
Database Management Systems
CSEP 544

Lecture 3: SQL
Relational Algebra, and Datalog

1CSEP 544 - Fall 2017

Announcements

CSEP 544 - Fall 2017 2

• HW2 due tonight (11:59pm)

• PA3 & HW3 released

HW3
• We will be using SQL Server in the cloud (Azure)

– Same dataset
– More complex queries J

• Logistics
– You will receive an email from invites@microsoft.com

to join the “Default Directory organization” --- accept it!
– You are allocated $100 to use for this quarter
– We will use Azure for two HW assignments
– Use SQL Server Management Studio to access the DB

• Installed on all CSE lab machines and VDI machines

CSEP 544 - Fall 2017 3

Scythe

CSEP 544 - Fall 2017 4

Plan for Today
• Wrap up SQL

• Study two other languages for the relational data
model
– Relational algebra
– Datalog

CSEP 544 - Fall 2017 5

Reading Assignment 2
• Normal form

• Compositionality of relations and operators

CSEP 544 - Fall 2017 6

Review
• SQL

– Selection
– Projection
– Join
– Ordering
– Grouping
– Aggregates
– Subqueries

• Query Evaluation

CSEP 544 - Fall 2017 7

FWGHOS

Monotone Queries
• Definition A query Q is monotone if:

– Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

pname price cid
Gizmo 19.99 c001
Gadget 999.99 c004
Camera 149.99 c003

Product (pname, price, cid)
Company (cid, cname, city)

pname price cid
Gizmo 19.99 c001
Gadget 999.99 c004
Camera 149.99 c003
iPad 499.99 c001

cid cname city
c002 Sunworks Bonn
c001 DB Inc. Lyon
c003 Builder Lodtz

Product Company
pname city
Gizmo Lyon
Camera Lodtz

pname city
Gizmo Lyon
Camera Lodtz
iPad Lyon

Product Company

Q

Qcid cname city
c002 Sunworks Bonn
c001 DB Inc. Lyon
c003 Builder Lodtz

SQL Idioms

9CSEP 544 - Fall 2017

Including Empty Groups

• In the result of a group by query, there
is one row per group in the result

CSEP 544 - Fall 2017 10

SELECT x.manufacturer, count(*)
FROM Product x, Purchase y
WHERE x.pname = y.product
GROUP BY x.manufacturer

Count(*) is
never 0

FWGHOS

Including Empty Groups

CSEP 544 - Fall 2017 11

SELECT x.manufacturer, count(y.pid)
FROM Product x LEFT OUTER JOIN Purchase y
ON x.pname = y.product
GROUP BY x.manufacturer

Count(pid) is 0
when all pid’s in

the group are
NULL

GROUP BY vs. Nested Queries

CSEP 544 - Fall 2017 12

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

SELECT DISTINCT x.product, (SELECT Sum(y.quantity)
FROM Purchase y
WHERE x.product = y.product
AND y.price > 1)

AS TotalSales
FROM Purchase x
WHERE x.price > 1

Why twice ?

Purchase(pid, product, quantity, price)

More Unnesting

CSEP 544 - Fall 2017 13

Author(login,name)
Wrote(login,url)

Find authors who wrote ≥ 10 documents:

More Unnesting

CSEP 544 - Fall 2017 14

SELECT DISTINCT Author.name
FROM Author
WHERE (SELECT count(Wrote.url)

FROM Wrote
WHERE Author.login=Wrote.login)

>= 10

This is
SQL by
a novice

Attempt 1: with nested queries

Author(login,name)
Wrote(login,url)

Find authors who wrote ≥ 10 documents:

More Unnesting

CSEP 544 - Fall 2017 15

Attempt 1: with nested queries

Author(login,name)
Wrote(login,url)

Find authors who wrote ≥ 10 documents:

SELECT Author.name
FROM Author, Wrote
WHERE Author.login=Wrote.login
GROUP BY Author.name
HAVING count(wrote.url) >= 10

This is
SQL by

an expert

Attempt 2: using GROUP BY and HAVING

Finding Witnesses

CSEP 544 - Fall 2017 16

Product (pname, price, cid)
Company (cid, cname, city)

For each city, find the most expensive product made in that city

Finding Witnesses

CSEP 544 - Fall 2017 17

SELECT x.city, max(y.price)
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city;

Finding the maximum price is easy…

But we need the witnesses, i.e., the products with max price

For each city, find the most expensive product made in that city

Product (pname, price, cid)
Company (cid, cname, city)

Finding Witnesses

CSEP 544 - Fall 2017 18

To find the witnesses, compute the maximum price
in a subquery

SELECT DISTINCT u.city, v.pname, v.price
FROM Company u, Product v,

(SELECT x.city, max(y.price) as maxprice
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city) w

WHERE u.cid = v.cid
and u.city = w.city
and v.price = w.maxprice;

Product (pname, price, cid)
Company (cid, cname, city)

Finding Witnesses

CSEP 544 - Fall 2017 19

Or we can use a subquery in where clause

SELECT u.city, v.pname, v.price
FROM Company u, Product v
WHERE u.cid = v.cid

and v.price >= ALL (SELECT y.price
FROM Company x, Product y
WHERE u.city=x.city
and x.cid=y.cid);

Product (pname, price, cid)
Company (cid, cname, city)

Finding Witnesses

CSEP 544 - Fall 2017 20

There is a more concise solution here:

SELECT u.city, v.pname, v.price
FROM Company u, Product v, Company x, Product y
WHERE u.cid = v.cid and u.city = x.city
and x.cid = y.cid
GROUP BY u.city, v.pname, v.price
HAVING v.price = max(y.price)

Product (pname, price, cid)
Company (cid, cname, city)

SQL: Our first language for
the relational model

• Projections
• Selections
• Joins (inner and outer)
• Inserts, updates, and deletes
• Aggregates
• Grouping
• Ordering
• Nested queries

CSEP 544 - Fall 2017 21

Relational Algebra

22CSEP 544 - Fall 2017

23

Class overview
• Data models

– Relational: SQL, RA, and Datalog
– NoSQL: SQL++

• RDMBS internals
– Query processing and optimization
– Physical design

• Parallel query processing
– Spark and Hadoop

• Conceptual design
– E/R diagrams
– Schema normalization

• Transactions
– Locking and schedules
– Writing DB applications

CSEP 544 - Fall 2017

Data models

Using
DBMS

Query
Processing

Next: Relational Algebra

• Our second language for the relational
model
– Developed before SQL
– Simpler syntax than SQL

CSEP 544 - Fall 2017 24

Why bother with another
language?
• Used extensively by

DBMS implementations
– As we will see in 2 weeks

• RA influences the design
SQL

CSEP 544 - Fall 2017 25

Relational Algebra

• In SQL we say what we want
• In RA we can express how to get it
• Set-at-a-time algebra, which manipulates

relations
• Every RDBMS implementations converts a

SQL query to RA in order to execute it

• An RA expression is also called a query plan

CSEP 544 - Fall 2017 26

Basics

CSEP 544 - Fall 2017 27

• Relations and attributes
• Functions that are applied to relations

– Return relations
– Can be composed together
– Often displayed using a tree rather than linearly
– Use Greek symbols: σ, π, δ, etc

Sets v.s. Bags

• Sets: {a,b,c}, {a,d,e,f}, { }, . . .
• Bags: {a, a, b, c}, {b, b, b, b, b}, . . .

Relational Algebra has two flavors:
• Set semantics = standard Relational Algebra
• Bag semantics = extended Relational Algebra

DB systems implement bag semantics (Why?)
CSEP 544 - Fall 2017 28

Relational Algebra Operators
• Union ∪, intersection ∩, difference -
• Selection σ
• Projection π
• Cartesian product X, join ⨝
• (Rename ρ)
• Duplicate elimination δ
• Grouping and aggregation ɣ
• Sorting 𝛕

CSEP 544 - Fall 2017 29

RA

Extended RA

All operators take in 1 or more relations as inputs
and return another relation

Union and Difference

CSEP 544 - Fall 2017 30

What do they mean over bags ?

R1 ∪ R2
R1 – R2

Only make sense if R1, R2 have the same schema

What about Intersection ?

• Derived operator using minus

• Derived using join

CSEP 544 - Fall 2017 31

R1 ∩ R2 = R1 – (R1 – R2)

R1 ∩ R2 = R1 ⨝ R2

Selection
• Returns all tuples which satisfy a condition

• Examples
– σSalary > 40000 (Employee)
– σname = “Smith” (Employee)

• The condition c can be =, <, <=, >, >=, <>
combined with AND, OR, NOT

CSEP 544 - Fall 2017 32

σc(R)

σSalary > 40000 (Employee)

SSN Name Salary
1234545 John 20000
5423341 Smith 60000
4352342 Fred 50000

SSN Name Salary
5423341 Smith 60000
4352342 Fred 50000

Employee

CSEP 544 - Fall 2017 33

Projection
• Eliminates columns

• Example: project social-security number
and names:
– πSSN, Name (Employee) à Answer(SSN, Name)

CSEP 544 - Fall 2017 34

π A1,…,An(R)

Different semantics over sets or bags! Why?

π Name,Salary (Employee)

SSN Name Salary
1234545 John 20000
5423341 John 60000
4352342 John 20000

Name Salary
John 20000
John 60000
John 20000

Employee

Name Salary
John 20000
John 60000

Bag semantics Set semantics

CSEP 544 - Fall 2017 35Which is more efficient?

Functional Composition of RA
Operators

CSEP 544 - Fall 2017 36

no name zip disease
1 p1 98125 flu
2 p2 98125 heart
3 p3 98120 lung
4 p4 98120 heart

Patient

σdisease=‘heart’(Patient)
no name zip disease
2 p2 98125 heart
4 p4 98120 heart

zip disease
98125 flu
98125 heart
98120 lung
98120 heart

πzip,disease(Patient)

πzip,disease(σdisease=‘heart’(Patient))
zip disease
98125 heart
98120 heart

Cartesian Product

• Each tuple in R1 with each tuple in R2

• Rare in practice; mainly used to express joins

CSEP 544 - Fall 2017 37

R1 × R2

Name SSN
John 999999999
Tony 777777777

Employee
EmpSSN DepName
999999999 Emily
777777777 Joe

Dependent

Employee X Dependent
Name SSN EmpSSN DepName
John 999999999 999999999 Emily
John 999999999 777777777 Joe
Tony 777777777 999999999 Emily
Tony 777777777 777777777 Joe

Cross-Product Example

CSEP 544 - Fall 2017 38

Renaming

• Changes the schema, not the instance

• Example:
– Given Employee(Name, SSN)
– ρN, S(Employee) à Answer(N, S)

CSEP 544 - Fall 2017 39

ρB1,…,Bn (R)

Natural Join

• Meaning: R1⨝R2 = πA(σθ (R1 × R2))

• Where:
– Selection σθ checks equality of all common

attributes (i.e., attributes with same names)
– Projection πA eliminates duplicate common

attributes
CSEP 544 - Fall 2017 40

R1 ⨝R2

Natural Join Example

CSEP 544 - Fall 2017 41

A B
X Y
X Z
Y Z
Z V

B C
Z U
V W
Z V

A B C
X Z U
X Z V
Y Z U
Y Z V
Z V W

R S

R ⨝ S =
πABC(σR.B=S.B(R × S))

Natural Join Example 2

CSEP 544 - Fall 2017 42

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P V

name age zip
Alice 54 98125
Bob 20 98120

age zip disease name

54 98125 heart Alice

20 98120 flu Bob

Natural Join

• Given schemas R(A, B, C, D), S(A, C, E),
what is the schema of R ⨝ S ?

• Given R(A, B, C), S(D, E), what is R ⨝ S?

• Given R(A, B), S(A, B), what is R ⨝ S?

CSEP 544 - Fall 2017 43

Theta Join

• A join that involves a predicate

• Here θ can be any condition
• No projection in this case!
• For our voters/patients example:

44

R1 ⨝θ R2 = σθ (R1 X R2)

P ⨝ P.zip = V.zip and P.age >= V.age -1 and P.age <= V.age +1 V

AnonPatient (age, zip, disease)
Voters (name, age, zip)

Equijoin
• A theta join where θ is an equality predicate

• By far the most used variant of join in practice
• What is the relationship with natural join?

CSEP 544 - Fall 2017 45

R1 ⨝θ R2 = σθ (R1 × R2)

Equijoin Example

CSEP 544 - Fall 2017 46

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P P.age=V.age V

name age zip
p1 54 98125
p2 20 98120

P.age P.zip P.disease V.name V.age V.zip

54 98125 heart p1 54 98125

20 98120 flu p2 20 98120

Join Summary
• Theta-join: R ⨝θ S = σθ (R × S)

– Join of R and S with a join condition θ
– Cross-product followed by selection θ
– No projection

• Equijoin: R ⨝θ S = σθ (R × S)
– Join condition θ consists only of equalities
– No projection

• Natural join: R ⨝ S = πA (σθ (R × S))
– Equality on all fields with same name in R and in S
– Projection πA drops all redundant attributes

CSEP 544 - Fall 2017 47

So Which Join Is It ?

When we write R ⨝ S we usually mean an
equijoin, but we often omit the equality
predicate when it is clear from the context

CSEP 544 - Fall 2017 48

More Joins

• Outer join
– Include tuples with no matches in the output
– Use NULL values for missing attributes
– Does not eliminate duplicate columns

• Variants
– Left outer join
– Right outer join
– Full outer join

CSEP 544 - Fall 2017 49

Outer Join Example

CSEP 544 - Fall 2017 50

age zip disease
54 98125 heart
20 98120 flu
33 98120 lung

AnonPatient P

P ⋊ J

P.age P.zip P.disease J.job J.age J.zip

54 98125 heart lawyer 54 98125

20 98120 flu cashier 20 98120

33 98120 lung null null null

AnnonJob J
job age zip
lawyer 54 98125
cashier 20 98120

Some Examples
Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

Name of supplier of parts with size greater than 10
πsname(Supplier ⨝ Supply ⨝ (σpsize>10 (Part))

Name of supplier of red parts or parts with size greater than 10
πsname(Supplier ⨝ Supply ⨝ (σ psize>10 (Part) ∪ σpcolor=‘red’ (Part)))
πsname(Supplier ⨝ Supply ⨝ (σ psize>10 ∨ pcolor=‘red’ (Part)))

Can be represented as trees as well
CSEP 544 - Fall 2017 51

Representing RA Queries as Trees
Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

πsname(Supplier ⨝ Supply ⨝ (σpsize>10 (Part))

CSEP 544 - Fall 2017 52

Part

Supplyσpsize>10

πsname

Answer

Supplier

Relational Algebra Operators
• Union ∪, intersection ∩, difference -
• Selection σ
• Projection π
• Cartesian product X, join ⨝
• (Rename ρ)
• Duplicate elimination δ
• Grouping and aggregation ɣ
• Sorting 𝛕

CSEP 544 - Fall 2017 53

RA

Extended RA

All operators take in 1 or more relations as inputs
and return another relation

Extended RA: Operators on
Bags

• Duplicate elimination δ
• Grouping γ

– Takes in relation and a list of grouping operations
(e.g., aggregates). Returns a new relation.

• Sorting τ
– Takes in a relation, a list of attributes to sort on,

and an order. Returns a new relation.

CSEP 544 - Fall 2017 54

Using Extended RA Operators

CSEP 544 - Fall 2017 55

SELECT city, sum(quantity)
FROM sales
GROUP BY city
HAVING count(*) > 100

T1, T2 = temporary tables sales(product, city, quantity)

γ city, sum(quantity)→q, count(*) → c

σ c > 100

π city, q

Answer

T1(city,q,c)

T2(city,q,c)

Typical Plan for a Query (1/2)

CSEP 544 - Fall 2017 56

R S

join condition

σselection condition

πfields

join condition

…

SELECT-PROJECT-JOIN
Query

Answer
SELECT fields
FROM R, S, …
WHERE condition

Typical Plan for a Query (1/2)

57

πfields

ɣfields, sum/count/min/max(fields)

σhaving condition

σwhere condition

join condition

… …

SELECT fields
FROM R, S, …
WHERE condition
GROUP BY fields
HAVING condition

How about Subqueries?

CSEP 544 - Fall 2017 58

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

How about Subqueries?

CSEP 544 - Fall 2017 59

Correlation !

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

How about Subqueries?

CSEP 544 - Fall 2017 60

De-Correlation

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and Q.sno not in
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and Q.sno not in
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

How about Subqueries?

CSEP 544 - Fall 2017 61

(SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’)

EXCEPT
(SELECT P.sno

FROM Supply P
WHERE P.price > 100)

EXCEPT = set difference

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Un-nesting

(SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’)

EXCEPT
(SELECT P.sno

FROM Supply P
WHERE P.price > 100)

How about Subqueries?

CSEP 544 - Fall 2017 62

Supply

σsstate=‘WA’

Supplier

σPrice > 100

−
Finally…

πsnoπsno

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Summary of RA and SQL

• SQL = a declarative language where we
say what data we want to retrieve

• RA = an algebra where we say how we
want to retrieve the data

• Both implements the relational data model
• Theorem: SQL and RA can express

exactly the same class of queries
RDBMS translate SQL à RA, then optimize RA

Summary of RA and SQL

• SQL (and RA) cannot express ALL queries
that we could write in, say, Java

• Example:
– Parent(p,c): find all descendants of ‘Alice’
– No RA query can compute this!
– This is called a recursive query

• Next: Datalog is an extension that can
compute recursive queries

CSEP 544 - Fall 2017 64

Summary of RA and SQL

• Translating from SQL to RA gives us a
way to evaluate the input query

• Transforming one RA plan to another
forms the basis of query optimization

• Will see more in 2 weeks

Datalog

66CSEP 544 - Fall 2017

What is Datalog?
• Another declarative query language for

relational model
– Designed in the 80’s
– Minimal syntax
– Simple, concise, elegant
– Extends relational queries with recursion

• Today:
– Adopted by some companies for data analytics,

e.g., LogicBlox (HW4)
– Usage beyond databases: e.g., network protocols,

static program analysis 67

SQL Query vs Datalog
(which would you rather write?)

(any Java fans out there?)

Manager(eid) :- Manages(_, eid)

DirectReports(eid, 0) :-
Employee(eid),
not Manager(eid)

DirectReports(eid, level+1) :-
DirectReports(mid, level),
Manages(mid, eid)

HW4: Preview

CSEP 544 - Fall 2017 69

Datalog: Facts and Rules

CSEP 544 - Fall 2017 70

Facts = tuples in the database Rules = queries

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Schema

Datalog: Facts and Rules

CSEP 544 - Fall 2017 71

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

CSEP 544 - Fall 2017 72

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

CSEP 544 - Fall 2017 73

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Find Movies made in 1940

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

CSEP 544 - Fall 2017 74

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,’1940’).

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

CSEP 544 - Fall 2017 75

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,’1940’).

Find Actors who acted in Movies made in 1940

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

CSEP 544 - Fall 2017 76

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,’1940’).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

CSEP 544 - Fall 2017 77

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,’1940’).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

Find Actors who acted in a Movie in 1940 and in one in 1910

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

CSEP 544 - Fall 2017 78

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,’1940’).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

Extensional Database Predicates = EDB = Actor, Casts, Movie
Intensional Database Predicates = IDB = Q1, Q2, Q3

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Terminology

CSEP 544 - Fall 2017 79

Q2(f, l) :- Actor(z,f,l), Casts(z,x), Movie(x,y,’1940’).

bodyhead

atom atom atom (aka subgoal)

f, l = head variables
x,y,z = existential variables

In this class we discuss datalog evaluated under set semantics

More Datalog Terminology

• Ri(argsi) is called an atom, or a relational predicate
• Ri(argsi) evaluates to true when relation Ri contains

the tuple described by argsi.
– Example: Actor(344759, ‘Douglas’, ‘Fowley’) is true

• In addition to relational predicates, we can also have
arithmetic predicates
– Example: z > ‘1940’.

• Note: Logicblox uses <- instead of :-
80

Q(args) :- R1(args), R2(args), Your book uses:
Q(args) :- R1(args) AND R2(args) AND

Q(args) <- R1(args), R2(args),

Semantics of a Single Rule
• Meaning of a datalog rule = a logical statement !

CSEP 544 - Fall 2017 81

Q1(y) :- Movie(x,y,z), z=‘1940’.

• For all values of x, y, z:
if (x,y,z) is in the Movies relation, and that z = ‘1940’
then y is in Q1 (i.e., it is part of the answer)

• Logically equivalent:
∀ y. [(∃x.∃ z. Movie(x,y,z) and z=‘1940’) ⇒ Q1(y)]

• That's why head variables are called "existential
variables”

• We want the smallest set Q1 with this property (why?)

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Datalog program

• A datalog program consists of several
rules

• Importantly, rules may be recursive!
• Usually there is one distinguished

predicate that’s the output
• We will show an example first, then give

the general semantics.

CSEP 544 - Fall 2017 82

Example

1

2

4

3

R encodes a graph

1 2
2 1
2 3

1 4

3 4
4 5

R=

5

Example

1

2

4

3

R encodes a graph

1 2
2 1
2 3

1 4

3 4
4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

What does
it compute?

5

Example

1

2

4

3

1 2
2 1
2 3

1 4

3 4
4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Initially:
T is empty.

5
R encodes a graph

What does
it compute?

Example

1

2

4

3

1 2
2 1
2 3

1 4

3 4
4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

First iteration:
T =

5
R encodes a graph

What does
it compute?

Second rule
generates nothing
(because T is empty)

First rule generates this

Example

1

2

4

3

1 2
2 1
2 3

1 4

3 4
4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

Second iteration:
T = 1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

First iteration:
T =

5
R encodes a graph

What does
it compute?

New facts

First rule generates this

Second rule generates this

Example

1

2

4

3

1 2
2 1
2 3

1 4

3 4
4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

Second iteration:
T = 1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

First iteration:
T =

5

Third iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

2 5

R encodes a graph
What does
it compute?

New fact

First rule

Second
rule

Both rules

Example

1

2

4

3

1 2
2 1
2 3

1 4

3 4
4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

Second iteration:
T = 1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

First iteration:
T =

5

Third iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

2 5

R encodes a graph
What does
it compute?

No
new
facts.
DONE

Fourth
iteration
T =
(same)

This is called the fixpoint semantics
of a datalog program

