
CSE 344 Midterm

Wednesday, February 19, 2014, 14:30-15:20

Name:

Question Points Score

1 30

2 50

3 12

4 8

Total: 100

• This exam is open book and open notes but NO laptops or other portable devices.

• You have 50 minutes; budget time carefully.

• Please read all questions carefully before answering them.

• Some questions are easier, others harder. Plan to answer all questions, do not get stuck
on one question. If you have no idea how to answer a question, write your thoughts
about the question for partial credit.

• Good luck!

1

Reference for SQL Syntax

Outer Joins

-- left outer join with two selections:

SELECT * FROM R LEFT OUTER JOIN S ON R.x = 55 AND R.y = S.z AND S.u = 99

The CREATE TABLE Statement:

CREATE TABLE R (

attrA VARCHAR(30) PRIMARY KEY,

attrB int REFERENCES S(anotherAttr),

attrC CHAR(20),

attrD TEXT,

-- PRIMARY KEY (attrA), (equivalently)

FOREIGN KEY (attrC, attrD) REFERENCES T(anAttrC, anAttrD))

The CASE Statement:

SELECT R.name, (CASE WHEN R.rating=1 THEN ’like it’

when R.rating=0 THEN ’do not like it’

when R.rating IS NULL THEN ’do not know’

ELSE ’unknown’ END) AS my_rating

FROM R;

The WITH Statement

WITH T AS (SELECT * FROM R WHERE R.K > 10),

S AS (SELECT * FROM R WHERE R.a > 50)

SELECT * FROM T, S WHERE T.K<20 AND S.a < 20

Reference for the Relational Algebra

2

1 SQL

1. (30 points) There are many websites nowadays that offer Massive Open Online Courses
(MOOC), where professors from top-class universities teach online courses. Students
across the world have free online access to enroll in these courses and can learn different
topics this way. The director of such an organization www.GreatMooc.org, Dr. Alice
VeryStrict, wanted to analyze the performance of the participating students and profes-
sors, and the quality of the offered courses to ensure that everything is going well. Since
you are a student of CSE 344, can you help her write the following queries to do this
data analysis? The information about students, instructors, and courses is stored in the
following relations.

Course(cid, name, year, duration)
Student(sid, name, univ)
Instructor(tid, name, univ)
Enrollment(sid, cid) — sid, cid reference Student and Course respectively
Teaches(tid, cid) – tid, cid reference Instructor and Course respectively.

Assume that

• Duration is in month, so takes value between 1 to 12.

• Each course is entirely contained within the same year, i.e. does not span across
two or more years.

• Feel free to abbreviate the relation names as C, S, I, E, T .

• The schema is shown on the top of the pages where you need it.

Recall that variance of n numbers x1, · · · , xn is defined as

1

n

n∑
i=1

(xi − µ)2 =
1

n

n∑
i=1

x2i − µ2

where µ = 1
n

∑n
i=1 xi denotes the average of x1, · · · , xn.

3

Course(cid, name, year, duration), Student(sid, name, univ)

Instructor(tid, name, univ), Enrollment(sid, cid), Teaches(tid, cid)

(a) (9 points) First, Dr. VeryStrict wanted to examine the duration of courses offered
by the professors from different universities in different years.

So, write an SQL query to output
the average duration (as avg duration), maximum duration (as max duration) and
the variance of duration (as var duration) of the courses offered in the same year
by professors from the same universities. Further, the answers should be sorted in
decreasing order of the years (universities can be output in any order).

e.g. The answer to the query should be of the form
year univ avg duration max duration var duration
2013 ‘MIT’ 2.8 5.2 0.001
2013 ‘UW’ 3.5 4.4 0.09
2012 ‘UW’ 1.9 2.7 0.02
· · ·

The first answer tuple (2013, ‘MIT ′, 2.8, 5.2, 0.001) has been computed using all
courses offered in year = 2013 that were taught by some professor from MIT.

Solution:

SELECT C.year,

I.univ,

avg(C.duration) as avg_duration,

max(C.duration) as max_duration,

((sum(C.duration * C.duration) * 1.0)/count(*) -

avg(C.duration) * avg(C.duration)) as var_duration

FROM Course C, Teaches T, Instructor I

WHERE C.cid = T.cid

AND T.tid = I.tid

GROUP BY C.year, I.univ

ORDER BY C.year DESC

4

Course(cid, name, year, duration), Student(sid, name, univ)

Instructor(tid, name, univ), Enrollment(sid, cid), Teaches(tid, cid)

(b) (6 points) How would you modify the above answer if we change the requirements
in the following three ways? DO NOT write the query once again. Just say
which clause(s) you will add/modify and how.

We want to output avg, max, and variance of durations of the courses for the year,
univ pairs such that ...

i. ... all courses offered in that year from that univ had duration ≥ 3 months.

Solution: Add
HAVING min(C.duration) >= 3

ii. ...some courses offered in that year from that univ had duration ≥ 3 months.

Solution: Add
HAVING max(C.duration) >= 3

iii. ... the avg, max, and variance are computed (for each univ) over only those
courses which had duration ≥ 3 months.

Solution: Add to the WHERE clause
AND C.duration >= 3

5

Course(cid, name, year, duration), Student(sid, name, univ)

Instructor(tid, name, univ), Enrollment(sid, cid), Teaches(tid, cid)

(c) (15 points) Dr. VeryStrict wanted to find the instructors who were unpopular in
the year 2012, but gained popularity rapidly in the year 2013.

Write an SQL query to output
the name and univ of the instructors and the total number of (distinct) courses ever
taught by him/her (as num courses) who has taught at most 50 distinct students
(in all of his/her courses) in the year 2012 (so 0 students enrolled or no courses
taught in 2012 should be included), but at least 300 distinct students in 2013.

Solution:

Solution 1: (an elegant solution from some of you
without using a WITH or LEFT OUTER JOIN)

SELECT I.name,

I.univ,

count(distinct T.cid) as num_courses

FROM Instructor I, Teaches T

WHERE I.tid = T.tid and

T.tid NOT IN (

SELECT T1.tid

FROM Course C1, Teaches T1, Enrollment E1

WHERE T1.cid = C1.cid and C1.cid = E1.cid and C1.year = 2012

GROUP BY T1.tid

HAVING count(distinct E1.sid) > 50) and

T.tid IN (

SELECT T2.tid

FROM Course C2, Teaches T2, Enrollment E2

WHERE T2.cid = C2.cid and C2.cid = E2.cid and C2.year = 2013

GROUP BY T2.tid

HAVING count(distinct E2.sid) >= 300)

GROUP BY I.tid, I.name, I.univ

NOTE:

1. ‘NOT IN’ and ‘> 50’ is important in the above solution, ‘IN’ ’≤ 50’ will
not include instructors who did not teach in 2012 or for whom no students
were enrolled in 2012.

6

2. Another way to write the same query (also from some of you), is to use
the following correlated nested subquery instead of uncorrelated subquery
using ‘NOT IN’ and ‘> 50’ above (similarly for the second subquery).

WHERE and

50 < (SELECT count(distinct E1.sid)

FROM Course C1, Teaches T1, Enrollment E1

WHERE T.tid = T1.tid and ------ CORRELATION WITH OUTER T

T1.cid = C1.cid and C1.cid = E1.cid and C1.year = 2012)

and

Solution 2: Using WITH and LEFT OUTER JOIN

WITH CandidateTeachers2012 AS

(SELECT T.tid

FROM Course C, Teaches T, Enrollment E

WHERE T.cid = C.cid and C.cid = E.cid and C.year = 2012

GROUP BY T.tid

HAVING count(distinct E.sid) <= 50),

CandidateTeachers2013 AS

(SELECT T.tid

FROM Course C, Teaches T, Enrollment E

WHERE T.cid = C.cid and C.cid = E.cid and C.year = 2013

GROUP BY T.tid

HAVING count(distinct E.sid) >= 300)

SELECT I.name,

I.univ,

count(distinct T.cid) as num_courses

FROM Instructor I, Teaches T

WHERE I.tid = T.tid and

T.tid in (SELECT CT1.tid

FROM CandidateTeachers2013 CT1 left outer join

CandidateTeachers2012 CT2 on

CT1.tid = CT2.tid)

GROUP BY I.tid, I.name, I.univ

Note that

1. left outer join is important to include instructors who did not teach any

7

course in 2012 or no students enrolled in his/her course in 2012.

2. For both the solutions, GROUP BY I.tid, I.name, I.univ is important
(instead of GROUP BY I.name, I.univ) so that distinct instructors from
the same university with the same name are considered separately.

(An almost correct) Solution 3:
Simply join T with two copies of (C, T, E): (C1, T1, E1) and (C2, T2, E2),
and another copy of C, C3, to output total number of distinct courses taught
by an instructor. C1 should be courses taught in 2012, C2 for 2013. Group
by T.tid, T.name, T.univ. HAVING clause should ensure that the number of
distinct E1.sid in 2012 is ≤ 50 and distinct E2.sid in 2013 is ≥ 300.
Note that it will miss instructors who did not teach any course in 2012 or no
students enrolled in his/her course in 2012, therefore it is not fully correct!

8

2 Datalog, Relational Calculus, Relational Algebra

2. (50 points)

In this problem you will continue to help Dr. VeryStrict to analyze the online courses
in www.GreatMooc.org. (You do not need to look at Problem 1 or your answers
to Problem 1 for this problem).

The information about students, instructors, and courses is stored in the following rela-
tions.

Course(cid, name, year, duration)
Student(sid, name, univ)
Instructor(tid, name, univ)
Enrollment(sid, cid) — sid, cid reference Student and Course respectively
Teaches(tid, cid) – tid, cid reference Instructor and Course respectively.

Assume that

• Duration is in month, so takes value between 1 to 12.

• Each course is entirely contained within the same year, i.e. does not span across
two or more years.

• Feel free to abbreviate the relation names as C, S, I, E, T .

• The schema is shown on the top of the pages where you need it.

(a) (30 points) We want to output the name of the students who in the year 2012 took
only courses taught by professors from univ = ’UW’,
Note: your answer should include students who did not take any course in 2012.

i. Write a Relational CALCULUS expression for this query.

Solution:

Ans(n)

= ∃s ∃v S(s, n, v) ∧ ∀c ∀t ∀m ∀u ∀n ∀d
((E(s, c) ∧ T (t, c) ∧ I(t,m, u) ∧ C(c, n, 2012, d))⇒ (u =′ UW ′))

9

Course(cid, name, year, duration), Student(sid, name, univ)

Instructor(tid, name, univ), Enrollment(sid, cid), Teaches(tid, cid)

ii. Write the query in SQL.

Solution: It is easier to start with a datalog+negation program: (i) find
NonAns student ids, who took a course in 2012 taught by an instructor not
from ‘UW’, (ii) ignore all these NonAns students to output the answer.

NonAns(s) :- E(s, c), T(t, c), I(t, _, u),

C(c, _, 2012, _), u != ’UW’

Ans(n) :- S(s, n, _), NOT NonAns(s)

Then we transform it to SQL:

SELECT S.name

FROM Student S

WHERE S.sid NOT IN

(SELECT E.sid

FROM Enrollment E, Teaches T, Instructor I, Course C

WHERE E.cid = T.cid

AND T.tid = I.tid

AND E.cid = C.cid

AND C.year = 2012

AND I.univ <> ’UW’)

10

Course(cid, name, year, duration), Student(sid, name, univ)

Instructor(tid, name, univ), Enrollment(sid, cid), Teaches(tid, cid)

iii. Write a Relational ALGEBRA expression (or a logical query plan as a tree) for
this query.

Solution:
It is quite straightforward to transform the nested sub-query to an RA ex-
pression. However, for set difference at the top, the two relations involved
in the operation must have the same schema. The sub-query only outputs
sid, whereas we need name as final output. So we would need an additional
join with students relation S before or after the difference operation. Here
is a logical query plan, and several other plans are possible.

Student S2 Instructor I

⋈sid = sid

-

σuniv != ‘UW’

Enrollment E Course C

⋈cid = cid

σyear=2012

Πsid

Teaching T

⋈tid = tid

⋈cid = cid

Πsid

Student S1

Πname

11

Course(cid, name, year, duration), Student(sid, name, univ)

Instructor(tid, name, univ), Enrollment(sid, cid), Teaches(tid, cid)

(b) (20 points) We want to output the name of the courses where all enrolled students
are from the same university (but students in two different courses can be from two
different universities).
Note: your answer should include courses where no students were enrolled.

i. Write a Relational CALCULUS expression for this query.

Solution:

Ans(n)

= ∃c ∃y ∃d C(c, n, y, d) ∧
(∀s1 ∀s2 ∀n1 ∀n2 ∀u1 ∀u2

(S(s1, n1, u1) ∧ E(s1, c) ∧ S(s2, n2, u2) ∧ E(s2, c)) ⇒ (u1 = u2))

ii. Write a non-recursive datalog + negation expression for this query.

Solution: You may want to convert the RC expression to datalog + nega-
tion systematically, but it is not necessary for this query (you can directly
find the NonAns set). Here is the conversion from the above RC expression

Ans(n)

= ∃c ∃y ∃d C(c, n, y, d) ∧ (∀s1 ∀s2 ∀n1 ∀n2 ∀u1 ∀u2

(¬(S(s1, n1, u1) ∧ E(s1, c) ∧ S(s2, n2, u2) ∧ E(s2, c))) ∨ (u1 = u2))

= ∃c ∃y ∃d C(c, n, y, d) ∧ ¬(∃s1 ∃s2 ∃n1 ∃n2 ∃u1 ∃u2

((S(s1, n1, u1) ∧ E(s1, c) ∧ S(s2, n2, u2) ∧ E(s2, c))) ∧ (u1! = u2))

Then convert it to datalog + negation.

12

You can directly find NonAnsCourse(c) as well which says find all courses
where two students are enrolled who are not from the same university.

NonAnsCourse(c) :- S(s1, _, u1), E(s1, c), S(s2, _, u2),

E(s2, c), u1 != u2

Ans(n) :- C(c, n, _, _), NOT NonAnsCourse(c)

13

3 XML, XPath, XQuery

3. (12 points)

Consider the following XML document midterm.xml (the header has been omitted).

<b n="1" o="2">

<c p="3">3</c>

<d/>

<b n="1" o="2">

<c p="3">3</c>

<f s="1"/>

<d q="3">

<e r="2">2</e>

</d>

(a) (6 points) Consider the following XPath expressions and write true/false for the
following claims (if false, write the correct value, but no explanations are
needed). Note: The ”count()” method returns the number of nodes in a node-set.

i. count(/*//*) = 9

Solution: False.
The correct answer is 8.
Here we want to count all descendant elements of all child elements of the
document node. The document node has one child element (root element):
a. The element “a” has the following descendant elements: b, c, d, b, c, f,
d, e. Also note that although the names of some of the elements appear to
be duplicated, they are distinct from each other.

ii. count(/*/*/@*) = 4

Solution: True.
Here we want to count all attributes of all child elements of all child elements
of the document node. The document node has one child element: a. The

14

element “a” has two children “b”. Each of these “b” elements have two
attributes each, “n” and “o”.

iii. count(/*/*/*) = 8

Solution: False.
The correct answer is 5.
Here we want to count all child elements of all child elements of all child
elements of the document node, and there are five of them: c, d, c, f, d.

15

(b) (2 points) Does midterm.xml match with the following DTD? (write YES/NO).
If your answer is NO, point to the line in the question where it does not match
(just draw arrow(s) next to the line(s) in the DTD, and add a one-line
explanation).

<?xml version="1.0"?>

<!DOCTYPE a [

<!ELEMENT a (b+)>

<!ELEMENT b (c, d, f*)>

<!ELEMENT c (#PCDATA)>

<!ELEMENT d (e?)>

<!ELEMENT f (#PCDATA)>

]>

Solution: NO.
The order of the elements is violated for

<!ELEMENT b (c, d, f*)>

(c) (4 points) Suppose we want to write an XQuery to find all “c” elements with value
3. Do the following queries work? Write YES/NO. If your answer is NO, add
a one-line explanation.

i. let $t := doc("midterm.xml")/a/b/c

where $t = 3

return $t

Solution: No.
Here t is the sequence of all c elements, so the where-clause is true if any of
these c elements has value 3.

16

ii. for $t in doc("midterm.xml")/a/b/c

where $t = 3

return <c>{$t}</c>

Solution: No.
There will be two < c > ... < /c > tags.

17

4 E/R Diagram

4. (8 points)

Write down the CREATE TABLE statements to create the Department and Product
relations from the E/R diagram below. Note that you have to declare the primary
keys (using PRIMARY KEY) and foreign keys (using REFERENCES, assume the same
relation name as the entities) to get full credit. Assume all the attributes are of type
VARCHAR(20).

Company

Product makes

isa

Organization

Department affiliation

address deptname
orgname

University

isa
ceo

pid pname

year

(a) (4 points) Write CREATE TABLE statement for Department.

Solution:

CREATE TABLE Department (deptname VARCHAR(20),

address VARCHAR(20),

orgname VARCHAR(20) REFERENCES Organization,

PRIMARY KEY(deptname, orgname))

18

(b) (4 points) Write CREATE TABLE statement for Product.

Solution:

CREATE TABLE Product (pid VARCHAR(20) PRIMARY KEY,

pname VARCHAR(20),

year VARCHAR(20),

orgname VARCHAR(20) REFERENCES Company)

Note that Company table will have orgname as the primary key which will also
have a reference to the Organization table.

19

For Rough Use

20

For Rough Use

21

