
Database Management Systems
CSEP 544

Lecture 7:
Parallel Data processing

Conceptual Design

1CSEP 544 - Fall 2017

2

Class overview
• Data models

– Relational: SQL, RA, and Datalog
– NoSQL: SQL++

• RDMBS internals
– Query processing and optimization
– Physical design

• Parallel query processing
– Spark and Hadoop

• Conceptual design
– E/R diagrams
– Schema normalization

• Transactions
– Locking and schedules
– Writing DB applications

CSEP 544 - Fall 2017

Data models

Using
DBMS

Query
Processing

Parallel Data Processing @ 1990

CSEP 544 - Fall 2017 3

CSEP 544 - Fall 2017 4

Data: R(A, B), S(C, D)
Query: R(A,B) ⋈B=C S(C,D)

Broadcast Join

R1 R2 RP. . .

R’1, S R’2, S R’P, S. . .

Reshuffle R on R.B

Broadcast S

S

Why would you want to do this?

Parallel Execution of RA Operators:
Partitioned Hash-Join

• Data: R(K1, A, B), S(K2, B, C)
• Query: R(K1, A, B) ⋈ S(K2, B, C)

– Initially, both R and S are partitioned on K1 and K2

5

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally

CSEP 544 - Fall 2017

HyperCube Join
• Have P number of servers (say P=27 or P=1000)
• How do we compute this Datalog query in one step?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)
• Organize the P servers into a cube with side P⅓

– Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓

• Step 1:
– Each server sends R(x,y) to all servers (h(x),h(y),*)
– Each server sends S(y,z) to all servers (*,h(y),h(z))
– Each server sends T(x,z) to all servers (h(x),*,h(z))

• Final output:
– Each server (i,j,k) computes the query R(x,y),S(y,z),T(z,x) locally

• Analysis: each tuple R(x,y) is replicated at most P⅓ times

i

j

CSEP 544 - Fall 2017 6

Parallel Data Processing @ 2000

CSEP 544 - Fall 2017 7

Example

• Counting the number of occurrences of each
word in a large collection of documents

• Each Document
– The key = document id (did)
– The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1”);
8

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));

Interesting Implementation Details

Worker failure:

• Master pings workers periodically,

• If down then reassigns the task to another
worker

CSEP 544 - Fall 2017 9

Interesting Implementation Details

Backup tasks:
• Straggler = a machine that takes unusually long

time to complete one of the last tasks. E.g.:
– Bad disk forces frequent correctable errors (30MB/s à

1MB/s)
– The cluster scheduler has scheduled other tasks on

that machine
• Stragglers are a main reason for slowdown
• Solution: pre-emptive backup execution of the

last few remaining in-progress tasks

CSEP 544 - Fall 2017 10

Straggler Example

CSEP 544 - Fall 2017 11

time

Worker 3

Worker 2

Worker 1

Straggler

Backup execution

Killed

Killed

Using MapReduce in Practice:

Implementing RA Operators in MR

Relational Operators in
MapReduce

Given relations R(A,B) and S(B, C) compute:

• Selection: σA=123(R)

• Group-by: γA,sum(B)(R)

• Join: R ⋈ S

CSEP 544 - Fall 2017 13

Selection σA=123(R)

14

map(String value):
if value.A = 123:

EmitIntermediate(value.key, value);

reduce(String k, Iterator values):
for each v in values:

Emit(v);

Selection σA=123(R)

15

map(String value):
if value.A = 123:

EmitIntermediate(value.key, value);

reduce(String k, Iterator values):
for each v in values:

Emit(v);
No need for reduce.
But need system hacking in Hadoop
to remove reduce from MapReduce

Group By γA,sum(B)(R)

16

map(String value):
EmitIntermediate(value.A, value.B);

reduce(String k, Iterator values):
s = 0
for each v in values:

s = s + v
Emit(k, s);

Join

Two simple parallel join algorithms:

• Partitioned hash-join (we saw it, will recap)

• Broadcast join

CSEP 544 - Fall 2017 17

Partitioned Hash-Join

CSEP 544 - Fall 2017 18

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally

Initially, both R and S are horizontally partitioned

R(A,B) ⋈B=C S(C,D)

Partitioned Hash-Join

19

map(String value):
case value.relationName of

‘R’: EmitIntermediate(value.B, (‘R’, value));
‘S’: EmitIntermediate(value.C, (‘S’, value));

reduce(String k, Iterator values):
R = empty; S = empty;
for each v in values:

case v.type of:
‘R’: R.insert(v)
‘S’: S.insert(v);

for v1 in R, for v2 in S
Emit(v1,v2);

R(A,B) ⋈B=C S(C,D)

Broadcast Join

CSEP 544 - Fall 2017 20

R1 R2 RP. . .

R’1, S R’2, S R’P, S. . .

Reshuffle R on R.B

Broadcast S

S

R(A,B) ⋈B=C S(C,D)

Broadcast Join

21

map(String value):
open(S); /* over the network */
hashTbl = new()
for each w in S:

hashTbl.insert(w.B, w)
close(S);

for each v in value:
for each w in hashTbl.find(v.B)

Emit(v,w); reduce(…):
/* empty: map-side only */

map should read
several records of R:
value = some group

of records

Read entire table S,
build a Hash Table

R(A,B) ⋈B=C S(C,D)

HW6

• HW6 will ask you to write SQL queries and
MapReduce tasks using Spark

• You will get to “implement” SQL using
MapReduce tasks
– Can you beat Spark’s implementation?

Conclusions

• MapReduce offers a simple abstraction, and
handles distribution + fault tolerance

• Speedup/scaleup achieved by allocating
dynamically map tasks and reduce tasks to
available server. However, skew is possible
(e.g., one huge reduce task)

• Writing intermediate results to disk is
necessary for fault tolerance, but very slow.

• Spark replaces this with “Resilient Distributed
Datasets” = main memory + lineage

Spark
A Case Study of the MapReduce

Programming Paradigm

CSEP 544 - Fall 2017 24

Parallel Data Processing @ 2010

CSEP 544 - Fall 2017 25

Issues with MapReduce

• Difficult to write more complex queries

• Need multiple MapReduce jobs: dramatically
slows down because it writes all results to
disk

26CSEP 544 - Fall 2017

Spark

• Open source system from UC Berkeley
• Distributed processing over HDFS
• Differences from MapReduce:

– Multiple steps, including iterations
– Stores intermediate results in main memory
– Closer to relational algebra (familiar to you)

• Details:
http://spark.apache.org/examples.html

Spark
• Spark supports interfaces in Java, Scala, and

Python
– Scala: extension of Java with functions/closures

• We will illustrate use the Spark Java interface in
this class

• Spark also supports a SQL interface
(SparkSQL), and compiles SQL to its native
Java interface

CSEP 544 - Fall 2017 28

Resilient Distributed Datasets
• RDD = Resilient Distributed Datasets

– A distributed, immutable relation, together with its
lineage

– Lineage = expression that says how that relation
was computed = a relational algebra plan

• Spark stores intermediate results as RDD
• If a server crashes, its RDD in main memory

is lost. However, the driver (=master node)
knows the lineage, and will simply recompute
the lost partition of the RDD

CSEP 544 - Fall 2017 29

Programming in Spark
• A Spark program consists of:

– Transformations (map, reduce, join…). Lazy
– Actions (count, reduce, save...). Eager

• Eager: operators are executed immediately

• Lazy: operators are not executed immediately
– A operator tree is constructed in memory instead
– Similar to a relational algebra tree

• What are the benefits of lazy execution?

The RDD Interface

Programming in Spark

• RDD<T> = an RDD collection of type T
– Partitioned, recoverable (through lineage), not

nested

• Seq<T> = a sequence
– Local to a server, may be nested

Example
Given a large log file hdfs://logfile.log
retrieve all lines that:
• Start with “ERROR”
• Contain the string “sqlite”

s = SparkSession.builder()...getOrCreate();

lines = s.read().textFile(“hdfs://logfile.log”);

errors = lines.filter(l -> l.startsWith(“ERROR”));

sqlerrors = errors.filter(l -> l.contains(“sqlite”));

sqlerrors.collect();

Example
Given a large log file hdfs://logfile.log
retrieve all lines that:
• Start with “ERROR”
• Contain the string “sqlite”

s = SparkSession.builder()...getOrCreate();

lines = s.read().textFile(“hdfs://logfile.log”);

errors = lines.filter(l -> l.startsWith(“ERROR”));

sqlerrors = errors.filter(l -> l.contains(“sqlite”));

sqlerrors.collect();

lines, errors, sqlerrors
have type JavaRDD<String>

s = SparkSession.builder()...getOrCreate();

lines = s.read().textFile(“hdfs://logfile.log”);

errors = lines.filter(l -> l.startsWith(“ERROR”));

sqlerrors = errors.filter(l -> l.contains(“sqlite”));

sqlerrors.collect();

Transformations
Not executed yet…
Transformations
Not executed yet…
Transformation:
Not executed yet…

Action:
triggers execution
of entire program

Given a large log file hdfs://logfile.log
retrieve all lines that:
• Start with “ERROR”
• Contain the string “sqlite”

Example

errors = lines.filter(l -> l.startsWith(“ERROR”));

Recall: anonymous functions
(lambda expressions) starting in Java 8

Example

class FilterFn implements Function<Row, Boolean>{
Boolean call (Row r)
{ return r.startsWith(“ERROR”); }

}

errors = lines.filter(new FilterFn());

is the same as:

s = SparkSession.builder()...getOrCreate();

sqlerrors = s.read().textFile(“hdfs://logfile.log”)
.filter(l -> l.startsWith(“ERROR”))
.filter(l -> l.contains(“sqlite”))
.collect();

Given a large log file hdfs://logfile.log
retrieve all lines that:
• Start with “ERROR”
• Contain the string “sqlite”

Example

“Call chaining” style

MapReduce Again…

Steps in Spark resemble MapReduce:
• col.filter(p) applies in parallel the

predicate p to all elements x of the partitioned
collection, and returns collection with those x
where p(x) = true

• col.map(f) applies in parallel the function f to
all elements x of the partitioned collection,
and returns a new partitioned collection

38

Persistence

If any server fails before the end, then Spark must restart

lines = s.read().textFile(“hdfs://logfile.log”);
errors = lines.filter(l->l.startsWith(“ERROR”));
sqlerrors = errors.filter(l->l.contains(“sqlite”));
sqlerrors.collect();

lines = s.read().textFile(“hdfs://logfile.log”);
errors = lines.filter(l->l.startsWith(“ERROR”));
sqlerrors = errors.filter(l->l.contains(“sqlite”));
sqlerrors.collect();

Persistence

If any server fails before the end, then Spark must restart

hdfs://logfile.log

result

filter(...startsWith(“ERROR”)
filter(...contains(“sqlite”)

RDD:

Persistence

If any server fails before the end, then Spark must restart

hdfs://logfile.log

result

filter(...startsWith(“ERROR”)
filter(...contains(“sqlite”)

Spark can recompute the result from errors

RDD:

lines = s.read().textFile(“hdfs://logfile.log”);
errors = lines.filter(l->l.startsWith(“ERROR”));
sqlerrors = errors.filter(l->l.contains(“sqlite”));
sqlerrors.collect();

lines = s.read().textFile(“hdfs://logfile.log”);
errors = lines.filter(l->l.startsWith(“ERROR”));
errors.persist();
sqlerrors = errors.filter(l->l.contains(“sqlite”));
sqlerrors.collect()

New RDD

Persistence

If any server fails before the end, then Spark must restart

hdfs://logfile.log

result

Spark can recompute the result from errors

hdfs://logfile.log

errors

filter(..startsWith(“ERROR”)

result

filter(...contains(“sqlite”)

RDD:

filter(...startsWith(“ERROR”)
filter(...contains(“sqlite”)

lines = s.read().textFile(“hdfs://logfile.log”);
errors = lines.filter(l->l.startsWith(“ERROR”));
errors.persist();
sqlerrors = errors.filter(l->l.contains(“sqlite”));
sqlerrors.collect()

New RDD

lines = s.read().textFile(“hdfs://logfile.log”);
errors = lines.filter(l->l.startsWith(“ERROR”));
sqlerrors = errors.filter(l->l.contains(“sqlite”));
sqlerrors.collect();

Example

44

SELECT count(*) FROM R, S
WHERE R.B > 200 and S.C < 100 and R.A = S.A

R(A,B)
S(A,C)

R = s.read().textFile(“R.csv”).map(parseRecord).persist();
S = s.read().textFile(“S.csv”).map(parseRecord).persist();

Parses each line into an object

persisting on disk

Example

45

SELECT count(*) FROM R, S
WHERE R.B > 200 and S.C < 100 and R.A = S.A

R(A,B)
S(A,C)

R = s.read().textFile(“R.csv”).map(parseRecord).persist();
S = s.read().textFile(“S.csv”).map(parseRecord).persist();
RB = R.filter(t -> t.b > 200).persist();
SC = S.filter(t -> t.c < 100).persist();
J = RB.join(SC).persist();
J.count();

R

RB

filter((a,b)->b>200)

S

SC

filter((b,c)->c<100)

J

join

action

transformationstransformations

Recap: Programming in Spark

• A Spark/Scala program consists of:
– Transformations (map, reduce, join…). Lazy
– Actions (count, reduce, save...). Eager

• RDD<T> = an RDD collection of type T
– Partitioned, recoverable (through lineage), not

nested
• Seq<T> = a sequence

– Local to a server, may be nested

Transformations:
map(f : T -> U): RDD<T> -> RDD<U>

flatMap(f: T -> Seq(U)): RDD<T> -> RDD<U>

filter(f:T->Bool): RDD<T> -> RDD<T>

groupByKey(): RDD<(K,V)> -> RDD<(K,Seq[V])>

reduceByKey(F:(V,V)-> V): RDD<(K,V)> -> RDD<(K,V)>

union(): (RDD<T>,RDD<T>) -> RDD<T>

join(): (RDD<(K,V)>,RDD<(K,W)>) -> RDD<(K,(V,W))>

cogroup(): (RDD<(K,V)>,RDD<(K,W)>)-> RDD<(K,(Seq<V>,Seq<W>))>

crossProduct(): (RDD<T>,RDD<U>) -> RDD<(T,U)>

Actions:
count(): RDD<T> -> Long
collect(): RDD<T> -> Seq<T>
reduce(f:(T,T)->T): RDD<T> -> T
save(path:String): Outputs RDD to a storage system e.g., HDFS

Spark 2.0

The DataFrame and
Dataset Interfaces

DataFrames
• Like RDD, also an immutable distributed

collection of data

• Organized into named columns rather than
individual objects
– Just like a relation
– Elements are untyped objects called Row’s

• Similar API as RDDs with additional methods
– people = spark.read().textFile(…);

ageCol = people.col(“age”);
ageCol.plus(10); // creates a new DataFrame

Datasets
• Similar to DataFrames, except that elements must be typed

objects

• E.g.: Dataset<People> rather than Dataset<Row>

• Can detect errors during compilation time

• DataFrames are aliased as Dataset<Row> (as of Spark 2.0)

• You will use both Datasets and RDD APIs in HW6

Datasets API: Sample Methods
• Functional API

– agg(Column expr, Column... exprs)
Aggregates on the entire Dataset without groups.

– groupBy(String col1, String... cols)
Groups the Dataset using the specified columns, so that we can run
aggregation on them.

– join(Dataset<?> right)
Join with another DataFrame.

– orderBy(Column... sortExprs)
Returns a new Dataset sorted by the given expressions.

– select(Column... cols)
Selects a set of column based expressions.

• “SQL” API
– SparkSession.sql(“select * from R”);

• Look familiar?

An Example Application

PageRank

• Page Rank is an algorithm that assigns to
each page a score such that pages have
higher scores if more pages with high scores
link to them

• Page Rank was introduced by Google, and,
essentially, defined Google

CSEP 544 - Fall 2017 53

PageRank

CSEP 544 - Fall 2017 54

PageRank toy example

A B C

.33 .33 .33

.17
.17

.33.17
Superstep 0

.17

.17 .50 .34

.09
.09

.34.25
Superstep 1

.25

.25 .43 .34

.13
.13

.34.22
Superstep 2

.22

Input graph

http://www.slideshare.net/sscdotopen/large-scale/20

PageRank

55

for i = 1 to n:
r[i] = 1/n

repeat
for j = 1 to n: contribs[j] = 0
for i = 1 to n:

k = links[i].length()
for j in links[i]:

contribs[j] += r[i] / k
for i = 1 to n: r[i] = contribs[i]

until convergence
/* usually 10-20 iterations */

Random walk interpretation:

Start at a random node i
At each step, randomly choose
an outgoing link and follow it.

Repeat for a very long time

r[i] = prob. that we are at node i

PageRank

56

for i = 1 to n:
r[i] = 1/n

repeat
for j = 1 to n: contribs[j] = 0
for i = 1 to n:

k = links[i].length()
for j in links[i]:

contribs[j] += r[i] / k
for i = 1 to n: r[i] = contribs[i]

until convergence
/* usually 10-20 iterations */

r[i] = a/N + (1-a)*contribs[i]

where a ∈(0,1)
is the restart
probability

Random walk interpretation:

Start at a random node i
At each step, randomly choose
an outgoing link and follow it.

Improvement: with small prob. a
restart at a random node.

PageRank

57

for i = 1 to n:
r[i] = 1/n

repeat
for j = 1 to n: contribs[j] = 0
for i = 1 to n:

k = links[i].length()
for j in links[i]:

contribs[j] += r[i] / k
for i = 1 to n: r[i] = a/N + (1-a)*contribs[i]

until convergence
/* usually 10-20 iterations */

// spark

links = spark.read().textFile(..)...
ranks = // RDD of (URL, 1/n) pairs

for (k = 1 to ITERATIONS) {

// Build RDD of (targetURL, float) pairs
// with contributions sent by each page
contribs = links.join(ranks).flatMap {

(url, lr) -> // lr: a (link, rank) pair
links.map(dest ->

(dest, lr._2/outlinks.size))
}

// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) -> x+y)

.mapValues(sum -> a/n + (1-a)*sum)
}

links: RDD<url:string, outlinks:SEQ<string>>
ranks: RDD<url:string, rank:float>

PageRank

58

for i = 1 to n:
r[i] = 1/n

repeat
for j = 1 to n: contribs[j] = 0
for i = 1 to n:

k = links[i].length()
for j in links[i]:

contribs[j] += r[i] / k
for i = 1 to n: r[i] = a/N + (1-a)*contribs[i]

until convergence
/* usually 10-20 iterations */

// spark

links = spark.read().textFile(..).map(...);
ranks = // RDD of (URL, 1/n) pairs

for (k = 1 to ITERATIONS) {

// Build RDD of (targetURL, float) pairs
// with contributions sent by each page
contribs = links.join(ranks).flatMap {

(url, lr) -> // lr: a (link, rank) pair
links.map(dest ->

(dest, lr._2/outlinks.size))
}

// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) -> x+y)

.mapValues(sum -> a/n + (1-a)*sum)
}

links: RDD<url:string, outlinks:SEQ<string>>
ranks: RDD<url:string, rank:float>

Key: url1,
Value: ([outlink1, outlink2, …], rank1)

PageRank

59

for i = 1 to n:
r[i] = 1/n

repeat
for j = 1 to n: contribs[j] = 0
for i = 1 to n:

k = links[i].length()
for j in links[i]:

contribs[j] += r[i] / k
for i = 1 to n: r[i] = a/N + (1-a)*contribs[i]

until convergence
/* usually 10-20 iterations */

// spark

links = spark.read().textFile(..)...
ranks = // RDD of (URL, 1/n) pairs

for (k = 1 to ITERATIONS) {

// Build RDD of (targetURL, float) pairs
// with contributions sent by each page
contribs = links.join(ranks).flatMap {

(url, lr) -> // lr: a (link, rank) pair
links.map(dest ->

(dest, lr._2/outlinks.size()))
}

// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) -> x+y)

.mapValues(sum -> a/n + (1-a)*sum)
}

links: RDD<url:string, outlinks:SEQ<string>>
ranks: RDD<url:string, rank:float>

Key: url1,
Value: rank1/outlink1.size)

Conclusions

• Parallel databases
– Predefined relational operators
– Optimization
– Transactions

• MapReduce
– User-defined map and reduce functions
– Must implement/optimize manually relational ops
– No updates/transactions

• Spark
– Predefined relational operators
– Must optimize manually
– No updates/transactions

60

Conceptual Design

CSEP 544 - Fall 2017 61

62

Class overview
• Data models

– Relational: SQL, RA, and Datalog
– NoSQL: SQL++

• RDBMS internals
– Query processing and optimization
– Physical design

• Parallel query processing
– Spark and Hadoop

• Conceptual design
– E/R diagrams
– Schema normalization

• Transactions
– Locking and schedules
– Writing DB applications

CSEP 544 - Fall 2017

Data models

Using
DBMS

Query
Processing

Database Design

What it is:
• Starting from scratch, design the database

schema: relation, attributes, keys, foreign
keys, constraints etc

Why it’s hard
• The database will be in operation for a very

long time (years). Updating the schema while
in production is very expensive (why?)

CSEP 544 - Fall 2017 63

Database Design

• Consider issues such as:
– What entities to model
– How entities are related
– What constraints exist in the domain

• Several formalisms exists
– We discuss E/R diagrams
– UML, model-driven architecture

• Reading: Sec. 4.1-4.6

CSEP 544 - Fall 2017 64

Database Design Process
companymakesproduct

name

price name address

Conceptual Model:

Relational Model:
Tables + constraints
And also functional dep.

Normalization:
Eliminates anomalies

Conceptual Schema

Physical Schema
Physical storage details

Entity / Relationship Diagrams

• Entity set = a class
– An entity = an object

• Attribute

• Relationship

CSEP 544 - Fall 2017 66

Product

city

makes

Person

Company
Product

buys

makes

employs

name CEO

price

address name ssn

address

name

67

Keys in E/R Diagrams

• Every entity set must have a key

Product

name

price

CSEP 544 - Fall 2017 68

What is a Relation ?

• A mathematical definition:
– if A, B are sets, then a relation R is a subset of A X B

• A={1,2,3}, B={a,b,c,d},
A X B = {(1,a),(1,b), . . ., (3,d)}
R = {(1,a), (1,c), (3,b)}

• makes is a subset of Product X Company:

1

2

3

a

b

c

d

A=

B=

makes Company
Product

CSEP 544 - Fall 2017 69

Multiplicity of E/R Relations

• one-one:

• many-one

• many-many

1
2
3

a
b
c
d

1
2
3

a
b
c
d

1
2
3

a
b
c
d

CSEP 544 - Fall 2017 70

Person

Company
Product

buys

makes

employs

name CEO

price

address name ssn

address

name

71

What does
this say ?

Multi-way Relationships
How do we model a purchase relationship between buyers,
products and stores?

Purchase

Product

Person

Store

Can still model as a mathematical set (How?)
72As a set of triples ⊆ Person X Product X Store

Q: What does the arrow mean ?

Arrows in Multiway Relationships

A: A given person buys a given product from at most one store

Purchase

Product

Person

Store

73

[Fine print: Arrow pointing to E means that if we select one entity from each
of the other entity sets in the relationship, those entities are related to
at most one entity in E]

CSEP 544 - Fall 2017

Q: What does the arrow mean ?

Arrows in Multiway Relationships

A: A given person buys a given product from at most one store
AND every store sells to every person at most one product

Purchase

Product

Person

Store

CSEP 544 - Fall 2017 74

Converting Multi-way
Relationships to Binary

Purchase

Person

Store

Product

StoreOf

ProductOf

BuyerOf

date

Arrows go in which direction? 75

Converting Multi-way
Relationships to Binary

Purchase

Person

Store

Product

StoreOf

ProductOf

BuyerOf

date

Make sure you understand why! 76

3. Design Principles

PurchaseProduct Person

What’s wrong?

President PersonCountry

Moral: Be faithful to the specifications of the application!

CSEP 544 - Fall 2017 77

Design Principles:
What’s Wrong?

Purchase

Product

Store

date

personNamepersonAddr

Moral: pick the right
kind of entities.

CSEP 544 - Fall 2017 78

Design Principles:
What’s Wrong?

Purchase

Product

Person

Store

dateDates

Moral: don’t
complicate life more
than it already is.

79

From E/R Diagrams
to Relational Schema

• Entity set à relation
• Relationship à relation

CSEP 544 - Fall 2017 80

Entity Set to Relation

Product

prod-ID category

price

Product(prod-ID, category, price)

prod-ID category price
Gizmo55 Camera 99.99
Pokemn19 Toy 29.99 81

N-N Relationships to Relations

Orders

prod-ID cust-ID

date

Shipment Shipping-Co

address

name
date

Represent this in relations
CSEP 544 - Fall 2017 82

prod-ID cust-ID name date

Gizmo55 Joe12 UPS 4/10/2011

Gizmo55 Joe12 FEDEX 4/9/2011

N-N Relationships to Relations

Orders

prod-ID cust-ID

date

Shipment Shipping-Co

address

name

Orders(prod-ID,cust-ID, date)
Shipment(prod-ID,cust-ID, name, date)
Shipping-Co(name, address)

date

N-1 Relationships to Relations

Orders

prod-ID cust-ID

date

Shipment Shipping-Co

address

name
date

Represent this in relations
CSEP 544 - Fall 2017 84

N-1 Relationships to Relations

Orders

prod-ID cust-ID

date

Shipment Shipping-Co

address

name

Orders(prod-ID,cust-ID, date1, name, date2)
Shipping-Co(name, address)

date

85Remember: no separate relations for many-one relationship

Multi-way Relationships to
Relations

Purchase

Product

Person

Storeprod-ID price

ssn name

name address

86

Purchase(prod-ID, ssn, name)
CSEP 544 - Fall 2017

Try this at home!

Modeling Subclasses

Some objects in a class may be special
• define a new class
• better: define a subclass

Products

Software
products

Educational
products

So --- we define subclasses in E/R
CSEP 544 - Fall 2017 87

Product

name category

price

isa isa

Educational ProductSoftware Product

Age Groupplatforms

Subclasses

CSEP 544 - Fall 2017

Subclasses to
Relations

Product

name category

price

isa isa

Educational ProductSoftware Product

Age Groupplatforms

Name Price Category

Gizmo 99 gadget

Camera 49 photo

Toy 39 gadget

Name platforms

Gizmo unix

Product

Sw.Product

Ed.Product

Other ways to convert are possible
CSEP 544 - Fall 2017 89

Name Age
Group

Gizmo toddler

Toy retired

Modeling Union Types with
Subclasses

FurniturePiece

Person Company

Say: each piece of furniture is owned
either by a person or by a company

CSEP 544 - Fall 2017 90

Modeling Union Types with
Subclasses

Say: each piece of furniture is owned either by a
person or by a company
Solution 1. Acceptable but imperfect (What’s wrong ?)

FurniturePiecePerson Company

ownedByPerson ownedByComp.

CSEP 544 - Fall 2017 91

Modeling Union Types with
Subclasses

Solution 2: better, more laborious

isa

FurniturePiece

Person Company
ownedBy

Owner

isa

CSEP 544 - Fall 2017 92

93

Weak Entity Sets
Entity sets are weak when their key comes from other
classes to which they are related.

UniversityTeam affiliation

numbersport name

Team(sport, number, universityName)
University(name)

CSEP 544 - Fall 2017

