
Database Management Systems
CSEP 544

Lecture 2: SQL

1CSEP 544 - Fall 2017

Announcements

CSEP 544 - Fall 2017 2

• HW1 due tonight (11:59pm)

• PA2 & HW2 released

• Fill out HW3 email account form by tonight!

• Final information posted on piazza

• Check website for up to date OH info

Review
• Data models

– Instance
– Schema
– Language

• Relational data model
– Relations are flat
– Tuples are not ordered

• Logical and physical data independence

CSEP 544 - Fall 2017 3

Reading Assignment 1

CSEP 544 - Fall 2017 4

Selections in SQL

CSEP 544 - Fall 2017 5

SELECT *
FROM Product
WHERE price > 100.0

Projections in SQL
SELECT CName
FROM Product

Joins in SQL

CSEP 544 - Fall 2017 6

Retrieve all Japanese products that cost < $150

Product(pname, price, category, manufacturer)
Company(cname, country)

pname price category manufacturer
MultiTouch 199.99 gadget Canon
SingleTouch 49.99 photography Canon
Gizom 50 gadget GizmoWorks
SuperGizmo 250.00 gadget GizmoWorks

cname country
GizmoWorks USA
Canon Japan
Hitachi Japan

Joins in SQL

CSEP 544 - Fall 2017 7

Retrieve all Japanese products that cost < $150

Product(pname, price, category, manufacturer)
Company(cname, country)

SELECT pname, price
FROM Product, Company
WHERE ...

pname price category manufacturer
MultiTouch 199.99 gadget Canon
SingleTouch 49.99 photography Canon
Gizom 50 gadget GizmoWorks
SuperGizmo 250.00 gadget GizmoWorks

cname country
GizmoWorks USA
Canon Japan
Hitachi Japan

Joins in SQL

CSEP 544 - Fall 2017 8

Retrieve all Japanese products that cost < $150

Product(pname, price, category, manufacturer)
Company(cname, country)

SELECT pname, price
FROM Product, Company
WHERE manufacturer=cname AND

country='Japan' AND price < 150

pname price category manufacturer
MultiTouch 199.99 gadget Canon
SingleTouch 49.99 photography Canon
Gizom 50 gadget GizmoWorks
SuperGizmo 250.00 gadget GizmoWorks

cname country
GizmoWorks USA
Canon Japan
Hitachi Japan

Joins in SQL

CSEP 544 - Fall 2017 9

Retrieve all Japanese products that cost < $150

Product(pname, price, category, manufacturer)
Company(cname, country)

SELECT P.pname, P.price
FROM Product as P, Company as C
WHERE P.manufacturer=C.cname AND

C.country='Japan' AND C.price < 150

pname price category manufacturer
MultiTouch 199.99 gadget Canon
SingleTouch 49.99 photography Canon
Gizom 50 gadget GizmoWorks
SuperGizmo 250.00 gadget GizmoWorks

cname country
GizmoWorks USA
Canon Japan
Hitachi Japan

Joins in SQL

CSEP 544 - Fall 2017 10

Product(pname, price, category, manufacturer)
Company(cname, country)

Retrieve all USA companies
that manufacture “gadget” products

pname price category manufacturer
MultiTouch 199.99 gadget Canon
SingleTouch 49.99 photography Canon
Gizom 50 gadget GizmoWorks
SuperGizmo 250.00 gadget GizmoWorks

cname country
GizmoWorks USA
Canon Japan
Hitachi Japan

Joins in SQL

CSEP 544 - Fall 2017 11

Product(pname, price, category, manufacturer)
Company(cname, country)

pname price category manufacturer
MultiTouch 199.99 gadget Canon
SingleTouch 49.99 photography Canon
Gizom 50 gadget GizmoWorks
SuperGizmo 250.00 gadget GizmoWorks

cname country
GizmoWorks USA
Canon Japan
Hitachi Japan

Retrieve all USA companies
that manufacture “gadget” products

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

Why
DISTINCT?

Joins in SQL

• The standard join in SQL is sometimes
called an inner join
– Each row in the result must come from

both tables in the join
• Sometimes we want to include rows

from only one of the two table: outer join

CSEP 544 - Fall 2017 12

CSEP 544 - Fall 2017 20

Joins and Aggregates

(Inner) joins

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

21CSEP 544 - Fall 2017

Product(pname, price, category, manufacturer)
Company(cname, country)
-- manufacturer is foreign key to Company

(Inner) joins
SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

22CSEP 544 - Fall 2017

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

•Product •Company

(Inner) joins

23CSEP 544 - Fall 2017

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

•Product •Company

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

(Inner) joins

24CSEP 544 - Fall 2017

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

•Product •Company

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

(Inner) joins

25

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

•Product •Company

pname category manufacturer cname country

Gizmo gadget GizmoWorks GizmoWorks USA

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

(Inner) joins

26CSEP 544 - Fall 2017

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

•Product •Company

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

(Inner) joins

27CSEP 544 - Fall 2017

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

•Product •Company

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

(Inner) joins
SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

28CSEP 544 - Fall 2017

SELECT DISTINCT cname
FROM Product JOIN Company ON

country = 'USA' AND category = 'gadget'
AND manufacturer = cname

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

for x1 in R1:
for x2 in R2:

...
for xm in Rm:

if Cond(x1, x2…):
output(x1.a1, x2.a2, … xm.am)

(Inner) Joins
SELECT x1.a1, x2.a2, … xm.am
FROM R1 as x1, R2 as x2, … Rm as xm
WHERE Cond

29
This is called nested loop semantics since we are
interpreting what a join means using a nested loop

Another example

CSEP 544 - Fall 2017 30

Product(pname, price, category, manufacturer)
Company(cname, country)
-- manufacturer is foreign key to Company

Retrieve all Japanese companies that
manufacture products in both ‘gadget’ and

‘photography’ categories

Another example

CSEP 544 - Fall 2017 31

Product(pname, price, category, manufacturer)
Company(cname, country)
-- manufacturer is foreign key to Company

Retrieve all Japanese companies that
manufacture products in both ‘gadget’ and

‘photography’ categories

SELECT DISTINCT cname
FROM Product P1, Product P2, Company
WHERE country = 'Japan' AND P1.category = 'gadget'

AND P2.category = 'photography'
AND P1.manufacturer = cname
AND P2.manufacturer = cname;

Self-Joins and Tuple Variables
• Find all companies that manufacture both

products in the ‘gadgets’ and ‘photo’ category
• Joining Product with Company is insufficient:

need to join Product, with Product, and with
Company

• When a relation occurs twice in the FROM
clause we call it a self-join
– in that case we must use tuple variables (why?)

CSEP 544 - Fall 2017 32

Self-joins
SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = cname
AND y.manufacturer = cname;

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company

CSEP 544 - Fall 2017 33

Self-joins

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company
x

CSEP 544 - Fall 2017 34

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = cname
AND y.manufacturer = cname;

Self-joins

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company
x
y

CSEP 544 - Fall 2017 35

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = cname
AND y.manufacturer = cname;

Self-joins

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company
x
y

z

CSEP 544 - Fall 2017 36

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = cname
AND y.manufacturer = cname;

Self-joins

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company
x

y

z

CSEP 544 - Fall 2017 37

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = cname
AND y.manufacturer = cname;

Self-joins

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company
x

y

z

CSEP 544 - Fall 2017 38

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = cname
AND y.manufacturer = cname;

Self-joins

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company

x.pname x.category x.manufacturer y.pname y.category y.manufacturer z.cname z.country

Gizmo gadget GizmoWorks MultiTouch Photo GizmoWorks GizmoWorks USA

x

y

z

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = cname
AND y.manufacturer = cname;

Self-joins

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company

x.pname x.category x.manufacturer y.pname y.category y.manufacturer z.cname z.country

Gizmo gadget GizmoWorks MultiTouch Photo GizmoWorks GizmoWorks USA

x

y

z

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = cname
AND y.manufacturer = cname;

Outer joins

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

We want to include products that are never sold,
but some are not listed! Why?

Product(name, category)
Purchase(prodName, store)

-- prodName is foreign key

41

Outer joins

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

-- prodName is foreign key

42

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

43CSEP 544 - Fall 2017

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

44CSEP 544 - Fall 2017

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

45CSEP 544 - Fall 2017

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Name Store

Gizmo Wiz
Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

46CSEP 544 - Fall 2017

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Name Store

Gizmo Wiz
Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

47CSEP 544 - Fall 2017

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Name Store

Gizmo Wiz
Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

48CSEP 544 - Fall 2017

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Name Store

Gizmo Wiz
Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Product Purchase

49CSEP 544 - Fall 2017

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

50CSEP 544 - Fall 2017

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

51CSEP 544 - Fall 2017

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

52CSEP 544 - Fall 2017

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Product Purchase

53CSEP 544 - Fall 2017

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Phone FooName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

NULL Foo

Product Purchase

54

SELECT Product.name, Purchase.store
FROM Product FULL OUTER JOIN Purchase ON

Product.name = Purchase.prodName

Output

Outer Joins

• Left outer join:
– Include tuples from tableA even if no match

• Right outer join:
– Include tuples from tableB even if no match

• Full outer join:
– Include tuples from both even if no match

• In all cases:
– Patch tuples without matches using NULL

CSEP 544 - Fall 2017 55

tableA (LEFT/RIGHT/FULL) OUTER JOIN tableB ON p

Comment about SQLite

• Cannot load NULL values such that they are
actually loaded as null values

• So we need to use two steps:
– Load null values using some type of special value
– Update the special values to actual null values

CSEP 544 - Fall 2017 57

update Purchase
set price = null
where price = ‘null’

Simple Aggregations

Five basic aggregate operations in SQL

CSEP 544 - Fall 2017

Except count, all aggregations apply to a single attribute
58

select count(*) from Purchase
select sum(quantity) from Purchase
select avg(price) from Purchase
select max(quantity) from Purchase
select min(quantity) from Purchase

Aggregates and NULL Values

59

insert into Purchase
values(12, 'gadget', NULL, NULL, 'april')

select count(*) from Purchase
select count(quantity) from Purchase

select sum(quantity) from Purchase

select count(*)
from Purchase
where quantity is not null;

Null values are not used in aggregates

Try the following at home:

COUNT applies to duplicates, unless otherwise stated:

SELECT count(product)
FROM Purchase
WHERE price > 4.99

same as count(*) if no nulls

We probably want:
SELECT count(DISTINCT product)
FROM Purchase
WHERE price > 4.99

Counting Duplicates

CSEP 544 - Fall 2017 60

More Examples

SELECT Sum(price * quantity)
FROM Purchase

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

What do
they mean ?

CSEP 544 - Fall 2017 61

Grouping and
Query Evaluation

CSEP 544 - Fall 2017 62

Grouping and Aggregation
Purchase(product, price, quantity)

Find total quantities for all sales over $1, by product.

CSEP 544 - Fall 2017 63

Grouping and Aggregation

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product TotalSales

Bagel 40

Banana 20

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

64

Other Examples

SELECT product,
sum(quantity) AS SumQuantity,
max(price) AS MaxPrice

FROM Purchase
GROUP BY product

What does
it mean ?

CSEP 544 - Fall 2017

SELECT product, count(*)
FROM Purchase
GROUP BY product

SELECT month, count(*)
FROM Purchase
GROUP BY month

Compare these
two queries:

65

Need to be Careful…

SELECT product, quantity
FROM Purchase
GROUP BY product

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

66CSEP 544 - Fall 2017

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

Need to be Careful…
SELECT product
FROM Purchase
GROUP BY product

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

67

Product

Bagel

Banana

SELECT quantity
FROM Purchase

SELECT product, quantity
FROM Purchase
GROUP BY product

Quantity

20

20

50

10

10

+

???
Everything in SELECT must be either a
GROUP-BY attribute, or an aggregate

SELECT product, quantity
FROM Purchase
GROUP BY product

Need to be Careful…
SELECT product,

max(quantity)
FROM Purchase
GROUP BY product

SELECT product, quantity
FROM Purchase
GROUP BY product

sqlite is	WRONG	on	
this	query.	

Advanced	DBMS	(e.g.	SQL	
Server)	gives	an	error

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

68CSEP 544 - Fall 2017

Grouping and Aggregation
Purchase(product, price, quantity)

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

How is this query processed?

Find total quantities for all sales over $1, by product.

CSEP 544 - Fall 2017 69

Grouping and Aggregation

1. Compute the FROM and WHERE clauses.

2. Group by the attributes in the GROUPBY

3. Compute the SELECT clause:
grouped attributes and aggregates.

CSEP 544 - Fall 2017 70

FWGS
TM

1,2: From, Where

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

71

FWGS

WHERE	price	>	1

3,4. Grouping, Select

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product TotalSales

Bagel 40

Banana 20

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

72

FWGS

Ordering Results

CSEP 544 - Fall 2017

SELECT product, sum(price*quantity) as rev
FROM Purchase
GROUP BY product
ORDER BY rev desc

73

FWGOS

Purchase(pid, product, price, quantity, month)

Note: some SQL engines
want you to say ORDER BY sum(price*quantity) desc

TM

HAVING Clause

SELECT product, sum(price*quantity)
FROM Purchase
WHERE price > 1
GROUP BY product
HAVING sum(quantity) > 30

Same query as before, except that we consider only products
that had at least 30 sales.

HAVING clause contains conditions on aggregates.
CSEP 544 - Fall 2017 74

Purchase(pid, product, price, quantity, month)

General form of Grouping
and Aggregation

S = may contain attributes a1,…,ak and/or any
aggregates but NO OTHER ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn

C2 = is any condition on aggregate expressions
and on attributes a1,…,ak

Why ?

CSEP 544 - Fall 2017 75

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

Semantics of SQL With
Group-By

Evaluation steps:
1. Evaluate FROM-WHERE using Nested Loop Semantics

2. Group by the attributes a1,…,ak

3. Apply condition C2 to each group (may have aggregates)
4. Compute aggregates in S and return the result

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

CSEP 544 - Fall 2017
76

FWGHOS

Exercise
Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

CSEP 544 - Fall 2017 77

Purchase(pid, product, price, quantity, month)

Exercise

FROM Purchase

Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

CSEP 544 - Fall 2017 78

Purchase(pid, product, price, quantity, month)

Exercise
Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

CSEP 544 - Fall 2017 79

FROM Purchase
GROUP BY month

Purchase(pid, product, price, quantity, month)

Exercise
Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

CSEP 544 - Fall 2017 80

FROM Purchase
GROUP BY month
HAVING sum(quantity) < 10

Purchase(pid, product, price, quantity, month)

Exercise
Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

CSEP 544 - Fall 2017 81

SELECT month, sum(price*quantity),
sum(quantity) as TotalSold

FROM Purchase
GROUP BY month
HAVING sum(quantity) < 10

Purchase(pid, product, price, quantity, month)

Exercise
Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

CSEP 544 - Fall 2017 82

SELECT month, sum(price*quantity),
sum(quantity) as TotalSold

FROM Purchase
GROUP BY month
HAVING sum(quantity) < 10
ORDER BY sum(quantity)

Purchase(pid, product, price, quantity, month)

WHERE vs HAVING

• WHERE condition is applied to individual rows
– The rows may or may not contribute to the aggregate
– No aggregates allowed here

• HAVING condition is applied to the entire group
– Entire group is returned, or not at all
– May use aggregate functions in the group

CSEP 544 - Fall 2017 83

Mystery Query

84

SELECT month, sum(quantity), max(price)
FROM Purchase
GROUP BY month

What do they compute?

SELECT month, sum(quantity)
FROM Purchase
GROUP BY month

SELECT month
FROM Purchase
GROUP BY month

Purchase(pid, product, price, quantity, month)

Mystery Query

85

SELECT month, sum(quantity), max(price)
FROM Purchase
GROUP BY month

What do they compute?

SELECT month, sum(quantity)
FROM Purchase
GROUP BY month

SELECT month
FROM Purchase
GROUP BY month

Lesson:
DISTINCT is
a special case
of GROUP BY

Purchase(pid, product, price, quantity, month)

Aggregate + Join

Product(pid,pname,manufacturer)
Purchase(id,product_id,price,month)

For each manufacturer, compute how many products
with price > $100 they sold

Aggregate + Join

Product(pid,pname,manufacturer)
Purchase(id,product_id,price,month)

For each manufacturer, compute how many products
with price > $100 they sold
Problem: price is in Purchase, manufacturer is in Product...

Aggregate + Join

Product(pid,pname,manufacturer)
Purchase(id,product_id,price,month)

For each manufacturer, compute how many products
with price > $100 they sold

-- step 1: think about their join
SELECT ...
FROM Product x, Purchase y
WHERE x.pid = y.product_id
and y.price > 100

manu
facturer ... price ...

Hitachi 150

Canon 300

Hitachi 180

Problem: price is in Purchase, manufacturer is in Product...

Aggregate + Join

-- step 2: do the group-by on the join
SELECT x.manufacturer, count(*)
FROM Product x, Purchase y
WHERE x.pid = y.product_id
and y.price > 100

GROUP BY x.manufacturer

Product(pid,pname,manufacturer)
Purchase(id,product_id,price,month)

manu
facturer count(*)

Hitachi 2

Canon 1

...

For each manufacturer, compute how many products
with price > $100 they sold

-- step 1: think about their join
SELECT ...
FROM Product x, Purchase y
WHERE x.pid = y.product_id
and y.price > 100

manu
facturer ... price ...

Hitachi 150

Canon 300

Hitachi 180

Problem: price is in Purchase, manufacturer is in Product...

Aggregate + Join

SELECT x.manufacturer, y.month, count(*)
FROM Product x, Purchase y
WHERE x.pid = y.product_id
and y.price > 100

GROUP BY x.manufacturer, y.month

Product(pid,pname,manufacturer)
Purchase(id,product_id,price,month)

manu
facturer month count(*)

Hitachi Jan 2

Hitachi Feb 1

Canon Jan 3

...

Variant:
For each manufacturer, compute how many products
with price > $100 they sold in each month

Including Empty Groups

• In the result of a group by query, there
is one row per group in the result

CSEP 544 - Fall 2017 91

SELECT x.manufacturer, count(*)
FROM Product x, Purchase y
WHERE x.pname = y.product
GROUP BY x.manufacturer

Count(*) is
never 0

FWGHOS

Including Empty Groups

CSEP 544 - Fall 2017 92

SELECT x.manufacturer, count(y.pid)
FROM Product x LEFT OUTER JOIN Purchase y
ON x.pname = y.product
GROUP BY x.manufacturer

Count(pid) is 0
when all pid’s in

the group are
NULL

Nested Queries

CSEP 544 - Fall 2017 93

What have we learned so far

• Data models
• Relational data model

– Instance: relations
– Schema: table with attribute names
– Language: SQL

CSEP 544 - Fall 2017 94

What have we learned so far

• SQL features
– Projections
– Selections
– Joins (inner and outer)
– Aggregates
– Group by
– Inserts, updates, and deletes

• Make sure you read the textbook!
CSEP 544 - Fall 2017 95

Subqueries
• A subquery is a SQL query nested inside a larger query
• Such inner-outer queries are called nested queries
• A subquery may occur in:

– A SELECT clause
– A FROM clause
– A WHERE clause

• Rule of thumb: avoid writing nested queries when
possible
– But sometimes it’s impossible, as we will see

CSEP 544 - Fall 2017 96

Subqueries…
• Can appear as computed values in a SELECT clause

• Can appear in FROM clauses and aliased using a
tuple variable that represents the tuples in the result
of the subquery

• Can return a single constant to be compared with
another value in a WHERE clause

• Can return relations to be used in WHERE clauses

CSEP 544 - Fall 2017 97

1. Subqueries in SELECT

CSEP 544 - Fall 2017 98

Product (pname, price, cid)
Company (cid, cname, city)

For each product return the city where it is manufactured
SELECT X.pname, (SELECT Y.city

FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

What happens if the subquery returns more than one city?
We get a runtime error

(and SQLite simply ignores the extra values…)

“correlated
subquery”

1. Subqueries in SELECT

CSEP 544 - Fall 2017 99

Whenever possible, don’t use nested queries:

SELECT X.pname, Y.city
FROM Product X, Company Y
WHERE X.cid=Y.cid

=

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

Product (pname, price, cid)
Company (cid, cname, city)

We have
“unnested”
the query

1. Subqueries in SELECT

CSEP 544 - Fall 2017 100

Compute the number of products made by each company

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

Product (pname, price, cid)
Company (cid, cname, city)

1. Subqueries in SELECT

CSEP 544 - Fall 2017 101

Compute the number of products made by each company

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

Better: we can
unnest using a
GROUP BY

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

Product (pname, price, cid)
Company (cid, cname, city)

1. Subqueries in SELECT

CSEP 544 - Fall 2017 102

But are these really equivalent?
SELECT DISTINCT C.cname, (SELECT count(*)

FROM Product P
WHERE P.cid=C.cid)

FROM Company C

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

Product (pname, price, cid)
Company (cid, cname, city)

1. Subqueries in SELECT

CSEP 544 - Fall 2017 103

But are these really equivalent?
SELECT DISTINCT C.cname, (SELECT count(*)

FROM Product P
WHERE P.cid=C.cid)

FROM Company C

No! Different results if a
company has no products

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

SELECT C.cname, count(pname)
FROM Company C LEFT OUTER JOIN Product P
ON C.cid=P.cid
GROUP BY C.cname

Product (pname, price, cid)
Company (cid, cname, city)

2. Subqueries in FROM

CSEP 544 - Fall 2017 104

Find all products whose prices is > 20 and < 500

SELECT X.pname
FROM (SELECT *

FROM Product AS Y
WHERE price > 20) as X

WHERE X.price < 500

Try unnest this query !

Product (pname, price, cid)
Company (cid, cname, city)

Side note: This is not a
correlated subquery. (why?)

2. Subqueries in FROM

At the end of the lecture we will see that
sometimes we really need a subquery and
one option will be to put it in the FROM
clause.

CSEP 544 - Fall 2017 105

3. Subqueries in WHERE

CSEP 544 - Fall 2017 106

Find all companies that make some products with price < 200

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSEP 544 - Fall 2017 107

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSEP 544 - Fall 2017 108

Find all companies that make some products with price < 200

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *

FROM Product P
WHERE C.cid = P.cid and P.price < 200)

Existential quantifiers

Using EXISTS:

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSEP 544 - Fall 2017 109

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price < 200)

Using IN

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSEP 544 - Fall 2017 110

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ANY:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSEP 544 - Fall 2017 111

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ANY:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Not supported
in sqlite

3. Subqueries in WHERE

CSEP 544 - Fall 2017 112

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid = P.cid and P.price < 200

Now let’s unnest it:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSEP 544 - Fall 2017 113

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid = P.cid and P.price < 200

Existential quantifiers are easy! J

Now let’s unnest it:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSEP 544 - Fall 2017 114

same as:

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies that make only products with price < 200

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSEP 544 - Fall 2017 115

same as:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies that make only products with price < 200

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSEP 544 - Fall 2017 116

Universal quantifiers are hard! L

same as:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies that make only products with price < 200

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSEP 544 - Fall 2017 117

1. Find the other companies that make some product ≥ 200
SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSEP 544 - Fall 2017 118

2. Find all companies s.t. all their products have price < 200

1. Find the other companies that make some product ≥ 200
SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid NOT IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

3. Subqueries in WHERE

CSEP 544 - Fall 2017 119

SELECT DISTINCT C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *

FROM Product P
WHERE P.cid = C.cid and P.price >= 200)

Using EXISTS:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSEP 544 - Fall 2017 120

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 >= ALL (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ALL:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSEP 544 - Fall 2017 121

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 >= ALL (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ALL:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

Not supported
in sqlite

Question for Database Theory
Fans and their Friends

• Can we unnest the universal quantifier
query?

• We need to first discuss the concept of
monotonicity

CSEP 544 - Fall 2017 122

Monotone Queries
• Definition A query Q is monotone if:

– Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

CSEP 544 - Fall 2017 123

Product (pname, price, cid)
Company (cid, cname, city)

Monotone Queries
• Definition A query Q is monotone if:

– Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

CSEP 544 - Fall 2017 124

pname price cid
Gizmo 19.99 c001
Gadget 999.99 c004
Camera 149.99 c003

Product (pname, price, cid)
Company (cid, cname, city)

cid cname city
c002 Sunworks Bonn
c001 DB Inc. Lyon
c003 Builder Lodtz

Product Company

Q pname city
Gizmo Lyon
Camera Lodtz

Monotone Queries
• Definition A query Q is monotone if:

– Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

pname price cid
Gizmo 19.99 c001
Gadget 999.99 c004
Camera 149.99 c003

Product (pname, price, cid)
Company (cid, cname, city)

pname price cid
Gizmo 19.99 c001
Gadget 999.99 c004
Camera 149.99 c003
iPad 499.99 c001

cid cname city
c002 Sunworks Bonn
c001 DB Inc. Lyon
c003 Builder Lodtz

Product Company
pname city
Gizmo Lyon
Camera Lodtz

pname city
Gizmo Lyon
Camera Lodtz
iPad Lyon

Product Company

Q

Qcid cname city
c002 Sunworks Bonn
c001 DB Inc. Lyon
c003 Builder Lodtz

Monotone Queries
• Theorem: If Q is a SELECT-FROM-WHERE query

that does not have subqueries, and no aggregates,
then it is monotone.

CSEP 544 - Fall 2017 126

Monotone Queries
• Theorem: If Q is a SELECT-FROM-WHERE query

that does not have subqueries, and no aggregates,
then it is monotone.

• Proof. We use the nested loop semantics: if we
insert a tuple in a relation Ri, this will not remove any
tuples from the answer

CSEP 544 - Fall 2017 127

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

for x1 in R1 do
for x2 in R2 do

…
for xn in Rn do
if Conditions

output (a1,…,ak)

Monotone Queries
• The query:

is not monotone

CSEP 544 - Fall 2017 128

Find all companies s.t. all their products have price < 200

Product (pname, price, cid)
Company (cid, cname, city)

Monotone Queries
• The query:

is not monotone

CSEP 544 - Fall 2017 129

Find all companies s.t. all their products have price < 200

pname price cid
Gizmo 19.99 c001

cid cname city
c001 Sunworks Bonn

cname
Sunworks

Product (pname, price, cid)
Company (cid, cname, city)

Monotone Queries
• The query:

is not monotone

• Consequence: If a query is not monotonic, then we
cannot write it as a SELECT-FROM-WHERE query
without nested subqueries

130

Find all companies s.t. all their products have price < 200

pname price cid
Gizmo 19.99 c001

cid cname city
c001 Sunworks Bonn

cname
Sunworks

pname price cid
Gizmo 19.99 c001
Gadget 999.99 c001

cid cname city
c001 Sunworks Bonn

cname

Product (pname, price, cid)
Company (cid, cname, city)

Queries that must be nested

• Queries with universal quantifiers or with
negation

• Queries that use aggregates in certain ways
– sum(..) and count(*) are NOT monotone,

because they do not satisfy set containment
– select count(*) from R is not monotone!

CSEP 544 - Fall 2017 131

