
Database Management Systems
CSEP 544

Lecture 4: Datalog and NoSQL

1CSEP 544 - Fall 2017

Announcements
• HW3 due today

• HW4 posted
– Please start early!

• Today:
– Datalog (relational data model)
– Non-relational data models

2

What is Datalog?
• Another declarative query language for

relational model
– Designed in the 80’s
– Minimal syntax
– Simple, concise, elegant
– Extends relational queries with recursion

• Today:
– Adopted by some companies for data analytics,

e.g., LogicBlox (HW4)
– Usage beyond databases: e.g., network protocols,

static program analysis 3

Datalog: Facts and Rules

CSEP 544 - Fall 2017 4

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,’1940’).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

Extensional Database Predicates = EDB = Actor, Casts, Movie
Intensional Database Predicates = IDB = Q1, Q2, Q3

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Terminology

CSEP 544 - Fall 2017 5

Q2(f, l) :- Actor(z,f,l), Casts(z,x), Movie(x,y,’1940’).

bodyhead

atom atom atom (aka subgoal)

f, l = head variables
x,y,z = existential variables

In this class we discuss datalog evaluated under set semantics

More Datalog Terminology

• Ri(argsi) is called an atom, or a relational predicate
• Ri(argsi) evaluates to true when relation Ri contains

the tuple described by argsi.
– Example: Actor(344759, ‘Douglas’, ‘Fowley’) is true

• In addition to relational predicates, we can also have
arithmetic predicates
– Example: z > ‘1940’.

• Note: Logicblox uses <- instead of :-
6

Q(args) :- R1(args), R2(args), Your book uses:
Q(args) :- R1(args) AND R2(args) AND

Q(args) <- R1(args), R2(args),

Semantics of a Single Rule
• Meaning of a datalog rule = a logical statement !

CSEP 544 - Fall 2017 7

Q1(y) :- Movie(x,y,z), z=‘1940’.

• For all values of x, y, z:
if (x,y,z) is in the Movies relation, and that z = ‘1940’
then y is in Q1 (i.e., it is part of the answer)

• Logically equivalent:
∀ y. [(∃x.∃ z. Movie(x,y,z) and z=‘1940’) ⇒ Q1(y)]

• That's why non-head variables are called "existential
variables”

• We want the smallest set Q1 with this property (why?)

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Datalog program

• A datalog program consists of several rules
• Importantly, rules may be recursive!
• Usually there is one distinguished predicate

that’s the output
• We will show an example first, then give the

general semantics.

CSEP 544 - Fall 2017 8

Example

1

2

4

3

R encodes a graph

1 2
2 1
2 3

1 4

3 4
4 5

R=

5

Example

1

2

4

3

R encodes a graph

1 2
2 1
2 3

1 4

3 4
4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

What does
it compute?

5

Example

1

2

4

3

1 2
2 1
2 3

1 4

3 4
4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Initially:
T is empty.

5
R encodes a graph

What does
it compute?

Example

1

2

4

3

1 2
2 1
2 3

1 4

3 4
4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

First iteration:
T =

5
R encodes a graph

What does
it compute?

Second rule
generates nothing
(because T is empty)

First rule generates this

Example

1

2

4

3

1 2
2 1
2 3

1 4

3 4
4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

Second iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

First iteration:
T =

5
R encodes a graph

What does
it compute?

New facts

First rule generates this

Second rule generates this

Example

1

2

4

3

1 2
2 1
2 3

1 4

3 4
4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

Second iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

First iteration:
T =

5

Third iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

2 5

R encodes a graph
What does
it compute?

New fact

First rule

Second
rule

Both rules

Example

1

2

4

3

1 2
2 1
2 3

1 4

3 4
4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

Second iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

First iteration:
T =

5

Third iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

2 5

R encodes a graph
What does
it compute?

No
new
facts.
DONE

Fourth
iteration
T =
(same)

This is called the fixpoint semantics
of a datalog program

Demo

16CSEP 544 - Fall 2017

Evaluation of Datalog
How to evaluate a datalog program?

• Start:
for every IDB Di , Di

0 = ∅
t = 0

• Repeat:
for every IDB Di

t+1 = eval rules(EDB, IDB1
t, IDB2

t, …)
t = t+1

• Until:
for every IDB Di

t = Di
t-1 (aka fixpoint)

• The answer is in D1
t, D2

t, …
• This is called naive evaluation.

CSEP 544 - Fall 2017

Evaluation of Datalog

• A datalog program w/o functions
(+, *, ...) always terminates.
– Hint: since the rules are monotone, hence:
∅ = IDB0 ⊆IDB1 ⊆ IDB2 ⊆ ...

• How many iterations of naive evaluation are
needed before reaching fixpoint?

CSEP 544 - Fall 2017 18

Three Equivalent Programs

CSEP 544 - Fall 2017 19

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), T(z,y)

Right linear

Left linear

Non-linear

Question: which terminates in fewest iterations?

1

2

4

3

1 2
2 1
2 3

1 4

3 4
4 5

R=

5R encodes a graph

Three Equivalent Programs
1 2

R=

3 4 5

1 2
2 3
3 4

4 5

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

1 2
2 3
3 4

4 5

T=

t = 0:

1 2
2 3
3 4

4 5

1 3

2 4

3 5

T=

t = 1:

Second rule

1 2
2 3
3 4

4 5

1 3

2 4

3 5

1 4

1 5

2 5

T=

t = 2:

Second rule

Three Equivalent Programs
1 2

R=

3 4 5

1 2
2 3
3 4

4 5

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), T(z,y)

1 2
2 3
3 4

4 5

T=

t = 0:

1 2
2 3
3 4

4 5

1 3

2 4

3 5

T=

t = 1:

Second rule

1 2
2 3
3 4

4 5

1 3

2 4

3 5

1 4

1 5

2 5

T=

t = 2:

Second rule

Second rule
“rediscovered
facts”

Evaluation of Datalog
Idea: split a relation into “old” and “new” (aka “Δ”) tuples

Ti+1 :- Q(Ti, Ti)
= Q(Ti-1 U ΔTi, Ti-1 U ΔTi)
= Q(Ti U Ti) U Q(Ti-1, ΔTi) U Q(ΔTi, Ti-1) U Q(ΔTi U ΔTi)
= Ti U Q(Ti-1, ΔTi) U Q(ΔTi, Ti-1) U Q(ΔTi U ΔTi)

• Now we can evaluate on smaller relations
– But need to keep track of the Δ tuples

• This is the basis of incremental query processing
CSEP 544 - Fall 2017

Evaluation of Datalog
• Start:

for every IDB Di , Di
0 = ∅

for every IDB ΔDi
1 = eval rules(EDB, IDB1

0, IDB2
0, …)

t = 0

• Repeat:
for every IDB Di

t = Di
t-1 UΔDi

t

for every IDB ΔDi
1 = eval rules(EDB, IDB1

t, IDB2
t, …)

and compute Δ for each IDB
t = t+1

• Until:
for every IDB ΔDi

t = ∅ (aka fixpoint)

• The answer is in D1
t, D2

t, …
• This is called the semi-naive evaluation of Datalog

CSEP 544 - Fall 2017

Semi-Naive Evaluation
1 2

R=

3 4 5

1 2
2 3
3 4

4 5

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), T(z,y)

1 2
2 3
3 4

4 5

T0=

1 2
2 3
3 4

4 5

1 3

2 4

3 5

T1=

ΔT1

1 2
2 3
3 4

4 5

1 3

2 4

3 5

1 4

1 5

2 5

T2=

Q(T0, ΔT1)

T1

T0

T2 :- T1 U Q(T0, ΔT1) U Q(ΔT1, T0) U Q(ΔT1 U ΔT1)

Q(ΔT1, ΔT1)

Q(T0, ΔT1)

Extensions

• Functional data model (LogicBlox)

• Aggregates, negation

• Stratified datalog

CSEP 544 - Fall 2017 25

Functional Data Model

• Relational data model:
Person(Alice, Smith) = true
Person(Bob, Peters) = false

• Functional data model:
Person[Alice,Smith] = some value v

• This is just a syntactic sugar for relations with
keys

CSEP 544 - Fall 2017 26

First Last
Alice Smith
Bob Toth

Carol Unger

Functional Data Model
• Person(first,last,friends) (note the key)

• Functional model:

Person[Alice,Smith]=22
Person[Bob,Toth]=5
Person[Carol,Unger]=9

CSEP 544 - Fall 2017 27

first last friends
Alice Smith 22
Bob Toth 5

Carol Unger 9

first last
Alice Smith =22
Bob Toth =5

Carol Unger =9

Aggregates

CSEP 544 - Fall 2017 28

count_p[]=v <- agg<<v=count()>> p(_)

Count the number of tuples in p and store the result in count_p

select count(*) as v
from p

Meaning (in SQL)

Aggregates

CSEP 544 - Fall 2017 29

Q[headVars]=v <- agg<<v=AGG_NAME(w)>> R1(x1),R2(x2),...

General syntax in Logicblox:

select headVars, AGG_NAME(w) as v
from R1, R2, ...
where ...
group by headVars

Meaning (in SQL)

Example

CSEP 544 - Fall 2017 30

ParentChild(p,c)

For each person, compute the total number of descendants

/* We use Logicblox syntax (as in the homework) */

Example

CSEP 544 - Fall 2017 31

ParentChild(p,c)

For each person, compute the total number of descendants

/* We use Logicblox syntax (as in the homework) */
/* for each person, compute his/her descendants */
D(x,y) <- ParentChild(x,y).
D(x,z) <- D(x,y), ParentChild(y,z).

Example

CSEP 544 - Fall 2017 32

ParentChild(p,c)

For each person, compute the total number of descendants

/* We use Logicblox syntax (as in the homework) */
/* for each person, compute his/her descendants */
D(x,y) <- ParentChild(x,y).
D(x,z) <- D(x,y), ParentChild(y,z).
/* For each person, count the number of descendants */
N[x] = m <- agg<<m = count()>> D(x,y).

Example

CSEP 544 - Fall 2017 33

ParentChild(p,c)

For each person, compute the total number of descendants

/* We use Logicblox syntax (as in the homework) */
/* for each person, compute his/her descendants */
D(x,y) <- ParentChild(x,y).
D(x,z) <- D(x,y), ParentChild(y,z).
/* For each person, count the number of descendants */
N[x] = m <- agg<<m = count()>> D(x,y).
/* Find the number of descendants of Alice */
Q(d) <- N[“Alice”]=d.

Negation: use !

CSEP 544 - Fall 2017 34

/* for each person, compute his/her descendants */
D(x,y) <- ParentChild(x,y).
D(x,z) <- D(x,y), ParentChild(y,z).
/* Compute the answer: notice the negation */
Q(x) <- D(“Alice”,x), !D(“Bob”,x).

Find all descendants of Alice,
who are not descendants of Bob

ParentChild(p,c)

Safe Datalog Rules

35

U1(x,y) :- ParentChild(“Alice”,x), y != “Bob”

Here are unsafe datalog rules. What’s “unsafe” about them ?

U2(x) :- ParentChild(“Alice”,x), !ParentChild(x,y)

A datalog rule is safe if every variable appears
in some positive relational atom

ParentChild(p,c)

Safe Datalog Rules

• Recursion does not cope well with aggregates or negation
• Example: what does this mean?

• Can’t evaluate using naive / semi-naive algorithm!

CSEP 544 - Fall 2017 36

A() <- !B().
B() <- !A().

Stratified Datalog

• A datalog program is stratified if it can be partitioned
into strata s.t., for all n, only IDB predicates defined in
strata 1, 2, ..., n may appear under ! or agg in
stratum n+1.

• I.e., the program can be divided such that all
variables have appeared in the head of some rule
before they are used negatively / in an aggregate.

• LogicBlox accepts only stratified datalog.

CSEP 544 - Fall 2017 37

Stratified Datalog

38

D(x,y) <- ParentChild(x,y).
D(x,z) <- D(x,y), ParentChild(y,z).
N[x] = m <- agg<<m = count()>> D(x,y).
Q(d) <- N[“Alice”]=d.

Stratum 1

Stratum 2

D(x,y) <- ParentChild(x,y).
D(x,z) <- D(x,y), ParentChild(y,z).
Q(x) <- D(“Alice”,x), !D(“Bob”,x).

Stratum 1

Stratum 2

A() <- !B().
B() <- !A(). Non-stratified

May use D
in an agg because

was defined in
previous stratum

May use !D

Cannot use !A

RA to Datalog by Examples

Union:
R(A,B,C) ∪ S(D,E,F)

U(x,y,z) :- R(x,y,z)
U(x,y,z) :- S(x,y,z)

CSEP 544 - Fall 2017 39

R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by Examples

Intersection:
R(A,B,C) ∩ S(D,E,F)

I(x,y,z) :- R(x,y,z), S(x,y,z)

CSEP 544 - Fall 2017 40

R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by Examples

Selection: σx>100 and y=‘foo’ (R)
L(x,y,z) :- R(x,y,z), x > 100, y=‘foo’

Selection: σx>100 or y=‘foo’ (R)
L(x,y,z) :- R(x,y,z), x > 100
L(x,y,z) :- R(x,y,z), y=‘foo’

CSEP 544 - Fall 2017 41

R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by Examples

Equi-join: R ⨝R.A=S.D and R.B=S.E S

J(x,y,z,q) :- R(x,y,z), S(x,y,q)

CSEP 544 - Fall 2017 42

R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by Examples

Projection:

P(x) :- R(x,y,z)

CSEP 544 - Fall 2017 43

R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by Examples

To express difference, we add negation

D(x,y,z) :- R(x,y,z), NOT S(x,y,z)

CSEP 544 - Fall 2017 44

R(A,B,C)
S(D,E,F)
T(G,H)

Examples

R(A,B,C)
S(D,E,F)
T(G,H)

Translate: πΑ(σB=3 (R))
A(a) :- R(a,3,_)
Underscore used to denote an "anonymous variable”
Each such variable is unique

CSEP 544 - Fall 2017 45

Examples

R(A,B,C)
S(D,E,F)
T(G,H)

Translate: πΑ(σB=3 (R) ⨝R.A=S.D σE=5 (S))
A(a) :- R(a,3,_), S(a,5,_)

CSEP 544 - Fall 2017 46

These are different “_”s

More Examples

Find Joe's friends, and Joe's friends of friends.

CSEP 544 - Fall 2017 47

A(x) :- Friend('Joe', x)
A(x) :- Friend('Joe', z), Friend(z, x)

Friend(name1, name2)
Enemy(name1, name2)

More Examples

Find all of Joe's friends who do not have any
friends except for Joe:

CSEP 544 - Fall 2017 48

JoeFriends(x) :- Friend('Joe',x)
NonAns(x) :- JoeFriends(x), Friend(x,y), y != ‘Joe’
A(x) :- JoeFriends(x), NOT NonAns(x)

Friend(name1, name2)
Enemy(name1, name2)

More Examples

Find all people such that all their enemies'
enemies are their friends
• Q: if someone doesn't have any enemies nor friends,

do we want them in the answer?
• A: Yes!

CSEP 544 - Fall 2017 49

Everyone(x) :- Friend(x,y)
Everyone(x) :- Friend(y,x)
Everyone(x) :- Enemy(x,y)
Everyone(x) :- Enemy(y,x)
NonAns(x) :- Enemy(x,y),Enemy(y,z), NOT Friend(x,z)
A(x) :- Everyone(x), NOT NonAns(x)

Friend(name1, name2)
Enemy(name1, name2)

More Examples

Find all persons x that have a friend all of whose
enemies are x's enemies.

CSEP 544 - Fall 2017 50

Everyone(x) :- Friend(x,y)
NonAns(x) :- Friend(x,y) Enemy(y,z), NOT Enemy(x,z)
A(x) :- Everyone(x), NOT NonAns(x)

Friend(name1, name2)
Enemy(name1, name2)

Datalog Summary

• EDB (base relations) and IDB (derived
relations)

• Datalog program = set of rules
• Datalog is recursive

• Some reminders about semantics:
– Multiple atoms in a rule mean join (or intersection)
– Variables with the same name are join variables
– Multiple rules with same head mean union

CSEP 544 - Fall 2017 51

Relational Data Model

• Data is stored in flat relations
• Physical and data independence

• Three languages for data manipulation:
– SQL: declarative
– Relational algebra: imperative
– Datalog: declarative / logical

– Each has advantages and disadvantages

CSEP 544 - Fall 2017 52

NoSQL

53CSEP 544 - Fall 2017

54

Class overview
• Data models

– Relational: SQL, RA, and Datalog
– NoSQL: SQL++

• RDMBS internals
– Query processing and optimization
– Physical design

• Parallel query processing
– Spark and Hadoop

• Conceptual design
– E/R diagrams
– Schema normalization

• Transactions
– Locking and schedules
– Writing DB applications

CSEP 544 - Fall 2017

Data models

Using
DBMS

Query
Processing

Two Classes of
Database Applications

• OLTP (Online Transaction Processing)
– Queries are simple lookups: 0 or 1 join

E.g., find customer by ID and their orders
– Many updates. E.g., insert order, update payment
– Consistency is critical: transactions (more later)

• OLAP (Online Analytical Processing)
– aka “Decision Support”
– Queries have many joins, and group-by’s

E.g., sum revenues by store, product, clerk, date
– No updates

CSEP 544 - Fall 2017 55

NoSQL Motivation

• Originally motivated by Web 2.0 applications
– E.g., Facebook, Amazon, Instagram, etc
– Web startups need to scaleup from 10 to 100000

users very quickly

• Needed: very large scale OLTP workloads
• Give up on consistency
• Give up OLAP

56

What is the Problem?

• Single server DBMS are too small for Web data

• Solution: scale out to multiple servers

• This is hard for the entire functionality of DMBS

• NoSQL: reduce functionality for easier scale up
– Simpler data model
– Very restricted updates

RDBMS Review: Serverless

CSEP 544 - Fall 2017 58

User SQLite:
• One data file
• One user
• One DBMS application

• Consistency is easy
• But only a limited number of

scenarios work with such model

DBMS
Application

(SQLite)

File

Desktop

Data file

Disk

RDBMS Review: Client-Server

Server Machine

Connection (JDBC, ODBC)

59

Client
Applications

• One server running the database
• Many clients, connecting via the ODBC or JDBC

(Java Database Connectivity) protocol

DB Server

File 1

File 2

File 3

RDBMS Review: Client-Server

Server Machine

Connection (JDBC, ODBC)

60

Client
Applications

• One server running the database
• Many clients, connecting via the ODBC or JDBC

(Java Database Connectivity) protocol

Many users and apps
Consistency is harder à

transactions

DB Server

File 1

File 2

File 3

61

Client-Server

• One server that runs the DBMS (or RDBMS):
– Your own desktop, or
– Some beefy system, or
– A cloud service (SQL Azure)

CSEP 544 - Fall 2017

62

Client-Server

• One server that runs the DBMS (or RDBMS):
– Your own desktop, or
– Some beefy system, or
– A cloud service (SQL Azure)

• Many clients run apps and connect to DBMS
– Microsoft’s Management Studio (for SQL Server), or
– psql (for postgres)
– Some Java program (HW8) or some C++ program

CSEP 544 - Fall 2017

63

Client-Server

• One server that runs the DBMS (or RDBMS):
– Your own desktop, or
– Some beefy system, or
– A cloud service (SQL Azure)

• Many clients run apps and connect to DBMS
– Microsoft’s Management Studio (for SQL Server), or
– psql (for postgres)
– Some Java program (HW8) or some C++ program

• Clients “talk” to server using JDBC/ODBC
protocol

CSEP 544 - Fall 2017

Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

64

Browser

CSEP 544 - Fall 2017

Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

65

App+Web Server

Connection
(e.g., JDBC)

HTTP/SSL

Browser

CSEP 544 - Fall 2017

Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

66

App+Web Server

Web-based applications

Connection
(e.g., JDBC)

HTTP/SSL

Browser

CSEP 544 - Fall 2017

Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

67

App+Web Server

Connection
(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web ServerCSEP 544 - Fall 2017

Web-based applications

Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

68

Why not replicate DB server?

App+Web Server

Connection
(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web Server

Web-based applications

Replicate
App server
for scaleup

Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

69

Why not replicate DB server?
Consistency!

App+Web Server

Connection
(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web Server

Web-based applications

Replicate
App server
for scaleup

Replicating the Database

• Two basic approaches:
– Scale up through partitioning
– Scale up through replication

• Consistency is much harder to enforce

CSEP 544 - Fall 2017 70

Scale Through Partitioning

• Partition the database across many machines in a cluster
– Database now fits in main memory
– Queries spread across these machines

• Can increase throughput
• Easy for writes but reads become expensive!

CSEP 544 - Fall 2017 71

Application
updates here May also

update here
Three partitions

Scale Through Replication

• Create multiple copies of each database partition
• Spread queries across these replicas
• Can increase throughput and lower latency
• Can also improve fault-tolerance
• Easy for reads but writes become expensive!

CSEP 544 - Fall 2017 72

App 1
updates
here only

App 2
updates
here onlyThree replicas

Relational Model à NoSQL

• Relational DB: difficult to replicate/partition
• Given

Supplier(sno,…),Part(pno,…),Supply(sno,pno)
– Partition: we may be forced to join across servers
– Replication: local copy has inconsistent versions
– Consistency is hard in both cases (why?)

• NoSQL: simplified data model
– Given up on functionality
– Application must now handle joins and

consistency
73

Data Models

Taxonomy based on data models:
• Key-value stores

– e.g., Project Voldemort, Memcached
• Document stores

– e.g., SimpleDB, CouchDB, MongoDB
• Extensible Record Stores

– e.g., HBase, Cassandra, PNUTS

CSEP 544 - Fall 2017 74

☞

Key-Value Stores Features

• Data model: (key,value) pairs
– Key = string/integer, unique for the entire data
– Value = can be anything (very complex object)

Key-Value Stores Features

• Data model: (key,value) pairs
– Key = string/integer, unique for the entire data
– Value = can be anything (very complex object)

• Operations
– get(key), put(key,value)
– Operations on value not supported

Key-Value Stores Features

• Data model: (key,value) pairs
– Key = string/integer, unique for the entire data
– Value = can be anything (very complex object)

• Operations
– get(key), put(key,value)
– Operations on value not supported

• Distribution / Partitioning – w/ hash function
– No replication: key k is stored at server h(k)
– 3-way replication: key k stored at h1(k),h2(k),h3(k)

Key-Value Stores Features

• Data model: (key,value) pairs
– Key = string/integer, unique for the entire data
– Value = can be anything (very complex object)

• Operations
– get(key), put(key,value)
– Operations on value not supported

• Distribution / Partitioning – w/ hash function
– No replication: key k is stored at server h(k)
– 3-way replication: key k stored at h1(k),h2(k),h3(k)

How does get(k) work? How does put(k,v) work?

Example

• How would you represent the Flights data as key,
value pairs?

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work?

Example

• How would you represent the Flights data as key,
value pairs?

• Option 1: key=fid, value=entire flight record

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work?

Example

• How would you represent the Flights data as key,
value pairs?

• Option 1: key=fid, value=entire flight record

• Option 2: key=date, value=all flights that day

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work?

Example

• How would you represent the Flights data as key,
value pairs?

• Option 1: key=fid, value=entire flight record

• Option 2: key=date, value=all flights that day

• Option 3: key=(origin,dest), value=all flights between

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work?

Key-Value Stores Internals

• Partitioning:
– Use a hash function h, and store every (key,value) pair

on server h(key)
– discuss get(key), and put(key,value)

• Replication:
– Store each key on (say) three servers
– On update, propagate change to the other servers;

eventual consistency
– Issue: when an app reads one replica, it may be stale

• Usually: combine partitioning+replication

Data Models

Taxonomy based on data models:
• Key-value stores

– e.g., Project Voldemort, Memcached
• Document stores

– e.g., SimpleDB, CouchDB, MongoDB
• Extensible Record Stores

– e.g., HBase, Cassandra, PNUTS

CSEP 544 - Fall 2017 84

☞

Motivation

• In Key, Value stores, the Value is often a very
complex object
– Key = ‘2010/7/1’, Value = [all flights that date]

• Better: allow DBMS to understand the value
– Represent value as a JSON (or XML...) document
– [all flights on that date] = a JSON file
– May search for all flights on a given date

85

Document Stores Features

• Data model: (key,document) pairs
– Key = string/integer, unique for the entire data
– Document = JSon, or XML

• Operations
– Get/put document by key
– Query language over JSon

• Distribution / Partitioning
– Entire documents, as for key/value pairs

We will discuss JSon

Data Models

Taxonomy based on data models:
• Key-value stores

– e.g., Project Voldemort, Memcached
• Document stores

– e.g., SimpleDB, CouchDB, MongoDB
• Extensible Record Stores

– e.g., HBase, Cassandra, PNUTS

CSEP 544 - Fall 2017 87

☞

Extensible Record Stores

• Based on Google’s BigTable

• Data model is rows and columns (surprise!)

• Scalability by splitting rows and columns over nodes
– Rows partitioned through sharding on primary key
– Columns of a table are distributed over multiple nodes by

using “column groups”

• HBase is an open source implementation of BigTable

CSEP 544 - Fall 2017 88

A Case Study: AsterixDB

89CSEP 544 - Fall 2017

JSON - Overview

• JavaScript Object Notation = lightweight text-
based open standard designed for human-
readable data interchange. Interfaces in C,
C++, Java, Python, Perl, etc.

• The filename extension is .json.

CSEP 544 - Fall 2017 90We will emphasize JSon as semi-structured data

JSon vs Relational

• Relational data model
– Rigid flat structure (tables)
– Schema must be fixed in advanced
– Binary representation: good for performance, bad for exchange
– Query language based on Relational Calculus

• Semistructured data model / JSon
– Flexible, nested structure (trees)
– Does not require predefined schema ("self describing”)
– Text representation: good for exchange, bad for performance
– Most common use: Language API; query languages emerging

CSEP 544 - Fall 2017 91

92

JSon Syntax
{ "book": [

{"id":"01",
"language": "Java”,
"author": ”H. Javeson”,
“year”: 2015

},
{"id":"07",

"language": "C++",
"edition": "second"
"author": ”E. Sepp”,
“price”: 22.25

}
]

}

CSEP 544 - Fall 2017

JSon Terminology

• Data is represented in name/value pairs.
• Curly braces hold objects

– Each object is a list of name/value pairs separated
by , (comma)

– Each pair is a name is followed by ':'(colon)
followed by the value

• Square brackets hold arrays and values are
separated by ,(comma).

CSEP 544 - Fall 2017 93

JSon Data Structures

• Collections of name-value pairs:
– {“name1”: value1, “name2”: value2, …}
– The “name” is also called a “key”

• Ordered lists of values:
– [obj1, obj2, obj3, ...]

CSEP 544 - Fall 2017 94

Avoid Using Duplicate Keys

CSEP 544 - Fall 2017 95

{"id":"07",
"title": "Databases",
"author": "Garcia-Molina",
"author": "Ullman",
"author": "Widom"

}

{"id":"07",
"title": "Databases",
"author": ["Garcia-Molina",

"Ullman",
"Widom"]

}

The standard allows them, but many implementations don’t

JSon Datatypes

• Number

• String = double-quoted

• Boolean = true or false

• nullempty

CSEP 544 - Fall 2017 96

97

JSon Semantics: a Tree !

person

Mary

name address
name address

street no city

Maple 345 Seattle

John
Thai

phone

23456

{“person”:
[{“name”: “Mary”,

“address”:
{“street”:“Maple”,
“no”:345,
“city”: “Seattle”}},

{“name”: “John”,
“address”: “Thailand”,
“phone”:2345678}}

]
}

98

JSon Data

• JSon is self-describing
• Schema elements become part of the data

– Relational schema: person(name,phone)
– In Json “person”, “name”, “phone” are part of the

data, and are repeated many times
• Consequence: JSon is much more flexible
• JSon = semistructured data

CSEP 544 - Fall 2017

Mapping Relational Data to JSon

CSEP 544 - Fall 2017 99

name name namephone phone phone
“John” 3634 “Sue” “Dirk”6343 6363

Person

person

name phone
John 3634
Sue 6343
Dirk 6363

{“person”:
[{“name”: “John”, “phone”:3634},
{“name”: “Sue”, ”phone”:6343},
{“name”: “Dirk”, ”phone”:6383}
]

}

Mapping Relational Data to JSon

100

Person
name phone
John 3634
Sue 6343

May inline foreign keys

Orders
personName date product
John 2002 Gizmo
John 2004 Gadget
Sue 2002 Gadget

{“Person”:
[{“name”: “John”,

“phone”:3646,
“Orders”:[{“date”:2002,

“product”:”Gizmo”},
{“date”:2004,
“product”:”Gadget”}

]
},
{“name”: “Sue”,

“phone”:6343,
“Orders”:[{“date”:2002,

“product”:”Gadget”}
]

}
]

}

101

JSon=Semi-structured Data (1/3)

• Missing attributes:

• Could represent in
a table with nulls

name phone
John 1234
Joe -

CSEP 544 - Fall 2017

{“person”:
[{“name”:”John”, “phone”:1234},
{“name”:”Joe”}]

}
no phone !

102

JSon=Semi-structured Data (2/3)

• Repeated attributes

• Impossible in
one table:

name phone
Mary 2345 3456 ???

CSEP 544 - Fall 2017

{“person”:
[{“name”:”John”, “phone”:1234},
{“name”:”Mary”, “phone”:[1234,5678]}]

}
Two phones !

103

JSon=Semi-structured Data (3/3)

• Attributes with different types in different objects

• Nested collections
• Heterogeneous collections

CSEP 544 - Fall 2017

{“person”:
[{“name”:”Sue”, “phone”:3456},
{“name”:{“first”:”John”,”last”:”Smith”},”phone”:2345}

]
}

Structured
name !

Discussion

• Data exchange formats
– Ideally suited for exchanging data between apps.
– XML, JSon, Protobuf

• Increasingly, some systems use them as a
data model:
– SQL Server supports for XML-valued relations
– CouchBase, Mongodb: JSon as data model
– Dremel (BigQuery): Protobuf as data model

CSEP 544 - Fall 2017 104

Query Languages for SS Data

• XML: XPath, XQuery (see end of lecture, textbook)
– Supported inside many RDBMS (SQL Server, DB2, Oracle)
– Several standalone XPath/XQuery engines

• Protobuf: SQL-ish language (Dremel) used internally
by google, and externally in BigQuery

• JSon:
– CouchBase: N1QL, may be replaced by AQL (better

designed)
– Asterix: SQL++ (based on SQL)
– MongoDB: has a pattern-based language
– JSONiq http://www.jsoniq.org/

AsterixDB and SQL++

• AsterixDB
– No-SQL database system
– Developed at UC Irvine
– Now an Apache project
– Own query language: AsterixQL or AQL, based on

XQuery
• SQL++

– SQL-like syntax for AsterixQL

CSEP 544 - Fall 2017 106

Asterix Data Model (ADM)

• Objects:
– {“Name”: “Alice”, “age”: 40}
– Fields must be distinct:

{“Name”: “Alice”, “age”: 40, “age”:50}
• Arrays:

– [1, 3, “Fred”, 2, 9]
– Note: can be heterogeneous

• Multisets:
– {{1, 3, “Fred”, 2, 9}}

107

Can’t have
repeated fields

Examples

Try these queries:

CSEP 544 - Fall 2017 108

SELECT x.age FROM [{'name': 'Alice', 'age': ['30', '50']}] x;

SELECT x.age FROM {{ {'name': 'Alice', 'age': ['30', '50']} }} x;

-- error
SELECT x.age FROM {'name': 'Alice', 'age': ['30', '50']} x;

Can only select from
multi-set or array

Datatypes

• Boolean, integer, float (various precisions),
geometry (point, line, …), date, time, etc

• UUID = universally unique identifier
Use it as a system-generated unique key

CSEP 544 - Fall 2017 109

Null v.s. Missing

• {“age”: null} = the value NULL (like in SQL)
• {“age”: missing} = { } = really missing

110

SELECT x.b FROM [{'a':1, 'b':2}, {'a':3}] x;

{ "b": { "int64": 2 } }
{ }

SELECT x.b FROM [{'a':1, 'b':2}, {'a':3, 'b':missing }] x;

{ "b": { "int64": 2 } }
{ }

ADM Language: SQL++

• DDL: create a
– Dataverse
– Type
– Dataset
– Index

• DML: select-from-where

CSEP 544 - Fall 2017 111

Dataverse
A Dataverse is a Database

CREATE DATAVERSE lecp544
CREATE DATAVERSE lecp544 IF NOT EXISTS

DROP DATAVERSE lecp544
DROP DATAVERSE lecp544 IF EXISTS

USE lecp544
112

Type

• Defines the schema of a collection
• It lists all required fields
• Fields followed by ? are optional
• CLOSED type = no other fields allowed
• OPEN type = other fields allowed

CSEP 544 - Fall 2017 113

Closed Types

114

USE lecp544;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {

Name : string,
age: int,
email: string?

}

{"Name": "Alice", "age": 30, "email": "a@alice.com"}

{"Name": "Bob", "age": 40}

-- not OK:
{"Name": "Carol", "phone": "123456789"}

Open Types

115

{"Name": "Alice", "age": 30, "email": "a@alice.com"}

{"Name": "Bob", "age": 40}

-- Now it’s OK:
{"Name": "Carol", "phone": "123456789"}

USE lecp544;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS OPEN {

Name : string,
age: int,
email: string?

}

Types with Nested Collections

116

USE lecp544;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {

Name : string,
phone: [string]

}

{"Name": "Carol", "phone": ["1234”]}
{"Name": ”David", "phone": [“2345”, “6789”]}
{"Name": ”Evan", "phone": []}

Datasets

• Dataset = relation
• Must have a type

– Can be a trivial OPEN type

• Must have a key
– Can also be a trivial one

CSEP 544 - Fall 2017 117

Dataset with Existing Key

CSEP 544 - Fall 2017 118

USE lecp544;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {

Name : string,
email: string?

}

USE lecp544;
DROP DATASET Person IF EXISTS;
CREATE DATASET Person(PersonType) PRIMARY KEY Name;

{“Name”: “Alice”}
{“Name”: “Bob”}
…

Dataset with Auto Generated Key

CSEP 544 - Fall 2017 119

USE lecp544;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {

myKey: uuid,
Name : string,
email: string?

}

USE lecp544;
DROP DATASET Person IF EXISTS;
CREATE DATASET Person(PersonType)

PRIMARY KEY myKey AUTOGENERATED;

{“Name”: “Alice”}
{“Name”: “Bob”}
…

Note: no myKey
since it will be
autogenerated

Discussion of NFNF

• NFNF = Non First Normal Form
• One or more attributes contain a collection
• One extreme: a single row with a huge,

nested collection
• Better: multiple rows, reduced number of

nested collections

CSEP 544 - Fall 2017 120

Example from HW5

country continent organization sea ... mountain desert

[{“name”:”Albania”,...},
{“name”:”Greece”,...},
...]

...

mondial.adm is totally semistructured:
{“mondial”: {“country”: [...], “continent”:[...], ..., “desert”:[...]}}

country.adm, sea.adm, mountain.adm are more structured
Country:

-car_code name ... ethnicgroups religions ... city

AL Albania ... [...] [...] ... [...]

GR Greece ... [...] [...] ... [...]

...

Indexes

• Can declare an index on an attribute of a top-
most collection

• Available:
– BTREE: good for equality and range queries

E.g. name=“Greece”; 20 < age and age < 40
– RTREE: good for 2-dimensional range queries

E.g. 20 < x and x < 40 and 10 < y and y < 50
– KEYWORD: good for substring search

CSEP 544 - Fall 2017 122

Indexes
USE lecp544;
CREATE INDEX countryID

ON country(`-car_code`)
TYPE BTREE;

Country:

-car_code name ... ethnicgroups religions ... city

AL Albania ... [...] [...] ... [...]

GR Greece ... [...] [...] ... [...]

...

BG Belgium ...

...

AL BG GR... NZ

USE lecp544;
CREATE INDEX cityname

ON country(city.name)
TYPE BTREE;

Cannot index inside
a nested collection

SQL++ Overview

CSEP 544 - Fall 2017 124

SELECT ... FROM ... WHERE ... [GROUP BY ...]

Retrieve Everything

CSEP 544 - Fall 2017 125

{“mondial”:
{“country”: [country1, country2, …],
“continent”: […],
“organization”: […],
...
...

}

Answer

{“mondial”:
{“country”: [country1, country2, …],
“continent”: […],
“organization”: […],
...
...

}

SELECT x.mondial FROM world x;

Retrieve countries

CSEP 544 - Fall 2017 126

{“country”: [country1, country2, …],Answer

{“mondial”:
{“country”: [country1, country2, …],
“continent”: […],
“organization”: […],
...
...

}

SELECT x.mondial.country FROM world x;

Retrieve countries,
one by one

CSEP 544 - Fall 2017 127

country1
country2
...

Answer

{“mondial”:
{“country”: [country1, country2, …],
“continent”: […],
“organization”: […],
...
...

}

SELECT y as country FROM world x, x.mondial.country y;

Escape characters

CSEP 544 - Fall 2017 128

{“code”: “AFG”, “name”: “Afganistan”}
{“code”: “AL”, “name”: “Albania”}
...

Answer

{“mondial”:
{“country”: [country1, country2, …],
“continent”: […],
“organization”: […],
...
...

}

SELECT y.`-car_code` as code , y.name as name
FROM world x, x.mondial.country y order by y.name;

“-car_code” illegal field
Use ̀ ... `

Nested Collections

• If the value of attribute B is a collection, then
we simply iterate over it

CSEP 544 - Fall 2017 129

SELECT x.A, y.C, y.D
FROM mydata as x, x.B as y;

{“A”: “a1”, “B”: [{“C”: “c1”, “D”: “d1”}, {“C”: “c2”, “D”: “d2”}]}
{“A”: “a2”, “B”: [{“C”: “c3”, “D”: “d3”}]}
{“A”: “a3”, “B”: [{“C”: “c4”, “D”: “d4”}, {“C”: “c5”, “D”: “d5”}]}

x.B is a collection

Nested Collections

• If the value of attribute B is a collection, then
we simply iterate over it

CSEP 544 - Fall 2017 130

{“A”: “a1”, “B”: [{“C”: “c1”, “D”: “d1”}, {“C”: “c2”, “D”: “d2”}]}
{“A”: “a2”, “B”: [{“C”: “c3”, “D”: “d3”}]}
{“A”: “a3”, “B”: [{“C”: “c4”, “D”: “d4”}, {“C”: “c5”, “D”: “d5”}]}

{“A”: “a1”, “C”: “c1”, “D”: “d1”}
{“A”: “a1”, “C”: “c2”, “D”: “d2”}
{“A”: “a2”, “C”: “c3”, “D”: “d3”}
{“A”: “a3”, “C”: “c4”, “D”: “d4”}
{“A”: “a3”, “C”: “c5”, “D”: “d5”}

SELECT x.A, y.C, y.D
FROM mydata as x, x.B as y;

x.B is a collection

Heterogeneous
Collections

131

...
“province”: [...

{“name”: "Attiki”,
“city” : [{“name”: ”Athens”...}, {“name”: ”Pireus”...}, ..]
...},
{“name”: ”Ipiros”,
“city” : {“name”: ”Ioannia”...}
...},

The problem:

{“mondial”:
{“country”: [country1, country2, …],
“continent”: […],
“organization”: […],
...
...

}

SELECT z.name as province_name, u.name as city_name
FROM world x, x.mondial.country y, y.province z, z.city u
WHERE y.name='Greece';

Runtime error

city is an array

city is an object

Heterogeneous
Collections

132

SELECT z.name as province_name, u.name as city_name
FROM world x, x.mondial.country y, y.province z, z.city u
WHERE y.name='Greece' and is_array(z.city);

Just the arrays
...
“province”: [...

{“name”: "Attiki”,
“city” : [{“name”: ”Athens”...}, {“name”: ”Pireus”...}, ..]
...},
{“name”: ”Ipiros”,
“city” : {“name”: ”Ioannia”...}
...},

The problem:

{“mondial”:
{“country”: [country1, country2, …],
“continent”: […],
“organization”: […],
...
...

}

Heterogeneous
Collections

133

SELECT z.name as province_name, z.city.name as city_name
FROM world x, x.mondial.country y, y.province z
WHERE y.name='Greece' and not is_array(z.city);

Note: get name
directly from z

Just the objects
...
“province”: [...

{“name”: "Attiki”,
“city” : [{“name”: ”Athens”...}, {“name”: ”Pireus”...}, ..]
...},
{“name”: ”Ipiros”,
“city” : {“name”: ”Ioannia”...}
...},

The problem:

{“mondial”:
{“country”: [country1, country2, …],
“continent”: […],
“organization”: […],
...
...

}

{“mondial”:
{“country”: [country1, country2, …],
“continent”: […],
“organization”: […],
...
...

}

Heterogeneous
Collections

134

SELECT z.name as province_name, u.name as city_name
FROM world x, x.mondial.country y, y.province z,

(CASE WHEN is_array(z.city) THEN z.city
ELSE [z.city] END) u

WHERE y.name='Greece';

Get both!
...
“province”: [...

{“name”: "Attiki”,
“city” : [{“name”: ”Athens”...}, {“name”: ”Pireus”...}, ..]
...},
{“name”: ”Ipiros”,
“city” : {“name”: ”Ioannia”...}
...},

The problem:

Heterogeneous
Collections

135

Even better

...
“province”: [...

{“name”: "Attiki”,
“city” : [{“name”: ”Athens”...}, {“name”: ”Pireus”...}, ..]
...},
{“name”: ”Ipiros”,
“city” : {“name”: ”Ioannia”...}
...},

The problem:

{“mondial”:
{“country”: [country1, country2, …],
“continent”: […],
“organization”: […],
...
...

}
SELECT z.name as province_name, u.name as city_name
FROM world x, x.mondial.country y, y.province z,

(CASE WHEN z.city is missing THEN []
WHEN is_array(z.city) THEN z.city
ELSE [z.city] END) u

WHERE y.name='Greece';

