
Database Management Systems
CSEP 544

Lecture 6:
Query Execution and Optimization

Parallel Data processing

1CSEP 544 - Fall 2017

Announcements
• HW5 due today

• HW6 released
– Please start early! You need to apply for credits from Amazon

• Two lectures this week (tonight and Thurs)
– Query optimization
– Parallel data processing
– Conceptual design

• No reading assignment for conceptual design

• OH change this week to Thursday 2

Query Execution and Optimization

CSEP 544 - Fall 2017 3

4

Class overview
• Data models

– Relational: SQL, RA, and Datalog
– NoSQL: SQL++

• RDBMS internals
– Query processing and optimization
– Physical design

• Parallel query processing
– Spark and Hadoop

• Conceptual design
– E/R diagrams
– Schema normalization

• Transactions
– Locking and schedules
– Writing DB applications

CSEP 544 - Fall 2017

Data models

Using
DBMS

Query
Processing

Query Evaluation Steps Review

5

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan (RA)

Physical
plan

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator child) {
this.p = p; this.child = child;

}
Tuple next () {

boolean found = false;
Tuple r = null;
while (!found) {

r = child.next();
if (r == null) break;
found = p(r);

}
return r;

}
void close () { child.close(); }

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

7

Operator q = parse(“SELECT ...”);
q = optimize(q);

q.open();
while (true) {

Tuple t = q.next();
if (t == null) break;
else printOnScreen(t);

}
q.close();

Query plan execution
interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

Pipelining

CSEP 544 - Fall 2017 8

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Recall: Physical Data
Independence

• Applications are insulated from changes in
physical storage details

• SQL and relational algebra facilitate physical
data independence
– Both languages input and output relations
– Can choose different implementations for operators

CSEP 544 - Fall 2017 9

10

Class overview
• Data models

– Relational: SQL, RA, and Datalog
– NoSQL: SQL++

• RDBMS internals
– Query processing and optimization
– Physical design

• Parallel query processing
– Spark and Hadoop

• Conceptual design
– E/R diagrams
– Schema normalization

• Transactions
– Locking and schedules
– Writing DB applications

CSEP 544 - Fall 2017

Data models

Using
DBMS

Query
Processing

11

Hash table example

10

20

50

200

220

240

420

800

… …

… …

CSEP 544 - Fall 2017

Data File Student

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

10 Tom Hanks
20 Amy Hanks

50 … …
200 …

220
240

420
800

Index Student_ID on Student.ID

Index File
(in memory)

Data file
(on disk)

12

B+ Tree Index by Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 <= 80

20 < 40 <= 60

30 < 40 <= 40

CSEP 544 - Fall 2017

Basic Index Selection Guidelines

• Consider queries in workload in order of importance

• Consider relations accessed by query
– No point indexing other relations

• Look at WHERE clause for possible search key

• Try to choose indexes that speed-up multiple queries

CSEP 544 - Fall 2017 13

Cost of Reading
Data From Disk

CSEP 544 - Fall 2017 14

Cost Parameters
• Cost = I/O + CPU + Network BW

– We will focus on I/O in this class
• Parameters:

– B(R) = # of blocks (i.e., pages) for relation R
– T(R) = # of tuples in relation R
– V(R, a) = # of distinct values of attribute a

• When a is a key, V(R,a) = T(R)
• When a is not a key, V(R,a) can be anything <= T(R)

• Where do these values come from?
– DBMS collects statistics about data on disk

CSEP 544 - Fall 2017 15

Selectivity Factors for Conditions

• A = c /* σA=c(R) */
– Selectivity = 1/V(R,A)

• A < c /* σA<c(R)*/
– Selectivity = (c - min(R, A))/(max(R,A) - min(R,A))

• c1 < A < c2 /* σc1<A<c2(R)*/
– Selectivity = (c2 – c1)/(max(R,A) - min(R,A))

CSEP 544 - Fall 2017 16

Cost of Executing Operators
(Focus on Joins)

CSEP 544 - Fall 2017 17

Join Algorithms

• Hash join

• Nested loop join

• Sort-merge join

CSEP 544 - Fall 2017 18

Hash Join

Hash join: R ⋈ S
• Scan R, build buckets in main memory
• Then scan S and join
• Cost: B(R) + B(S)
• Which relation to build the hash table on?

• One-pass algorithm when B(R) ≤ M
– M = number of memory pages available

CSEP 544 - Fall 2017 19

Nested Loop Joins
• Tuple-based nested loop R ⋈ S
• R is the outer relation, S is the inner relation

• Cost: B(R) + T(R) B(S)
• Multiple-pass since S is read many times

CSEP 544 - Fall 2017 20

What is the Cost?

for each tuple t1 in R do
for each tuple t2 in S do

if t1 and t2 join then output (t1,t2)

Block-Nested-Loop Refinement

• Cost: B(R) + B(R)B(S)/(M-1)

CSEP 544 - Fall 2017 21

What is the Cost?

for each group of M-1 pages r in R do
for each page of tuples s in S do

for all pairs of tuples t1 in r, t2 in s
if t1 and t2 join then output (t1,t2)

Sort-Merge Join

Sort-merge join: R ⋈ S
• Scan R and sort in main memory
• Scan S and sort in main memory
• Merge R and S

• Cost: B(R) + B(S)
• One pass algorithm when B(S) + B(R) <= M
• Typically, this is NOT a one pass algorithm

CSEP 544 - Fall 2017 22

Index Nested Loop Join
R ⋈S
• Assume S has an index on the join attribute
• Iterate over R, for each tuple fetch

corresponding tuple(s) from S

• Cost:
– If index on S is clustered:

B(R) + T(R) * (B(S) * 1/V(S,a))
– If index on S is unclustered:

B(R) + T(R) * (T(S) * 1/V(S,a))
CSEP 544 - Fall 2017 23

Cost of Query Plans

CSEP 544 - Fall 2017 24

Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 10000

Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 10000

T < 1

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5
Very wrong!

Why?

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5
Very wrong!

Why?

T = 4

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5
Very wrong!

Why?

T = 4

Different
estimate L

Physical Plan 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 10000

T < 1

Block nested loop join

Scan
Scan

Total cost: 100/10 * 100 = 1000

Physical Plan 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 10000

T < 1

Block nested loop join

Scan
Scan

Total cost: 100+100*100/10 = 1100

Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost: 54

Main memory join

T= 50

Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost: 54

Main memory join

T= 50

Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost: 54

Main memory join

T= 50

Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’∧sstate=‘WA’

Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’∧sstate=‘WA’

Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’∧sstate=‘WA’

Query Optimizer
lowestCost = ∞;
bestPlan = null;
for (p : physicalPlan(q)) {
if (cost(p) < lowestCost)
bestPlan = p;

}
return p;

41

• This never works
• Way too many plans

to consider!

• Typical query optimizer:
• Construct logical plan p
• Apply heuristic rules to transform p

(e.g., do selection as early as possible)
• Go through each operator op in bottom up manner
• Choose an implementation for op to construct the

physical plan
(why does this not always return the best plan?)

The System R Optimizer
A Case Study

CSEP 544 - Fall 2017 42

Two Types of Plan
Enumeration Algorithms

• Dynamic programming
– Based on System R (aka Selinger) style optimizer [1979]
– Limited to joins: join reordering algorithm
– Bottom-up

• Rule-based algorithm (will not discuss)
– Database of rules (=algebraic laws)
– Usually: dynamic programming
– Usually: top-down

CSEP 544 - Fall 2017

CSEP 544 - Fall 2017

System R Search Space

• Only left-deep plans
– Enable dynamic programming for enumeration
– Facilitate tuple pipelining from outer relation

• Consider plans with all “interesting orders”
• Perform cross-products after all other joins

(heuristic)
• Only consider nested loop & sort-merge joins
• Consider both file scan and indexes
• Try to evaluate predicates early

CSEP 544 - Fall 2017

Plan Enumeration Algorithm

• Idea: use dynamic programming
• For each subset of {R1, …, Rn}, compute the

best plan for that subset
• In increasing order of set cardinality:

– Step 1: for {R1}, {R2}, …, {Rn}
– Step 2: for {R1,R2}, {R1,R3}, …, {Rn-1, Rn}
– …
– Step n: for {R1, …, Rn}

• It is a bottom-up strategy
• A subset of {R1, …, Rn} is also called a subquery

CSEP 544 - Fall 2017

Dynamic Programming Algo.

• For each subquery Q ⊆{R1, …, Rn} compute
the following:
– Size(Q)
– A best plan for Q: Plan(Q)
– The cost of that plan: Cost(Q)

CSEP 544 - Fall 2017

Dynamic Programming Algo.

• Step 1: Enumerate all single-relation plans

– Consider selections on attributes of relation
– Consider all possible access paths
– Consider attributes that are not needed

– Compute cost for each plan

– Keep cheapest plan per “interesting” output order

CSEP 544 - Fall 2017

Dynamic Programming Algo.

• Step 2: Generate all two-relation plans

– For each each single-relation plan from step 1
– Consider that plan as outer relation
– Consider every other relation as inner relation

– Compute cost for each plan

– Keep cheapest plan per “interesting” output order

CSEP 544 - Fall 2017

Dynamic Programming Algo.
• Step 3: Generate all three-relation plans

– For each each two-relation plan from step 2
– Consider that plan as outer relation
– Consider every other relation as inner relation
– Compute cost for each plan
– Keep cheapest plan per “interesting” output order

• Steps 4 through n: repeat until plan contains
all the relations in the query

Query Optimizer Summary

• Input: A logical query plan
• Output: A good physical query plan
• Basic query optimization algorithm

– Enumerate alternative plans (logical and physical)
– Compute estimated cost of each plan
– Choose plan with lowest cost

• This is called cost-based optimization

CSEP 544 - Fall 2017 50

Parallel Data Processing

CSEP 544 - Fall 2017 51

52

Class overview
• Data models

– Relational: SQL, RA, and Datalog
– NoSQL: SQL++

• RDMBS internals
– Query processing and optimization
– Physical design

• Parallel query processing
– Spark and Hadoop

• Conceptual design
– E/R diagrams
– Schema normalization

• Transactions
– Locking and schedules
– Writing DB applications

CSEP 544 - Fall 2017

Data models

Using
DBMS

Query
Processing

Why compute in parallel?
• Multi-cores:

– Most processors have multiple cores
– This trend will likely increase in the future

• Big data: too large to fit in main memory
– Distributed query processing on 100x-1000x

servers
– Widely available now using cloud services
– Recall HW3 and HW6

CSEP 544 - Fall 2017 53

Performance Metrics
for Parallel DBMSs

Nodes = processors, computers

• Speedup:
– More nodes, same data è higher speed

• Scaleup:
– More nodes, more data è same speed

CSEP 544 - Fall 2017 54

Linear v.s. Non-linear Speedup

CSEP 544 - Fall 2017

nodes (=P)

Speedup

55

×1 ×5 ×10 ×15

Linear v.s. Non-linear Scaleup

nodes (=P) AND data size

Batch
Scaleup

×1 ×5 ×10 ×15

CSEP 544 - Fall 2017 56

Ideal

Why Sub-linear Speedup and
Scaleup?

• Startup cost
– Cost of starting an operation on many nodes

• Interference
– Contention for resources between nodes

• Skew
– Slowest node becomes the bottleneck

CSEP 544 - Fall 2017 57

Architectures for Parallel
Databases

• Shared memory

• Shared disk

• Shared nothing

CSEP 544 - Fall 2017 58

Shared Memory
• Nodes share both RAM and disk
• Dozens to hundreds of processors

Example: SQL Server runs on a
single machine and can leverage
many threads to speed up a query
• check your HW3 query plans

• Easy to use and program
• Expensive to scale

– last remaining cash cows in the
hardware industry

CSEP 544 - Fall 2017 59

Interconnection
Network

P P P

Global Shared
Memory

D D D

Shared Disk
• All nodes access the same disks
• Found in the largest "single-box"

(non-cluster) multiprocessors

Example: Oracle

• No need to worry about shared
memory

• Hard to scale: existing
deployments typically have fewer
than 10 machines

CSEP 544 - Fall 2017 60

Interconnection
Network

P P P

D D D

M M M

Shared Nothing
• Cluster of commodity machines on

high-speed network
• Called "clusters" or "blade servers”
• Each machine has its own memory

and disk: lowest contention.

Example: Google

Because all machines today have many
cores and many disks, shared-nothing
systems typically run many "nodes” on
a single physical machine.

• Easy to maintain and scale
• Most difficult to administer and tune.

61CSEP 544 - Fall 2017We discuss only Shared Nothing in class

Interconnection
Network

P P P

D D D

M M M

Parallel Data Processing @ 1990

CSEP 544 - Fall 2017 62

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Approaches to
Parallel Query Evaluation

• Inter-query parallelism
– Transaction per node
– Good for transactional workloads

• Inter-operator parallelism
– Operator per node
– Good for analytical workloads

• Intra-operator parallelism
– Operator on multiple nodes
– Good for both?

CSEP 544 - Fall 2017We study only intra-operator parallelism: most scalable

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

63

Single Node Query Processing
(Review)

Given relations R(A,B) and S(B, C), no indexes:

• Selection: σA=123(R)
– Scan file R, select records with A=123

• Group-by: γA,sum(B)(R)
– Scan file R, insert into a hash table using A as key
– When a new key is equal to an existing one, add B to the value

• Join: R ⋈ S
– Scan file S, insert into a hash table using B as key
– Scan file R, probe the hash table using B

CSEP 544 - Fall 2017 64

Distributed Query Processing

• Data is horizontally partitioned on many
servers

• Operators may require data reshuffling

• First let’s discuss how to distribute data
across multiple nodes / servers

CSEP 544 - Fall 2017 65

Horizontal Data Partitioning

CSEP 544 - Fall 2017 66

1 2 P . . .

Data: Servers:

K A B
… …

Horizontal Data Partitioning

CSEP 544 - Fall 2017 67

K A B
… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Which tuples
go to what server?

Horizontal Data Partitioning
• Block Partition:

– Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)

• Hash partitioned on attribute A:
– Tuple t goes to chunk i, where i = h(t.A) mod P + 1
– Recall: calling hash fn’s is free in this class

• Range partitioned on attribute A:
– Partition the range of A into -∞ = v0 < v1 < … < vP = ∞
– Tuple t goes to chunk i, if vi-1 < t.A < vi

68CSEP 544 - Fall 2017

Uniform Data v.s. Skewed Data
• Let R(K,A,B,C); which of the following

partition methods may result in skewed
partitions?

• Block partition

• Hash-partition
– On the key K
– On the attribute A

Uniform

Uniform

May be skewed

Assuming good
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition

CSEP 544 - Fall 2017 69Keep this in mind in the next few slides

Parallel Execution of RA Operators:
Grouping

Data: R(K,A,B,C)
Query: γA,sum(C)(R)

How to compute group by if:

• R is hash-partitioned on A ?

• R is block-partitioned ?

• R is hash-partitioned on K ?

70CSEP 544 - Fall 2017

Parallel Execution of RA Operators:
Grouping

Data: R(K,A,B,C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

71

R1 R2 RP . . .

R1’ R2’ RP’
. . .

Reshuffle R
on attribute A

CSEP 544 - Fall 2017

Run grouping
on reshuffled

partitions

Speedup and Scaleup

• Consider:
– Query: γA,sum(C)(R)
– Runtime: only consider I/O costs

• If we double the number of nodes P, what is
the new running time?
– Half (each server holds ½ as many chunks)

• If we double both P and the size of R, what is
the new running time?
– Same (each server holds the same # of chunks)

CSEP 544 - Fall 2017 72

Parallel Execution of RA Operators:
Partitioned Hash-Join

• Data: R(K1, A, B), S(K2, B, C)
• Query: R(K1, A, B) ⋈ S(K2, B, C)

– Initially, both R and S are partitioned on K1 and K2

73

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally

CSEP 544 - Fall 2017

Data: R(K1,A, B), S(K2, B, C)
Query: R(K1,A,B) ⋈ S(K2,B,C)

CSEP 544 - Fall 2017 74

K1 B
1 20
2 50

K2 B
101 50
102 50

K1 B
3 20
4 20

K2 B
201 20
202 50

R1 S1 R2 S2

K1 B
1 20
3 20
4 20

K2 B
201 20

K1 B
2 50

K2 B
101 50
102 50
202 50

R1’ S1’ R2’ S2’

M1 M2

M1 M2

Shuffle on B

⋈ ⋈

Partition

Local
Join

Parallel Join Illustration

CSEP 544 - Fall 2017 75

Data: R(A, B), S(C, D)
Query: R(A,B) ⋈B=C S(C,D)

Broadcast Join

R1 R2 RP. . .

R’1, S R’2, S R’P, S. . .

Reshuffle R on R.B

Broadcast S

S

Why would you want to do this?

A Challenge
• Have P number of servers (say P=27 or P=1000)

• How do we compute this Datalog query in one step?

• Q(x,y,z) :- R(x,y), S(y,z), T(z,x)

CSEP 544 - Fall 2017 76

A Challenge
• Have P number of servers (say P=27 or P=1000)
• How do we compute this Datalog query in one step?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)
• Organize the P servers into a cube with side P⅓

– Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓

i

j
k

(i,j,k)

P⅓1
77

HyperCube Join
• Have P number of servers (say P=27 or P=1000)
• How do we compute this Datalog query in one step?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)
• Organize the P servers into a cube with side P⅓

– Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓

• Step 1:
– Each server sends R(x,y) to all servers (h(x),h(y),*)
– Each server sends S(y,z) to all servers (*,h(y),h(z))
– Each server sends T(x,z) to all servers (h(x),*,h(z))

CSEP 544 - Fall 2017 78

i

j

R(x,y)

HyperCube Join
• Have P number of servers (say P=27 or P=1000)
• How do we compute this Datalog query in one step?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)
• Organize the P servers into a cube with side P⅓

– Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓

• Step 1:
– Each server sends R(x,y) to all servers (h(x),h(y),*)
– Each server sends S(y,z) to all servers (*,h(y),h(z))
– Each server sends T(x,z) to all servers (h(x),*,h(z))

• Final output:
– Each server (i,j,k) computes the query R(x,y),S(y,z),T(z,x) locally

CSEP 544 - Fall 2017 79

i

j

HyperCube Join
• Have P number of servers (say P=27 or P=1000)
• How do we compute this Datalog query in one step?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)
• Organize the P servers into a cube with side P⅓

– Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓

• Step 1:
– Each server sends R(x,y) to all servers (h(x),h(y),*)
– Each server sends S(y,z) to all servers (*,h(y),h(z))
– Each server sends T(x,z) to all servers (h(x),*,h(z))

• Final output:
– Each server (i,j,k) computes the query R(x,y),S(y,z),T(z,x) locally

• Analysis: each tuple R(x,y) is replicated at most P⅓ times

i

j

CSEP 544 - Fall 2017 80

Q(x,y,z) = R(x,y),S(y,z),T(z,x)

x y
1 2
3 2

y z
4 7
4 9

R1 S1

P1

Shuffle

Partition

Local
Join

z x
1 1
3 3

T1
x y
5 4
7 6

y z
2 3
2 9

R2 S2 T2
x y
8 6
9 6

y z
6 7
6 9

R3 S3 T3

P2 P3

x y
1 2

y z
2 7

R1’ S1’

P1:	(1,	2,	7)

x y
1 2

y z
2 3

R2’ S2’
x y
3 2

y z
2 3

R3’ S3’

P2:	(1,	2,	3) P3:	(3,	2,	3)

z x
7 1

T1
z x
3 1

T2 T3

Hypercube join

z x
9 5
3 1

z x
7 1
3 1

z x
3 3

Q(x,y,z) = R(x,y),S(y,z),T(z,x)

x y
1 2
3 2

y z
4 7
4 9

R1 S1

P1

Shuffle

Partition
z x
1 1
3 3

T1
x y
5 4
7 6

y z
2 3
2 9

R2 S2 T2
x y
8 6
9 6

y z
6 7
6 9

R3 S3 T3

P2 P3

Hypercube join

z x
9 5
3 1

z x
7 1
3 1

What if
h(x): h(1) = h(3)?

CSEP 544 - Fall 2017 82

Q(x,y,z) = R(x,y),S(y,z),T(z,x)

x y
1 2
3 2

y z
4 7
4 9

R1 S1

P1

Shuffle

Partition

Local
Join

z x
1 1
3 3

T1
x y
5 4
7 6

y z
2 3
2 9

R2 S2 T2
x y
8 6
9 6

y z
6 7
6 9

R3 S3 T3

P2 P3

x y
1 2
3 2

y z
2 7

R1’ S1’

P1:	(1,	2,	7)

x y
1 2

y z
2 3

R2’ S2’
x y
1 2
3 2

y z
2 3

R3’ S3’

P2:	(1,	2,	3) P3:	(3,	2,	3)

z x
7 1

T1
z x
3 1

T2
z x
3 3

T3

Hypercube join

z x
9 5
3 1

z x
7 1
3 1

What if
h(x): h(1) = h(3)?

84

Putting it Together:
Example Parallel Query Plan

SELECT *
FROM Order o, Line i

WHERE o.item = i.item
AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order oItem i

Find all orders from today, along with the items ordered

CSEP 544 - Fall 2017

Order(oid, item, date), Line(item, …)

85

Node 1 Node 2 Node 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

Node 1 Node 2 Node 3

join

select

scan

date = today()

o.item = i.item

Order o

CSEP 544 - Fall 2017

Order(oid, item, date), Line(item, …)

Example Parallel
Query Plan

86

Example Parallel
Query Plan

Node 1 Node 2 Node 3

scan
Item i

Node 1 Node 2 Node 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Item i

CSEP 544 - Fall 2017

Order(oid, item, date), Line(item, …)

87

Example Parallel Query Plan

Node 1 Node 2 Node 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

CSEP 544 - Fall 2017

Order(oid, item, date), Line(item, …)

The MapReduce
Programming Paradigm

CSEP 544 - Fall 2017 88

Parallel Data Processing @ 2000

CSEP 544 - Fall 2017 89

Optional Reading

• Original paper:
https://www.usenix.org/legacy/events/osdi04/t
ech/dean.html

• Rebuttal to a comparison with parallel DBs:
http://dl.acm.org/citation.cfm?doid=1629175.1
629198

• Chapter 2 (Sections 1,2,3 only) of Mining of
Massive Datasets, by Rajaraman and Ullman
http://i.stanford.edu/~ullman/mmds.html

CSEP 544 - Fall 2017 90

Motivation
• We learned how to parallelize relational database

systems

• While useful, it might incur too much overhead if our
query plans consist of simple operations

• MapReduce is a programming model for such
computation

• First, let’s study how data is stored in such systems

91CSEP 544 - Fall 2017

Distributed File System (DFS)

• For very large files: TBs, PBs
• Each file is partitioned into chunks, typically

64MB
• Each chunk is replicated several times (≥3),

on different racks, for fault tolerance
• Implementations:

– Google’s DFS: GFS, proprietary
– Hadoop’s DFS: HDFS, open source

CSEP 544 - Fall 2017 92

MapReduce

• Google: paper published 2004
• Free variant: Hadoop

• MapReduce = high-level programming model
and implementation for large-scale parallel
data processing

93CSEP 544 - Fall 2017

Typical Problems Solved by MR

• Read a lot of data
• Map: extract something you care about from each

record
• Shuffle and Sort
• Reduce: aggregate, summarize, filter, transform
• Write the results

CSEP 544 - Fall 2017 94

Paradigm stays the same,
change map and reduce
functions for different problems

slide source: Jeff Dean

Data Model
Files!

A file = a bag of (key, value) pairs

A MapReduce program:
• Input: a bag of (inputkey, value) pairs
• Output: a bag of (outputkey, value) pairs

95CSEP 544 - Fall 2017

Step 1: the MAP Phase

User provides the MAP-function:
• Input: (input key, value)
• Ouput: bag of (intermediate key, value)

System applies the map function in parallel to all
(input key, value) pairs in the input file

96CSEP 544 - Fall 2017

Step 2: the REDUCE Phase

User provides the REDUCE function:
• Input: (intermediate key, bag of values)
• Output: bag of output (values)

System groups all pairs with the same intermediate
key, and passes the bag of values to the REDUCE
function

97CSEP 544 - Fall 2017

Example

• Counting the number of occurrences of each
word in a large collection of documents

• Each Document
– The key = document id (did)
– The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1”);
98

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));

MAP REDUCE

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

99CSEP 544 - Fall 2017

Jobs v.s. Tasks

• A MapReduce Job
– One single “query”, e.g. count the words in all docs
– More complex queries may consists of multiple jobs

• A Map Task, or a Reduce Task
– A group of instantiations of the map-, or reduce-

function, which are scheduled on a single worker

CSEP 544 - Fall 2017 100

Workers

• A worker is a process that executes one task
at a time

• Typically there is one worker per processor,
hence 4 or 8 per node

CSEP 544 - Fall 2017 101

Fault Tolerance

• If one server fails once every year…
... then a job with 10,000 servers will fail in
less than one hour

• MapReduce handles fault tolerance by writing
intermediate files to disk:
– Mappers write file to local disk
– Reducers read the files (=reshuffling); if the server

fails, the reduce task is restarted on another
server

CSEP 544 - Fall 2017 102

MAP Tasks REDUCE Tasks

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

CSEP 544 - Fall 2017 103

MapReduce Execution Details

CSEP 544 - Fall 2017 104

Map

(Shuffle)

Reduce

Data	not	
necessarily	 local

Intermediate	data
goes	to	local		disk:
M	× R	files	(why?)

Output	to	disk,	
replicated	in	cluster

File	system:	GFS	
or	HDFS

Task

Task

Local	storage`

MapReduce Phases

105CSEP 544 - Fall 2017

Implementation
• There is one master node
• Master partitions input file into M splits, by key
• Master assigns workers (=servers) to the M map

tasks, keeps track of their progress
• Workers write their output to local disk, partition

into R regions
• Master assigns workers to the R reduce tasks
• Reduce workers read regions from the map

workers’ local disks
106CSEP 544 - Fall 2017

Interesting Implementation Details

Worker failure:

• Master pings workers periodically,

• If down then reassigns the task to another
worker

CSEP 544 - Fall 2017 107

Interesting Implementation Details

Backup tasks:
• Straggler = a machine that takes unusually long

time to complete one of the last tasks. E.g.:
– Bad disk forces frequent correctable errors (30MB/s à

1MB/s)
– The cluster scheduler has scheduled other tasks on

that machine
• Stragglers are a main reason for slowdown
• Solution: pre-emptive backup execution of the

last few remaining in-progress tasks

CSEP 544 - Fall 2017 108

Straggler Example

CSEP 544 - Fall 2017 109

time

Worker 3

Worker 2

Worker 1

Straggler

Backup execution

Killed

Killed

