
CSEP 544: Lecture 10

Column-Oriented Databases
and NoSQL

CSEP544 - Fall 2015 1

Announcement
Take home final: 12/9-10
•  Online Webquiz

–  Need your UW NET ID,
check that it works!

–  I will also email the final
in pdf form (e.g. to print)

•  Opens Wed. morning,
closes Thursday night

•  No time limits:
–  Work, save, take a

break, return later…

•  No need to run code
•  Questions?

–  Email me and cc Laurel
•  Watch your email

–  E.g. corrections
•  No discussion of the

final with colleagues
•  When you are done:

–  Submit and receive
confirmation code!

CSEP544 - Fall 2015 2

Today’s Agenda

•  Column-oriented databases

•  No-SQL

CSEP544 - Fall 2015 3

Column-Oriented Databases

CSEP544 - Fall 2015 4

Brief discussion of the paper:
The Design and Implementation of Modern
Column-Oriented Database Systems

Column-Oriented Databases

•  Main idea:
– Physical storage: complete vertical partition;

each column stored separately: R.A, R.B, R.A
– Logical schema: remains the same R(A,B,C)

•  Main advantage:
–  Improved transfer rate: disk to memory,

memory to CPU, better cache locality
– Other advantages (next)

CSEP544 - Fall 2015 5

Data Layout

6

Basic tradeoffs:
•  Reading all attributes of one records, v.s.
•  Reading some attributes of many records

Key Architectural Trends (Sec.1)

•  Virtual IDs

•  Block-oriented and vertical processing

•  Late materialization

•  Column-specific compression

CSEP544 - Fall 2015 7

Key Architectural Trends (Sec.1)

•  Virtual IDs
– Offsets (arrays) instead of keys

•  Block-oriented and vertical processing
–  Iterator model: one tupleàone block of tuples

•  Late materialization
– Postpone tuple reconstruction in query plan

•  Column-specific compression
– Much better than row-compression (why?)

CSEP544 - Fall 2015 8

Fig. 1.2

Discussion

•  What are “covering indexes” (pp. 204)
And what is their connection to column-
oriented databases?

•  What is the main takeaway from Fig. 1.2?

CSEP544 - Fall 2015 10

Discussion

•  What are “covering indexes” (pp. 204)
And what is their connection to column-
oriented databases?
– A set of indexes that can completely answer

the query; one index ≈ one column
•  What is the main takeaway from Fig. 1.2?

– Column-oriented databases don’t work!
Unless you really optimize them well

CSEP544 - Fall 2015 11

Vectorized Processing

Review:
•  Volcano-style iterator model

– Next() method
– Pipelining

•  Materialization of all intermediate results
•  Discuss in class:

CSEP544 - Fall 2015 12

select avg(A) from R where A < 100

Vectorized Processing

•  Vectorized processing:
– Next() returns a block of tuples (e.g. N=1000)

instead of single tuple
•  Pros:

– No more large intermediate results
– Tight inner loop for selection and/or avg

•  Discuss in class:

CSEP544 - Fall 2015 13

select avg(A) from R where A < 100

Compression (Sec. 4)

•  What is the advantage of compression in
databases?

•  Discuss main column-at-a-time
compression techniques

CSEP544 - Fall 2015 14

Compression (Sec. 4)

•  What is the advantage of compression in
databases?

•  Discuss main column-at-a-time
compression techniques
– Row-length encoding: F,F,F,F,M,Mà4F,2M
– Bit-vector (see also bit-map indexes)
– Dictionary. More generally: Ziv-Lempel

CSEP544 - Fall 2015 15

Late Materialization (Sec. 4)

•  What is it?

•  Discuss ΠC(σA=‘a’ ∧ B=‘b’(R(A,B,C,D,…))

CSEP544 - Fall 2015 16

Late Materialization (Sec. 4)

•  What is it?
– The result is an array of positions

•  Discuss ΠC(σA=‘a’ ∧ B=‘b’(R(A,B,C,D,…))
– Retrieve positions in column A: 2, 4, 5, 9, 25…
– Retrieve positions in column B: 3, 4, 7, 9,12,..
–  Intersect: 4, 9, …
– Lookup values in column C: C[4], C[9], …

CSEP544 - Fall 2015 17

Joins (Sec. 4)

CSEP544 - Fall 2015 18

The result of a join R.A ⋈ S.A is an array
of positions in R.A and S.A.
Note: sorted on R.A only.

1 Value42
2 Value36
3 Value42
4 Value44
5 Value38

1 Value38
2 Value42
3 Value46
4 Value36

R.A S.A

⋈ =
1 1 2
2 2 4
3 3 2
4 5 1

Positions
in R.A

(sorted)
Positions

in S.A
(unsorted)

Jive-Join (Sec. 4)

Problem: accessing the values in the second table
has poor memory locality
Solution: re-sort by the second column, fetch, sort back
E.g. ΠS.C(R(A,…) ⋈ S(B,C,…)

=
1 1 2
2 2 4
3 3 2
4 5 1

Sort
on positions

in S.B

4 5 1
1 1 2
3 3 2
2 2 4

Jive-Join (Sec. 4)

Problem: accessing the values in the second table
has poor memory locality
Solution: re-sort by the second coljun, fetch, sort back
E.g. ΠS.C(R(A,…) ⋈ S(B,C,…)

1 Smith
2 Johnson
3 Williams
4 Jones

=
1 1 2
2 2 4
3 3 2
4 5 1

Sort
on positions

in S.B

4 5 1
1 1 2
3 3 2
2 2 4

Lookup S.C
(this is a

merge-join;
why?)

⋈

Jive-Join (Sec. 4)

Problem: accessing the values in the second table
has poor memory locality
Solution: re-sort by the second coljun, fetch, sort back
E.g. ΠS.C(R(A,…) ⋈ S(B,C,…)

1 Smith
2 Johnson
3 Williams
4 Jones

=
1 1 2
2 2 4
3 3 2
4 5 1

Sort
on positions

in S.B

4 5 1
1 1 2
3 3 2
2 2 4

Lookup S.C
(this is a

merge-join;
why?)

4 5 1 Smith
1 1 2 Johnson
3 3 2 Johnson
2 2 4 Jones

= ⋈

Jive-Join (Sec. 4)

Problem: accessing the values in the second table
has poor memory locality
Solution: re-sort by the second coljun, fetch, sort back
E.g. ΠS.C(R(A,…) ⋈ S(B,C,…)

1 Smith
2 Johnson
3 Williams
4 Jones

=
1 1 2
2 2 4
3 3 2
4 5 1

Sort
on positions

in S.B

4 5 1
1 1 2
3 3 2
2 2 4

Lookup S.C
(this is a

merge-join;
why?)

4 5 1 Smith
1 1 2 Johnson
3 3 2 Johnson
2 2 4 Jones

= ⋈

Re-sort
on positions

in R.A

1 1 2 Johnson
2 2 4 Jones
3 3 2 Johnson
4 5 1 Smith

=

Late Materialization
select sum(R.a) from R, S
where R.c = S.b
 and 5<R.a<20 and 40<R.b<50
 and 30<S.a<40

Late Materialization
select sum(R.a) from R, S
where R.c = S.b
 and 5<R.a<20 and 40<R.b<50
 and 30<S.a<40

40,50

Late Materialization
select sum(R.a) from R, S
where R.c = S.b
 and 5<R.a<20 and 40<R.b<50
 and 30<S.a<40

???

Late Materialization
select sum(R.a) from R, S
where R.c = S.b
 and 5<R.a<20 and 40<R.b<50
 and 30<S.a<40

NoSQL Databases

CSEP544 - Fall 2015 27

Based on paper by Cattell, in SIGMOD Record 2010

NoSLQ: Overview
•  Main objective: implement distributed state

– Different objects stored on different servers
– Same object replicated on different servers

•  Main idea: give up some of the ACID
constraints to improve performance

•  Simple interface:
– Write (=Put): needs to write all replicas
– Read (=Get): may get only one

•  Eventual consistency ß Strong consistency

CSEP544 - Fall 2015 28

NoSQL

“Not Only SQL” or “Not Relational”.
Six key features:
1.  Scale horizontally “simple operations”
2.  Replicate/distribute data over many servers
3.  Simple call level interface (contrast w/ SQL)
4.  Weaker concurrency model than ACID
5.  Efficient use of distributed indexes and RAM
6.  Flexible schema

CSEP544 - Fall 2015 29

Cattell, SIGMOD Record 2010

Outline of this Lecture

•  Main techniques and concepts:
– Distributed storage using DHTs
– Consistency: 2PC, vector clocks
– The CAP theorem

•  Overview of No-SQL systems (Cattell)

•  Critique (c.f. Stonebraker)

CSEP544 - Fall 2015 30

Main Techniques and Concepts

CSEP544 - Fall 2015 31

Main Techniques, Concepts

•  Distributed Hash Tables

•  Consistency: 2PC, Vector Clocks

•  The CAP theorem

CSEP544 - Fall 2015 32

A Note

•  These techniques belong to a course on
distributed systems, and not databases

•  We will mention them because they are
very relevant to NoSQL, but this is not an
exhaustive treatment

CSEP544 - Fall 2015 33

Distributed Hash Table
Implements a distributed storage
•  Each key-value pair (k,v) is stored at some server h(k)
•  API: write(k,v); read(k)

Use standard hash function: service key k by server h(k)
•  Problem 1: a client knows only one server, does’t

know how to access h(k)

•  Problem 2. if new server joins, then N à N+1, and the
entire hash table needs to be reorganized

•  Problem 3: we want replication, i.e. store the object at
more than one server

CSEP544 - Fall 2015 34

Distributed Hash Table
h=0 h=2n-1

A

B

C D

Responsibility of B

Responsibility of C

Responsibility of A

Problem 1: Routing
A client doesn’t know server h(k), but some other server

•  Naive routing algorithm:

–  Each node knows its neighbors
–  Send message to nearest neighbor
–  Hop-by-hop from there
–  Obviously this is O(n), So no good

•  Better algorithm: “finger table”
–  Memorize locations of other nodes in the ring
–  a, a + 2, a + 4, a + 8, a + 16, ... a + 2n – 1
–  Send message to closest node to destination
–  Hop-by-hop again: this is log(n)

CSEP544 - Fall 2015 36

Problem 1: Routing
h=0 h=2n-1

A

B

D

C

Read(k)

F
E

Client
 only “knows”

server A

Redirect
request

 to A + 2m

G

 to D + 2p

 to F + 1

Found
Read(k) !

h(k) handled
by server G

O(log n)

Problem 2: Joining
h=0 h=2n-1

A

B

C D

Responsibility of D

When X joins:
select random ID

Problem 2: Joining
h=0 h=2n-1

A

B

C D

When X joins:
select random ID

X Responsibility of D

Problem 2: Joining
h=0 h=2n-1

A

B

C D

When X joins:
select random ID

X Responsibility of X

Redistribute
the load at D

Responsibility of D

Problem 3: Replication

•  Need to have some degree of replication
to cope with node failure

•  Let N=degree of replication

•  Assign key k to h(k), h(k)+1, …, h(k)+N-1

CSEP544 - Fall 2015 41

Problem 3: Replication
h=0 h=2n-1

A

B

C D

Responsibility of B,C,D

Responsibility of C,D,E

Responsibility of A,B,C

Consistency

•  ACID
– Two phase commit
– Paxos (will not discuss)

•  Eventual consistency
– Vector clocks

CSEP544 - Fall 2015 43

ACID and 2PC

•  Need to partition the db across machines

•  If a transaction touches one machine
– Life is good

•  If a transaction touches multiple machines
– ACID becomes extremely expensive!
– Need two-phase commit

44

45

Two-Phase Commit: Motivation

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

Each subordinate
holds fraction of
database

Example: Each node holds
some subset of bank accounts
Transaction transfers money

46

Two-Phase Commit: Motivation

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

Each subordinate
holds fraction of
database

Example: Each node holds
some subset of bank accounts
Transaction transfers money

47

Two-Phase Commit: Motivation

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) COMMIT

Each subordinate
holds fraction of
database

Example: Each node holds
some subset of bank accounts
Transaction transfers money

48

Two-Phase Commit: Motivation

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) COMMIT

3) COMMIT
Each subordinate
holds fraction of
database

Example: Each node holds
some subset of bank accounts
Transaction transfers money

49

Two-Phase Commit: Motivation

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) COMMIT

3) COMMIT 4) Coordinator
crashes

Each subordinate
holds fraction of
database

Example: Each node holds
some subset of bank accounts
Transaction transfers money

50

Two-Phase Commit: Motivation

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) COMMIT

3) COMMIT 4) Coordinator
crashes

But I already committed!

Each subordinate
holds fraction of
database

Example: Each node holds
some subset of bank accounts
Transaction transfers money

51

Two-Phase Commit: Motivation

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) COMMIT

3) COMMIT 4) Coordinator
crashes

But I already committed!

What do we do now?

Each subordinate
holds fraction of
database

Example: Each node holds
some subset of bank accounts
Transaction transfers money

52

2PC: Phase 1 Illustrated

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

53

2PC: Phase 1 Illustrated

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

54

2PC: Phase 1 Illustrated

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) PREPARE

55

2PC: Phase 1 Illustrated

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) PREPARE

2) PREPARE

56

2PC: Phase 1 Illustrated

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) PREPARE

2) PREPARE

2) PREPARE

57

2PC: Phase 1 Illustrated

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) PREPARE

2) PREPARE

2) PREPARE

3) YES

58

2PC: Phase 1 Illustrated

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) PREPARE

2) PREPARE

2) PREPARE

3) YES

3) YES

59

2PC: Phase 1 Illustrated

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) PREPARE

2) PREPARE

2) PREPARE

3) YES

3) YES
3) YES

60

2PC: Phase 2 Illustrated

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

Transaction is
now committed!

61

2PC: Phase 2 Illustrated

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

2) COMMIT

Transaction is
now committed!

62

2PC: Phase 2 Illustrated

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

2) COMMIT

2) COMMIT Transaction is
now committed!

63

2PC: Phase 2 Illustrated

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

2) COMMIT

2) COMMIT

2) COMMIT

Transaction is
now committed!

64

2PC: Phase 2 Illustrated

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

2) COMMIT

2) COMMIT

2) COMMIT

3) ACK

Transaction is
now committed!

65

2PC: Phase 2 Illustrated

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

2) COMMIT

2) COMMIT

2) COMMIT

3) ACK

3) ACK

Transaction is
now committed!

66

2PC: Phase 2 Illustrated

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

2) COMMIT

2) COMMIT

2) COMMIT

3) ACK

3) ACK
3) ACK

Transaction is
now committed!

Two Phase Commit

•  Multiple servers run parts of the same
transaction

•  They all must commit, or none should
commit

•  Two-phase commit is a complicated
protocol that ensures that

•  2PC can also be used for WRITE with
replication: commit the write at all replicas
before declaring success

CSEP544 - Fall 2015 67

Two Phase Commit

Assumptions:
•  Each site logs actions at that site, but

there is no global log
•  There is a special site, called the

coordinator, which plays a special role
•  2PC involves sending certain messages:

as each message is sent, it is logged at
the sending site, to aid in case of recovery

CSEP544 - Fall 2015 68

Two Phase Commit
Book, Sec. 22.14.1
1.  Coordinator sends prepare message

2.  Subordinates receive prepare statement; force-write
<prepare> log entry; answers yes or no

3.  If coordinator receives only yes, force write <commit>, sends
commit messages;
If at least one no, or timeout, force write <abort>, sends abort
messages

4.  If subordinate receives abort, force-write <abort>, sends ack
message and aborts; if receives commit, force-write
<commit>, sends ack, commits.

5.  When coordinator receives all ack, writes <end log>

Two Phase Commit
Restart after failure: each server recovers locally
1.  If it finds a <commit> or <abort> log entry, then: redo

or undo; if the server is coordinator, then re-request all
ack messages, then write <end log>

2.  If it finds a <prepare> entry, then re-contact the
coordinator to ask for commit/abort

3.  If no <prepare> , <commit> or <abort>, presume abort

Two Phase Commit

•  ACID properties, but expensive

•  Relies on central coordinator: both
performance bottleneck, and single-point-
of-failure

•  Solution: Paxos = distributed protocol
– Complex: will not discuss at all

CSEP544 - Fall 2015 71

Vector Clocks
•  An extension of Multiversion Concurrency

Control (MVCC) to multiple servers

•  Standard MVCC:
each data item X has a timestamp t:
 X4, X9, X10, X14, …, Xt

•  Vector Clocks:
X has set of [server, timestamp] pairs
 X([s1,t1], [s2,t2],…)

CSEP544 - Fall 2015 72

Vector Clocks Dynamo:2007

Vector Clocks: Example
•  A client writes D1 at server SX:

 D1 ([SX,1])
• 

• 

• 

• 

CSEP544 - Fall 2015 74

Vector Clocks: Example
•  A client writes D1 at server SX:

 D1 ([SX,1])
•  Another client reads D1, writes back D2; also

handled by server SX:
 D2 ([SX,2]) (D1 garbage collected)

• 

• 

• 

CSEP544 - Fall 2015 75

Vector Clocks: Example
•  A client writes D1 at server SX:

 D1 ([SX,1])
•  Another client reads D1, writes back D2; also

handled by server SX:
 D2 ([SX,2]) (D1 garbage collected)

•  Another client reads D2, writes back D3;
handled by server SY:
 D3 ([SX,2], [SY,1])

• 

• 

CSEP544 - Fall 2015 76

Vector Clocks: Example
•  A client writes D1 at server SX:

 D1 ([SX,1])
•  Another client reads D1, writes back D2; also

handled by server SX:
 D2 ([SX,2]) (D1 garbage collected)

•  Another client reads D2, writes back D3;
handled by server SY:
 D3 ([SX,2], [SY,1])

•  Another client reads D2, writes back D4;
handled by server SZ:
 D4 ([SX,2], [SZ,1])

• 

CSEP544 - Fall 2015 77

Vector Clocks: Example
•  A client writes D1 at server SX:

 D1 ([SX,1])
•  Another client reads D1, writes back D2; also

handled by server SX:
 D2 ([SX,2]) (D1 garbage collected)

•  Another client reads D2, writes back D3;
handled by server SY:
 D3 ([SX,2], [SY,1])

•  Another client reads D2, writes back D4;
handled by server SZ:
 D4 ([SX,2], [SZ,1])

•  Another client reads D3, D4: CONFLICT !

CSEP544 - Fall 2015 78

Vector Clocks: Meaning

•  A data item D[(S1,v1),(S2,v2),…] means a
value that represents version v1 for S1,
version v2 for S2, etc.

•  If server Si updates D, then:
–  It must increment vi, if (Si, vi) exists
– Otherwise, it must create a new entry (Si,1)

CSEP544 - Fall 2015 79

Vector Clocks: Conflicts

•  A data item D is an ancestor of D’ if for all
(S,v)∈D there exists (S,v’)∈D’ s.t. v ≤ v’

•  Otherwise, D and D’ are on parallel
branches, and it means that they have a
conflict that needs to be reconciled
semantically

CSEP544 - Fall 2015 80

Vector Clocks: Conflict or not?

CSEP544 - Fall 2015 81

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2])

Vector Clocks: Conflict or not?

CSEP544 - Fall 2015 82

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

Vector Clocks: Conflict or not?

CSEP544 - Fall 2015 83

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5])

Vector Clocks: Conflict or not?

CSEP544 - Fall 2015 84

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

Vector Clocks: Conflict or not?

CSEP544 - Fall 2015 85

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2])

Vector Clocks: Conflict or not?

CSEP544 - Fall 2015 86

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

Vector Clocks: Conflict or not?

CSEP544 - Fall 2015 87

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2])

Vector Clocks: Conflict or not?

CSEP544 - Fall 2015 88

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2]) Yes

Vector Clocks: Conflict or not?

CSEP544 - Fall 2015 89

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2]) Yes

([SX,3],[SY,10]) ([SX,3],[SY,20],[SZ,2])

Vector Clocks: Conflict or not?

CSEP544 - Fall 2015 90

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2]) Yes

([SX,3],[SY,10]) ([SX,3],[SY,20],[SZ,2]) No

CAP Theorem

Brewer 2000:

You can only have two of the following three:
•  Consistency
•  Availability
•  Tolerance to Partitions

CSEP544 - Fall 2015 91

CAP Theorem: No Partitions

•  CA = Consistency + Availability

•  Single site database
•  Cluster database

•  Need 2 phase commit
•  Need cache validation protocol

CSEP544 - Fall 2015 92 Brewer 2000

CAP Theorem: No Availability

•  CP = Consistency + tolerance to Partitions

•  Distributed databases
•  Majority protocols

•  Make minority partitions unavailable

CSEP544 - Fall 2015 93 Brewer 2000

CAP Theorem: No Consistency

•  AP = Availability + tolerance to Partitions

•  DNS
•  Web caching

CSEP544 - Fall 2015 94 Brewer 2000

CAP Theorem: Criticism

•  Not really a “theorem”, since definitions
are imprecise: a real theorem was proven
a few years later, but under more limiting
assumptions

•  Many tradeoffs possible
•  D.Abadi: “CP makes no sense” because it

suggest never available. A, C asymmetric!
– No “C” = all the time
– No “A” = only when the network is partitioned

CSEP544 - Fall 2015 95

Overview of No-SQL systems

CSEP544 - Fall 2015 96

Cattell, SIGMOD Record 2010

Early “Proof of Concepts”

•  Memcached: demonstrated that in-
memory indexes (DHT) can be highly
scalable

•  Dynamo: pioneered eventual consistency
for higher availability and scalability

•  BigTable: demonstrated that persistent
record storage can be scaled to thousands
of nodes

CSEP544 - Fall 2015 97

Cattell, SIGMOD Record 2010

ACID v.s. BASE

•  ACID = Atomicity, Consistency, Isolation,
and Durability

•  BASE = Basically Available, Soft state,
Eventually consistent

CSEP544 - Fall 2015 98

Cattell, SIGMOD Record 2010

Terminology

•  Simple operations = key lookups, read/writes
of one record, or a small number of records

•  Sharding = horizontal partitioning by some
key, and storing records on different servers
in order to improve performance.

•  Horizontal scalability = distribute both data
and load over many servers

•  Vertical scaling = when a dbms uses multiple
cores and/or CPUs

CSEP544 - Fall 2015 99

Cattell, SIGMOD Record 2010

Not exactly same as
horizontal partitioning

Definitely different
from vertical partitioning

Data Model

•  Tuple = row in a relational db
•  Document = nested values, extensible

records (think XML or JSON)
•  Extensible record = families of attributes

have a schema, but new attributes may be
added

•  Object = like in a programming language,
but without methods

CSEP544 - Fall 2015 100

Cattell, SIGMOD Record 2010

1. Key-value Stores

Think “file system” more than “database”
•  Persistence,
•  Replication
•  Versioning,
•  Locking
•  Transactions
•  Sorting

CSEP544 - Fall 2015 101

Cattell, SIGMOD Record 2010

1. Key-value Stores

•  Voldemort, Riak, Redis, Scalaris, Tokyo
Cabinet, Memcached/Membrain/Membase

•  Consistent hashing (DHT)
•  Only primary index: lookup by key
•  No secondary indexes
•  Transactions: single- or multi-update TXNs

–  locks, or MVCC

CSEP544 - Fall 2015 102

Cattell, SIGMOD Record 2010

2. Document Stores

•  A "document" = a pointerless object = e.g.
JSON = nested or not = schema-less

•  In addition to KV stores, may have
secondary indexes

CSEP544 - Fall 2015 103

Cattell, SIGMOD Record 2010

2. Document Stores

•  SimpleDB, CouchDB, MongoDB,
Terrastore

•  Scalability:
– Replication (e.g. SimpleDB, CounchDB –

means entire db is replicated),
– Sharding (MongoDB);
– Both

CSEP544 - Fall 2015 104

Cattell, SIGMOD Record 2010

3. Extensible Record Stores
•  Based on Google’s BigTable

•  Data model is rows and columns

•  Scalability by splitting rows and columns over nodes
–  Rows partitioned through sharding on primary key
–  Columns of a table are distributed over multiple nodes by using

“column groups”

•  HBase is an open source implementation of BigTable

105

Bigtable

•  Distributed storage system
•  Designed to

– Hold structured data
– Scale to thousands of servers
– Store up to PB
– Perform backend bulk processing
– Perform real-time data serving

•  To scale, Bigtable has a limited set of
features

106

Bigtable Data Model
•  Sparse, multidimensional sorted map
 (row:string, column:string, time:int64)è string
 Notice how everything but time is a string

•  Example from Fig 1:

107

Columns are grouped into families

Chang, OSDI 2006

BigTable Key Features

•  Read/writes of data under single row key is
atomic
– Only single-row transactions!

•  Data is stored in lexicographical order
–  Improves data access locality

•  Column families are unit of access control
•  Data is versioned (old versions garbage

collected)
– Ex: most recent three crawls of each page, with

times

108

Chang, OSDI 2006

BigTable API

•  Data definition
– Creating/deleting tables or column families
– Changing access control rights

•  Data manipulation
– Writing or deleting values
– Supports single-row transactions
– Looking up values from individual rows
–  Iterating over subset of data in the table

•  Can select on rows, columns, and timestamps

CSE 344 - Fall 2013 109

Chang, OSDI 2006

Megastore

•  BigTable is implemented, used within Google

•  Megastore is a layer on top of BigTable
– Transactions that span nodes
– A database schema defined in a SQL-like language
– Hierarchical paths that allow some limited joins

•  Megastore is made available through the
Google App Engine Datastore

110

Cattell, SIGMOD Record 2010

4. Scalable Relational Systems
•  Means RDBS that are offering sharding

•  Key difference: NoSQL make it difficult or
impossible to perform large-scope operations
and transactions (to ensure performance),
while scalable RDBMS do not *preclude*
these operations, but users pay a price only
when they need them.

•  MySQL Cluster, VoltDB, Clusterix, ScaleDB,
Megastore (the new BigTable)

CSEP544 - Fall 2015 111

Cattell, SIGMOD Record 2010

Application 1

•  Web application that needs to display lots
of customer information; the users data is
rarely updated, and when it is, you know
when it changes because updates go
through the same interface. Store this
information persistently using a KV store.

CSEP544 - Fall 2015 112

Key-value store

Cattell, SIGMOD Record 2010

Application 2

•  Department of Motor Vehicle: lookup
objects by multiple fields (driver's name,
license number, birth date, etc); "eventual
consistency" is ok, since updates are
usually performed at a single location.

CSEP544 - Fall 2015 113

Document Store

Cattell, SIGMOD Record 2010

Application 3

•  eBay stile application. Cluster customers
by country; separate the rarely changed
"core” customer information (address,
email) from frequently-updated info
(current bids).

CSEP544 - Fall 2015 114

Extensible Record Store

Cattell, SIGMOD Record 2010

Application 4

•  Everything else (e.g. a serious DMV
application)

CSEP544 - Fall 2015 115

Scalable RDBMS

Cattell, SIGMOD Record 2010

Criticism

CSEP544 - Fall 2015 116

Criticism

•  Two ways to improve OLTP performance:
– Sharding over shared-nothing
–  Improve per-server OLTP performance

•  Recent RDBMs do provide sharding:
Greenplum, Aster Data, Vertica, ParAccel

•  Hence, the discussion is about single-
node performance

CSEP544 - Fall 2015 117

Stonebraker, CACM’2010 (blog 1)

Criticism (cont’d)

•  Single-node performance:
•  Major performance bottleneck:

communication with DBMS using ODBC or
JDBC
– Solution: stored procedures, OR embedded

databases
•  Server-side performance (next slide)

CSEP544 - Fall 2015 118

Stonebraker, CACM’2010 (blog 1)

Criticism (cont’d)

Server-side performance: abut 25% each
•  Logging

– Everything written twice; log must be forced
•  Locking

– Needed for ACID semantics
•  Latching

– This is when the DBMS itself is multithreaded;
e.g. latch for the lock table

•  Buffer management
CSEP544 - Fall 2015 119

Stonebraker, CACM’2010 (blog 1)

Criticism (cont’d)

Main take-away:
•  NoSQL databases give up 1, or 2, or 3 of

those features
•  Thus, performance improvement can only

be modest
•  Need to give up all 4 features for

significantly higher performance
•  On the downside, NoSQL give up ACID

CSEP544 - Fall 2015 120

Stonebraker, CACM’2010 (blog 1)

Criticism (cont’d)

Who are the customers of NoSQL?
•  Lots of startups
•  Very few enterprises. Why? most

applications are traditional OLTP on
structured data; a few other applications
around the “edges”, but considered less
important

CSEP544 - Fall 2015 121

Stonebraker, CACM’2011 (blog 2)

Criticism (cont’d)

•  No ACID Equals No Interest
– Screwing up mission-critical data is no-no-no

•  Low-level Query Language is Death
– Remember CODASYL?

•  NoSQL means NoStandards
– One (typical) large enterprise has 10,000

databases. These need accepted standards

CSEP544 - Fall 2015 122

Stonebraker, CACM’2011 (blog 2)

End of CSEP 544

•  “Big data” is here to stay
•  Requires unique tecniques/abstractions

– Logic (SQL, Relational Calculus)
– Conceptual modeling (FD’s)
– Algorithms (query processing)
– Transactions

•  Technology evolving rapidly, but
•  Techniques/abstracts persist over may

years, e.g. What goes around
CSEP544 - Fall 2015 123

