Database Management Systems
CSEP 544

Lecture 8:
Conceptual Design
Announcements

• HW7 released
 – Pen and paper exercise on conceptual design

• RA6 released

• OH change this Friday from 5-6pm
 – Always check the class schedule page for up to date info

\[T(a, b, c) = R(a, b) \times S(b, c) \]

\(\sigma \) select TI project.
Endgame for CSEP 544

• Last lecture next Tuesday!
 – Transactions
 – (Recovery)
 – Recap of class

• HW8 (last one) will be released next week

• Final during the weekend of 12/9-10
 – Designed to be 2-hour exam
 – You will have 5 hours to work on it
 – Sample examples posted on course webpage

• Course videos are posted on course webpage
Class overview

• Data models
 – Relational: SQL, RA, and Datalog
 – NoSQL: SQL++

• RDBMS internals
 – Query processing and optimization
 – Physical design

• Parallel query processing
 – Spark and Hadoop

• Conceptual design
 – E/R diagrams
 – Schema normalization

• Transactions
 – Locking and schedules
 – Writing DB applications
Database Design

What it is:

• Starting from scratch, design the database schema: relation, attributes, keys, foreign keys, constraints etc

Why it’s hard

• The database will be in operation for a very long time (years). Updating the schema while in production is very expensive (why?)
Product Set to Relation

Product(prod-ID, category, price)

<table>
<thead>
<tr>
<th>prod-ID</th>
<th>category</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo55</td>
<td>Camera</td>
<td>99.99</td>
</tr>
<tr>
<td>Pokemon19</td>
<td>Toy</td>
<td>29.99</td>
</tr>
</tbody>
</table>
N-N Relationships to Relations

Orders($prod-ID$,$cust-ID$,$date$)
Shipment($prod-ID$,$cust-ID$,$name$,$date$)
Shipping-Co($name$,$address$)

<table>
<thead>
<tr>
<th>prod-ID</th>
<th>cust-ID</th>
<th>name</th>
<th>date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo55</td>
<td>Joe12</td>
<td>UPS</td>
<td>4/10/2011</td>
</tr>
<tr>
<td>Gizmo55</td>
<td>Joe12</td>
<td>FEDEX</td>
<td>4/9/2011</td>
</tr>
</tbody>
</table>
Orders\(\langle\text{prod-ID}, \text{cust-ID}, \text{date1}, \text{name}, \text{date2}\rangle\)

Shipping-Co\(\langle\text{name}, \text{address}\rangle\)

Remember: no separate relations for many-one relationship
Multi-way Relationships to Relations

Product
- prod-ID
- price

Purchase
- name

Store
- address

Person
- ssn
- name

Purchase \((\text{prod-ID, ssn, name}) \)
Subclasses to Relations

Product

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>99</td>
<td>gadget</td>
</tr>
<tr>
<td>Camera</td>
<td>49</td>
<td>photo</td>
</tr>
<tr>
<td>Toy</td>
<td>39</td>
<td>gadget</td>
</tr>
</tbody>
</table>

Software Product

<table>
<thead>
<tr>
<th>Name</th>
<th>platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>unix</td>
</tr>
</tbody>
</table>

Educational Product

<table>
<thead>
<tr>
<th>Name</th>
<th>Age Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>toddler</td>
</tr>
<tr>
<td>Toy</td>
<td>retired</td>
</tr>
</tbody>
</table>

Other ways to convert are possible
Weak Entity Sets

Entity sets are weak when their key comes from other classes to which they are related.

Team(sport, number, universityName)
University(name)
Integrity Constraints
Integrity Constraints Motivation

An integrity constraint is a condition specified on a database schema that restricts the data that can be stored in an instance of the database.

- ICs help prevent entry of incorrect information
- How? DBMS enforces integrity constraints
 - Allows only legal database instances (i.e., those that satisfy all constraints) to exist
 - Ensures that all necessary checks are always performed and avoids duplicating the verification logic in each application
Constraints in E/R Diagrams

Finding constraints is part of the modeling process. Commonly used constraints:

Keys: social security number uniquely identifies a person.

Single-value constraints: a person can have only one father.

Referential integrity constraints: if you work for a company, it must exist in the database.

Other constraints: peoples’ ages are between 0 and 150.
Keys in E/R Diagrams

No formal way to specify multiple keys in E/R diagrams

Underline:
Single Value Constraints

makes

vs.

makes
Referential Integrity Constraints

Each product made by at most one company.
Some products made by no company

Each product made by exactly one company.
Q: What does this mean?
A: A Company entity cannot be connected by relationship to more than 99 Product entities.
Constraints in SQL

Constraints in SQL:

• Keys, foreign keys
• Attribute-level constraints
• Tuple-level constraints
• Global constraints: assertions

• The more complex the constraint, the harder it is to check and to enforce
Key Constraints

Product(name, category)

CREATE TABLE Product (name CHAR(30) PRIMARY KEY, category VARCHAR(20))

OR:

CREATE TABLE Product (name CHAR(30), category VARCHAR(20), PRIMARY KEY (name))
Keys with Multiple Attributes

Product(name, category, price)

```
CREATE TABLE Product (  
    name CHAR(30),  
    category VARCHAR(20),  
    price INT,  
    PRIMARY KEY (name, category))
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Category</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
<td>10</td>
</tr>
<tr>
<td>Camera</td>
<td>Photo</td>
<td>20</td>
</tr>
<tr>
<td>Gizmo</td>
<td>Photo</td>
<td>30</td>
</tr>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
<td>40</td>
</tr>
</tbody>
</table>
Other Keys

CREATE TABLE Product (
 productID CHAR(10),
 name CHAR(30),
 category VARCHAR(20),
 price INT,
 PRIMARY KEY (productID),
 UNIQUE (name, category))

There is at most one PRIMARY KEY; there can be many UNIQUE
CREATE TABLE Purchase (prodName CHAR(30) REFERENCES Product(name), date DATETIME)

prodName is a foreign key to Product(name)
name must be a key in Product

Referential integrity constraints

May write just Product if name is PK
Foreign Key Constraints

- Example with multi-attribute primary key

```
CREATE TABLE Purchase (  
  prodName CHAR(30),  
  category VARCHAR(20),  
  date DATETIME,  
  FOREIGN KEY (prodName, category)  
  REFERENCES Product(name, category)
```

- (name, category) must be a KEY in Product
What happens when data changes?

Types of updates:
- In Purchase: insert/update
- In Product: delete/update

<table>
<thead>
<tr>
<th>Product</th>
<th>Purchase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>ProdName</td>
</tr>
<tr>
<td>Gizmo</td>
<td>Gizmo</td>
</tr>
<tr>
<td>Camera</td>
<td>Camera</td>
</tr>
<tr>
<td>OneClick</td>
<td>Camera</td>
</tr>
</tbody>
</table>
What happens when data changes?

- SQL has three policies for maintaining referential integrity:
 - **NO ACTION** reject violating modifications (default)
 - **CASCADE** after delete/update do delete/update
 - **SET NULL** set foreign-key field to NULL
 - **SET DEFAULT** set foreign-key field to default value
 - need to be declared with column, e.g.,
 CREATE TABLE Product (pid INT DEFAULT 42)
Maintaining Referential Integrity

CREATE TABLE Purchase (prodName CHAR(30), category VARCHAR(20), date DATETIME,
FOREIGN KEY (prodName, category) REFERENCES Product(name, category)
ON UPDATE CASCADE
ON DELETE SET NULL)
Constraints on Attributes and Tuples

• Constraints on attributes:
 \textbf{NOT NULL} \hspace{2cm} -- obvious meaning...
 \textbf{CHECK} condition \hspace{2cm} -- any condition!

• Constraints on tuples
 \textbf{CHECK} condition
Constraints on Attributes and Tuples

CREATE TABLE R (
 A int NOT NULL,
 B int CHECK (B > 50 and B < 100),
 C varchar(20),
 D int,
 CHECK (C >= 'd' or D > 0))
Constraints on Attributes and Tuples

CREATE TABLE Product (
 productId CHAR(10),
 name CHAR(30),
 category VARCHAR(20),
 price INT CHECK (price > 0),
 PRIMARY KEY (productId),
 UNIQUE (name, category))
CREATE TABLE Purchase (
 prodName CHAR(30)
 CHECK (prodName IN
 (SELECT Product.name
 FROM Product)),
 date DATETIME NOT NULL)
Create assertion myAssert check

(not exists(
 select Product.name
 from Product, Purchase
 where Product.name = Purchase.prodName
 group by Product.name
 having count(*) > 200)
)

But most DBMSs do not implement assertions
Because it is hard to support them efficiently
Instead, they provide triggers
Design Theory
What makes good schemas?

WHY SO MANY DATABASE TABLES???

I UPDATED A SCHEMA ONCE
IT SUCKED
Relational Schema Design

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

One person may have multiple phones, but lives in only one city

Primary key is thus (SSN, PhoneNumber)

What is the problem with this schema?
Relational Schema Design

Anomalies:
- **Redundancy** = repeat data
- **Update anomalies** = what if Fred moves to “Bellevue”?
- **Deletion anomalies** = what if Joe deletes his phone number?

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>
Relation Decomposition

Break the relation into two:

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

Anomalies have gone:
- No more repeated data
- Easy to move Fred to “Bellevue” (how?)
- Easy to delete all Joe’s phone numbers (how?)
Relational Schema Design (or Logical Design)

How do we do this systematically?

- Start with some relational schema
- Find out its functional dependencies (FDs)
- Use FDs to normalize the relational schema
Functional Dependencies (FDs)

Definition

If two tuples agree on the attributes

\[A_1, A_2, \ldots, A_n \]

then they must also agree on the attributes

\[B_1, B_2, \ldots, B_m \]

Formally:

\[A_1, A_2, \ldots, A_n \rightarrow B_1, B_2, \ldots, B_m \]

\[A_1 \ldots A_n \text{ determines } B_1 \ldots B_m \]
Definition: \(A_1, \ldots, A_m \rightarrow B_1, \ldots, B_n \) holds in \(R \) if:

\[
\forall t, t' \in R, \quad (t.A_1 = t'.A_1 \land \ldots \land t.A_m = t'.A_m \rightarrow t.B_1 = t'.B_1 \land \ldots \land t.B_n = t'.B_n)
\]

if \(t, t' \) agree here then \(t, t' \) agree here.
Example

An FD holds, or does not hold on an instance:

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

EmpID \rightarrow Name, Phone, Position

Position \rightarrow Phone ✓

but not Phone \rightarrow Position
Example

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

Position → Phone
Example

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

But not Phone → Position
Example

Do all the FDs hold on this instance?

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>department</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>49</td>
</tr>
<tr>
<td>Tweaker</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>99</td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>department</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>49</td>
</tr>
<tr>
<td>Tweaker</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>49</td>
</tr>
<tr>
<td>Gizmo</td>
<td>Stationary</td>
<td>Green</td>
<td>Office-supp.</td>
<td>59</td>
</tr>
</tbody>
</table>

What about this one?
• FD **holds** or **does not hold** on an instance

• If we can be sure that *every instance of R will be one in which a given FD is true*, then we say that R **satisfies the FD**

• If we say that R satisfies an FD F, we are stating a constraint on R
Why bother with FDs?

Anomalies:
- **Redundancy** = repeat data
- **Update anomalies** = what if Fred moves to “Bellevue”?
- **Deletion anomalies** = what if Joe deletes his phone number?

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>
An Interesting Observation

If all these FDs are true:

- name \(\rightarrow \) color
- category \(\rightarrow \) department
- color, category \(\rightarrow \) price

Then this FD also holds:

- name, category \(\rightarrow \) price

If we find out from application domain that a relation satisfies some FDs, it doesn’t mean that we found all the FDs that it satisfies! There could be more FDs implied by the ones we have.
Closure of a set of Attributes

Given a set of attributes A_1, \ldots, A_n

The **closure** is the set of attributes B, notated $\{A_1, \ldots, A_n\}^+$, s.t. $A_1, \ldots, A_n \rightarrow B$

Example:

1. name \rightarrow color
2. category \rightarrow department
3. color, category \rightarrow price

Closures:

- $name^+ = \{\text{name, color}\}$
- $\{\text{name, category}\}^+ = \{\text{name, category, color, department, price}\}$
- $color^+ = \{\text{color}\}$
Closure Algorithm

\[X = \{A_1, \ldots, A_n\} \]

Repeat until \(X \) doesn’t change do:

if \(B_1, \ldots, B_n \rightarrow C \) is a FD and \(B_1, \ldots, B_n \) are all in \(X \)

then add \(C \) to \(X \).

Example:

1. name \(\rightarrow \) color
2. category \(\rightarrow \) department
3. color, category \(\rightarrow \) price

\[\{\text{name, category}\}^+ = \{\text{name, category, color, department, price}\} \]

Hence: name, category \(\rightarrow \) color, department, price
Example

In class:

\[R(A,B,C,D,E,F) \]

\[\begin{align*}
A, B & \rightarrow C \\
A, D & \rightarrow E \\
B & \rightarrow D \\
A, F & \rightarrow B
\end{align*} \]

Compute \(\{A, B\}^+ \quad X = \{A, B, \} \)

Compute \(\{A, F\}^+ \quad X = \{A, F, \} \)
Example

In class:

\[R(A,B,C,D,E,F) \]

\[
\begin{align*}
A, B & \rightarrow C \\
A, D & \rightarrow E \\
B & \rightarrow D \\
A, F & \rightarrow B
\end{align*}
\]

Compute \(\{A,B\}^+ \) \(X = \{A, B, C, D, E\} \)

Compute \(\{A, F\}^+ \) \(X = \{A, F, \} \)
Example

In class:

\[R(A,B,C,D,E,F) \]

\[
\begin{array}{c}
A, B \rightarrow C \\
A, D \rightarrow E \\
B \rightarrow D \\
A, F \rightarrow B
\end{array}
\]

Compute \(\{A,B\}^+ \) \(X = \{A, B, C, D, E\} \)

Compute \(\{A, F\}^+ \) \(X = \{A, F, B, C, D, E\} \)
Example

In class:

\[R(A,B,C,D,E,F) \]

\[\begin{align*}
A, B &\rightarrow C \\
A, D &\rightarrow E \\
B &\rightarrow D \\
A, F &\rightarrow B
\end{align*} \]

Compute \(\{A,B\}^+ \) \hspace{1cm} X = \{A, B, C, D, E\}

Compute \(\{A, F\}^+ \) \hspace{1cm} X = \{A, F, B, C, D, E\}

What is the key of R?
Practice at Home

Find all FD’s implied by:

- A, B \rightarrow C
- A, D \rightarrow B
- B \rightarrow D
Practice at Home

Find all FD’s implied by:

| A, B → C |
| A, D → B |
| B → D |

Step 1: Compute X^+, for every X:

- $A^+ = A$, $B^+ = BD$, $C^+ = C$, $D^+ = D$
- $AB^+ = ABCD$, $AC^+ = AC$, $AD^+ = ABCD$
- $BC^+ = BCD$, $BD^+ = BD$, $CD^+ = CD$
- $ABC^+ = ABD^+ = ACD^+ = ABCD$ (no need to compute—why?)
- $BCD^+ = BCD$, $ABCD^+ = ABCD$

Step 2: Enumerate all FD’s $X \rightarrow Y$, s.t. $Y \subseteq X^+$ and $X \cap Y = \emptyset$:

- $AB \rightarrow CD$, $AD \rightarrow BC$, $ABC \rightarrow D$, $ABD \rightarrow C$, $ACD \rightarrow B$
Keys

• A **superkey** is a set of attributes A_1, \ldots, A_n s.t. for any other attribute B, we have $A_1, \ldots, A_n \rightarrow B$

• A **key** is a minimal superkey
 – A superkey and for which no subset is a superkey
Computing (Super)Keys

• For all sets X, compute X^+

• If $X^+ = [\text{all attributes}]$, then X is a superkey

• Try reducing to the minimal X’s to get the key
Example

Product(name, price, category, color)

name, category \rightarrow price
category \rightarrow color

What is the key?
Example

Product(name, price, category, color)

(name, category) → price
category → color

What is the key?

(name, category) + = { name, category, price, color }

Hence (name, category) is a key
Key or Keys?

Can we have more than one key?

Given R(A,B,C) define FD’s s.t. there are two or more distinct keys
Key or Keys?

Can we have more than one key?

Given \(R(A,B,C) \) define FD's s.t. there are two or more distinct keys

\[
\begin{align*}
A & \rightarrow B \\
B & \rightarrow C \\
C & \rightarrow A
\end{align*}
\]

or

\[
\begin{align*}
AB & \rightarrow C \\
BC & \rightarrow A
\end{align*}
\]

or

\[
\begin{align*}
A & \rightarrow BC \\
B & \rightarrow AC
\end{align*}
\]

what are the keys here?
Eliminating Anomalies

Main idea:

• \(X \rightarrow A \) is OK if \(X \) is a (super)key

• \(X \rightarrow A \) is not OK otherwise
 – Need to decompose the table, but how?

Boyce-Codd Normal Form
Boyce-Codd Normal Form

Dr. Raymond F. Boyce
Edgar Frank “Ted” Codd

"A Relational Model of Data for Large Shared Data Banks"
There are no “bad” FDs:

Definition. A relation R is in BCNF if:

Whenever \(X \rightarrow B \) is a non-trivial dependency, then \(X \) is a superkey.

Equivalently:

Definition. A relation R is in BCNF if:

\[
\forall X, \text{ either } X^+ = X \text{ or } X^+ = \text{[all attributes]}
\]
BCNF Decomposition Algorithm

Normalize(R)

find X s.t.: X ≠ X⁺ and X⁺ ≠ [all attributes]

if (not found) then “R is in BCNF”

let Y = X⁺ - X; Z = [all attributes] - X⁺

decompose R into R₁(X ∪ Y) and R₂(X ∪ Z)

Normalize(R₁); Normalize(R₂);
The only key is: \{SSN, PhoneNumber\}

Hence **SSN → Name, City** is a “bad” dependency

In other words:

SSN+ = SSN, Name, City and is neither SSN nor All Attributes
Example BCNF Decomposition

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

Let’s check anomalies:
- Redundancy?
- Update?
- Delete?
Find X s.t.: $X \neq X^+$ and $X^+ \neq \{\text{all attributes}\}$

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN \rightarrow name, age

age \rightarrow hairColor
Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN \rightarrow name, age
age \rightarrow hairColor

Iteration 1: Person: SSN$^+$ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor)
Phone(SSN, phoneNumber)
Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)
 SSN \rightarrow name, age
 age \rightarrow hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor)
 Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor
Decompose: People(SSN, name, age)
 Hair(age, hairColor)
 Phone(SSN, phoneNumber)

Find X s.t.: X \neq X^+ and X^+ \neq [all attributes]
Find X s.t.: $X \neq X^+$ and $X^+ \neq \{\text{all attributes}\}$

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN \rightarrow name, age

age \rightarrow hairColor

Iteration 1: **Person**: SSN$^+$ = SSN, name, age, hairColor

Decompose into: $P(\text{SSN, name, age, hairColor})$

$\text{Phone(SSN, phoneNumber)}$

Iteration 2: **P**: age$^+$ = age, hairColor

Decompose: $\text{People(SSN, name, age)}$

$\text{Hair(age, hairColor)}$

$\text{Phone(SSN, phoneNumber)}$

Note the keys!
Example: BCNF

R(A,B,C,D) → B
B → C
R(A,B,C,D)

Example: BCNF

Recall: find X s.t.
X ⊈ X⁺ ⊈ [all-attrs]
R(A,B,C,D)

Example: BCNF

R(A,B,C,D)
A^+ = ABC ≠ ABCD
Example: BCNF

\[R(A,B,C,D) \]

\[A^+ = ABC \neq ABCD \]

\[R_1(A,B,C) \] \[R_2(A,D) \]
Example: BCNF

$R(A,B,C,D)$

$A^+ = ABC \neq ABCD$

$R_1(A,B,C)$

$B^+ = BC \neq ABC$

$R_2(A,D)$

$A \rightarrow B$

$B \rightarrow C$
What are the keys?

What happens if in \(R \) we first pick \(B^+ \)? Or \(AB^+ \)?

Example: BCNF

\(R(A,B,C,D) \)

\[A^+ = ABC \neq ABCD \]

\(R_1(A,B,C) \)

\[B^+ = BC \neq ABC \]

\(R_{11}(B,C) \)

\(R_{12}(A,B) \)

\(R_2(A,D) \)

\(A \rightarrow B \)

\(B \rightarrow C \)
Decompositions in General

\[R(A_1, \ldots, A_n, B_1, \ldots, B_m, C_1, \ldots, C_p) \]

\[S_1(A_1, \ldots, A_n, B_1, \ldots, B_m) \]

\[S_2(A_1, \ldots, A_n, C_1, \ldots, C_p) \]

\[S_1 = \text{projection of } R \text{ on } A_1, \ldots, A_n, B_1, \ldots, B_m \]

\[S_2 = \text{projection of } R \text{ on } A_1, \ldots, A_n, C_1, \ldots, C_p \]
Lossless Decomposition

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Gadget</td>
</tr>
<tr>
<td>OneClick</td>
<td>24.99</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Camera</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>19.99</td>
</tr>
<tr>
<td>OneClick</td>
<td>24.99</td>
</tr>
<tr>
<td>Gizmo</td>
<td>19.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
</tr>
<tr>
<td>OneClick</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>Camera</td>
</tr>
</tbody>
</table>
Lossy Decomposition

What is lossy here?

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Gadget</td>
</tr>
<tr>
<td>OneClick</td>
<td>24.99</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Camera</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
</tr>
<tr>
<td>OneClick</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>Camera</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.99</td>
<td>Gadget</td>
</tr>
<tr>
<td>24.99</td>
<td>Camera</td>
</tr>
<tr>
<td>19.99</td>
<td>Camera</td>
</tr>
</tbody>
</table>
Lossy Decomposition

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Gadget</td>
</tr>
<tr>
<td>OneClick</td>
<td>24.99</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Camera</td>
</tr>
</tbody>
</table>

Name	Category
Gizmo | Gadget
OneClick | Camera
Gizmo | Camera

Price	Category
19.99 | Gadget
24.99 | Camera
19.99 | Camera
Decomposition in General

\[R(A_1, ..., A_n, B_1, ..., B_m, C_1, ..., C_p) \]

\[S_1(A_1, ..., A_n, B_1, ..., B_m) \quad S_2(A_1, ..., A_n, C_1, ..., C_p) \]

Let: \(S_1 = \text{projection of } R \text{ on } A_1, ..., A_n, B_1, ..., B_m \)
\(S_2 = \text{projection of } R \text{ on } A_1, ..., A_n, C_1, ..., C_p \)

The decomposition is called \textit{lossless} if \(R = S_1 \bowtie S_2 \)

Fact: If \(A_1, ..., A_n \rightarrow B_1, ..., B_m \) then the decomposition is lossless

It follows that every BCNF decomposition is lossless
Testing for Lossless Join

If we decompose R into $\Pi_{S_1}(R)$, $\Pi_{S_2}(R)$, $\Pi_{S_3}(R)$, ... Is it true that $S_1 \bowtie S_2 \bowtie S_3 \bowtie ... = R$?

That is true if we can show that:

$R \subseteq S_1 \bowtie S_2 \bowtie S_3 \bowtie ...$

$R \supseteq S_1 \bowtie S_2 \bowtie S_3 \bowtie ...$
The Chase Test for Lossless Join

\[R(A,B,C,D) = S_1(A,D) \bowtie S_2(A,C) \bowtie S_3(B,C,D) \]

\(R \) satisfies: \(A \rightarrow B, \ B \rightarrow C, \ CD \rightarrow A \)

\(S_1 = \Pi_{AD}(R), \ S_2 = \Pi_{AC}(R), \ S_3 = \Pi_{BCD}(R), \) hence \(R \subseteq S_1 \bowtie S_2 \bowtie S_3 \)

Need to check: \(R \supseteq S_1 \bowtie S_2 \bowtie S_3 \)
The Chase Test for Lossless Join

Example from textbook Ch. 3.4.2

\[R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D) \]

\[R \text{ satisfies: } A \rightarrow B, \ B \rightarrow C, \ CD \rightarrow A \]

\(S1 = \Pi_{AD}(R) \), \(S2 = \Pi_{AC}(R) \), \(S3 = \Pi_{BCD}(R) \), hence \(R \subseteq S1 \bowtie S2 \bowtie S3 \)

Need to check: \(R \supseteq S1 \bowtie S2 \bowtie S3 \)

Suppose \((a,b,c,d) \in S1 \bowtie S2 \bowtie S3\) Is it also in \(R \)?

\(R \) must contain the following tuples:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b1</td>
<td>c1</td>
<td>d</td>
</tr>
</tbody>
</table>

Why?

\((a,d) \in S1 = \Pi_{AD}(R)\)
The Chase Test for Lossless Join

Example from textbook Ch. 3.4.2

\[R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D) \]
R satisfies: \(A \rightarrow B \), \(B \rightarrow C \), \(CD \rightarrow A \)

\[S1 = \Pi_{AD}(R), \quad S2 = \Pi_{AC}(R), \quad S3 = \Pi_{BCD}(R), \]

hence \(R \subseteq S1 \bowtie S2 \bowtie S3 \)

Need to check: \(R \supseteq S1 \bowtie S2 \bowtie S3 \)

Suppose \((a,b,c,d) \in S1 \bowtie S2 \bowtie S3\) Is it also in \(R \)?

R must contain the following tuples:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b1</td>
<td>c1</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>b2</td>
<td>c</td>
<td>d2</td>
</tr>
</tbody>
</table>

Why?

\((a,d) \in S1 = \Pi_{AD}(R)\)

\((a,c) \in S2 = \Pi_{BD}(R)\)
Example from textbook Ch. 3.4.2

The Chase Test for Lossless Join

R(A, B, C, D) = S1(A, D) \bowtie S2(A, C) \bowtie S3(B, C, D)
R satisfies: A \rightarrow B, B \rightarrow C, CD \rightarrow A

S1 = \Pi_{AD}(R), S2 = \Pi_{AC}(R), S3 = \Pi_{BCD}(R),
hence R \subseteq S1 \bowtie S2 \bowtie S3

Need to check: R \supseteq S1 \bowtie S2 \bowtie S3

Suppose (a, b, c, d) \in S1 \bowtie S2 \bowtie S3 Is it also in R?
R must contain the following tuples:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Why?</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b1</td>
<td>c1</td>
<td>d</td>
<td>(a, d) \in S1 = \Pi_{AD}(R)</td>
</tr>
<tr>
<td>a</td>
<td>b2</td>
<td>c</td>
<td>d2</td>
<td>(a, c) \in S2 = \Pi_{BD}(R)</td>
</tr>
<tr>
<td>a3</td>
<td>b</td>
<td>c</td>
<td></td>
<td>(b, c, d) \in S3 = \Pi_{BCD}(R)</td>
</tr>
</tbody>
</table>
The Chase Test for Lossless Join

Example from textbook Ch. 3.4.2

\[R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D) \]

\(R \) satisfies: \(A \rightarrow B \), \(B \rightarrow C \), \(C \rightarrow D \)

\(S1 = \Pi_{AD}(R), S2 = \Pi_{AC}(R), S3 = \Pi_{BCD}(R), \)

hence\(\quad R \subseteq S1 \bowtie S2 \bowtie S3 \)

Need to check: \(R \supseteq S1 \bowtie S2 \bowtie S3 \)

Suppose \((a,b,c,d) \in S1 \bowtie S2 \bowtie S3\) Is it also in \(R \)?

\(R \) must contain the following tuples:

“Chase” them (apply FDs):

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Why?</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b1</td>
<td>c1</td>
<td>d</td>
<td>((a,d) \in S1 = \Pi_{AD}(R))</td>
</tr>
<tr>
<td>a</td>
<td>b2</td>
<td>c</td>
<td>d2</td>
<td>((a,c) \in S2 = \Pi_{BD}(R))</td>
</tr>
<tr>
<td>a3</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>((b,c,d) \in S3 = \Pi_{BCD}(R))</td>
</tr>
</tbody>
</table>
Example from textbook Ch. 3.4.2

The Chase Test for Lossless Join

\[R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D) \]

\[R \text{ satisfies: } A \rightarrow B, \ B \rightarrow C, \ CD \rightarrow A \]

\[S1 = \Pi_{AD}(R), \ S2 = \Pi_{AC}(R), \ S3 = \Pi_{BCD}(R), \]

hence \(R \subseteq S1 \bowtie S2 \bowtie S3 \)

Need to check: \(R \supseteq S1 \bowtie S2 \bowtie S3 \)

Suppose \((a,b,c,d) \in S1 \bowtie S2 \bowtie S3\) Is it also in \(R \)?

\(R \) must contain the following tuples:

```
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b1</td>
<td>c1</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>b2</td>
<td>c</td>
<td>d2</td>
</tr>
<tr>
<td>a3</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>
```

“Chase” them (apply FDs):

```
A \rightarrow B

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b1</td>
<td>c1</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>b1</td>
<td>c</td>
<td>d2</td>
</tr>
<tr>
<td>a3</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>
```

```
B \rightarrow C

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b1</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>b1</td>
<td>c</td>
<td>d2</td>
</tr>
<tr>
<td>a3</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>
```

\((a,d) \in S1 = \Pi_{AD}(R)\)

\((a,c) \in S2 = \Pi_{BD}(R)\)

\((b,c,d) \in S3 = \Pi_{BCD}(R)\)
Example from textbook Ch. 3.4.2

The Chase Test for Lossless Join

\[R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D) \]

R satisfies: \(A \rightarrow B \), \(B \rightarrow C \), \(CD \rightarrow A \)

\(S1 = \Pi_{AD}(R) \), \(S2 = \Pi_{AC}(R) \), \(S3 = \Pi_{BCD}(R) \),

hence \(R \subseteq S1 \bowtie S2 \bowtie S3 \)

Need to check: \(R \supseteq S1 \bowtie S2 \bowtie S3 \)

Suppose \((a,b,c,d) \in S1 \bowtie S2 \bowtie S3 \) Is it also in \(R \)?

R must contain the following tuples:

"Chase" them (apply FDs):

\[
\begin{array}{cccc}
A & B & C & D \\
\hline
a & b1 & c1 & d \\
a & b1 & c & d2 \\
a3 & b & c & d
\end{array}
\]

\[
\begin{array}{cccc}
A & B & C & D \\
\hline
a & b1 & c & d \\
a & b1 & c & d2 \\
a3 & b & c & d
\end{array}
\]

\[
\begin{array}{cccc}
A & B & C & D \\
\hline
a & b1 & c & d \\
a & b1 & c & d2 \\
a & b1 & c & d2 \\
a3 & b & c & d
\end{array}
\]

Hence \(R \) contains \((a,b,c,d)\)
Schema Refinements

= Normal Forms

- 1st Normal Form = all tables are flat
- 2nd Normal Form = obsolete
- Boyce Codd Normal Form = no bad FDs
- 3rd Normal Form = see book
 - BCNF is lossless but can cause loss of ability to check some FDs (see book 3.4.4)
 - 3NF fixes that (is lossless and dependency-preserving), but some tables might not be in BCNF – i.e., they may have redundancy anomalies
Getting Practical

How to implement normalization in SQL
Motivation

- We learned about how to normalize tables to avoid anomalies

- How can we implement normalization in SQL if we can’t modify existing tables?
 - This might be due to legacy applications that rely on previous schemas to run
Views

• A **view** in SQL =
 – A table computed from other tables, s.t., whenever the base tables are updated, the view is updated too

• More generally:
 – A **view** is derived data that keeps track of changes in the original data

• Compare:
 – A **function** computes a value from other values, but does not keep track of changes to the inputs
A Simple View

Create a view that returns for each store the prices of products purchased at that store

```
CREATE VIEW StorePrice AS
    SELECT DISTINCT x.store, y.price
    FROM  Purchase x, Product y
    WHERE  x.product = y.pname
```

This is like a new table StorePrice(store, price)
We Use a View Like Any Table

- A "high end" store is a store that sell some products over 1000.
- For each customer, return all the high end stores that they visit.

```
SELECT DISTINCT u.customer, u.store
FROM Purchase u, StorePrice v
WHERE u.store = v.store
    AND v.price > 1000
```
Types of Views

• **Virtual views**
 – Computed only on-demand – slow at runtime
 – Always up to date

• **Materialized views**
 – Pre-computed offline – fast at runtime
 – May have stale data (must recompute or update)
 – Indexes are materialized views

• A key component of physical tuning of databases is the selection of materialized views and indexes
Vertical Partitioning

Resumes

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Address</th>
<th>Resume</th>
<th>Picture</th>
</tr>
</thead>
<tbody>
<tr>
<td>234234</td>
<td>Mary</td>
<td>Huston</td>
<td>Clob1…</td>
<td>Blob1…</td>
</tr>
<tr>
<td>345345</td>
<td>Sue</td>
<td>Seattle</td>
<td>Clob2…</td>
<td>Blob2…</td>
</tr>
<tr>
<td>345343</td>
<td>Joan</td>
<td>Seattle</td>
<td>Clob3…</td>
<td>Blob3…</td>
</tr>
<tr>
<td>432432</td>
<td>Ann</td>
<td>Portland</td>
<td>Clob4…</td>
<td>Blob4…</td>
</tr>
</tbody>
</table>

T1

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>234234</td>
<td>Mary</td>
<td>Huston</td>
</tr>
<tr>
<td>345345</td>
<td>Sue</td>
<td>Seattle</td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T2

<table>
<thead>
<tr>
<th>SSN</th>
<th>Resume</th>
</tr>
</thead>
<tbody>
<tr>
<td>234234</td>
<td>Clob1…</td>
</tr>
<tr>
<td>345345</td>
<td>Clob2…</td>
</tr>
</tbody>
</table>

T3

<table>
<thead>
<tr>
<th>SSN</th>
<th>Picture</th>
</tr>
</thead>
<tbody>
<tr>
<td>234234</td>
<td>Blob1…</td>
</tr>
<tr>
<td>345345</td>
<td>Blob2…</td>
</tr>
</tbody>
</table>

T2. SSN is a key *and* a foreign key to **T1**. SSN. Same for **T3**. SSN.
Vertical Partitioning

CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address, T2.resume, T3.picture
FROM T1, T2, T3
WHERE T1.ssn = T2.ssn AND T1.ssn = T3.ssn
CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address, T2.resume, T3.picture
FROM T1, T2, T3
WHERE T1.ssn = T2.ssn AND T1.ssn = T3.ssn

SELECT address
FROM Resumes
WHERE name = 'Sue'
CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address, T2.resume, T3.picture
FROM T1, T2, T3
WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn

SELECT address
FROM Resumes
WHERE name = ‘Sue’

Original query:
SELECT T1.address
FROM T1, T2, T3
WHERE T1.name = ‘Sue’
AND T1.SSN=T2.SSN
AND T1.SSN = T3.SSN

T1(ssn, name, address)
T2(ssn, resume)
T3(ssn, picture)

Resumes(ssn, name, address, resume, picture)
CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address, T2.resume, T3.picture
FROM T1, T2, T3
WHERE T1.ssn = T2.ssn AND T1.ssn = T3.ssn

SELECT address
FROM Resumes
WHERE name = ‘Sue’

SELECT T1.address
FROM T1
WHERE T1.name = ‘Sue’

Modified query:
SELECT T1.address
FROM T1, T2, T3
WHERE T1.name = ‘Sue’
 AND T1.SSN = T2.SSN
 AND T1.SSN = T3.SSN

Final query:
SELECT T1.address
FROM T1
WHERE T1.name = ‘Sue’
Vertical Partitioning Applications

- **Advantages**
 - Speeds up queries that touch only a small fraction of columns
 - Single column can be compressed effectively, reducing disk I/O

- **Disadvantages**
 - Updates are expensive!
 - Need many joins to access many columns
 - Repeated key columns add overhead
Horizontal Partitioning

Customers

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>234234</td>
<td>Mary</td>
<td>Houston</td>
</tr>
<tr>
<td>345345</td>
<td>Sue</td>
<td>Seattle</td>
</tr>
<tr>
<td>345343</td>
<td>Joan</td>
<td>Seattle</td>
</tr>
<tr>
<td>234234</td>
<td>Ann</td>
<td>Portland</td>
</tr>
<tr>
<td>--</td>
<td>Frank</td>
<td>Calgary</td>
</tr>
<tr>
<td>--</td>
<td>Jean</td>
<td>Montreal</td>
</tr>
</tbody>
</table>

CustomersInHouston

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>234234</td>
<td>Mary</td>
<td>Houston</td>
</tr>
</tbody>
</table>

CustomersInSeattle

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>345345</td>
<td>Sue</td>
<td>Seattle</td>
</tr>
<tr>
<td>345343</td>
<td>Joan</td>
<td>Seattle</td>
</tr>
</tbody>
</table>

...
Horizontal Partitioning

CREATE VIEW Customers AS
CustomersInHouston
UNION ALL
CustomersInSeattle
UNION ALL

. . .
Horizontal Partitioning

```
SELECT name 
FROM   Customers 
WHERE  city = 'Seattle'
```

Which tables are inspected by the system?
Horizontal Partitioning

Better: remove CustomerInHouston.city etc

```
CREATE VIEW Customers AS
  (SELECT SSN, name, 'Houston' as city
   FROM CustomersInHouston)
  UNION ALL
  (SELECT SSN, name, 'Seattle' as city
   FROM CustomersInSeattle)
  UNION ALL
...```
Horizontal Partitioning

```
SELECT name
FROM Customers
WHERE city = 'Seattle'
```

```
SELECT name
FROM CustomersInSeattle
```
Horizontal Partitioning Applications

• **Performance optimization**
  – Especially for data warehousing
  – E.g., one partition per month
  – E.g., archived applications and active applications

• **Distributed and parallel databases**

• **Data integration**
Conclusion

• Poor schemas can lead to performance inefficiencies

• E/R diagrams are means to structurally visualize and design relational schemas

• Normalization is a principled way of converting schemas into a form that avoid such problems

• BCNF is one of the most widely used normalized form in practice