Database Management Systems
CSEP 544

Lecture 6:
Query Execution and Optimization
Parallel Data processing

CSEP 544 - Fall 2017

Announcements
HWS due today

HW6 released

— Please start early! You need to apply for credits from Amazon

Two lectures this week (tonight and Thurs)
— Query optimization

— Parallel data processing

— Conceptual design

No reading assignment for conceptual design

OH change this week to Thursday

Query Execution and Optimization

CSEP 544 - Fall 2017 3

Class overview

Data models
— Relational: SQL, RA, and Datalog Data models
— NoSQL: SQL++

RDBMS internals

— Query processing and optimization
— Physical design

Parallel query processing

— Spark and Hadoop

Conceptual design
— E/R diagrams
— Schema normalization Using

Transactions DBMS

— Locking and schedules

— Writing DB applications 4
CSEP 544 - Fall 2017

Query
Processing

Query Evaluation Steps Review

Query
optimization=

SQL query
I

:Parse & Rewrite Query]

—

. Logical
[Select Logical Plan olan (RA)

|

~—

Select Physical PIanJ
Physical
plan
[Query Execution]

|

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

Example “on the fly” selection operator

class Select implements Operator {...

}

void open (Predicate p,
Operator child) {
this.p = p; this.child = child;
}
Tuple next () {
boolean found = false;

Tuple r = null;

while (!found) {
r = child.next();
if (r == null) break;
found = p(r); <—=_

}

return r;

}
void close () { child.close(); }

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

Query plan execution

Operator q = parse(“SELECT ...”);
g = optimize(q);

q.open();

while (true) {
Tuple t = g.next();
if (t == null) break;
else printOnScreen(t);

}
g.close();

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity) P'pe“r"ng

/

(On the fly) Msname

)

Discuss: open/next/close
for nested loop join

(On the ﬂy) Oscity= ‘Seattle’ and sstate= ‘WA and pno=2

(Nested loop)]

SNO = sSnO

TN

Supplies
(File scan)

Suppliers

(File scan)
CSEP 544 - Fall 2017

Recall: Physical Data
Independence

* Applications are insulated from changes in
physical storage details

 SQL and relational algebra facilitate physical
data independence

— Both languages input and output relations
— Can choose different implementations for operators

CSEP 544 - Fall 2017 9

Class overview

Data models
— Relational: SQL, RA, and Datalog Data models
— NoSQL: SQL++

RDBMS internals

— Query processing and optimization
— Physical design

Parallel query processing

— Spark and Hadoop

Conceptual design
— E/R diagrams
— Schema normalization Using

Transactions DBMS

— Locking and schedules

— Writing DB applications 10
CSEP 544 - Fall 2017

Query
Processing

Student

ID | fName IName
Hash table example [w]om]Hank
20 | Amy Hanks
Index Student_ID on Student.ID Data Filﬂjdent
L
10 Tom Hanks
10 —
>< 20 —| 20 | Amy Hanks X
o= & \, 0
T 200 N
220
240 220
B 240 | />
800 -
420
Index File Data file

(in memory) (on disk)

CSEP 544 - Fall 2017

11

B+ Tree Index by Example

d = 2 Find the ke@
80 <«
20 | 60 120 | 140
7 @ \‘ \L . \1 '
20\\4_0<= 60 \\\\\
15| 18 20 : 50 65 80 | 8 | 90
\ ALy Nl=2 > 1/ —
AN
f \ \ I y v \! / / / A(‘S \<
15 18 20 40 50 65 || 80 85 90

CSEP 544 - Fall 2017

Basic Index Selection Guidelines

Consider queries in workload in order of importance

Consider relations accessed by query
— No pointindexing other relations

Look at WHERE clause for possible search key

Try to choose indexes that speed-up multiple queries

CSEP 544 - Fall 2017 13

Cost of Reading
Data From Disk

CSEP 544 - Fall 2017

14

Cost Parameters

» Cost =1/0 +Eﬁ<+ Netvbzéw

— We will focus on I/O in this class
 Parameters:

— B(R) = # of blocks (i.e., pages) for relation R

— T(R) = # of tuples in relation R

— V(R, a) = # of distinct values of attribute a
« When ais akey, V(R,a) = T(R)
« When a is not a key, V(R,a) can be anything <= T(R)

* Where do these values come from?

— DBMS collects statistics about data on disk
CSEP 544 - Fall 2017

15

Selectivity Factors for Conditions

- A=c [* Oace(R) */
— Selectivity = 1/V(R,A)

+ AR)c [* Opc(R)*
— Selectivity = (c - min(R, A))/(max(R,A) - min(R,A))

-_/\

.« c1<A<c2 [* Gorencer(R)*
— Selectivity = (c2 — c1)/(max(R,A) - min(R,A))

CSEP 544 - Fall 2017

16

Cost of Executing Operators
(Focus on Joins)

CSEP 544 - Fall 2017

17

Join Algorithms
« Hash join
* Nested loop join

« Sort-merge join

CSEP 544 - Fall 2017

18

Hash Join

Hash join: R>= S

e Scan R, build buckets in main memory
 Then scan S and join

Cost: B(R) + B(S)

Which relation to build the hash table on?

* One-pass algorithm when B(R) < M
— M = number of memory pages available

CSEP 544 - Fall 2017 19

Nested Loop Joins

Tuple-based nested loop R = S
R is the outer relation, S is the inner relation

for each tuple t; in R do
for each tuple t, in S do
if t; and t, join then output (t4,t,)

What is the Cost?

Cost: B(R) ¥ T(R).B(S)

Multiple-pass since S is read many times

CSEP 544 - Fall 2017 20

Block-Nested-Loop Refinement

for each group o{@pages rin Rdo
for each page of tuples s in S do
for all pairs of tuples t;inr, t,in s
if t; and t, join then output (t4,t))

 Cost: B(R) + B(R)B(S)/(M-1) What is the Cost?

CSEP 544 - Fall 2017 21

Sort-Merge Join

Sort-merge join: R>S
* Scan R and sort in main memory

e Scan S and sort in main memory
« Merge Rand S

Cost: B(R) + B(S)
* One pass algorithm when B(S) + B(R) <= M
Typically, this is NOT a one pass algorithm

CSEP 544 - Fall 2017 22

Index Nested Loop Join
R>=S
 Assume S has an index on the join attribute

 |terate over R, for each tuple fetch
corresponding tuple(s) from S

e Cost:

— |findex on S is ;
B(R) + T(R) *|(B(S) * 1/V(S,a))

—_—
T——

— If index on S is unclustered:
B(R) + T(R) * (T(S) * 1/V(S,a))

—
CSEP 544 - Fall 2017

23

Cost of Query Plans

CSEP 544 - Fall 2017

24

Supplier(sid, shame, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 1

sShame

J

Opno=2 A scity="'Seattle’ A sstate="WA

¥

SELECT sname
FROM Supplier x, Supply vy
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

>
sid = sid
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, shame, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 1

sShame

SELECT sname
(f/:::> FROM Supplier x, Supply vy
— WHERE x.sid = y.sid
and y.pno = 2
Opno=2 A scity="'Seattle’ A sstate="WA and x.scity = ‘Seattle’
T and x.sstate = ‘WA’

T =10000
(>
sid = sid
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11
V(Supply, pno) = 2500 V(Supplier, state) = 10

1\-——-——/__’__\

Supplier(sid, shame, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 1

sShame

SELECT sname
T <1 FROM Supplier x, Supply vy
WHERE x.sid = y.sid

and y.pno = 2
@Vo=2/\scity=‘8eattle’/\sstate=‘WA’ and x.scity = ‘Seattle’
and x.sstate = ‘WA’
T =10000
>
sid = sid
N~—
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, shame, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 2

sShame

SELECT sname
FROM Supplier x, Supply vy
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

/ sid = sid \
g e lOCV¥{b N

Cpno=2 Oscity="Seattle’ Asstate="WA’
P ‘ |7) %5‘16 ~ N
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, shame, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 2

sShame

SELECT sname
FROM Supplier x, Supply vy
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

=]
Tzi/////sm=&d\\\\\\115

G 1 — ’ — ’
Onnn= scity="Seattle’ A sstate="WA
pwo 2 R =
Supply Supplier
T(Supplier) = 1000 -
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, shame, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 2

sShame

SELECT sname
FROM Supplier x, Supply vy
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Very wrong!
Why?

=]
Tzi/////sm=&d\\\\\\115

Opno=2 Oscity="Seattle’ Asstate="A&
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, shame, scity, sstate)

Supply(sid, pno, quantity)

Logical Query Plan 2

sShame

—
I

4

id = sid
Tz‘/-——-s' = \5

Opno=2

Supply

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

SELECT sname
FROM Supplier x, Supply vy
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Very wrong!
Why?

Oscity="Seattle’ Asstate="WA’

Supplier

T(Supplier) = 1000

B(Supplier) = 100

V(Supplier, scity) =20 M=11
V(Supplier, state) = 10

Supplier(sid, shame, scity, sstate)

Supply(sid, pno, quantity)

Logical Query Plan 2

sShame

—
I

4

=]
T=4/ sid = sid \5

Opno=2

Supply

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Different

SELECT sname
FROM Supplier x, Supply vy
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

estimate ®

Very wrong!
Why?

Oscity="Seattle’ Asstate="WA’

Supplier

T(Supplier) = 1000

B(Supplier) = 100

V(Supplier, scity) =20 M=11
V(Supplier, state) = 10

Supplier(sid, shame, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 1

Trsname

T <1

Opno=2 A scity="'Seattle’ A sstate="WA

‘,7 T = 10000
Total cost:
/ Sld sid
Block nested loop joi
Scan S | s _
— upply can - Supplier

T(Supplier)\= 1000
T(Supply) = 10000 B(Supplier) = 100

B(Supply) = 100 V(Supplier, scity) = 20 M
V(Supply, pno) = 2500 V(Supplier, state) = 10

11

Supplier(sid, shame, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 1

Trsname

T <1

Opno=2 A scity="'Seattle’ A sstate="WA

T =10000

Total cost: 100+100*100/10= 1100

>

sid = sid

Block nested loop joi

Scan .
Supply Scan gupplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity,
Supply(sid, pno, quantity)

sstate)

Physical Plan 2

Trsname
Cost of Supply(pno)=
T=4 Cost of Supplier(scity) =
Total cost:
|><| T=5
T=i/////SM=md\\\\\\\\
Vo .
dain memaory join GSStatefWA,

Unclustered Opno=2
index lookup ‘

Supply(pno)
Supply

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

' T=50

Oscity="Seattle’ Unclustered

| index lookup
Supp“er Supplier(scity)

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) =20
V(Supplier, state) = 10

M=11

Supplier(sid, shame, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 2

TTsname
Cost of Supply(pno)= 4
T=4 Cost of Supplier(scity) =
Total cost:
< =<
sid=sid T~
Main memory join
y) Ogstate="WA’
1= 50
Oscity="Seattle’ Unclustered
| index lookup

Supplier Supplier(scity)

T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, shame, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 2

Trsname

Cost of Supply(pno)=4
T=4 Cost of Supplier(scity) = 50
Total cost: 54

ain memory join

N T=5
T= ‘/ sid = sid \
M\ Osstate="WA
Unclustered Opno=2 l
index lookup ‘ Oscity="Seattre Unclustered
/ﬁ\

Supply(pno) index lookup
Supply Supplier Supplier(scity)
B e
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, shame, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 3

Msname
T=4
Oscity="Seattle’ A sstate="WA Cost of Supply(pno)=
- ‘ K Cost of Index join =
Total cost:
>
sid = sid
Clustered
Index join
Unclustered Opno=
index lookup ‘
Supply(pno)
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, shame, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 3

Trsname
T=4

Oscity="Seattle’ A sstate="WA

|

id = sid
T=4 sid = si
Clustered

Costof Supply(pno)=4
Costof Index join =
Total cost:

Index join
Unclustered Opno=2
index lookup ‘
Supply(pno)
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, shame, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 3

Msname
T=4
Oscity="Seattle’ A sstate="WA Cost of Supply(pno)=4
‘ Cost of Index join = 4
Total cost: 8
id = sid
T-2a sid = si
Clustered
Index join
Unclustered Opno=2
index lookup ‘
Supply(pno)
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Query Optimizer

lowestCost = oo h)
bestPlan = null; IS never WOrks

for (p : physicalPlan(q)) { ¢ Way too many plans

if (cost(p) < lowestCost) to consider!
bestPlan = p;

¥

return p;
« Typical query optimizer:
 Construct logical plan p

* Apply heuristic rules to transform p
(e.g., do selection as early as possible)

« Go through each operator op in bottom up manner
 Choose an implementation for op to construct the
physical plan

(why does this not always return the best plan?) *

The System R Optimizer
A Case Study

CSEP 544 - Fall 2017

42

Two Types of Plan
Enumeration Algorithms

* Dynamic programming
— Based on System R (aka Selinger) style optimizer [1979]
— Limited to joins: join reordering algorithm
— Bottom-up

* Rule-based algorithm (will not discuss)
— Database of rules (=algebraic laws)
— Usually: dynamic programming
— Usually: top-down

CSEP 544 - Fall 2017

System R Search Space /™

)
N h DQ/ \C
Only left-deep plans A/ b [D

— Enable dynamic programming for enumeration —
— Facilitate tuple pipelining from outer relation

Consider plans with all “interesting orders”

Perform cross-products after all other joins
(heuristic)

Only consider nested loop & sort-merge joins
Consider both file scan and indexes

Try to evaluate predicates early
CSEP 544 - Fall 2017

Plan Enumeration Algorithm

ldea: use dynamic programming

For each subset of {R,, ..., R}, compute the
best plan for that subset

In increasing order of set cardinality:
— Step 1: for {R4}, {R}, ..., {R,}
_ Step 2: for {R1,R2}5 {R15R3}, ey {Rn-11 Rn}

— Step n: for {R4, .

. R}

It is a bottom-up strategy

A subset of {R4, ...

, R} is also called a subquery

CSEP 544 - Fall 2017

Dynamic Programming Algo.

* For each subquery Q &{Rj, ..., R,;} compute
the following:
— Size(Q)
— A best plan for Q: Plan(Q)
— The cost of that plan: Cost(Q)

CSEP 544 - Fall 2017

Dynamic Programming Algo.

« Step 1: Enumerate all single-relation plans
— Consider selections on attributes of relation
— Consider all possible access paths
— Consider attributes that are not needed

— Compute cost for each plan

— Keep cheapest plan per “interesting” output order

CSEP 544 - Fall 2017

Dynamic Programming Algo.

« Step 2: Generate all two-relation plans
— For each each single-relation plan from step 1
— Consider that plan as outer relation
— Consider every other relation as inner relation

— Compute cost for each plan

— Keep cheapest plan per “interesting” output order

CSEP 544 - Fall 2017

Dynamic Programming Algo.
« Step 3: Generate all three-relation plans

— For each each two-relation plan from step 2

— Consider that plan as outer relation

— Consider every other relation as inner relation

— Compute cost for each plan

— Keep cheapest plan per “interesting” output order

« Steps 4 through n: repeat until plan contains
all the relations in the query

CSEP 544 - Fall 2017

Query Optimizer Summary

Input: A logical query plan
Output: A good physical query plan

Basic query optimization algorithm

— Enumerate alternative plans (logical and physical)
— Compute estimated cost of each plan

— Choose plan with lowest cost

This Is called cost-based optimization

CSEP 544 - Fall 2017 50

Parallel Data Processing

CSEP 544 - Fall 2017

51

Class overview

Data models
— Relational: SQL, RA, and Datalog Data models
— NoSQL: SQL++

RDMBS internals

— Query processing and optimization
— Physical design

Parallel query processing

— Spark and Hadoop

Conceptual design
— E/R diagrams
— Schema normalization Using

Transactions DBMS

— Locking and schedules

— Writing DB applications 57
CSEP 544 - Fall 2017

Query
Processing

Why compute in parallel?

* Multi-cores:
— Most processors have multiple cores
— This trend will likely increase in the future

» Big data: too large to fit in main memory

— Distributed query processing on 100x-1000x
servers

— Widely available now using cloud services
— Recall HW3 and HW6

Performance Metrics
for Parallel DBMSs

Nodes = processors, computers

* Speedup:

— More nodes, same data = higher speed

» Scaleup:
— More nodes, more data = same speed

Linear v.s. Non-linear Speedup

Speedup

1

\669\

I
nodes (=P)

Vv

Linear v.s. Non-linear Scaleup

Batch
Scaleup

N

Ideal

-—_
- o
-
~

I I I I
nodes (=P) AND data size

Vv

Why Sub-linear Speedup and
Scaleup?

« Startup cost
— Cost of starting an operation on many nodes

e |Interference
— Contention for resources between nodes

e Skew

— Slowest node becomes the bottleneck

CSEP 544 - Fall 2017

S7

Architectures for Parallel
Databases

» Shared memory

 Shared disk

» Shared nothing

Shared Memory

 Nodes share both RAM and disk
 Dozens to hundreds of processors

} Example: SQL Server runs on a

4 : :
single machine and can leverage

many threads to speed up a query
* check your HW3 query plans

Interconnection
Network

Global Shared

Memory . Easy to use and program

 Expensive to scale
— last remaining cash cows in the

E j [j hardware industry

CSEP 544 - Fall 2017 59

Shared Disk

* All nodes access the same disks
* Found in the largest "single-box"
(non-cluster) multiprocessors

Example: Oracle

M M M

‘ {/
. No need to worry about shared
{ Interconnection J memory

Network

« Hard to scale: existing
deployments typically have fewer

Ei Eifj than 10 machines

CSEP 544 - Fall 2017 60

Shared Nothing

[Inte

rconnection
Network

|

M

M M

o

o

Cluster of commodity machines on
high-speed network

« (Called "clusters" or "blade servers”

 Each machine has its own memory
and disk: lowest contention.

Example: Google

Because all machines today have many
cores and many disks, shared-nothing
systems typically run many "nodes” on
a single physical machine.

« Easy to maintain and scale
* Most difficult to administer and tune.

[We discuss only Shared Nothing in Class] 61

¥
_— <
EERereere g erel |)

Parallel Data Processing @ 1990

CSEP 544 - Fall 2017

62

Approaches to

Parallel Query Evaluation - . _

* Inter-query parallelism
— Transaction per node
— Good for transactional workloads

* Inter-operator parallelism
— Operator per node
— Good for analytical workloads

* |ntra-operator parallelism

— Operator on multiple nodes
— Good for both?

id=cid

[We study only intra-operator parallelism:

most soalable}

Single Node Query Processing

(Review)
Given relations R(A,B) and S(B, C), no indexes:

« Selection: 0a-123(R)
— Scan file R, selectrecords with A=123

* Group-by: Yasume)(R)
— Scan file R, insertinto a hash table using A as key
— When a new key is equal to an existing one, add B to the value

- Join: R™S
— Scanfile S, insertinto a hash table using B as key
— Scanfile R, probe the hash table using B

Distributed Query Processing

» Data is horizontally partitioned on many
servers

» Operators may require data reshuffling

* Firstlet's discuss how to distribute data
across multiple nodes / servers

Data:

Horizontal Data Partitioning

Servers:

=
| P

CSEP 544 - Fall 2017

66

Data:

Horizontal Data Partitioning

Servers:

J \

> Which tuples
go to what server?

CSEP 544 - Fall 2017

67

Horizontal Data Partitioning

* Block Partition:
— Partition tuples arbitrarily s.t. size(R¢)= ... = size(Rp)

« Hash partitioned on attribute A:
— Tuple t goes to chunk i, where i = h(t.A) mod P + 1
— Recall: calling hash fn’s is free in this class

 Range partitioned on attribute A:
— Partition the range of Ainto -© =vy<v,;<...<vp=
— Tuple t goes to chunk i, if v, < tA<v,

Uniform Data v.s. Skewed Data

+ Let R(K,A,B,C); which of the following
partition methods may result in skewed
partitions?

* Block partition Uniform
» Hash-partition Assuming good
Uniform hash function
_ On the key K E.g. when all records

. have the same value
— On the attribute A May be skewed of the attribute A, then
all records end up in the

Keep this in mind in the next few slides |

Parallel Execution of RA Operators:
Grouping

Data: R(K,A,B,C)
Query: Yasum(c)(R)

How to compute group by if:

 Ris hash-partitioned on A ?

 Ris block-partitioned ?

* Ris hash-partitioned on K ?

CSEP 544 - Fall 2017 70

Parallel Execution of RA Operators:
Grouping

Data: R(K,A,B,C)

Query: Ya sumc)(R)
* R is block-partitioned or hash-partitioned on K

Reshuffle R
on attribute A

Run grouping R, R, Rp’
on reshuffled
partitions

R, R, oL Rp

CSEP 544 - Fall 2017 71

Speedup and Scaleup

« Consider:
— Query: VA,sum(C)(R)
— Runtime: only consider |/O costs

* |f we double the number of nodes P, what s
the new running time?

— Half (each server holds 72z as many chunks)

* |f we double both P and the size of R, what is
the new running time?

— Same (each server holds the same # of chunks)

CSEP 544 - Fall 2017 72

Parallel Execution of RA Operators:
Partitioned Hash-Join

. Data: R(K1, A, B), S(K2, B, C)

- Query: R(K1, A, B) = S(K2, @C

— Initially, both R and S are partitioned on K1 and K2

Reshuffle R on R.B
and Son S.B
L R,»], 8’1 R’z, 8,2 . e . R’p, S,p
Each server computes
the join locally

CSEP 544 - Fall 2017

R1, S1 R2, 82 . e Rp, Sp

Data: R(K1,A, B), S(K2, B, C) _ _
auery: RK1.AB)~skz2.c) Parallel Join lllustration

R1 S1 IQ S2

K1 B K2 B K1 B K2 B
Partition 1 20 101 |50 3 20 201 |20

2 50 102 |50 4 20 202 |50

M1 M2

Shuffle on B

R1’ S1’ R2’ S2’

KA1 B K2 B K1 B K2 B
Local 1 20 [pq|201 |20 2 50 |D>M[101 |50
Join 3 20 102 |50

4 20 M1 M2 202 |50

CSEP 544 - Fall 2017 74

Data: R(A, B), S(C, D)
Query: R(A,B) >z S(C,D)

Broadcast Join

Broadcast S
Reshuffle R on R.B

[Why would you want to do this?]

CSEP 544 - Fall 2017 75

A Challenge

 Have P number of servers (say P=27 or P=1000)

 How do we compute this Datalog query in one step?

© Q(y.2) - REY), SE2), TEx)

CSEP 544 - Fall 2017 76

A Challenge

 Have P number of servers (say P=27 or P=1000)

 How do we compute this Datalog query in one step?

Q(x,y,z) = R(x,y),S(y.z),T(z.X)

« Organize the P servers into a cube with side P”
— Thus, each server is uniquely identified by (i,j,k), i,j,ksP”*

77

HyperCube Join

Have P number of servers (say P=27 or P=1000)

How do we compute this Datalog query in one step?
Q(x,y.2) = R(x.y),5(y.2). T(z.x) R (12
Organize the P servers into a cube with side P” S (2, %)

— Thus, each server is uniquely identified by (i,j,k), i,j,k<P’ 1 (3 \2/

Step 1: |2 [, L v
— Each serversends Iﬂ__Ly) to all servers (h(x),h(y),”)
— Each serversends S(y,z) to all servers (*,h(y),h(z))
— Each serversends T(x,z) to all servers (h(x),*,h(z))

CSEP 544 - Fall 2017

HyperCube Join

Have P number of servers (say P=27 or P=1000)
How do we compute this Datalog query in one step?
Q(x,y,z) = R(x,y),S(y,2),T(z,x)

Organize the P servers into a cube with side P”:

— Thus, each server is uniquely identified by (i,j,k), i,j,ksP”

Step 1:

— Each server sends R(x,y) to all servers (h(x),h(y),*)
— Each server sends S(y,z) to all servers (*,h(y),h(z))
— Each server sends T(x,z) to all servers (h(x),*,h(z))

Final output:
— Each server (i,j,k) computes the query R(x,y),S(y,z),T(z,x) locally

]

CSEP 544 - Fall 2017 79

HyperCube Join

Have P number of servers (say P=27 or P=1000)
How do we compute this Datalog query in one step?
Q(x,y,z) = R(x,y),S(y,2),T(z,x)

Organize the P servers into a cube with side P”:

— Thus, each server is uniquely identified by (i,j,k), i,j,ksP”

Step 1:

— Each server sends R(x,y) to all servers (h(x),h(y),*)
— Each server sends S(y,z) to all servers (*,h(y),h(z))
— Each server sends T(x,z) to all servers (h(x),*,h(z))

Final output:
— Each server (i,j,k) computes the query R(x,y),S(y,z),T(z,x) locally

Analysis: each tuple R(x,y) is replicated at most P* times
CSEP 544 - Fall 2017 80

Q(x,y,2) = R(x,y),S(y,2), T(z,X)

Hypercube join

R1 S1 T1 R2 S2 T2 R3 S3 T3
Xy lly [z ||z X Xy lly [z ||z X Xy lly [z ||z X
Partiton| 1 {2 {14 |7 (|1 [1 |54 ||2 |3 ||9 |5 |lls|6||6 |7 ||7 |1
312114 (9|3 |3 |l716!l219 (|3 |1]|llo]|6]l6 |9 |3 |1
P1 P2 P3
Shuffle
R1’ S1’ T1 R2’ S2’ v T2 R3’ S3’ T3
X |y ||y [z X X |y lly |z [|z [X X |y lly |z [|z [X
hgi‘;a' 1120217z 07 11112121313 [1]l3]2]l2 |3 3

P1: (1,2, 7)

P2:(1, 2, 3)

P3: (3, 2, 3)

Q(x,y,z) = R(x,¥),S(y,z),T(z,x) Hypercube join

R1 S1 T1 R2 S2 12 R3 S3 T3

Xy lly [z ||z X Xy lly [z ||z X Xy lly [z ||z X
Partiion| 1 |2 (14 (7 (|1 |1 |5 |4 1(|2 |3 ||9 |5 |8 |66 |7 ||[7 |1
312104 |9 |3 |3 |l7]6]2 |93 |1]l9o]6]/6 |9 |3 |1

P1 P2 P3

Shuffle

What if
h(x): h(1) = h(3)?

CSEP 544 - Fall 2017 82

Q(x,y,2) = R(x,y),S(y,2), T(z,X)

Hypercube join

R1 S1 T1 R2 S2 T2 R3 S3 T3
X y y Z Z X X y y Z Z X X y y Z Z X
Partiton| 1 {2 {14 |7 (|1 [1 |54 ||2 |3 ||9 |5 |lls|6||6 |7 ||7 |1
312114 (9|3 |3 |l716!l219 (|3 |1]|llo]|6]l6 |9 |3 |1
P1 P2 P3
Shuffle
What if
h(x): h(1) = h(3)? |
R1’ S1’ T1 R2’ S2’ T2 R3’ S3’ T3
L Ix Yy IlY [Z [z |X X |y lly |z [|z [X X |y lly |z [|z [X
OoCa
Join 1112012 17 |7 |1 112213131 l112]l2 |3 3
3|2 3 |2
P1:(1, 2, 7) P2:(1, 2, 3) P3:(3, 2, 3)

Order(oid, item, date), Line(item, ...)

Putting it Together:
Example Parallel Query Plan

Find all orders from today, along with the items ordered

SELECT *
FROM Order o, Line i

WHERE o.item = i.item -

AND o.date today()

o.item = i.item

date = today()

scan
ltem i <L>Order o)

CSEP 544 - Fall 2017 84

Order(oid, item, date), Line(item, ...)

Example Parallel

Query Plan

Node

1

hash

h(o.item)

Node

date=today()

SCan

Ordero

1

Node 2

——

hash

h(o.item)

date=today()

scan

Order o

Node 2

~

o.item=i.item

date = today()

(scan) Ordero /

Node 3

hash

h(o.item)

date=today()

scan

Ordero

Node 3

Order(oid, item, date), Line(item, ...)

Example Parallel
Query Plan

Node 1 Node 2
hash hash
h(i.item) h(i.item)
@tem i @tem i

Node 1 Node 2

/
@ o.item=i.item
@ ltemii

O Ordero

~

date = today()

)

Node 3

ha

sh

ltem i

Node 3

h(i.item)

Scan

Order(oid, item, date), Line(item, ...)

Example Parallel Query Plan

o.item = i.item o.item = i.item o.item = i.item

Node 1 Node 2 Node 3

/

contains all orders and all
lines where hash(item) = 3

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 1

CSEP 544 - Fall 2017 87

The MapReduce
Programming Paradigm

CSEP 544 - Fall 2017

88

Parallel Data Processing @ 2000

g Google

CSEP 544 - Fall 2017 89

Optional Reading

 Original paper:
https://www.usenix.org/legacy/events/osdi04/t
ech/dean.html

* Rebuttal to a comparison with parallel DBs:
http://dl.acm.org/citation.cfm”doid=1629175.1
629198

« Chapter 2 (Sections 1,2,3 only) of Mining of
Massive Datasets, by Rajaraman and Uliman
http://i.stanford.edu/~ullman/mmds.htm|

CSEP 544 - Fall 2017 90

Motivation

We learned how to parallelize relational database
systems

While useful, it might incur too much overhead if our
guery plans consist of simple operations

MapReduce is a programming model for such
computation

First, let's study how data is stored in such systems

CSEP 544 - Fall 2017 91

Distributed File System (DFS)

For very large files: TBs, PBs

Each file is partitioned into chunks, typically
64MB

Each chunk is replicated several times (=23),
on different racks, for fault tolerance

Implementations:
— Google’s DFS: GFS, proprietary
— Hadoop’s DFS: HDFS, open source

CSEP 544 - Fall 2017 92

MapReduce

Google: paper published 2004
Free variant: Hadoop

MapReduce = high-level programming model
and implementation for large-scale parallel
data processing

CSEP 544 - Fall 2017 93

Typical Problems Solved by MR

Read a lot of data

Map: extract something you care about from each
record

Shuffle and Sort
Reduce: aggregate, summarize, filter, transform

Write the results Paradigm stays the same,

change map and reduce
functions for different problems

CSEP 544 - Fall 2017 94
slide source: Jeff Dean

Data Model

Files!
A file = a bag of (key, value) pairs
A MapReduce program:

* |Input: a bag of (inputkey, value) pairs
* Qutput: a bag of (outputkey, value) pairs

CSEP 544 - Fall 2017 95

Step 1: the MAP Phase

User provides the MAP-function:
* Input: (input key, value)
 Quput: bag of (intermediate key, value)

e

System applies the map function in parallel to all
(input key, value) pairs in the input file

CSEP 544 - Fall 2017

96

Step 2: the REDUCE Phase

User provides the REDUCE function:
* Input: (intermediate key, bag of values)

* Qutput: bag of output (values)

System groups all pairs with the same intermediate
key, and passes the bag of values to the REDUCE

function

CSEP 544 - Fall 2017 97

Example

« Counting the number of occurrences of each
word in a large collection of documents

« Each Document

— The key = document id (did)
— The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
Emitintermediate(w, “17);

reduce(String key, Iterator values):
// key: a word
/[values: a list of counts
int result = 0;
for each v in values:
result += Parselnt(v);
Emit(AsString(result));

MAP REDUCE

— o]

(did1,v1)|— w2

Shuffle

—> | (W2,1)

(did3,v3) | —

> | (w3,1) w1, (1,1,1,...,1)) —> | (w1, 25)
w2, (1,1,...)) —>| (w2, 77)
(did2,V2) _{@ (W3,(1...)) ——> | (w3, 12)

CSEP 544 - Fall 2017 99

Jobs v.s. Tasks

A MapReduce Job

— One single “query”, e.g. count the words in all docs
— More complex queries may consists of multiple jobs

A Map Task, or a Reduce Task

— A group of instantiations of the map-, or reduce-
function, which are scheduled on a single worker

CSEP 544 - Fall 2017 100

Workers

A worker is a process that executes one task
at a time

« Typically there is one worker per processor,
hence 4 or 8 per node

CSEP 544 - Fall 2017 101

Fault Tolerance

 |f one server fails once every year...
... then a job with 10,000 servers will fail in
less than one hour

 MapReduce handles fault tolerance by writing
intermediate files to disk:

— Mappers write file to local disk

— Reducers read the files (=reshuffling); if the server
fails, the reduce task is restarted on another

server
CSEP 544 - Fall 2017 102

MAP Tasks

/

b

(did1,v1)|—

[

(did2,v2)|—

(w1,1)

(w2,1)

(w3,1)

(w1,1)

(W2, 1)//

(did3,v3) | —

REDUCE Tasks
Shuffle /

e A

> | (w1, (1,1,1,...,1)) —> | (w1, 25)

w2, (1,1,...)) —> | w2, 77)

w3,(1...)) —> | (w3, 12)
X ~
- N\
—V
N
_ _J

CSEP 544 - Fall 20171 103

MapReduce Execution Detalls

i i Output to disk,
\ I replicated in cluster

Reduce Task

Intermediate data

goes to local disk:
M x R files (why?)

&
Data not
necessarily local

File system: GFS
or HDFS

(Shuffle)

CSEP 544 - Fall 2017

MapReduce Phases

Map Task \ Reduce Task

{P1} {P2} {P 3} {P 4} {P 5}

Split Record Reader—#Map —!Combine , ——»‘ Copy i—'M—»| Reduce \

file | T
Local storag)el\

CSEP 544 - Fall 2017 105

Implementation

There is one master node
Master partitions input file into M splits, by key

Master assigns workers (=servers) to the M map
tasks, keeps track of their progress

Workers write their output to local disk, partition
iInto R regions

Master assigns workers to the R reduce tasks

Reduce workers read regions from the map
workers’ local disks

CSEP 544 - Fall 2017 106

Interesting Implementation Detalls
Worker failure:
« Master pings workers periodically,

 |f down then reassigns the task to another
worker

CSEP 544 - Fall 2017 107

Interesting Implementation Detalls

Backup tasks:

« Straggler = a machine that takes unusually long
time to complete one of the last tasks. E.g.:

— Bad disk forces frequent correctable errors (30MB/s -
1MB/s)

— The cluster scheduler has scheduled other tasks on
that machine

« Stragglers are a main reason for slowdown

« Solution: pre-emptive backup execution of the
last few remaining in-progress tasks

CSEP 544 - Fall 2017 108

Straggler Example

. Killed
Worker 1 | #
I
Backup execution |
I
Worker2 [d

I
Straggler |
I

/ | Killed
Worker 3 4

time |

CSEP 544 - Fall 2017 109

