
CSE 344 Midterm

Monday, Nov 4, 2013, 9:30-10:20

Name:

Question Points Score

1 30

2 10

3 50

4 10

Total: 100

• This exam is open book and open notes but NO laptops or other portable devices.

• You have 50 minutes; budget time carefully.

• Please read all questions carefully before answering them.

• Some questions are easier, others harder. Plan to answer all questions, do not get stuck
on one question. If you have no idea how to answer a question, write your thoughts
about the question for partial credit.

• Good luck!

1

CSE 344 Midterm Nov. 4, 2013

1 SQL

1. (30 points)

A sparse matrix is a matrix A = (aij) where many elements aij are 0. A sparse matrix
can be stored in a relation with three attributes: A(i, j, v) where i, j are the row and
column and v the value of the element in that row and column. For example the matrix:

A =

 30 0 0
−10 0 0

0 10 50


can be represented as:

i j v
1 1 30
2 1 -10
3 2 10
3 3 50

Notice that it’s OK to keep 0 values, even though it may be less efficient. For example,
the matrix above can also be represented as:

i j v
1 1 30
1 2 0
1 3 0
2 1 -10
3 2 10
3 3 50

Page 2

CSE 344 Midterm Nov. 4, 2013

Reference for SQL Syntax

Outer Joins

-- left outer join with two selections:

select *

from R left outer join S on R.x=55 and R.y=S.z and S.u=99

The UNION Operation:

select R.k from R union select S.k from S

The CASE Statement:

select R.name, (case when R.rating=1 then ’like it’

when R.rating=0 then ’do not like it’

when R.rating is null then ’do not know’

else ’unknown’ end)

as my_rating

from R;

The WITH Statement

Note: with is not supported in sqlite, but it is supported SQL Server and
in postgres.

with T as (select * from R where R.K>10)

select * from T where T.K<20

Reference for the Relational Algebra

Page 3

CSE 344 Midterm Nov. 4, 2013

(a) (15 points) You are given two sparse matrices A,B with schemas:

A(i,j,v)

B(j,k,v)

Write an SQL query that computes the product matrix A · B. Your query should
return a set of triples (i, k, v) representing the product matrix; you do not need to
remove the entries with value 0.

Recall that the product of an m×n matrix A = (aij) with an n×p matrix B = (bjk)
is the m× p matrix C = (cik) where cik =

∑
j=1,n aijbjk. For example:

 30 0 0
−10 0 0

0 10 50

 ·
 0 0 0

0 2 4
0 0 −1

 =

 0 0 0
0 0 0
0 20 −10


Turn in a SQL query:

Solution:

select A.i,B.k, sum(A.v*B.v)

from A,B

where A.j=B.j

group by A.i,B.k

Page 4

CSE 344 Midterm Nov. 4, 2013

(b) (15 points) You are given two sparse matrices A,B with schemas:

A(i,j,v)

B(i,j,v)

Write an SQL query that, given two sparse matrices A,B computes the sum matrix
A+B. Your query should return a set of triples (i, j, v) representing the sum matrix;
you do not need to remove the entries with value 0.

For example:

 30 0 0
−10 0 0

0 10 50

 +

 0 0 0
0 2 4
0 0 −1

 =

 30 0 0
−10 2 4

0 10 49


Turn in a SQL query:

Solution:

with T as (select i,j from A union select i,j from B)

select T.i, T.j, (case when A.v is null then 0 else A.v end) +

(case when B.v is null then 0 else B.v end)

from T left outer join A on (T.i = A.i and T.j = A.j)

left outer join B on (T.i = B.i and T.j = B.j)

An elegant solution, from a student:

select x.i, x.j, sum(x.v)

from (select * from A union select * from B) as x

group by x.i, x.j

Note that postgres doesn’t accept A union B, instead we had to say select *

from A union ...; we did not take points off for A union B.

A full outer join does not work here. This is incorrect:

select A.i, A.j, (case when A.v is null then 0 else A.v end) +

(case when B.v is null then 0 else B.v end)

from A full outer join B on A.i = B.i and A.j = B.j;

It doesn’t work because, for the entries (B.i,B.j) that do not have a matching
entry in A, the values of A.i,A.j are NULL.

Page 5

CSE 344 Midterm Nov. 4, 2013

2 Indexes and Query Evaluation

2. (10 points)

Consider the following two relations:

Person(pid, name)

Order(oid, pid, product, quantity, date)

We create the following indexes:

create index Person_pid on Person(pid)

create index Person_name on Person(name)

create index Order_oid on Order(oid)

create index Order_pid on Order(pid)

create index Order_product on Order(product)

Consider the following two SQL queries:

-- Q1

select product, quantity, date

from Person, Order

where Person.name = ’Alice’ and Person.pid = Order.pid

-- Q2

select name

from Person, Order

where Person.pid = Order.pid and Order.product = ’Tablet’

(a) (5 points) Which indexes may be useful for query Q1?

Person pid Person name Order oid Order pid Order product

Answer Y/N:

Solution:
Person pid Person name Order oid Order pid Order product

Answer Y/N: N Y N Y N

Page 6

CSE 344 Midterm Nov. 4, 2013

(b) (5 points) Which indexes may be useful for query Q2?

Person pid Person name Order oid Order pid Order product

Answer Y/N:

Solution:
Person pid Person name Order oid Order pid Order product

Answer Y/N: Y N N N Y

Page 7

CSE 344 Midterm Nov. 4, 2013

3 Datalog, Relational Calculus, Relational Algebra

3. (50 points)

Consider the following two relations:

Person(id, name)

Trusts(id1, id2)

(a) (10 points) Write a program in non-recursive datalog-with-negation that returns
the id’s and names of all persons who don’t trust Alice. Turn in a datalog program:

Solution: Solution 1:

Ans(x,y) :- Person(x,y), Person(z,’Alice’), x!=z

Solution2:

NonAns(x) :- Trusts(x,z), Person(z,’Alice’)

Ans(x,y) :- Person(x,y), not NonAns(x)

For this question and the next, 2 Points where taken off for adding Person(x,y)

to the NonAns rule. 3 points where taken off for writing Trusts(x,’Alice’).

(b) (10 points) Write a program in non-recursive datalog-with-negation that returns
the id’s and names of all persons who trust only Alice. (In particular, your query
should return all persons who don’t trust anyone, e.g. persons who do not appear
in Trust.) Turn in a datalog program:

Solution: Solution 1:

NonAnsw(x) :- Trusts(x,y), not Person(y,’Alice’)

Ans(x,y) :- Person(x,y), not NonAns(x)

Solution 2:

NonAnsw(x) :- Trusts(x,y), Person(z,’Alice’), y != z

Ans(x,y) :- Person(x,y), not NonAns(x)

Solution 3:

NonAnsw(x) :- Trusts(x,y), Person(y,n), n != ’Alice’

Ans(x,y) :- Person(x,y), not NonAns(x)

Page 8

CSE 344 Midterm Nov. 4, 2013

(c) (20 points) Consider the following query in the relational calculus:

A(x, n) =Person(x, n) ∧ ∀y.(Trusts(x, y)⇒ ∀z.(Trusts(y, z)⇒ ¬Person(z, ’Alice’)))

i. Write this query in non-recursive datalog-with-negation. Turn in a datalog
program:

Solution:
U(x) :- Trusts(x,y), Trusts(y,z), Person(z,’Alice’)

A(x,n) :- Person(x,n), not U(x)

Many people wrote two rules for U and that’s OK:
V(y) :- Trusts(y,z), Person(z,’Alice’)

U(x) :- Trusts(x,y), V(y)

We took 2 points off for each misplaced not (this easily added to 4 points);
1 point off for extra Person(...) predicates.

ii. Write this query in SQL. Turn in a SQL query:

Solution:
select p.id, p.name

from Person p

where not exists

(select *

from Trusts t1, Trusts t2, Person q

where p.id = t1.id1 and t1.id2 = t2.id1

and t2.id2 = q.id and q.name = ’Alice’)

In many cases the datalog program was incorrect but the SQL query cor-
rectly implemented the datalog program; in that case I gave full credit.

Page 9

CSE 344 Midterm Nov. 4, 2013

(d) (10 points) Consider the following SQL query:

select distinct t1.id1

from Trusts t1, Person p1

where t1.id2 = p1.id and p1.name = ’Alice’ and

not exists (select *

from Trusts t2, Person p2

where p1.id = t2.id1 and t2.id2 = p2.id and p2.name = ’Bob’)

Write this query in the Relational Algebra. Turn in a Relational Algebra plan:

Solution: Write it first in datalog (it’s much easier to read this way):

V(y) :- Trusts(y,z), Person(z,’Bob’)

Q(x) :- Trusts(x,y), Person(y,’Alice’), not V(y)

Next, expose the difference clearly:

V(y) :- Trusts(y,z), Person(z,’Bob’)

U(y) :- Person(y,’Alice’), not V(y) -- here’s the set difference

Q(x) :- Trusts(x,y), U(y)

The query plan is:

Trusts t1 Person p1

⋈t1.id2 = p1.id

-

σp1.name=‘Alice’

Πp1.id

Trusts t2 Person p2

⋈t2.id2 = p2.id

σp2.name=‘Bob’

Πt2.id1

Πt1.id1

Page 10

CSE 344 Midterm Nov. 4, 2013

4 XML and XPath

4. (10 points)

For each statement below indicate whether it is true or false.

(a) (1 point) XML is better suited than the relational data model for data exchange
between applications.

(a) Yes

(b) (1 point) The data model for XML is a tree.

(b) Yes

(c) (1 point) B+ trees are stored in XML

(c) No

(d) (1 point) An XML tree can be at most 6 levels deep.

(d) No

(e) (1 point) The tuples in a relation are unordered.

(e) Yes

(f) (1 point) The elements in an XML document are unordered

(f) No

(g) (1 point) The Data Independence principle states that the tuples in a relation must
be independent of each other.

(g) No

(h) (1 point) The Data Independence principle states that applications should be writ-
ten independently of the way the data is stored and organized.

(h) Yes

(i) (1 point) All elements returned by the XPath expression /a//b[c=4]/d are of type
<d>...</d>.

(i) Yes

(j) (1 point) If the XPath expression /a//b[c=4] returns 10 elements, then the XPath
expression /a//b/c must return at least 10 elements.

(j) Yes

Page 11

