CSE544 Data Management

Lectures 1-3: Introduction, SQL

Outline

• Introduction, class overview

Database management systems (DBMS)

• The relational model

• SQL (continued on Wed.)

CSEP 544 - Spring 2021

Course Staff

- Instructor: Dan Suciu

 Office hours: Tuesdays, 5:30-6:20
- TAs (Office hours TBD)
 - Maureen Daum
 - Brandon Ko
 - Kyle Yan

Goals of the Class

- Relational Data Model
 - Data models, data independence, declarative query language.
- Relational Database Systems
 - Storage, query execution and optimization
 - Parallel data processing, column-oriented db etc.
- Transactions
 - Optimistic/pessimistic concurrency control
 - [ARIES recovery system will likely run out of time]

Readings

- Paper reviews
 - Mix of old seminal papers and new papers
 - Papers are available on class website
- Lecture notes (the slides)
 - Posted on class website after each lecture
- Background from:
 - Database Management Systems. Third Ed.
 Ramakrishnan and Gehrke. McGraw-Hill.

Class Resources

Website: lectures, assignments

<u>http://www.cs.washington.edu/csep544</u>

Canvas: zoom, videos

Ed: discussion board

Evaluation

• Assignments 50%

• Reviews 20%

Mini-Project 20%

Intangibles 10%

Assignments – 50%

- HW1: Data analysis in postgres
- HW2: Data analysis in Snowflake
- HW3: Query Execution and SimpleDB
- HW4: Datalog
- HW5: Spark

Paper reviews – 20%

- Recommended length: ¹/₂ page 1 page – Summary of main points
 - Critical discussion
- Grading: credit/partial-credit/no-credit
- Submit review *before* the lecture
- First review due on Wednesday!

MiniProject – 20%

Topic of your own choosing, open ended

- Suggestion 1: based on a paper
 - Repeat 1-2 experiments
 - Try variations
 - Compare with another system
 - Something else
- Suggestion 2: based on your work
 - Evaluate a technology that you need at work

Intangibles 10%

Class participation

 Exceptionally good reviews, or homework, or project

• Etc, etc

How to Turn In

- Homeworks: gitlab
- Project: gitlab
- Reviews: google forms

Now onward to the world of databases!

Data Management

• Entities: employees, positions (ceo, manager, cashier), stores, products, sells, customers.

• **Relationships**: employee positions, staff of each store, inventory of each store.

Database Management System

• A DBMS is a software system designed to provide data management services

- Examples of DBMS
 - Oracle, DB2 (IBM), SQL Server (Microsoft),
 - PostgreSQL, MySQL,...
 - Snowflake, Redshift, SQL Azure, BigQuery

DBMS Functionality

- Create & persistently store large datasets
- Efficiently query & update
- Change structure (e.g., add attributes)
- Concurrency control: enable simultaneous updates
- Crash recovery
- Access control, security, integrity

Single Client

E.g. data analytics

Application and database on the same computer

E.g. sqlite, postgres

Cloud Databases

Workloads

• OLTP – online transaction processing

 OLAP – online analytics processing, a.k.a. Decision Support

Relational Data Model

Relational Data Model

- A Database is a collection of relations
- A Relation is a set of tuples
 - Also called Table
- A Tuple t is an element of Dom₁ x Dom₂ x ... x Dom_n
 - Dom_i is the domain of attribute i
 - n is number of attributes of the relation
 - Also called Row or Record

Discussion

• Rows in a relation:

Data independence!

- Ordering immaterial (a relation is a set)
- All rows are distinct set semantics
- Query answers may have duplicates bag semantics
- Columns in a tuple:

Or is it?

- Ordering is immaterial
- Applications refer to columns by their names
- Domain of each column is a primitive type

Schema

- Relation schema: describes column heads
 - Relation name
 - Name of each field (or column, or attribute)
 - Domain of each field
 - The <u>arity</u> of the relation = # attributes
- Database schema: set of all relation schemas

Instance

- Relation instance: concrete table content
 - Set of records matching the schema
 - The <u>cardinality</u> or <u>size</u> of the relation = # tuples

Database instance: set of relation instances

What is the schema? What is the instance?

Supplier

sno	sname	scity	sstate
1005	ACME	Seattle	WA
1006	Freddie	Austin	ТХ
1007	Joe's	Seattle	WA
1008	ACME	Austin	ТХ

What is the schema? What is the instance? Relation schema

Supplier(<u>sno: integer</u>, sname: string, scity: string, sstate: string)

Supplier

sno	sname	scity	sstate	
1005	ACME	Seattle	WA	inotonoo
1006	Freddie	Austin	ТХ	
1007	Joe's	Seattle	WA	
1008	ACME	Austin	ТХ	J

What is the schema? What is the instance? Relation schema

Supplier(<u>sno: integer</u>, sname: string, scity: string, sstate: string)

Supplier

sno	sname	scity	sstate	
1005	ACME	Seattle	WA	instance
1006	Freddie	Austin	ТХ	
1007	Joe's	Seattle	WA	
1008	ACME	Austin	ТХ)

In class: discuss keys, foreign keys, FD

Relational Query Language

• Set-at-a-time:

Query inputs and outputs are relations

- Two variants of the query language:
 - SQL: declarative
 - Relational algebra: specifies order of operations

SQL

• Standard query language

• Introduced late 70's, now it ballooned

• We briefly review "core SQL" (whatever that means); study more on you own!

Read by Wed: <u>A case against SQL</u>

Structured Query Language: SQL

- Data definition language: DDL
 - Statements to create, modify tables and views
 - CREATE TABLE ...,
 CREATE VIEW ...,
 ALTER TABLE...
- Data manipulation language: DML
 - Statements to issue queries, insert, delete data
 - SELECT-FROM-WHERE..., Our focus
 INSERT...,
 UPDATE...,
 DELETE...

SQL Query

Basic form: (plus many many more bells and whistles)

SELECT<attributes>FROM<one or more relations>WHERE<conditions>

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Quick Review of SQL

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Quick Review of SQL

What does this query compute?
Terminology

- Selection/filter: return a subset of the rows:
 - SELECT * FROM Supplier
 WHERE scity = 'Seattle'
 Filtering is
 Called <u>selection in RA</u>
- Projection: return subset of the columns:
 SELECT DISTINCT scity FROM Supplier;
- Join: refers to combining two or more tables
 SELECT * FROM Supplier, Supply, Part …

Self-Joins

Self-Joins

```
SELECT DISTINCT y.pno
FROM Supplier x, Supply y
WHERE x.scity = 'Seattle'
and x.scity = 'Portland'
and x.sno = y.sno
```

```
Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)
```


Self-Joins

Self-Joins


```
Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)
```

Find the Parts numbers available both from suppliers in Seattle, and suppliers in Portland Need TWO Suppliers and TWO Supplies SELECT DISTINCT y1.pno Supplier x1, Supplier x2, Supply y1, Supply y2 FROM WHERE x1.scity = 'Seattle' and x1.sno = y1.snoand x2.scity = 'Portland' and x2.sno = y2.snoand y1.pno = y2.pno

```
Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)
```



```
Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)
```


CSEP 544 - Spring 2021

Nested-Loop Semantics of SQL

Nested-Loop Semantics of SQL

Answer = {} for x_1 in R_1 do for x_2 in R_2 do for x_n in R_n do if Conditions then Answer = Answer $\cup \{(a_1,...,a_k)\}$ return Answer

NULLs in SQL

• A NULL value means missing, or unknown, or undefined, or inapplicable

NULLs in WHERE Clause

Boolean predicate:

- Atomic: Expr1 op Expr2
- AND / OR / NOT

Example: price < 100 and (pcolor='red' or psize=2)

How do we compute the predicate when values are NULL?

- False=0, Unknown=0.5, True=1
- A op B is
 - False or True when both A, B are not null
 - Unknown otherwise
- AND, OR, NOT are **min**, **max**.
- Return only tuples whose condition is **True**

- False=0, Unknown=0.5, True=1
- A op B is
 - False or True when both A, B are not null
 - Unknown otherwise
- AND, OR, NOT are **min**, **max**.
- Return only tuples whose condition is True

```
select *
from Part
where price < 100
and (psize=2 or pcolor='red')</pre>
```

- False=0, Unknown=0.5, True=1
- A op B is
 - False or True when both A, B are not null
 - Unknown otherwise
- AND, OR, NOT are **min**, **max**.
- Return only tuples whose condition is True

coloct *	pno	pname	price	psize	pcolor
from Dort	1	iPad	500	13	blue
$\frac{1}{100} \text{ Part}$	2	Scooter	99	NULL	NULL
where price < 100	3	Charger	NULL	NULL	red
and (psize=2 of pcolor=red)	1	iPad	50	2	NULL

- False=0, Unknown=0.5, True=1
- A op B is
 - False or True when both A, B are not null
 - Unknown otherwise
- AND, OR, NOT are **min**, **max**.
- Return only tuples whose condition is True

coloct *	pno	pname	price	psize	pcolor
from Port	1	iPad	500	13	blue 🚫
1000000000000000000000000000000000000	2	Scooter	99	NULL	NULL
where price < 100	3	Charger	NULL	NULL	red
and (psize=2 or pcolor=red)	1	iPad	50	2	NULL

- False=0, Unknown=0.5, True=1
- A op B is
 - False or True when both A, B are not null
 - Unknown otherwise
- AND, OR, NOT are **min**, **max**.
- Return only tuples whose condition is True

select * from Part where price < 100	pno	pname	price	psize	pcolor	
from Port	1	iPad	500	13	blue 🜔	
Nubero prico < 100	2	Scooter	99	NULL	NULL	
where price < 100	3	Charger	NULL	NULL	red	S
and (psize-z or pcolor-red)	1	iPad	50	2	NULL	

- False=0, Unknown=0.5, True=1
- A op B is
 - False or True when both A, B are not null
 - Unknown otherwise
- AND, OR, NOT are **min**, **max**.
- Return only tuples whose condition is True

select * from Part	pno	pname	price	psize	pcolor	
from Port	1	iPad	500	13	blue 🜔	J
$\frac{1011}{1011}$ Fait	2	Scooter	99	NULL	NULL	
where price < 100	3	Charger	NULL	NULL	red	
and (psize=2 of pcolor - red)	1	iPad	50	2	NULL	

- False=0, Unknown=0.5, True=1
- A op B is
 - False or True when both A, B are not null
 - Unknown otherwise
- AND, OR, NOT are **min**, **max**.
- Return only tuples whose condition is True

```
-- problem: (A or not(A)) ≠ true
-- does NOT return all Products
select *
from Product
where (price <= 100) or (price > 100)
```

- False=0, Unknown=0.5, True=1
- A op B is
 - False or True when both A, B are not null
 - Unknown otherwise
- AND, OR, NOT are **min**, **max**.
- Return only tuples whose condition is **True**

problem: (A or not(A)) ≠ true	returns ALL Products
does NOT return all Products	select *
select *	from Product
from Product	where (price <= 100) or (price > 100)
where (price <= 100) or (price > 100)	or isNull(price)

Likbkin's Critique Of SQL

- Libkin's slides: <u>A Case Against SQL</u>
- In class: discuss some of the main inconsistencies in SQL

More SQL: Aggregates

More SQL: Aggregates

More SQL: Aggregates

Discussion

- SQL Aggregates = simple data analytics
- Semantics:
 - 1. FROM-WHERE (nested-loop semantics)
 - 2. Group answers by GROUP BY attrs
 - 3. Apply HAVING predicates on groups
 - 4. Apply SELECT aggregates on groups
- Aggregate functions:
 - count, sum, min, max, avg
- DISTINCT same as GROUP BY

Outer joins

Retrieve all product names, categories, and stores where they were purchased. Include products that never sold

Outer joins

Retrieve all product names, categories, and stores where they were purchased. Include products that never sold

SELECT x.name, x.category, y.store
FROM Product x, Purchase y
WHERE x.name = y.prodName

Outer joins

Retrieve all product names, categories, and stores where they were purchased. Include products that never sold

SELECT	x.name,	x.category,	y.store
FROM	Product	x, Purchase	У
WHERE	x.name =	<pre>y.prodName</pre>	

Product

Purchase

Name	Category
Gizmo	gadget
Camera	Photo
OneClick	Photo

ProdName	Store
Gizmo	Wiz
Camera	Ritz
Camera	Wiz

Outer joins

Retrieve all product names, categories, and stores where they were purchased. Include products that never sold

<pre>SELECT x.name, x.category, y.store FROM Product x, Purchase y WHERE x.name = y.prodName</pre>				ore	
Purchase Output					
Category	ProdName	Store		Name	Categor

Category
gadget
Photo
Photo

Product

ProdName	Store
Gizmo	Wiz
Camera	Ritz
Camera	Wiz

Name	Category	Store
Gizmo	gadget	Wiz
Camera	Photo	Ritz
Camera	Photo	Wiz

missing

Outer joins

Retrieve all product names, categories, and stores where they were purchased. Include products that never sold

	SELECT FROM ON	<pre>x.name, x.category, y.store Product x LEFT OUTER JOIN Purchase y x.name = y.prodName</pre>								
Product			Purchase				Output			
Name	Category		ProdName	Stor	e		Name	Category	Store	
Gizmo	gadget		Gizmo	Wiz			Gizmo	gadget	Wiz	
Camera	Photo		Camera	Ritz			Camera	Photo	Ritz	
OneClick	Photo		Camera	Wiz			Camera	Photo	Wiz	
							-OneClick	Photo	NULL	
Now it's present										

Left Outer Join (Details)

from R left outer join S on C1 where C2

- 1. Compute cross product R×S
- 2. Filter on C1
- 3. Add all R records without a match
- 4. Filter on C2

Left Outer Join (Details)

select ... from R left outer join S on C1 where C2

Tmp = {}for x in R do// left outer join using C1for y in S doif C1 then Tmp = Tmp $\cup \{(x,y)\}$ for x in R doif not (x in Tmp) then Tmp = Tmp $\cup \{(x,NULL)\}$ Answer = {}// apply condition C2for (x,y) in Tmp if C2 then Answer = Answer $\cup \{(x,y)\}$ return Answer

- Outer join condition in the ON clause
- Different from the WHERE clause
- Compare:

```
SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
AND y.price < 10</pre>
```

```
SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
WHERE y.price < 10</pre>
```


- Outer join condition in the ON clause
- Different from the WHERE clause
- Compare:

```
SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
AND y.price < 10</pre>
```

```
SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
WHERE y.price < 10</pre>
```

Includes products that were never purchased with price < 10
Product(<u>name</u>, category)
Purchase(prodName, store, price)

- Outer join condition in the ON clause
- Different from the WHERE clause
- Compare:

```
SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
AND y.price < 10</pre>
```

Includes products that were never purchased with price < 10

```
SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
WHERE y.price < 10</pre>
```

73

Includes products that were never purchased, <u>then</u> checks price <10 Product(<u>name</u>, category)
Purchase(prodName, store, price)

- Outer join condition in the ON clause
- Different from the WHERE clause
- Compare:

```
SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
AND y.price < 10</pre>
```

Includes products that were never purchased with price < 10

```
SELECT x.name, y.store
FROM Product x
LEFT OUTER JOIN Purchase y
ON x.name = y.prodName
WHERE y.price < 10</pre>
```

Includes products that were never purchased, <u>then</u> checks price <10 Same as inner join!

Joins

- Inner join = includes only matching tuples (i.e. regular join)
- Left outer join = includes everything from the left
- **Right outer join** = includes everything from the right
- Full outer join = includes everything

Other use of Relational Data

• Sparse vectors, matrics

Graph databases

Sparse Matrix

$$A = \begin{bmatrix} 5 & 0 & -2 \\ 0 & 0 & -1 \\ 0 & 7 & 0 \end{bmatrix}$$

How can we represent it as a relation?

Sparse Matrix

$$A = \begin{bmatrix} 5 & 0 & -2 \\ 0 & 0 & -1 \\ 0 & 7 & 0 \end{bmatrix}$$

Row	Col	Val
1	1	5
1	3	-2
2	3	-1
3	2	7

Matrix Multiplication in SQL

 $C = A \cdot B$

Matrix Multiplication in SQL

$$C = A \cdot B$$

$$C_{ik} = \sum_{j} A_{ij} \cdot B_{jk}$$

Matrix Multiplication in SQL

$$C = A \cdot B$$
 $C_{ik} = \sum_{j} A_{ij} \cdot B_{jk}$

SELECT A.row, B.col, sum(A.val*B.val) FROM A, B WHERE A.col = B.row GROUP BY A.row, B.col;

Discussion

- Matrix multiplication = join + group-by
- Many operations can be written in SQL
- E.g. try at home: write in SQL $Tr(A \cdot B \cdot C)$ where the trace is defined as: $Tr(X) = \sum_i X_{ii}$
- Surprisingly, A + B is a bit harder...

Matrix Addition in SQL

C = A + B

Matrix Addition in SQL

C = A + B

SELECT A.row, A.col, A.val + B.val as valFROMA, BWHEREA.row = B.row and A.col = B.col

Matrix Addition in SQL

C = A + B

SELECT A.row, A.col, A.val + B.val as val FROM A, B WHERE A.row = B.row and A.col = B.col

Why is this wrong?

C = A + B

SELECT

FROM A full outer join B **ON** A.row = B.row and A.col = B.col;

C = A + B

SELECT

(CASE WHEN A.val is null THEN 0 ELSE A.val END) + (CASE WHEN B.val is null THEN 0 ELSE B.val END) as val FROM A full outer join B ON A.row = B.row and A.col = B.col;

C = A + B

SELECT (CASE WHEN A.row is null THEN B.row ELSE A.row END) as row,

(CASE WHEN A.val is null THEN 0 ELSE A.val END) + (CASE WHEN B.val is null THEN 0 ELSE B.val END) as val FROM A full outer join B ON A.row = B.row and A.col = B.col;

C = A + B

SELECT (CASE WHEN A.row is null THEN B.row ELSE A.row END) as row, (CASE WHEN A.col is null THEN B.col ELSE A.col END) as col, (CASE WHEN A.val is null THEN 0 ELSE A.val END) + (CASE WHEN B.val is null THEN 0 ELSE B.val END) as val FROM A full outer join B ON A.row = B.row and A.col = B.col;

Solution 2: Group By

C = A + B

SELECT m.row, m.col, sum(m.val) FROM (SELECT * FROM A UNION ALL SELECT * FROM B) as m GROUP BY m.row, m.col;

- Graph databases systems are a niche category of products specialized for processing large graphs
- E.g. Neo4J, TigerGraph
- A graph is a special case of a relation, and can be processed using SQL

A graph:

Find nodes at distance 2: $\{(x, z) | \exists y Edge(x, y) \land Edge(y, z)\}$

Find nodes at distance 2: $\{(x, z) | \exists y Edge(x, y) \land Edge(y, z)\}$

SELECT DISTINCT e1.src as X, e2.dst as Z FROM Edge e1, Edge e2 WHERE e1.dst = e2.src;

 The Relational Data Model is <u>founded</u> on first order logic ("What goes around")

 SQL was designed as a more friendly language than FO

 Complex SQL queries are sometimes best understood in the framework of FO

Atomic predicates:

- Likes(x,y)
- Product(x,y,z)
 pid, name, color
- Product(x,y,'red')

Connectives: \land , \lor , \neg , \Rightarrow , \exists , \forall

Atomic predicates:

- Likes(x,y)
- Product(x,y,z)
 pid, name, color
- Product(x,y,'red')

Connectives: \land , \lor , \neg , \Rightarrow , \exists , \forall

- ∃x P(x):
 there exists x s.t. P(x) is true
- ∀x P(x):
 for every x, P(x) is true

Atomic predicates:

- Likes(x,y)
- Product(x,y,z)
 pid, name, color
- Product(x,y,'red')

Connectives: \land , \lor , \neg , \Rightarrow , \exists , \forall

- ∃x P(x):
 there exists x s.t. P(x) is true
- ∀x P(x):
 for every x, P(x) is true

What do these sentences say?

∃x(Likes('Alice',x)∧Likes('Bob',x))

Atomic predicates:

- Likes(x,y)
- Product(x,y,z)
 pid, name, color
- Product(x,y,'red')

Connectives: \land , \lor , \neg , \Rightarrow , \exists , \forall

- ∃x P(x):
 there exists x s.t. P(x) is true
- ∀x P(x):
 for every x, P(x) is true

What do these sentences say?

 $\exists x(Likes(Alice',x) \land Likes(Bob',x))$ There is somebody liked by both Alice and Bob

Atomic predicates:

- Likes(x,y)
- Product(x,y,z)
 pid, name, color
- Product(x,y,'red')

Connectives: \land , \lor , \neg , \Rightarrow , \exists , \forall

- ∃x P(x):
 there exists x s.t. P(x) is true
- ∀x P(x):
 for every x, P(x) is true

What do these sentences say?

 $\forall x (Likes('Alice',x) \Rightarrow Likes('Bob',x))$

Atomic predicates:

- Likes(x,y)
- Product(x,y,z)
 pid, name, color
- Product(x,y,'red')

Connectives: \land , \lor , \neg , \Rightarrow , \exists , \forall

- ∃x P(x):
 there exists x s.t. P(x) is true
- ∀x P(x):
 for every x, P(x) is true

What do these sentences say?

Atomic predicates:

- Likes(x,y)
- Product(x,y,z)
 pid, name, color
- Product(x,y,'red')

Connectives: \land , \lor , \neg , \Rightarrow , \exists , \forall

- ∃x P(x):
 there exists x s.t. P(x) is true
- ∀x P(x):
 for every x, P(x) is true

What do these sentences say?

 $\forall x (\exists y \text{ Likes}(x,y) \Rightarrow \text{Likes}(x, \text{`Alice'}))$

Atomic predicates:

- Likes(x,y)
- Product(x,y,z)
 pid, name, color
- Product(x,y,'red')

Connectives: \land , \lor , \neg , \Rightarrow , \exists , \forall

- ∃x P(x):
 there exists x s.t. P(x) is true
- ∀x P(x):
 for every x, P(x) is true

What do these sentences say?

Find nodes at distance 2: $\{(x, z) | \exists y Edge(x, y) \land Edge(y, z)\}$

SELECT DISTINCT e1.src as X, e2.dst as Z FROM Edge e1, Edge e2 WHERE e1.dst = e2.src;

Other Representation

Representing nodes separately; needed for "isolated nodes" e.g. Frank

Node		
src		
Alice		
Bob		
Chris		
David		
Eve		
Frank		

Edge

src	dst	
Alice	Bob	
Bob	Alice	
Bob	Chris	
Alice	David	
Chris	David	
David	Eve	

Other Representation

Adding edge labels Adding node labels...

Node		
src		
Alice		
Bob		
Chris		
David		
Eve		
Frank		

Edge

src	dst	weight
Alice	Bob	3
Bob	Alice	1
Bob	Chris	2
Alice	David	9
Chris	David	5
David	Eve	1

Limitations of SQL

- No recursion! Examples requiring recursion:
 - Gradient descent
 - Connected components in a graph
- Advanced systems <u>do</u> support recursion
- Practical solution: use some external driver, e.g. pyton
Tom Mitchell: Machine Learning

Data

X1	X2	X3	Y
3	9	3	0
3	5	7	1
6	2	2	0
3	6	3	0
5	5	9	1
9	3	3	1

Tom Mitchell: Machine Learning

Data

X1	X2	X3	Y
3	9	3	0
3	5	7	1
6	2	2	0
3	6	3	0
5	5	9	1
9	3	3	1

ing

$$P(Y = 0|X) = \frac{1}{1 + exp(w_0 + \sum_{i=1,3} w_i X_i)}$$

$$P(Y = 1|X) = \frac{exp(w_0 + \sum_{i=1,3} w_i X_i)}{1 + exp(w_0 + \sum_{i=1,3} w_i X_i)}$$

$$L(w_0, ..., w_3) = \sum_{\ell=1, N} (Y^{\ell} \cdot \ln P(Y = 1 | X^{\ell}) + (1 - Y^{\ell}) \cdot \ln P(Y = 0 | X^{\ell}))$$

Tom Mitchell: Machine Learning

Gradient Descent:

Data

X1	X2	X3	Y
3	9	3	0
3	5	7	1
6	2	2	0
3	6	3	0
5	5	9	1
9	3	3	1

$$w_i \leftarrow w_i + \eta \sum_{\ell=1,N} X_i^{\ell} (Y^{\ell} - P(Y = 1 | X^{\ell}))$$

Tom Mitchell: Machine Learning

Gradient Descent:

Data

X1	X2	X3	Y	$w_i \leftarrow w_i + n \sum X_i^{\ell} (Y^{\ell} - P(Y = 1 X^{\ell}))$
3	9	3	0	$\int \mathcal{U}_{\ell-1,N} \mathcal$
3	5	7	1	$\iota - \iota, \iota v$
6	2	2	CF	REATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
3	6	3	IN	SERT INTO W VALUES (1, 0, 0, 0, 0);
5	5	9	1	
9	3	3	1	
	•••			

Tom Mitchell: Machine Learning

Gradient Descent:

Data

X1	X2	X3	Y	$w_i \leftarrow w_i + n \sum X_i^{\ell} (Y^{\ell} - P(Y = 1 X^{\ell}))$
3	9	3	0	$\int \mathcal{U}_{\ell-1,N} \mathcal$
3	5	7	1	$\tau - 1, Iv$
6	2	2	CF	REATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
3	6	3	IN	SERT INTO W VALUES (1, 0, 0, 0, 0);

FROM data d, W WHERE W.k=1

Tom Mitchell: Machine Learning

Gradient Descent:

Data

X1	X2	X3	Y	$w_i \leftarrow w_i + n \sum X_i^{\ell} (Y^{\ell} - P(Y = 1 X^{\ell}))$	
3	9	3	0	$\sum_{\ell=1}^{N} \sum_{N} \sum_{i=1}^{N} \sum_{i=1}^{N$	
3	5	7	1	$\iota - \iota, Iv$	
6	2	2	CF	REATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);	
3	6	3		ERT INTO W VALUES (1, 0, 0, 0, 0);	

SELECT

W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0,

FROM data d, W WHERE W.k=1

Tom Mitchell: Machine Learning

Gradient Descent:

Data

X1	X2	X3	Y	$W_i \leftarrow W_i + n \sum X_i^{\ell} (Y^{\ell} - P(Y = 1 X^{\ell}))$		
3	9	3	0	$\int_{\rho=1}^{\infty} n \left(1 - 1 \right) \int_{\rho=1}^{\infty} n \left($		
3	5	7	1	t - 1, IV		
6	2	2	CF	REATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real)		
3	6	3	IN	SERT INTO W VALUES (1, 0, 0, 0, 0);		

SELECT

W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0, W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1,

FROM data d, W WHERE W.k=1

Tom Mitchell: Machine Learning

Gradient Descent:

Data

X1	X2	X3	Y	$w_i \leftarrow w_i + n \sum X_i^{\ell} (Y^{\ell} - P(Y = 1 X^{\ell}))$	
3	9	3	0	$\int_{\rho=1}^{N} \prod_{N=1}^{N} \prod_{N$	
3	5	7	1	$\iota - \iota, Iv$	
6	2	2	CF	REATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);	
3	6	3	IN	ERT INTO W VALUES (1, 0, 0, 0, 0);	

SELECT

W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0, W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1, W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2, W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3 FROM data d, W WHERE W.k=1

Tom Mitchell: Machine Learning

Gradient Descent:

Data

X1	X2	X3	Y	$W_i \leftarrow W_i + n \sum X_i^{\ell} (Y^{\ell} - P(Y = 1 X^{\ell}))$
3	9	3	0	$\int_{\rho=1}^{\infty} n \left(1 - 1 \right) \int_{\rho=1}^{\infty} n \left($
3	5	7	1	$\tau - 1, N$
6	2	2	CF	REATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
3	6	3		SERT INTO W VALUES (1, 0, 0, 0, 0);

SELECT

W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0, W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1, W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2, W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3 FROM data d, W WHERE W.k=1 GROUP BY W.k. W.w0, W.w1, W.w2, W.w3;

Tom Mitchell: Machine Learning

Gradient Descent:

Data

X1	X2	X3	Y	$w_i \leftarrow w_i + n \sum X_i^{\ell} (Y^{\ell} - P(Y = 1 X^{\ell}))$
3	9	3	0	$\sum_{\ell=1}^{N} \sum_{N} \sum_{i=1}^{N} \sum_{i=1}^{N$
3	5	7	1	$\iota = 1, IV$
6	2	2	CF	REATE TABLE W (k int primary key, w0 real, w1 real, w2 real, w3 real);
3	6	3	IN	SERT INTO W VALUES (1, 0, 0, 0, 0);
		_		

SELECT

W.w0+0.01*sum(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3))) as w0, W.w1+0.01*sum(d.X1*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w1, W.w2+0.01*sum(d.X2*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w2, W.w3+0.01*sum(d.X3*(d.Y - 1 + 1/(1+exp(W.w0+W.w1*d.X1+W.w2*d.X2+W.w3*d.X3)))) as w3 FROM data d, W WHERE W.k=1 GROUP BY W.k, W.w0, W.w1, W.w2, W.w3;
Update W, then repeat this e.g. using python

Discussion

SQL in Data Science:

- Used primarily to prepare the data
 - ETL Extract/Transform/Load
 - Join tables, process columns, filter rows
- Can also be used in training
 - Much less convenient than ML packages
 - But can be the best option if data is huge

More To Know About SQL

- create table
- help
- create view
- create index
- explain
- insert into, delete from, update set

Create Table

Create Table

Hints for HW1:

- Constraints are *good*:
 - they keep the data clean
 - But they make uploads SOOO slow
- Hint: use this order
 - Create table
 - Upload data (COPY...)
 - ALTER TALBE ... (add constraints)
 - If error, use SQL to debug!

Postgres

\help

\help ALTER TABLE

• \?

Create View

 Need to write same SQL expression repeatedly? Create a view, then use it:

```
create view SeattleSupplierRed as
select distinct x.*
from Supplier x, Supply y, Part z
where x.sno=y.sno and y.pno=z.pno
and x.scity='Seatte'
and z.pcolor='red'
```

select y.pno, y.price from SeattleSupplierRed x Supply y where x.sno=y.sno

View Variants

- CREATE TEMPORARY VIEW name...
- Not stored in the catalog

- WITH name AS (SELECT...) SELECT ... FROM ... WHERE...
- Used only within one query

Create Index

- Index = auxiliary file that helps speedup some queries
- create index

create index Supplier_scity on Supplier(scity);

Create Index

- Index = auxiliary file that helps speedup some queries
- create index

Create Index

- Index = auxiliary file that helps speedup some queries
- create index

Create Index

 Index = auxiliary file that helps speedup some queries
 select * from Supplier

where scity='Seattle'

Big speedup from Supplier city

create index

Create Index

- Index = auxiliary file that helps speedup some queries
 select * from Supplier
- create index

select * from Supplier where scity='Seattle' Big speedup from Supplier_city

select *
from Supplier x, Supply y
where x.sno = y.sno
 and sname = 'iPad'

Create Index

- Index = auxiliary file that helps speedup some queries
 select * from Supplier
- create index

Create Index

- Index = auxiliary file that helps speedup some queries
 select * from Supplier
- create index

create index Supplier_scity on Supplier(scity); create index Supplier_sstate_sname on Supplier(sstate,sname); create index Supply_sno on Supply(sno); cluster Supply using Supply_sno;

Create Index

- Index = auxiliary file that helps speedup some queries
 select * from Supplier
- create index

Create Index

Hints for HW1

- Indexes are <u>great</u> for speeding up queries
- But they make uploads SOOO slow!
- Hint: upload first, create index later

Explain

Postgres:

- explain select * from Supplier where scity='Seattle'
- Checkout: \h explain
- Other systems have similar commands: use it frequently to understand the query plan

Update Commands

- insert into Product values (33,'iPad',...);
- insert into NewTable (select * from...);
- delete from Product where price > 100;

Update Commands

- insert into Product values (33,'iPad',...);
- insert into NewTable (select * from...);
- delete from Product where price > 100;
- delete from Product; -- don't do this!

Update Commands

- insert into Product values (33,'iPad',...);
- insert into NewTable (select * from...);
- delete from Product where price > 100;
- delete from Product; -- don't do this!
- update Product
 set price = 99
 where price > 100

SQL – Summary

- Very complex: >1000 pages,
 - No vendor supports full standard; (in practice, people use postgres as *de facto* standard)
 - Much more than DML
- It is a *declarative* language:
 - we say what we want
 - we don't say how to get it
- Relational algebra says how to get it

Relational Algebra

- Queries specified in an operational manner
 - A query gives a step-by-step procedure
- Relational operators
 - Take one or two relation instances as input
 - Return one relation instance as result
 - Easy to compose into relational algebra expressions

Five Basic Relational Operators

- Selection: $\sigma_{\text{condition}}(S)$
 - Condition is Boolean combination (∧,∨)
 of atomic predicates (<, <=, =, ≠, >=, >)
- Projection: $\pi_{\text{list-of-attributes}}(S)$
- Union (∪)
- Set difference (-),
- Cross-product/cartesian product (×), Join: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$

Other operators: anti-semijoin, renaming

Extended Operators

- Duplicate elimination (δ)
 - Since commercial DBMSs operate on multisets not sets
- Group-by/aggregate (γ)
 - Min, max, sum, average, count
 - Partitions tuples of a relation into "groups"
 - Aggregates can then be applied to groups
- Sort operator (τ)

Logical Query Plans

SELECT DISTINCT x.sname, x.scity FROM Supplier x, Supply y, Part z WHERE x.sno=y.sno and y.pno=z.pno and z.psize > 10;
Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Query Optimizer

- Rewrite one relational algebra expression to a better one
- Very brief review now, more details next lectures

Product(<u>pid</u>, name, price) Purchase(<u>pid</u>, <u>cid</u>, store) Customer(<u>cid</u>, name, city)

Optimization

Product(<u>pid</u>, name, price) Purchase(<u>pid</u>, <u>cid</u>, store) Customer(<u>cid</u>, name, city)

Optimization

Product(<u>pid</u>, name, price) Purchase(<u>pid</u>, <u>cid</u>, store) Customer(<u>cid</u>, name, city)

Optimization

Benefits of Relational Model

- Physical data independence
 - Can change how data is organized on disk without affecting applications
- Logical data independence
 - Can change the logical schema without affecting applications (not 100%... consider updates)

Physical Data Independence

Supplier

sno	sname	scity	sstate
1	s1	city 1	WA
2	s2	city 1	WA
3	s3	city 2	MA
4	s4	city 2	MA

SELECT DISTINCT sname FROM Supplier WHERE scity = 'Seattle'

How is the data stored on disk? (e.g. row-wise, column-wise)

The SQL query works the same, regardless of the answers to these questions

Is there an index on scity? (e.g. no index, unclustered index, clustered index) ¹⁵¹

Lecture on Wednesday

• Data model – what's so hard about it?

• Review "What goes around...