
Database Management Systems
CSEP 544

Lecture 5: SQL++
Query Execution and Optimization

1CSEP 544 - Fall 2017

Announcements
• Please use the correct tags for your HW / RA!

– We will start deducting points / not grade them.

• HW4 due today

• HW5 released
– Please start early!
– Use “hw5” / “asterixdb” tag to ask questions on Piazza

• Two lectures next week (Tues and Thurs)

• Today:
– AsterixDB / SQL++ (wrap up)
– RDBMS implementation and query optimization

2

A Case Study: AsterixDB

3CSEP 544 - Fall 2017

JSON - Overview

• JavaScript Object Notation = lightweight text-
based open standard designed for human-
readable data interchange. Interfaces in C,
C++, Java, Python, Perl, etc.

• The filename extension is .json.

CSEP 544 - Fall 2017 4We will emphasize JSon as semi-structured data

5

JSon Semantics: a Tree !

person

Mary

name address
name address

street no city

Maple 345 Seattle

John
Thai

phone

23456

{“person”:
[{“name”: “Mary”,

“address”:
{“street”:“Maple”,
“no”:345,
“city”: “Seattle”}},

{“name”: “John”,
“address”: “Thailand”,
“phone”:2345678}}

]
}

Mapping Relational Data to JSon

CSEP 544 - Fall 2017 6

name name namephone phone phone
“John” 3634 “Sue” “Dirk”6343 6363

Person

person

name phone
John 3634
Sue 6343
Dirk 6363

{“person”:
[{“name”: “John”, “phone”:3634},
{“name”: “Sue”, ”phone”:6343},
{“name”: “Dirk”, ”phone”:6383}
]

}

Asterix Data Model (ADM)

• Objects:
– {“Name”: “Alice”, “age”: 40}
– Fields must be distinct:

{“Name”: “Alice”, “age”: 40, “age”:50}
• Arrays:

– [1, 3, “Fred”, 2, 9]
– Note: can be heterogeneous

• Multisets:
– {{1, 3, “Fred”, 2, 9}}

7

Can’t have
repeated fields

Examples

Try these queries:

CSEP 544 - Fall 2017 8

SELECT x.age FROM [{'name': 'Alice', 'age': ['30', '50']}] x;

SELECT x.age FROM {{ {'name': 'Alice', 'age': ['30', '50']} }} x;

-- error
SELECT x.age FROM {'name': 'Alice', 'age': ['30', '50']} x;

Can only select from
multi-set or array

SQL++ Overview

CSEP 544 - Fall 2017 9

SELECT ... FROM ... WHERE ... [GROUP BY ...]

Retrieve Everything

CSEP 544 - Fall 2017 10

{“mondial”:
{“country”: [country1, country2, …],
“continent”: […],
“organization”: […],
...
...

}

Answer

{“mondial”:
{“country”: [country1, country2, …],
“continent”: […],
“organization”: […],
...
...

}

SELECT x.mondial FROM world x;

Retrieve countries

CSEP 544 - Fall 2017 11

{“country”: [country1, country2, …],Answer

{“mondial”:
{“country”: [country1, country2, …],
“continent”: […],
“organization”: […],
...
...

}

SELECT x.mondial.country FROM world x;

Retrieve countries,
one by one

CSEP 544 - Fall 2017 12

country1
country2
...

Answer

{“mondial”:
{“country”: [country1, country2, …],
“continent”: […],
“organization”: […],
...
...

}

SELECT y as country FROM world x, x.mondial.country y;

Heterogeneous
Collections

13

Even better

...
“province”: [...

{“name”: "Attiki”,
“city” : [{“name”: ”Athens”...}, {“name”: ”Pireus”...}, ..]
...},
{“name”: ”Ipiros”,
“city” : {“name”: ”Ioannia”...}
...},

The problem:

{“mondial”:
{“country”: [country1, country2, …],
“continent”: […],
“organization”: […],
...
...

}
SELECT z.name as province_name, u.name as city_name
FROM world x, x.mondial.country y, y.province z,

(CASE WHEN z.city is missing THEN []
WHEN is_array(z.city) THEN z.city
ELSE [z.city] END) u

WHERE y.name='Greece';

Useful Functions

• is_array
• is_boolean
• is_number
• is_object
• is_string
• is_null
• is_missing
• is_unknown = is_null or is_missing

CSEP 544 - Fall 2017 14

Useful Idioms

• Unnesting
• Nesting
• Group-by / aggregate
• Join
• Multi-value join

CSEP 544 - Fall 2017 15

Basic Unnesting

• An array: [a, b, c]
• A nested array: arr = [[a, b], [], [b, c, d]]
• Unnest(arr) = [a, b, b, c, d]

CSEP 544 - Fall 2017 16

SELECT y
FROM arr x, x y

Unnesting Specific Field

17

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
{A:a3, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

A nested collection

Unnesting Specific Field

18

UnnestF(coll) =
[{A:a1, {B:b1}, G:[{C:c1}]},
{A:a1, {B:b2}, G:[{C:c1}]},
{A:a2, {B:b3}, G:[]},
{A:a2, {B:b4}, G:[]},
{A:a2, {B:b5}, G:[]},
{A:a3, {B:b6}, G:[{C:c2},{C:c3}]}]

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
{A:a3, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

A nested collection

Nested Relational Algebra

Unnesting Specific Field

19

UnnestF(coll) =
[{A:a1, {B:b1}, G:[{C:c1}]},
{A:a1, {B:b2}, G:[{C:c1}]},
{A:a2, {B:b3}, G:[]},
{A:a2, {B:b4}, G:[]},
{A:a2, {B:b5}, G:[]},
{A:a3, {B:b6}, G:[{C:c2},{C:c3}]}]

SELECT x.A, y.B, x.G
FROM coll x, x.F y

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
{A:a3, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

A nested collection

Nested Relational Algebra

SQL++

Refers to relations
defined on the left

Unnesting Specific Field

20

UnnestF(coll) =
[{A:a1, {B:b1}, G:[{C:c1}]},
{A:a1, {B:b2}, G:[{C:c1}]},
{A:a2, {B:b3}, G:[]},
{A:a2, {B:b4}, G:[]},
{A:a2, {B:b5}, G:[]},
{A:a3, {B:b6}, G:[{C:c2},{C:c3}]}]

SELECT x.A, y.B, x.G
FROM coll x, x.F y

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
{A:a3, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

A nested collection

Nested Relational Algebra

SQL++

SELECT x.A, y.B, x.G
FROM coll x
UNNEST x.F y

=

Unnesting Specific Field

21

UnnestF(coll) =
[{A:a1, {B:b1}, G:[{C:c1}]},
{A:a1, {B:b2}, G:[{C:c1}]},
{A:a2, {B:b3}, G:[]},
{A:a2, {B:b4}, G:[]},
{A:a2, {B:b5}, G:[]},
{A:a3, {B:b6}, G:[{C:c2},{C:c3}]}]

UnnestG(coll) =
[{A:a1, F:[{B:b1},{B:b2}], C:c1},
{A:a3, F:[{B:b6}], C:c2},
{A:a3, F:[{B:b6}], C:c3]}

SELECT x.A, y.B, x.G
FROM coll x, x.F y

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
{A:a3, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

A nested collection

Nested Relational Algebra

SQL++

Unnesting Specific Field

22

UnnestF(coll) =
[{A:a1, {B:b1}, G:[{C:c1}]},
{A:a1, {B:b2}, G:[{C:c1}]},
{A:a2, {B:b3}, G:[]},
{A:a2, {B:b4}, G:[]},
{A:a2, {B:b5}, G:[]},
{A:a3, {B:b6}, G:[{C:c2},{C:c3}]}]

UnnestG(coll) =
[{A:a1, F:[{B:b1},{B:b2}], C:c1},
{A:a3, F:[{B:b6}], C:c2},
{A:a3, F:[{B:b6}], C:c3]}

SELECT x.A, y.B, x.G
FROM coll x, x.F y

SELECT x.A, x.F, z.C
FROM coll x, x.G z

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
{A:a3, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

A nested collection

Nested Relational Algebra

SQL++

Nesting (like group-by)

CSEP 544 - Fall 2017 23

coll =
[{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]

A flat collection

Nesting (like group-by)

CSEP 544 - Fall 2017 24

coll =
[{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]

A flat collection

NestA(coll) =
[{A:a1, GRP:[{B:b1},{B:b2}]}
[{A:a2, GRP:[{B:b2}]}]

Nested Relational Algebra

Nesting (like group-by)

CSEP 544 - Fall 2017 25

coll =
[{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]

A flat collection

NestA(coll) =
[{A:a1, GRP:[{B:b1},{B:b2}]}
[{A:a2, GRP:[{B:b2}]}]

NestB(coll) =
[{B:b1, GRP:[{A:a1},{A:a2}]},
{B:b2, GRP:[{A:a1}]}]

Nested Relational Algebra

Nesting (like group-by)

CSEP 544 - Fall 2017 26

coll =
[{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]

A flat collection

NestA(coll) =
[{A:a1, GRP:[{B:b1},{B:b2}]}
[{A:a2, GRP:[{B:b2}]}]

NestB(coll) =
[{B:b1, GRP:[{A:a1},{A:a2}]},
{B:b2, GRP:[{A:a1}]}]

SELECT DISTINCT x.A,
(SELECT y.B FROM coll y WHERE x.A = y.A) as GRP

FROM coll x

Nested Relational Algebra

Nesting (like group-by)

CSEP 544 - Fall 2017 27

coll =
[{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]

A flat collection

NestA(coll) =
[{A:a1, GRP:[{B:b1},{B:b2}]}
[{A:a2, GRP:[{B:b2}]}]

NestB(coll) =
[{B:b1, GRP:[{A:a1},{A:a2}]},
{B:b2, GRP:[{A:a1}]}]

SELECT DISTINCT x.A,
(SELECT y.B FROM coll y WHERE x.A = y.A) as GRP

FROM coll x

SELECT DISTINCT x.A, g as GRP
FROM coll x
LET g = (SELECT y.B FROM coll y WHERE x.A = y.A)

Nested Relational Algebra

Group-by / Aggregate

CSEP 544 - Fall 2017 28

A nested collection Count the number
of elements in the
F collection

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
{A:a3, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

Group-by / Aggregate

CSEP 544 - Fall 2017 29

A nested collection

SELECT x.A, COLL_COUNT(x.F) as cnt
FROM coll x

Count the number
of elements in the
F collection

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
{A:a3, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

Group-by / Aggregate

CSEP 544 - Fall 2017 30

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
{A:a3, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

A nested collection

SELECT x.A, COLL_COUNT(x.F) as cnt
FROM coll x

SELECT x.A, COUNT(*) as cnt
FROM coll x, x.F y
GROUP BY x.A

These are NOT equivalent!
(Why?)

Count the number
of elements in the
F collection

Group-by / Aggregate

Lesson: Read the *$@# manual!!

Join

CSEP 544 - Fall 2017 34

coll1 = [{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]
coll2 = [{B:b1,C:c1}, {B:b1,C:c2}, {B:b3,C:c3}]

Two flat collection

SELECT x.A, x.B, y.C
FROM coll1 x, coll2 y
WHERE x.B = y.B

Behind the Scences

Query Processing on NFNF data:
• Option 1: give up on query plans, use

standard java/python-like execution
• Option 2: represent the data as a collection of

flat tables, convert SQL++ to a standard
relational query plan

CSEP 544 - Fall 2017 39

Flattening SQL++ Queries

40

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
{A:a1, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

A nested collection

Flattening SQL++ Queries

41

A nested collection Flat Representation
coll:

id A
1 a1
2 a2
3 a1

F
parent B

1 b1
1 b2
2 b3
2 b4
2 b5
3 b6

G
parent C

1 c1
3 c2
3 c3

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
{A:a1, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

Flattening SQL++ Queries

42

SELECT x.A, y.B
FROM coll x, x.F y
WHERE x.A = ‘a1’

A nested collection

SQL++

Flat Representation
coll:

id A
1 a1
2 a2
3 a1

F
parent B

1 b1
1 b2
2 b3
2 b4
2 b5
3 b6

G
parent C

1 c1
3 c2
3 c3

SQL

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
{A:a1, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

Flattening SQL++ Queries

43

SELECT x.A, y.B
FROM coll x, x.F y
WHERE x.A = ‘a1’

SELECT x.A, y.B
FROM coll x, F y
WHERE x.id = y.parent and x.A = ‘a1’

A nested collection

SQL++

Flat Representation
coll:

id A
1 a1
2 a2
3 a1

F
parent B

1 b1
1 b2
2 b3
2 b4
2 b5
3 b6

G
parent C

1 c1
3 c2
3 c3

SQL

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
{A:a1, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

Flattening SQL++ Queries

44

SELECT x.A, y.B
FROM coll x, x.F y
WHERE x.A = ‘a1’

SELECT x.A, y.B
FROM coll x, F y
WHERE x.id = y.parent and x.A = ‘a1’

A nested collection

SQL++

Flat Representation
coll:

id A
1 a1
2 a2
3 a1

F
parent B

1 b1
1 b2
2 b3
2 b4
2 b5
3 b6

G
parent C

1 c1
3 c2
3 c3

SQL

SELECT x.A, y.B
FROM coll x, x.F y, x.G z
WHERE y.B = z.C

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
{A:a1, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

Flattening SQL++ Queries

45

SELECT x.A, y.B
FROM coll x, x.F y
WHERE x.A = ‘a1’

SELECT x.A, y.B
FROM coll x, F y
WHERE x.id = y.parent and x.A = ‘a1’

A nested collection

SQL++

Flat Representation
coll:

id A
1 a1
2 a2
3 a1

F
parent B

1 b1
1 b2
2 b3
2 b4
2 b5
3 b6

G
parent C

1 c1
3 c2
3 c3

SQL

SELECT x.A, y.B
FROM coll x, x.F y, x.G z
WHERE y.B = z.C

SELECT x.A, y.B
FROM coll x, F y, G z
WHERE x.id = y.parent and x.id = z.parent

and y.B = z.C

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
{A:a1, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

Conclusion

• Semistructured data best suited for data
exchange

• For quick, ad-hoc data analysis, use a native
query language: SQL++, or AQL, or XQuery
– Modern, advanced query processors like

AsterixDB / SQL++ can process semistructured
data as efficiently as RDBMS

• For long term data analysis: spend the time
and effort to normalize it, then store in a
RDBMS

CSEP 544 - Fall 2017 47

Query Execution and Optimization

CSEP 544 - Fall 2017 48

49

Class overview
• Data models

– Relational: SQL, RA, and Datalog
– NoSQL: SQL++

• RDBMS internals
– Query processing and optimization
– Physical design

• Parallel query processing
– Spark and Hadoop

• Conceptual design
– E/R diagrams
– Schema normalization

• Transactions
– Locking and schedules
– Writing DB applications

CSEP 544 - Fall 2017

Data models

Using
DBMS

Query
Processing

Query Evaluation Steps Review

50

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan (RA)

Physical
plan

Logical vs Physical Plans
• Logical plans:

– Created by the parser from the input SQL text
– Expressed as a relational algebra tree
– Each SQL query has many possible logical plans

• Physical plans:
– Goal is to choose an efficient implementation for

each operator in the RA tree
– Each logical plan has many possible physical plans

CSEP 544 - Fall 2017 51

Review: Relational Algebra

CSEP 544 - Fall 2017 52

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

Relational algebra expression is
also called the “logical query plan”

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Physical Query Plan 1

53

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
A physical query plan is a logical
query plan annotated with
physical implementation details

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Physical Query Plan 2

54

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Hash join)

(On the fly)

(On the fly)
Same logical query plan
Different physical plan

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Physical Query Plan 3

CSEP 544 - Fall 2017 55

Supplier Supply

sid = sid

(a) σscity=‘Seattle’ and sstate=‘WA’

πsname

(File scan) (File scan)

(Sort-merge join)

(On the fly)

(b) σpno=2

(Scan & write to T1)

(c)

(d)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Different but equivalent logical
query plan; different physical plan
SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

(Scan & write to T2)

Query Optimization Problem

• For each SQL query… many logical plans

• For each logical plan… many physical plans

• Next: we will discuss physical operators;
how exactly are query executed?

CSEP 544 - Fall 2017 56

Query Execution

CSEP 544 - Fall 2017 57

Implementing Query Operators
with the Iterator Interface

Each operator implements three methods:

• open()

• next()

• close()

CSEP 544 - Fall 2017 62

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Iterator child) {
this.p = p; this.child = child;

}
Tuple next () {

boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}
return in;

}
void close () { child.close(); }

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Iterator child) {
this.p = p; this.child = child;

}
Tuple next () {

boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}
return in;

}
void close () { child.close(); }

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

}

class Select implements Operator {...
void open (Predicate p,

Iterator child) {
this.p = p; this.child = child;

}
Tuple next () {

boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}
return in;

}
void close () { child.close(); }

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Iterator child) {
this.p = p; this.child = child;

}
Tuple next () {

boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}
return in;

}
void close () { child.close(); }

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator child) {
this.p = p; this.child = child;

}
Tuple next () {

boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}

return in;
}
void close () { child.close(); }

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator child) {
this.p = p; this.child = child;

}
Tuple next () {

}

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator child) {
this.p = p; this.child = child;

}
Tuple next () {

boolean found = false;
Tuple r = null;
while (!found) {

r = child.next();
if (r == null) break;
found = p(r);

}

}

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator child) {
this.p = p; this.child = child;

}
Tuple next () {

boolean found = false;
Tuple r = null;
while (!found) {

r = child.next();
if (r == null) break;
found = p(r);

}
return r;

}

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator child) {
this.p = p; this.child = child;

}
Tuple next () {

boolean found = false;
Tuple r = null;
while (!found) {

r = child.next();
if (r == null) break;
found = p(r);

}
return r;

}
void close () { child.close(); }

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

72

Operator q = parse(“SELECT ...”);
q = optimize(q);

q.open();
while (true) {

Tuple t = q.next();
if (t == null) break;
else printOnScreen(t);

}
q.close();

Query plan execution
interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

Pipelining

CSEP 544 - Fall 2017 73

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Pipelining

CSEP 544 - Fall 2017 74

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Pipelining

CSEP 544 - Fall 2017 75

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Pipelining

CSEP 544 - Fall 2017 76

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

open()

open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Pipelining

CSEP 544 - Fall 2017 77

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

open()

open()

open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Pipelining

CSEP 544 - Fall 2017 78

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

open()

open()

open() open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Pipelining

CSEP 544 - Fall 2017 79

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Pipelining

CSEP 544 - Fall 2017 80

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Pipelining

CSEP 544 - Fall 2017 81

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Pipelining

CSEP 544 - Fall 2017 82

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

next()

next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Pipelining

CSEP 544 - Fall 2017 83

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

next()

next() next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Pipelining

CSEP 544 - Fall 2017 84

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

next()

next()
next()

next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Pipelining

CSEP 544 - Fall 2017 85

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss hash-join
in class

Pipelining

CSEP 544 - Fall 2017 86

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss hash-join
in class

Tuples from
here are
pipelined

Pipelining

CSEP 544 - Fall 2017 87

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss hash-join
in class

Tuples from
here are
pipelined

Tuples from
here are
“blocked”

Blocked Execution

CSEP 544 - Fall 2017 88

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Merge Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss merge-join
in class

Blocked Execution

CSEP 544 - Fall 2017 89

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Merge Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Blocked Blocked

Discuss merge-join
in class

Pipelined Execution

• Tuples generated by an operator are
immediately sent to the parent

• Benefits:
– No operator synchronization issues
– No need to buffer tuples between operators
– Saves cost of writing intermediate data to disk
– Saves cost of reading intermediate data from disk

• This approach is used whenever possible

CSEP 544 - Fall 2017 90

Query Execution Bottom Line

• SQL query transformed into physical plan
– Access path selection for each relation

• Scan the relation or use an index (next lecture)
– Implementation choice for each operator

• Nested loop join, hash join, etc.

– Scheduling decisions for operators
• Pipelined execution or intermediate materialization

• Pipelined execution of physical plan

CSEP 544 - Fall 2017 91

Recall: Physical Data
Independence

• Applications are insulated from changes in
physical storage details

• SQL and relational algebra facilitate physical
data independence
– Both languages input and output relations
– Can choose different implementations for operators

CSEP 544 - Fall 2017 92

93

Class overview
• Data models

– Relational: SQL, RA, and Datalog
– NoSQL: SQL++

• RDBMS internals
– Query processing and optimization
– Physical design

• Parallel query processing
– Spark and Hadoop

• Conceptual design
– E/R diagrams
– Schema normalization

• Transactions
– Locking and schedules
– Writing DB applications

CSEP 544 - Fall 2017

Data models

Using
DBMS

Query
Processing

Query Performance
• My database application is too slow… why?
• One of the queries is very slow… why?

• To understand performance, we need to
understand:
– How is data organized on disk
– How to estimate query costs

– In this course we will focus on disk-based DBMSs

CSEP 544 - Fall 2017 94

Data Storage

• DBMSs store data in files
• Most common organization is row-wise storage
• On disk, a file is split into

blocks
• Each block contains

a set of tuples

In the example, we have 4 blocks with 2 tuples each
CSEP 544 - Fall 2017 95

10 Tom Hanks
20 Amy Hanks

50 … …
200 …

220
240

420
800

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

block 1

block 2

block 3

Data File Types

The data file can be one of:
• Heap file

– Unsorted
• Sequential file

– Sorted according to some attribute(s) called key

96

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

CSEP 544 - Fall 2017

Data File Types

The data file can be one of:
• Heap file

– Unsorted
• Sequential file

– Sorted according to some attribute(s) called key

97

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

CSEP 544 - Fall 2017

Note: key here means something different from primary key:
it just means that we order the file according to that attribute.
In our example we ordered by ID. Might as well order by fName,
if that seems a better idea for the applications running on
our database.

Index

• An additional file, that allows fast access to
records in the data file given a search key

98CSEP 544 - Fall 2017

Index

• An additional file, that allows fast access to
records in the data file given a search key

• The index contains (key, value) pairs:
– The key = an attribute value (e.g., student ID or name)
– The value = a pointer to the record

99CSEP 544 - Fall 2017

Index

• An additional file, that allows fast access to
records in the data file given a search key

• The index contains (key, value) pairs:
– The key = an attribute value (e.g., student ID or name)
– The value = a pointer to the record

• Could have many indexes for one table

100

Key = means here search key

CSEP 544 - Fall 2017

This Is Not A Key

Different keys:
• Primary key – uniquely identifies a tuple
• Key of the sequential file – how the data file is

sorted, if at all
• Index key – how the index is organized

CSEP 544 - Fall 2017 101

102

Example 1:
Index on ID

10

20

50

200

220

240

420

800

CSEP 544 - Fall 2017

Data File Student

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

10 Tom Hanks
20 Amy Hanks

50 … …
200 …

220
240

420
800

950

…

Index Student_ID on Student.ID

103

Example 2:
Index on fName

CSEP 544 - Fall 2017

Index Student_fName
on Student.fName

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

Amy

Ann

Bob

Cho

…

…

…

…

…

…

Tom

10 Tom Hanks
20 Amy Hanks

50 … …
200 …

220
240

420
800

Data File Student

Index Organization
We need a way to represent indexes after
loading into memory so that they can be used
Several ways to do this:
• Hash table
• B+ trees – most popular

– They are search trees, but they are not binary
instead have higher fanout

– Will discuss them briefly next
• Specialized indexes: bit maps, R-trees,

inverted index
CSEP 544 - Fall 2017 104

105

Hash table example

10

20

50

200

220

240

420

800

… …

… …

CSEP 544 - Fall 2017

Data File Student

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

10 Tom Hanks
20 Amy Hanks

50 … …
200 …

220
240

420
800

Index Student_ID on Student.ID

Index File
(in memory)

Data file
(on disk)

106

B+ Tree Index by Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 <= 80

20 < 40 <= 60

30 < 40 <= 40

CSEP 544 - Fall 2017

Clustered vs Unclustered

Index entries
(Index File)

(Data file)

Data Records

Index entries

Data Records
CLUSTERED UNCLUSTERED

B+ Tree B+ Tree

107CSEP 544 - Fall 2017

Every table can have only one clustered and many unclustered indexes
Why?

108

Index Classification

• Clustered/unclustered
– Clustered = records close in index are close in data

• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

– Unclustered = records close in index may be far in data

CSEP 544 - Fall 2017

109

Index Classification

• Clustered/unclustered
– Clustered = records close in index are close in data

• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

– Unclustered = records close in index may be far in data
• Primary/secondary

– Meaning 1:
• Primary = is over attributes that include the primary key
• Secondary = otherwise

– Meaning 2: means the same as clustered/unclustered

CSEP 544 - Fall 2017

110

Index Classification

• Clustered/unclustered
– Clustered = records close in index are close in data

• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

– Unclustered = records close in index may be far in data
• Primary/secondary

– Meaning 1:
• Primary = is over attributes that include the primary key
• Secondary = otherwise

– Meaning 2: means the same as clustered/unclustered
• Organization B+ tree or Hash table

CSEP 544 - Fall 2017

Scanning a Data File
• Disks are mechanical devices!

– Technology from the 60s; density much higher now

• Read only at the rotation speed!
• Consequence:

Sequential scan is MUCH FASTER than random reads
– Good: read blocks 1,2,3,4,5,…
– Bad: read blocks 2342, 11, 321,9, …

• Rule of thumb:
– Random reading 1-2% of the file ≈ sequential scanning the entire

file; this is decreasing over time (because of increased density of
disks)

• Solid state (SSD): $$$ expensive; put indexes, other “hot” data
there, not enough room for everything (NO LONGER TRUE) 111

Example

CSEP 544 - Fall 2017 112

Assume the database has indexes on these attributes:
• index_takes_courseID = index on Takes.courseID
• index_student_ID = index on Student.ID

SELECT	*
FROM		Student	x,	Takes	y
WHERE	x.ID=y.studentID	AND	y.courseID	>	300

for	y	in	index_Takes_courseID	where y.courseID	>	300
for x	in Student	where	x.ID	=	y.studentID

output	*

for	y	in Takes
if courseID	>	300	then
for x	in Student

if x.ID=y.studentID
output	*

Example

CSEP 544 - Fall 2017 113

SELECT	*
FROM		Student	x,	Takes	y
WHERE	x.ID=y.studentID	AND	y.courseID	>	300

for	y	in	index_Takes_courseID	where y.courseID	>	300
for x	in Student	where	x.ID	=	y.studentID

output	*

Assume the database has indexes on these attributes:
• index_takes_courseID = index on Takes.courseID
• index_student_ID = index on Student.ID

for	y	in Takes
if courseID	>	300	then
for x	in Student

if x.ID=y.studentID
output	*

Index	selection

Example

CSEP 544 - Fall 2017 114

SELECT	*
FROM		Student	x,	Takes	y
WHERE	x.ID=y.studentID	AND	y.courseID	>	300

for	y	in	index_Takes_courseID	where y.courseID	>	300
for x	in Student	where	x.ID	=	y.studentID

output	*

Assume the database has indexes on these attributes:
• index_takes_courseID = index on Takes.courseID
• index_student_ID = index on Student.ID

for	y	in Takes
if courseID	>	300	then
for x	in Student

if x.ID=y.studentID
output	*

Index	selection

Index	join

Getting Practical:
Creating Indexes in SQL

115

CREATE		INDEX	V1	ON	V(N)

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);

CREATE		INDEX	V2	ON	V(P,	M)

CREATE		INDEX	V3	ON	V(M,	N)

CREATE	CLUSTERED	 INDEX	V5	ON V(N)

CSEP 544 - Fall 2017

CREATE UNIQUE	INDEX V4	ON V(N)

Which Indexes?

• How many indexes could we create?

• Which indexes should we create?

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

CSEP 544 - Fall 2017 118

Which Indexes?

• How many indexes could we create?

• Which indexes should we create?

In general this is a very hard problem

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

119CSEP 544 - Fall 2017

Which Indexes?

• The index selection problem
– Given a table, and a “workload” (big Java

application with lots of SQL queries), decide which
indexes to create (and which ones NOT to create!)

• Who does index selection:
– The database administrator DBA

– Semi-automatically, using a database
administration tool

120CSEP 544 - Fall 2017

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

Which Indexes?

• The index selection problem
– Given a table, and a “workload” (big Java

application with lots of SQL queries), decide which
indexes to create (and which ones NOT to create!)

• Who does index selection:
– The database administrator DBA

– Semi-automatically, using a database
administration tool

121CSEP 544 - Fall 2017

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

Index Selection: Which Search Key

• Make some attribute K a search key if the
WHERE clause contains:
– An exact match on K
– A range predicate on K
– A join on K

122CSEP 544 - Fall 2017

The Index Selection Problem 1

123

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

CSEP 544 - Fall 2017

The Index Selection Problem 1

124

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

What indexes ?

CSEP 544 - Fall 2017

The Index Selection Problem 1

125

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

A: V(N) and V(P) (hash tables or B-trees)
CSEP 544 - Fall 2017

The Index Selection Problem 2

126

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSEP 544 - Fall 2017

The Index Selection Problem 2

127

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSEP 544 - Fall 2017

A: definitely V(N) (must B-tree); unsure about V(P)

Two typical kinds of queries
• Point queries
• What data structure

should be used for
index?

CSEP 544 - Fall 2017 132

SELECT *
FROM Movie
WHERE year = ?

SELECT *
FROM Movie
WHERE year >= ? AND

year <= ?

• Range queries
• What data structure

should be used for
index?

Basic Index Selection Guidelines

• Consider queries in workload in order of importance

• Consider relations accessed by query
– No point indexing other relations

• Look at WHERE clause for possible search key

• Try to choose indexes that speed-up multiple queries

CSEP 544 - Fall 2017 133

To Cluster or Not

• Range queries benefit mostly from clustering
• Covering indexes do not need to be

clustered: they work equally well unclustered

134CSEP 544 - Fall 2017

135

Percentage tuples retrieved

Cost

0 100

SELECT *
FROM R
WHERE R.K>? and R.K<?

CSEP 544 - Fall 2017

136

Percentage tuples retrieved

Cost

0 100

Sequential scan

CSEP 544 - Fall 2017

SELECT *
FROM R
WHERE R.K>? and R.K<?

137

Percentage tuples retrieved

Cost

0 100

Sequential scan

CSEP 544 - Fall 2017

SELECT *
FROM R
WHERE R.K>? and R.K<?

138

Percentage tuples retrieved

Cost

0 100

Sequential scan

CSEP 544 - Fall 2017

SELECT *
FROM R
WHERE R.K>? and R.K<?

Choosing Index is Not Enough

• To estimate the cost of a query plan, we still
need to consider other factors:

– How each operator is implemented

– The cost of each operator

– Let’s start with the basics

CSEP 544 - Fall 2017 139

Cost of Reading
Data From Disk

CSEP 544 - Fall 2017 145

Cost Parameters
• Cost = I/O + CPU + Network BW

– We will focus on I/O in this class
• Parameters:

– B(R) = # of blocks (i.e., pages) for relation R
– T(R) = # of tuples in relation R
– V(R, a) = # of distinct values of attribute a

• When a is a key, V(R,a) = T(R)
• When a is not a key, V(R,a) can be anything <= T(R)

• Where do these values come from?
– DBMS collects statistics about data on disk

CSEP 544 - Fall 2017 146

Selectivity Factors for Conditions

• A = c /* σA=c(R) */
– Selectivity = 1/V(R,A)

• A < c /* σA<c(R)*/
– Selectivity = (c - min(R, A))/(max(R,A) - min(R,A))

• c1 < A < c2 /* σc1<A<c2(R)*/
– Selectivity = (c2 – c1)/(max(R,A) - min(R,A))

CSEP 544 - Fall 2017 147

Cost of Reading Data From Disk

• Sequential scan for relation R costs B(R)

• Index-based selection
– Estimate selectivity factor X (see previous slide)
– Clustered index: X*B(R)
– Unclustered index X*T(R)

CSEP 544 - Fall 2017 148

Note: we ignore I/O cost for index pages

Index Based Selection

• Example:

• Table scan:
• Index based selection:

CSEP 544 - Fall 2017 149

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of σa=v(R) = ?

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

CSEP 544 - Fall 2017 150

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of σa=v(R) = ?

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

– If index is clustered:
– If index is unclustered:

CSEP 544 - Fall 2017 151

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of σa=v(R) = ?

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

– If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
– If index is unclustered:

CSEP 544 - Fall 2017 152

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of σa=v(R) = ?

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

– If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
– If index is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os

CSEP 544 - Fall 2017 153

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of σa=v(R) = ?

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

– If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
– If index is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os

CSEP 544 - Fall 2017 154

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of σa=v(R) = ?

Lesson: Don’t build unclustered indexes when V(R,a) is small !

Cost of Executing Operators
(Focus on Joins)

CSEP 544 - Fall 2017 155

Outline

• Join operator algorithms
– One-pass algorithms (Sec. 15.2 and 15.3)
– Index-based algorithms (Sec 15.6)

• Note about readings:
– In class, we discuss only algorithms for joins
– Other operators are easier: read the book

CSEP 544 - Fall 2017 156

Join Algorithms

• Hash join

• Nested loop join

• Sort-merge join

CSEP 544 - Fall 2017 157

Hash Join

Hash join: R ⋈ S
• Scan R, build buckets in main memory
• Then scan S and join
• Cost: B(R) + B(S)
• Which relation to build the hash table on?

• One-pass algorithm when B(R) ≤ M
– M = number of memory pages available

CSEP 544 - Fall 2017 158

Hash Join Example

159

Patient Insurance

Patient(pid, name, address)
Insurance(pid, provider, policy_nb)

1 ‘Bob’ ‘Seattle’
2 ‘Ela’ ‘Everett’

3 ‘Jill’ ‘Kent’
4 ‘Joe’ ‘Seattle’

Patient
2 ‘Blue’ 123
4 ‘Prem’ 432

Insurance

4 ‘Prem’ 343
3 ‘GrpH’ 554

Two tuples
per page

Hash Join Example

160

Patient Insurance

1 2
3 4

Patient
2 4

Insurance

4 3

Showing
pid only

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Some large-
enough #

This is one page
with two tuples

Hash Join Example

161

Step 1: Scan Patient and build hash table in memory
Can be done in
method open()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 2

Hash Join Example

162

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 22 4
Output buffer
2 2

Write to disk or
pass to next

operator

Hash Join Example

163

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 22 4
Output buffer
4 4

Hash Join Example

164

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 24 3
Output buffer
4 4

Keep going until read all of Insurance

Cost: B(R) + B(S)

Nested Loop Joins
• Tuple-based nested loop R ⋈ S
• R is the outer relation, S is the inner relation

CSEP 544 - Fall 2017 165

for each tuple t1 in R do
for each tuple t2 in S do

if t1 and t2 join then output (t1,t2)

What is the Cost?

Nested Loop Joins
• Tuple-based nested loop R ⋈ S
• R is the outer relation, S is the inner relation

• Cost: B(R) + T(R) B(S)
• Multiple-pass since S is read many times

CSEP 544 - Fall 2017 166

What is the Cost?

for each tuple t1 in R do
for each tuple t2 in S do

if t1 and t2 join then output (t1,t2)

Page-at-a-time Refinement

• Cost: B(R) + B(R)B(S)

CSEP 544 - Fall 2017 167

What is the Cost?

for each page of tuples r in R do
for each page of tuples s in S do

for all pairs of tuples t1 in r, t2 in s
if t1 and t2 join then output (t1,t2)

1 2

Page-at-a-time Refinement

168

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient

Output buffer
2 2

Input buffer for Insurance2 4

Page-at-a-time Refinement

169

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Output buffer

Input buffer for Insurance4 3

1 2

Page-at-a-time Refinement

170

3 4

Patient
2 4

Insurance

4 3

8 5

9 6

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Output buffer

Input buffer for Insurance2 8

1 2

2 2

Cost: B(R) + B(R)B(S)

Keep going until read
all of Insurance

Then repeat for next
page of Patient… until end of Patient

1 2

2 8

Sort-Merge Join

Sort-merge join: R ⋈ S
• Scan R and sort in main memory
• Scan S and sort in main memory
• Merge R and S

• Cost: B(R) + B(S)
• One pass algorithm when B(S) + B(R) <= M
• Typically, this is NOT a one pass algorithm

CSEP 544 - Fall 2017 172

Sort-Merge Join Example

173

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 1: Scan Patient and sort in memory

Sort-Merge Join Example

174

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 2: Scan Insurance and sort in memory

1 2 3 4

6 8 8 9

2 3 4 6

Sort-Merge Join Example

175

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer
1 1

Sort-Merge Join Example

176

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer
2 2

Keep going until end of first relation

Index Nested Loop Join
R ⋈S
• Assume S has an index on the join attribute
• Iterate over R, for each tuple fetch

corresponding tuple(s) from S

• Cost:
– If index on S is clustered:

B(R) + T(R) * (B(S) * 1/V(S,a))
– If index on S is unclustered:

B(R) + T(R) * (T(S) * 1/V(S,a))
CSEP 544 - Fall 2017 177

