash Course in Formal Logic
Atomic predicates:
• Likes(x,y)
• Product(x,y,z)

-- pid, name, color
• Product(x,y,’red’)

Connectives: ∧, ∨, ¬, ⇒, ∃, ∀
• ∃x P(x):

there exists x s.t. P(x) is true
• ∀x P(x):

for every x, P(x) is true

Crash Course in Formal Logic
Atomic predicates:
• Likes(x,y)
• Product(x,y,z)

-- pid, name, color
• Product(x,y,’red’)

Connectives: ∧, ∨, ¬, ⇒, ∃, ∀
• ∃x P(x):

there exists x s.t. P(x) is true
• ∀x P(x):

for every x, P(x) is true

What do these sentences say?

∃x(Likes(‘Alice’,x)∧Likes(‘Bob’,x))

Crash Course in Formal Logic
Atomic predicates:
• Likes(x,y)
• Product(x,y,z)

-- pid, name, color
• Product(x,y,’red’)

Connectives: ∧, ∨, ¬, ⇒, ∃, ∀
• ∃x P(x):

there exists x s.t. P(x) is true
• ∀x P(x):

for every x, P(x) is true

What do these sentences say?

∃x(Likes(‘Alice’,x)∧Likes(‘Bob’,x))

There is somebody liked
by both Alice and Bob

Crash Course in Formal Logic
Atomic predicates:
• Likes(x,y)
• Product(x,y,z)

-- pid, name, color
• Product(x,y,’red’)

Connectives: ∧, ∨, ¬, ⇒, ∃, ∀
• ∃x P(x):

there exists x s.t. P(x) is true
• ∀x P(x):

for every x, P(x) is true

What do these sentences say?

∃x(Likes(‘Alice’,x)∧Likes(‘Bob’,x))

∀x (Likes(‘Alice’,x) ⇒Likes(‘Bob’,x))

There is somebody liked
by both Alice and Bob

Crash Course in Formal Logic
Atomic predicates:
• Likes(x,y)
• Product(x,y,z)

-- pid, name, color
• Product(x,y,’red’)

Connectives: ∧, ∨, ¬, ⇒, ∃, ∀
• ∃x P(x):

there exists x s.t. P(x) is true
• ∀x P(x):

for every x, P(x) is true

What do these sentences say?

∃x(Likes(‘Alice’,x)∧Likes(‘Bob’,x))

∀x (Likes(‘Alice’,x) ⇒Likes(‘Bob’,x))

There is somebody liked
by both Alice and Bob

Everybody liked by Alice,
is also liked by Bob

Crash Course in Formal Logic
Atomic predicates:
• Likes(x,y)
• Product(x,y,z)

-- pid, name, color
• Product(x,y,’red’)

Connectives: ∧, ∨, ¬, ⇒, ∃, ∀
• ∃x P(x):

there exists x s.t. P(x) is true
• ∀x P(x):

for every x, P(x) is true

What do these sentences say?

∃x(Likes(‘Alice’,x)∧Likes(‘Bob’,x))

∀x (Likes(‘Alice’,x) ⇒Likes(‘Bob’,x))

∀x (∃y Likes(x,y) ⇒ Likes(x,‘Alice’))

There is somebody liked
by both Alice and Bob

Everybody liked by Alice,
is also liked by Bob

Crash Course in Formal Logic
Atomic predicates:
• Likes(x,y)
• Product(x,y,z)

-- pid, name, color
• Product(x,y,’red’)

Connectives: ∧, ∨, ¬, ⇒, ∃, ∀
• ∃x P(x):

there exists x s.t. P(x) is true
• ∀x P(x):

for every x, P(x) is true

What do these sentences say?

∃x(Likes(‘Alice’,x)∧Likes(‘Bob’,x))

∀x (Likes(‘Alice’,x) ⇒Likes(‘Bob’,x))

∀x (∃y Likes(x,y) ⇒ Likes(x,‘Alice’))

There is somebody liked
by both Alice and Bob

Everybody liked by Alice,
is also liked by Bob

Everybody who likes somebody
also likes Alice

Graph Databases

src dst
1 2
2 1
2 3

1 4

3 4
4 5

EdgeA graph:

Find nodes at distance 2: 𝑥, 𝑧 ∃𝑦 𝐸𝑑𝑔𝑒 𝑥, 𝑦 ∧ 𝐸𝑑𝑔𝑒(𝑦, 𝑧)}

SELECT DISTINCT e1.src as X, e2.dst as Z
FROM Edge e1, Edge e2
WHERE e1.dst = e2.src;

A relation:

1

2

4

3

5

Now this should
be clear

Other Representation

src dst
Alice Bob
Bob Alice
Bob Chris

Alice David

Chris David
David Eve

EdgeNode

Alice

Bob

David

Chris

Eve
Frank src

Alice
Bob
Chris

David

Eve
Frank

Representing nodes separately;
needed for “isolated nodes” e.g. Frank

Other Representation

src dst weight
Alice Bob 3
Bob Alice 1
Bob Chris 2

Alice David 9

Chris David 5
David Eve 1

EdgeNode

Alice

Bob

David

Chris

Eve
Frank src

Alice
Bob
Chris

David

Eve
Frank

Adding edge labels
Adding node labels…

2

5
3

1

9
1

Limitations of SQL

• No recursion! Examples requiring
recursion:
– Gradient descent
– Connected components in a graph

• Advanced systems do support recursion
• Practical solution: use some external

driver, e.g. pyton

CSEP 544 - Spring 2021 108

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
𝑃 𝑌 = 0 𝑋 =

1
1 + 𝑒𝑥𝑝 𝑤% + ∑&'(,*𝑤&𝑋&

𝑃 𝑌 = 1 𝑋 =
𝑒𝑥𝑝 𝑤% + ∑&'(,*𝑤&𝑋&

1 + 𝑒𝑥𝑝 𝑤% + ∑&'(,*𝑤&𝑋&

Switched
(following Mitchell)

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
𝑃 𝑌 = 0 𝑋 =

1
1 + 𝑒𝑥𝑝 𝑤% + ∑&'(,*𝑤&𝑋&

𝑃 𝑌 = 1 𝑋 =
𝑒𝑥𝑝 𝑤% + ∑&'(,*𝑤&𝑋&

1 + 𝑒𝑥𝑝 𝑤% + ∑&'(,*𝑤&𝑋&

Switched
(following Mitchell)

Train weights 𝑤%, 𝑤(, 𝑤+, 𝑤* to minimize loss:

𝐿 𝑤%, … , 𝑤* = :
ℓ'(,-

𝑌ℓ ⋅ ln 𝑃 𝑌 = 1|𝑋ℓ + (1 − 𝑌ℓ) ⋅ ln 𝑃 𝑌 = 0|𝑋ℓ

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
Gradient Descent:

𝑤& ← 𝑤& + 𝜂 :
ℓ'(,-

𝑋&ℓ 𝑌ℓ − 𝑃(𝑌 = 1|𝑋ℓ)

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
Gradient Descent:

𝑤& ← 𝑤& + 𝜂 :
ℓ'(,-

𝑋&ℓ 𝑌ℓ − 𝑃(𝑌 = 1|𝑋ℓ)

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
Gradient Descent:

𝑤& ← 𝑤& + 𝜂 :
ℓ'(,-

𝑋&ℓ 𝑌ℓ − 𝑃(𝑌 = 1|𝑋ℓ)

SELECT
W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,
W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,
W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2,
W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3

FROM data d, W
WHERE W.k=1
GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
Gradient Descent:

𝑤& ← 𝑤& + 𝜂 :
ℓ'(,-

𝑋&ℓ 𝑌ℓ − 𝑃(𝑌 = 1|𝑋ℓ)

SELECT
W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,
W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,
W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2,
W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3

FROM data d, W
WHERE W.k=1
GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
Gradient Descent:

𝑤& ← 𝑤& + 𝜂 :
ℓ'(,-

𝑋&ℓ 𝑌ℓ − 𝑃(𝑌 = 1|𝑋ℓ)

SELECT
W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,
W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,
W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2,
W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3

FROM data d, W
WHERE W.k=1
GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
Gradient Descent:

𝑤& ← 𝑤& + 𝜂 :
ℓ'(,-

𝑋&ℓ 𝑌ℓ − 𝑃(𝑌 = 1|𝑋ℓ)

SELECT
W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,
W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,
W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2,
W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3

FROM data d, W
WHERE W.k=1
GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
Gradient Descent:

𝑤& ← 𝑤& + 𝜂 :
ℓ'(,-

𝑋&ℓ 𝑌ℓ − 𝑃(𝑌 = 1|𝑋ℓ)

SELECT
W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,
W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,
W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2,
W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3

FROM data d, W
WHERE W.k=1
GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

http://www.cs.cmu.edu/~tom/NewChapters.html

Example: Logistic Regression
Tom Mitchell: Machine Learning

X1 X2 X3 Y

3 9 3 0
3 5 7 1
6 2 2 0

3 6 3 0

5 5 9 1
9 3 3 1
… … …
… … …

Data
Gradient Descent:

𝑤& ← 𝑤& + 𝜂 :
ℓ'(,-

𝑋&ℓ 𝑌ℓ − 𝑃(𝑌 = 1|𝑋ℓ)

SELECT
W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,
W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,
W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2,
W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3

FROM data d, W
WHERE W.k=1
GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;

CREATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
INSERT INTO W VALUES (1, 0, 0, 0, 0);

Update W, then repeat this
e.g. using python

http://www.cs.cmu.edu/~tom/NewChapters.html

Discussion

SQL in Data Science:
• Used primarily to prepare the data

– ETL – Extract/Transform/Load
– Join tables, process columns, filter rows

• Can also be used in training
– Much less convenient than ML packages
– But can be the best option if data is huge

CSEP 544 - Spring 2021 120

More To Know About SQL

• create table
• help
• create view
• create index
• explain
• insert into,

delete from,
update set

CSEP 544 - Spring 2021 121

Create Table

CSEP 544 - Spring 2021 122

CREATE TABLE User (
uid int PRIMARY KEY,
firstName text,
lastName text NOT NULL,
age int CHECK (age > 12 and age < 120),
email text,
phone text,
FOREIGN KEY (email, phone) REFERENCES Accnt

)

Primary key
constraint

Attribute-level
constraint

Composite foreign key
constraint

Create Table

Hints for HW1:
• Constraints are good:

– they keep the data clean
– But they make uploads SOOO slow

• Hint: use this order
– Create table
– Upload data (COPY…)
– ALTER TALBE … (add constraints)
– If error, use SQL to debug!

123

Help

Postgres

• \help

• \help ALTER TABLE

• \?
CSEP 544 - Spring 2021 124

Create View

• Need to write same SQL expression
repeatedly? Create a view, then use it:

CSEP 544 - Spring 2021 125

create view SeattleSupplierRed as
select distinct x.*
from Supplier x, Supply y, Part z
where x.sno=y.sno and y.pno=z.pno

and x.scity=‘Seatte’
and z.pcolor=‘red’

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

select y.pno, y.price
from SeattleSupplierRed x

Supply y
where x.sno=y.sno

View Variants

• CREATE TEMPORARY VIEW name…
• Not stored in the catalog

• WITH name AS (SELECT…)
SELECT … FROM … WHERE…

• Used only within one query

CSEP 544 - Spring 2021 126

Create Index

• Index = auxiliary file that helps speedup
some queries

• create index
create index Supplier_scity

on Supplier(scity);
create index Supplier_sstate_sname

on Supplier(sstate,sname);
create index Supply_sno

on Supply(sno);
cluster Supply using Supply_sno;

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Create Index

• Index = auxiliary file that helps speedup
some queries

• create index
create index Supplier_scity

on Supplier(scity);
create index Supplier_sstate_sname

on Supplier(sstate,sname);
create index Supply_sno

on Supply(sno);
cluster Supply using Supply_sno;

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Create Index

• Index = auxiliary file that helps speedup
some queries

• create index
create index Supplier_scity

on Supplier(scity);
create index Supplier_sstate_sname

on Supplier(sstate,sname);
create index Supply_sno

on Supply(sno);
cluster Supply using Supply_sno;

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Create Index

• Index = auxiliary file that helps speedup
some queries

• create index
create index Supplier_scity

on Supplier(scity);
create index Supplier_sstate_sname

on Supplier(sstate,sname);
create index Supply_sno

on Supply(sno);
cluster Supply using Supply_sno;

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

select * from Supplier
where scity=‘Seattle’

Big speedup
from Supplier_city

Create Index

• Index = auxiliary file that helps speedup
some queries

• create index
create index Supplier_scity

on Supplier(scity);
create index Supplier_sstate_sname

on Supplier(sstate,sname);
create index Supply_sno

on Supply(sno);
cluster Supply using Supply_sno;

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

select * from Supplier
where scity=‘Seattle’

select *
from Supplier x, Supply y
where x.sno = y.sno

and sname = ‘iPad’

Big speedup
from Supplier_city

Create Index

• Index = auxiliary file that helps speedup
some queries

• create index
create index Supplier_scity

on Supplier(scity);
create index Supplier_sstate_sname

on Supplier(sstate,sname);
create index Supply_sno

on Supply(sno);
cluster Supply using Supply_sno;

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

select * from Supplier
where scity=‘Seattle’

select *
from Supplier x, Supply y
where x.sno = y.sno

and sname = ‘iPad’

Big speedup
from Supplier_city

Big speedup
from Supply_sno

Create Index

• Index = auxiliary file that helps speedup
some queries

• create index
create index Supplier_scity

on Supplier(scity);
create index Supplier_sstate_sname

on Supplier(sstate,sname);
create index Supply_sno

on Supply(sno);
cluster Supply using Supply_sno;

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

select * from Supplier
where scity=‘Seattle’

select *
from Supplier x, Supply y
where x.sno = y.sno

select *
from Supplier x, Supply y
where x.sno = y.sno

and sname = ‘iPad’

Big speedup
from Supplier_city

Big speedup
from Supply_sno

Create Index

• Index = auxiliary file that helps speedup
some queries

• create index
create index Supplier_scity

on Supplier(scity);
create index Supplier_sstate_sname

on Supplier(sstate,sname);
create index Supply_sno

on Supply(sno);
cluster Supply using Supply_sno;

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

select * from Supplier
where scity=‘Seattle’

select *
from Supplier x, Supply y
where x.sno = y.sno

select *
from Supplier x, Supply y
where x.sno = y.sno

and sname = ‘iPad’

Big speedup
from Supplier_city

Big speedup
from Supply_snoUnlikely benefit

(discuss clustered)

Create Index

Hints for HW1
• Indexes are great for speeding up

queries
• But they make uploads SOOO slow!
• Hint: upload first, create index later

CSEP 544 - Spring 2021 135

Explain
Postgres:

• explain select * from Supplier where scity=‘Seattle’

• Checkout: \h explain

• Other systems have similar commands:
use it frequently to understand the query plan

CSEP 544 - Spring 2021 136

Update Commands

• insert into Product values (33,’iPad’,…);
• insert into NewTable (select * from…);
• delete from Product where price > 100;

CSEP 544 - Spring 2021 137

Update Commands

• insert into Product values (33,’iPad’,…);
• insert into NewTable (select * from…);
• delete from Product where price > 100;
• delete from Product; -- don’t do this!

CSEP 544 - Spring 2021 138

Update Commands

• insert into Product values (33,’iPad’,…);
• insert into NewTable (select * from…);
• delete from Product where price > 100;
• delete from Product; -- don’t do this!
• update Product

set price = 99
where price > 100

CSEP 544 - Spring 2021 139

SQL – Summary

• Very complex: >1000 pages,
– No vendor supports full standard; (in practice,

people use postgres as de facto standard)
– Much more than DML

• It is a declarative language:
– we say what we want
– we don’t say how to get it

• Relational algebra says how to get it 140

CSEP 544 - Spring 2021

Relational Algebra
• Queries specified in an operational manner

– A query gives a step-by-step procedure

• Relational operators
– Take one or two relation instances as input
– Return one relation instance as result
– Easy to compose into relational algebra expressions

141

Five Basic Relational Operators

• Selection: 𝜎condition(S)
– Condition is Boolean combination (∧,∨)

of atomic predicates (<, <=, =, ≠, >=, >)
• Projection: πlist-of-attributes(S)
• Union (∪)
• Set difference (–),
• Cross-product/cartesian product (⨯),

Join: R ⋈𝛉S = 𝜎𝛉(R⨯S)
Other operators: anti-semijoin, renaming

CSEP 544 - Spring 2021 142

CSEP 544 - Spring 2021

Extended Operators

• Duplicate elimination (𝛿)
– Since commercial DBMSs operate on multisets

not sets
• Group-by/aggregate (ɣ)

– Min, max, sum, average, count
– Partitions tuples of a relation into “groups”
– Aggregates can then be applied to groups

• Sort operator (𝜏)

143

Logical Query Plans

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

144

SELECT DISTINCT x.sname, x.scity
FROM Supplier x, Supply y, Part z
WHERE x.sno=y.sno

and y.pno=z.pno
and z.psize > 10;

Logical Query Plans

Supplier Supply

pno=pno

Part

Π sname,scity

σ psize > 10
sno=sno

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

145

SELECT DISTINCT x.sname, x.scity
FROM Supplier x, Supply y, Part z
WHERE x.sno=y.sno

and y.pno=z.pno
and z.psize > 10;

𝝳

Query Optimizer

• Rewrite one relational algebra
expression to a better one

• Very brief review now, more details next
lectures

CSEP 544 - Spring 2021 146

Optimization

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and

x.price > 100 and z.city = ‘Seattle’

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Optimization

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and

x.price > 100 and z.city = ‘Seattle’

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Push
selections

down

Optimization

Product Purchase

pid=pid
city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ
price>100

σ

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and

x.price > 100 and z.city = ‘Seattle’

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

More about this
in future lectures

Push
selections

down

Benefits of Relational Model

• Physical data independence
– Can change how data is organized on disk without

affecting applications

• Logical data independence
– Can change the logical schema without affecting

applications (not 100%... consider updates)

CSEP 544 - Spring 2021 150

Physical Data Independence

151

sno sname scity sstate
1 s1 city 1 WA
2 s2 city 1 WA
3 s3 city 2 MA
4 s4 city 2 MA

Supplier
SELECT DISTINCT sname
FROM Supplier
WHERE scity = ‘Seattle’

How is the data stored on disk?
(e.g. row-wise, column-wise)

Is there an index on scity?
(e.g. no index, unclustered index, clustered index)

The SQL query works
the same, regardless

of the answers to
these questions

Lecture on Wednesday

• Data model – what’s so hard about it?

• Review “What goes around…

CSEP 544 - Spring 2021 152

