
Database Management Systems
CSEP 544

Lecture 9:
Transactions and Recovery

1CSEP 544 - Fall 2017

Announcements
• HW8 released

• OH tomorrow
– Always check the class schedule page for up to

date info

• Last lecture today

• Finals on 12/9-10
– Covers everything (lectures, HWs, readings)

2

Homework 8
• A “flight reservation” transactional application

in Java based on HW3 and Azure
• 2 weeks assignment

3

• Use your Azure credits to run and test

Homework 8

4

• Throughput contest (completely optional):
– We will generate a random number of transactions

and measure the time taken to execute them
– Fastest implementation wins

• 1st place: 2% extra credit on HW
• 2nd place: 1% extra credit on HW
• 3rd place: 0.5% extra credit on HW

– You can create any extra tables, indexes, classes,
etc in your implementation

– Need to pass all grading test cases to be eligible
for prizes

5

Class overview
• Data models

– Relational: SQL, RA, and Datalog
– NoSQL: SQL++

• RDBMS internals
– Query processing and optimization
– Physical design

• Parallel query processing
– Spark and Hadoop

• Conceptual design
– E/R diagrams
– Schema normalization

• Transactions
– Locking and schedules
– Writing DB applications

CSEP 544 - Fall 2017

Data models

Using
DBMS

Query
Processing

6

Class Recap
• Data models

– Elements of a data model
– Relational data model

• SQL, RA, and Datalog

– Non-relational data model
• SQL++

• RDBMS internals
– Relational algebra and basics of query processing
– Algorithms for relational operators
– Physical design and indexes
– Query optimization

CSEP 544 - Fall 2017

7

Class Recap
• Parallel query processing

– Different algorithms for relational operators
– MapReduce and Spark programming models

• Conceptual design
– E/R diagrams
– Normal forms and schema normalization

• Transactions and recovery
– Schedules and locking-based scheduler
– Recovery from failures

CSEP 544 - Fall 2017

Data Management Pipeline

Conceptual Schema

Physical Schema

Schema
designer

Database
administrator

Application
programmer

product

name

price

8

Transactions
• We use database transactions everyday

– Bank $$$ transfers
– Online shopping
– Signing up for classes

• For this class, a transaction is a series of DB
queries
– Read / Write / Update / Delete / Insert
– Unit of work issued by a user that is independent

from others
CSEP 544 - Fall 2017 9

What’s the big deal?

CSEP 544 - Fall 2017 10

Challenges

• Want to execute many apps concurrently
– All these apps read and write data to the same DB

• Simple solution: only serve one app at a time
– What’s the problem?

• Want: multiple operations to be executed
atomically over the same DBMS

CSEP 544 - Fall 2017 11

What can go wrong?
• Manager: balance budgets among projects

– Remove $10k from project A
– Add $7k to project B
– Add $3k to project C

• CEO: check company’s total balance
– SELECT SUM(money) FROM budget;

• This is called a dirty / inconsistent read
aka a WRITE-READ conflict

CSEP 544 - Fall 2017 12

What can go wrong?
• App 1:

SELECT inventory FROM products WHERE pid = 1

• App 2:
UPDATE products SET inventory = 0 WHERE pid = 1

• App 1:
SELECT inventory * price FROM products
WHERE pid = 1

• This is known as an unrepeatable read
aka READ-WRITE conflict

CSEP 544 - Fall 2017 13

What can go wrong?
Account 1 = $100
Account 2 = $100

Total = $200
• App 1:

– Set Account 1 = $200
– Set Account 2 = $0

• App 2:
– Set Account 2 = $200
– Set Account 1 = $0

• At the end:
– Total = $200

• App 1: Set Account 1 = $200

• App 2: Set Account 2 = $200

• App 1: Set Account 2 = $0

• App 2: Set Account 1 = $0

• At the end:
– Total = $0

This is called the lost update aka WRITE-WRITE conflict
CSEP 544 - Fall 2017 14

What can go wrong?
• Buying tickets to the next Bieber / Swift concert:

– Fill up form with your mailing address
– Put in debit card number
– Click submit
– Screen shows money deducted from your account
– [Your browser crashes]

CSEP 544 - Fall 2017 15

Lesson:
Changes to the database
should be ALL or NOTHING

Transactions

• Collection of statements that are executed
atomically (logically speaking)

16

BEGIN TRANSACTION
[SQL statements]

COMMIT or
ROLLBACK (=ABORT)

[single SQL statement]

If BEGIN… missing,
then TXN consists

of a single instruction
CSEP 544 - Fall 2017

17

Know your chemistry
transactions: ACID

• Atomic
– State shows either all the effects of txn, or none of them

• Consistent
– Txn moves from a DBMS state where integrity holds, to

another where integrity holds
• remember integrity constraints?

• Isolated
– Effect of txns is the same as txns running one after

another (i.e., looks like batch mode)
• Durable

– Once a txn has committed, its effects remain in the
database

CSEP 544 - Fall 2017

Atomic
• Definition: A transaction is ATOMIC if all

its updates must happen or not at all.
• Example: move $100 from A to B

– UPDATE accounts SET bal = bal – 100
WHERE acct = A;

– UPDATE accounts SET bal = bal + 100
WHERE acct = B;

– BEGIN TRANSACTION;
UPDATE accounts SET bal = bal – 100
WHERE acct = A;
UPDATE accounts SET bal = bal + 100
WHERE acct = B;
COMMIT; 18CSEP 544 - Fall 2017

Isolated

• Definition An execution ensures that txns are
isolated, if the effect of each txn is as if it
were the only txn running on the system.

CSEP 544 - Fall 2017 19

Consistent
• Recall: integrity constraints govern how values in

tables are related to each other
– Can be enforced by the DBMS, or ensured by the app

• How consistency is achieved by the app:
– App programmer ensures that txns only takes a

consistent DB state to another consistent state
– DB makes sure that txns are executed atomically

• Can defer checking the validity of constraints
until the end of a transaction

CSEP 544 - Fall 2017 20

Durable

• A transaction is durable if its effects continue
to exist after the transaction and even after
the program has terminated

• How?
– By writing to disk!
– (more later)

CSEP 544 - Fall 2017 21

Rollback transactions

• If the app gets to a state where it cannot
complete the transaction successfully,
execute ROLLBACK

• The DB returns to the state prior to the
transaction

• What are examples of such program states?

CSEP 544 - Fall 2017 22

23

ACID
• Atomic
• Consistent
• Isolated
• Durable

• Enjoy this in HW8!

• Again: by default each statement is its own txn
– Unless auto-commit is off then each statement starts a

new txn

CSEP 544 - Fall 2017

Transaction Schedules

CSEP 544 - Fall 2017 24

Schedules

CSEP 544 - Fall 2017 25

A schedule is a sequence
of interleaved actions
from all transactions

Serial Schedule

• A serial schedule is one in which transactions are
executed one after the other, in some sequential
order

• Fact: nothing can go wrong if the system executes
transactions serially
– (up to what we have learned so far)
– But DBMS don’t do that because we want better overall

system performance
26CSEP 544 - Fall 2017

Example

T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

CSEP 544 - Fall 2017 27

A and B are elements
in the database

t and s are variables
in txn source code

Example of a (Serial) Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

CSEP 544 - Fall 2017 28

Ti
m

e

Another Serial Schedule
T1 T2

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

CSEP 544 - Fall 2017 29

Ti
m

e

Serializable Schedule

CSEP 544 - Fall 2017 30

A schedule is serializable if it is
equivalent to a serial schedule

A Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is a serializable schedule.
This is NOT a serial schedule

CSEP 544 - Fall 2017 31

A Non-Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

CSEP 544 - Fall 2017 32

How do We Know if a Schedule
is Serializable?

CSEP 544 - Fall 2017 33

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Notation:

Key Idea: Focus on conflicting operations

Conflicts

• Write-Read – WR
• Read-Write – RW
• Write-Write – WW
• Read-Read?

CSEP 544 - Fall 2017 34

Conflict Serializability
Conflicts: (i.e., swapping will change program behavior)

ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)
CSEP 544 - Fall 2017 35

Conflict Serializability

• A schedule is conflict serializable if it can be
transformed into a serial schedule by a series of
swappings of adjacent non-conflicting actions

• Every conflict-serializable schedule is serializable

CSEP 544 - Fall 2017 36

Conflict Serializability

CSEP 544 - Fall 2017 37

Example:
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSEP 544 - Fall 2017 38

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSEP 544 - Fall 2017 39

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSEP 544 - Fall 2017 40

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

Conflict Serializability

CSEP 544 - Fall 2017 41

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

….

Testing for Conflict-Serializability

Precedence graph:
• A node for each transaction Ti,
• An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in Tj

• The schedule is conflict-serializable iff the
precedence graph is acyclic

CSEP 544 - Fall 2017 42

Example 1

CSEP 544 - Fall 2017 43

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

Example 1

CSEP 544 - Fall 2017 44

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

AB

Example 2

CSEP 544 - Fall 2017 45

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

Example 2

CSEP 544 - Fall 2017 46

1 2 3

This schedule is NOT conflict-serializable

A
B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

Course Eval
http://bit.do/544eval

CSEP 544 - Fall 2017 47

Implementing Transactions

CSEP 544 - Fall 2017 48

Scheduler

• Scheduler = the module that schedules the
transaction’s actions, ensuring serializability

• Also called Concurrency Control Manager

• We discuss next how a scheduler may be
implemented

CSEP 544 - Fall 2017 49

Implementing a Scheduler

Major differences between database vendors
• Locking Scheduler

– Aka “pessimistic concurrency control”
– SQLite, SQL Server, DB2

• Multiversion Concurrency Control (MVCC)
– Aka “optimistic concurrency control”
– Postgres, Oracle

We discuss only locking schedulers in this class
50CSEP 544 - Fall 2017

Locking Scheduler

Simple idea:
• Each element has a unique lock
• Each transaction must first acquire the lock

before reading/writing that element
• If the lock is taken by another transaction,

then wait
• The transaction must release the lock(s)

CSEP 544 - Fall 2017 51By using locks scheduler ensures conflict-serializability

What Data Elements are Locked?

Major differences between vendors:

• Lock on the entire database
– SQLite

• Lock on individual records
– SQL Server, DB2, etc

CSEP 544 - Fall 2017 52

More Notations

Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A

53CSEP 544 - Fall 2017

A Non-Serializable Schedule
T1 T2
READ(A)
A := A+100
WRITE(A)

READ(A)
A := A*2
WRITE(A)
READ(B)
B := B*2
WRITE(B)

READ(B)
B := B+100
WRITE(B)

54CSEP 544 - Fall 2017

A Serializable Schedule
T1 T2
READ(A, t)
A := A+100
WRITE(A)

READ(A)
A := A*2
WRITE(A)

READ(B)
B := B+100
WRITE(B)

READ(B)
B := B*2
WRITE(B)

CSEP 544 - Fall 2017 55

Enforcing Conflict-Serializability
with Locks

T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A); L1(B)

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(B);

56CSEP 544 - Fall 2017Scheduler has ensured a conflict-serializable schedule

But…
T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A);

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); READ(B)
B := B*2
WRITE(B); U2(B);

L1(B); READ(B)
B := B+100
WRITE(B); U1(B);

57
Locks did not enforce conflict-serializability !!! What’s wrong ?

Two Phase Locking (2PL)

CSEP 544 - Fall 2017 58

In every transaction, all lock requests
must precede all unlock requests

The 2PL rule:

Example: 2PL transactions
T1 T2
L1(A); L1(B); READ(A)
A := A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); Now it is conflict-serializable

59CSEP 544 - Fall 2017

A New Problem:
Non-recoverable Schedule

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback
60CSEP 544 - Fall 2017

Strict 2PL

CSEP 544 - Fall 2017 61

All locks are held until the transaction
commits or aborts.

The Strict 2PL rule:

With strict 2PL, we will get schedules that
are both conflict-serializable and recoverable

Strict 2PL
T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A);

L2(A); BLOCKED…
L1(B); READ(B)
B :=B+100
WRITE(B);
Rollback

U1(A);U1(B); …GRANTED; READ(A)
A := A*2
WRITE(A);
L2(B); READ(B)
B := B*2
WRITE(B);
Commit
U2(A); U2(B); 62

Another problem: Deadlocks
• T1 waits for a lock held by T2;
• T2 waits for a lock held by T3;
• T3 waits for
• . . .
• Tn waits for a lock held by T1

63CSEP 544 - Fall 2017

SQL Lite: there is only one exclusive lock; thus, never deadlocks

SQL Server: checks periodically for deadlocks and aborts one TXN

Lock Modes

• S = shared lock (for READ)
• X = exclusive lock (for WRITE)

64CSEP 544 - Fall 2017

None S X
None

S
X

Lock compatibility matrix:

Lock Modes

• S = shared lock (for READ)
• X = exclusive lock (for WRITE)

65CSEP 544 - Fall 2017

None S X
None ✔ ✔ ✔

S ✔ ✔ ✖

X ✔ ✖ ✖

Lock compatibility matrix:

66

Lock Granularity

• Fine granularity locking (e.g., tuples)
– High concurrency
– High overhead in managing locks
– E.g., SQL Server

• Coarse grain locking (e.g., tables, entire database)
– Many false conflicts
– Less overhead in managing locks
– E.g., SQL Lite

• Solution: lock escalation changes granularity as needed

CSEP 544 - Fall 2017

Lock Performance

CSEP 544 - Fall 2017 67

Th
ro

ug
hp

ut
 (T

PS
)

Active Transactions

thrashing

Why ?

TPS =
Transactions
per second

To avoid, use
admission control

68

Phantom Problem

• So far we have assumed the database to
be a static collection of elements (=tuples)

• If tuples are inserted/deleted then the
phantom problem appears

CSEP 544 - Fall 2017

Phantom Problem

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

CSEP 544 - Fall 2017 69

Phantom Problem

70

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

CSEP 544 - Fall 2017

Suppose there are two blue products, A1, A2:

W2(A3);R1(A1);R1(A2);R1(A1);R1(A2);R1(A3)

Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

72

Phantom Problem

• A “phantom” is a tuple that is
invisible during part of a transaction execution but
not invisible during the entire execution

• In our example:
– T1: reads list of products
– T2: inserts a new product
– T1: re-reads: a new product appears !

CSEP 544 - Fall 2017

Dealing With Phantoms

• Lock the entire table
• Lock the index entry for ‘blue’

– If index is available
• Or use predicate locks

– A lock on an arbitrary predicate

Dealing with phantoms is expensive !
CSEP 544 - Fall 2017 73

74

Isolation Levels in SQL

1. “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

ACID

CSEP 544 - Fall 2017

1. Isolation Level: Dirty Reads

• “Long duration” WRITE locks
– Strict 2PL

• No READ locks
– Read-only transactions are never delayed

75

Possible problems: dirty and inconsistent reads

CSEP 544 - Fall 2017

2. Isolation Level: Read Committed

• “Long duration” WRITE locks
– Strict 2PL

• “Short duration” READ locks
– Only acquire lock while reading (not 2PL)

76

Unrepeatable reads:
When reading same element twice,
may get two different values

CSEP 544 - Fall 2017

3. Isolation Level: Repeatable
Read

• “Long duration” WRITE locks
– Strict 2PL

• “Long duration” READ locks
– Strict 2PL

77

This is not serializable yet !!!

Why ?

CSEP 544 - Fall 2017

4. Isolation Level Serializable

• “Long duration” WRITE locks
– Strict 2PL

• “Long duration” READ locks
– Strict 2PL

• Predicate locking
– To deal with phantoms

78CSEP 544 - Fall 2017

Beware!
In commercial DBMSs:
• Default level is often NOT serializable
• Default level differs between DBMSs
• Some engines support subset of levels!
• Serializable may not be exactly ACID

– Locking ensures isolation, not atomicity
• Also, some DBMSs do NOT use locking and

different isolation levels can lead to different pbs
• Bottom line: Read the doc for your DBMS!

CSEP 544 - Fall 2017 79

Recovery

CSEP 544 - Fall 2017 80

81

Log-based Recovery

Basics (based on textbook Ch. 17.2-3)
• Undo logging
• Redo logging

CSEP 544 - Fall 2017

82

Transaction Abstraction

• Database is composed of elements.

• 1 element can be either:
– 1 page = physical logging
– 1 record = logical logging

CSEP 544 - Fall 2017

83

Primitive Operations of
Transactions

• READ(X,t)
– copy element X to transaction local variable t

• WRITE(X,t)
– copy transaction local variable t to element X

• INPUT(X)
– read element X to memory buffer

• OUTPUT(X)
– write element X to disk

CSEP 544 - Fall 2017

84

Running Example

Initially, A=B=8.

Atomicity requires that either
(1) T commits and A=B=16, or
(2) T does not commit and A=B=8.

CSEP 544 - Fall 2017

BEGIN TRANSACTION
READ(A,t);
t := t*2;
WRITE(A,t);
READ(B,t);
t := t*2;
WRITE(B,t)
COMMIT;

Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

Main memory DiskTransaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

Is this bad ?

Crash !

Is this bad ?

Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

Yes it’s bad: A=16, B=8….

Crash !

Is this bad ?

Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT
Crash !

Is this bad ?

Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

Yes it’s bad: A=B=16, but not committed

Crash !

Is this bad ?

Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

Crash !

Is this bad ?

Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

No: that’s OK

Crash !

Typically, OUTPUT is after COMMIT (why?)

Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Typically, OUTPUT is after COMMIT (why?)

Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Crash !

Atomic Transactions

• FORCE or NO-FORCE
– Should all updates of a transaction be forced to

disk before the transaction commits?
• STEAL or NO-STEAL

– Can an update made by an uncommitted
transaction overwrite the most recent committed
value of a data item on disk?

CSEP 544 - Fall 2017 94

Force/No-steal

• FORCE: Pages of committed
transactions must be forced to disk
before commit

• NO-STEAL: Pages of uncommitted
transactions cannot be written to disk

CSEP 544 - Fall 2017 95

Easy to implement (how?) and ensures atomicity

No-Force/Steal

• NO-FORCE: Pages of committed
transactions need not be written to disk

• STEAL: Pages of uncommitted
transactions may be written to disk

CSEP 544 - Fall 2017 96

In either case, Atomicity is violated; need WAL

97

Write-Ahead Log
The Log: append-only file containing log
records
• Records every single action of every TXN
• Force log entry to disk
• After a system crash, use log to recover
Three types: UNDO, REDO, UNDO-REDO

CSEP 544 - Fall 2017

UNDO Log

CSEP 544 - Fall 2017 98

FORCE and STEAL

99

Undo Logging
Log records
• <START T>

– transaction T has begun
• <COMMIT T>

– T has committed
• <ABORT T>

– T has aborted
• <T,X,v>

– T has updated element X, and its old value was v

CSEP 544 - Fall 2017

100

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

101
WHAT DO WE DO ?

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !

102
WHAT DO WE DO ?

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

We UNDO by setting B=8 and A=8

Crash !

103

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

What do we do now ? Crash !

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

What do we do now ? Crash !Nothing: log contains COMMIT

105

Recovery with Undo Log
…
…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question1: Which updates
are undone ?

Question 2:
How far back
do we need to
read in the log ?

Question 3:
What happens if there
is a second crash,
during recovery ?

Crash !

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

When must
we force pages
to disk ?

107

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

RULES: log entry before OUTPUT before COMMIT

FORCE

108

Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be
written to disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must
be written to disk before <COMMIT T>

• Hence: OUTPUTs are done early,
before the transaction commits

CSEP 544 - Fall 2017

FORCE

REDO Log

CSEP 544 - Fall 2017 109

NO-FORCE and NO-STEAL

110

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Is this bad ?

Crash !

111

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Is this bad ? Yes, it’s bad: A=16, B=8

Crash !

112

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Is this bad ?

Crash !

113

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Is this bad ?

Crash !

Yes, it’s bad: lost update

114

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Is this bad ?

Crash !

115

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Is this bad ? No: that’s OK.

Crash !

116

Redo Logging

One minor change to the undo log:

• <T,X,v>= T has updated element X, and
its new value is v

CSEP 544 - Fall 2017

117

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

118

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

How do we recover ?

Crash !

119

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

How do we recover ? We REDO by setting A=16 and B=16

Crash !

120

Recovery with Redo Log
<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>

CSEP 544 - Fall 2017

Show actions
during recovery

Crash !

121

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

When must
we force pages
to disk ?

122

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

RULE: OUTPUT after COMMIT

NO-STEAL

123

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk
before OUTPUT(X)

• Hence: OUTPUTs are done late

CSEP 544 - Fall 2017

NO-STEAL

124

Comparison Undo/Redo
• Undo logging: OUTPUT must be done

early:
– Inefficient

• Redo logging: OUTPUT must be done
late:
– Inflexible

• Compromise: ARIES (see textbook)
CSEP 544 - Fall 2017

End of CSEP 544
• “Big data” is here to stay
• Requires unique techniques / abstractions

– Logic (SQL)
– Algorithms (query processing)
– Conceptual modeling (FD’s)
– Transactions

• Technology evolving rapidly, but
• Techniques/abstracts persist over may years,

e.g. What goes around comes around

CSEP 544 - Fall 2017 125

