
CSEP 544: Lecture 10 

Column-Oriented Databases 
and NoSQL 
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Announcement 
Take home final: 12/9-10 
•  Online Webquiz 

–  Need your UW NET ID, 
check that it works! 

–  I will also email the final 
in pdf form (e.g. to print) 

•  Opens Wed. morning, 
closes Thursday night 

•  No time limits: 
–  Work, save, take a 

break, return later… 

•  No need to run code 
•  Questions? 

–  Email me and cc Laurel 
•  Watch your email 

–  E.g. corrections 
•  No discussion of the 

final with colleagues 
•  When you are done: 

–  Submit and receive 
confirmation code! 
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Today’s Agenda 

•  Column-oriented databases 

•  No-SQL 
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Column-Oriented Databases 
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Brief discussion of the paper: 
The Design and Implementation of Modern 
Column-Oriented Database Systems 



Column-Oriented Databases 

•  Main idea: 
– Physical storage: complete vertical partition; 

each column stored separately: R.A, R.B, R.A 
– Logical schema: remains the same R(A,B,C) 

•  Main advantage: 
–  Improved transfer rate: disk to memory, 

memory to CPU, better cache locality 
– Other advantages (next) 
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Data Layout 

6 

Basic tradeoffs: 
•  Reading all attributes of one records, v.s. 
•  Reading some attributes of many records 



Key Architectural Trends (Sec.1) 

•  Virtual IDs 

•  Block-oriented and vertical processing 

•  Late materialization 

•  Column-specific compression 
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Key Architectural Trends (Sec.1) 

•  Virtual IDs 
– Offsets (arrays) instead of keys 

•  Block-oriented and vertical processing 
–  Iterator model: one tupleàone block of tuples 

•  Late materialization 
– Postpone tuple reconstruction in query plan 

•  Column-specific compression 
– Much better than row-compression (why?) 
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Fig. 1.2 



Discussion 

•  What are “covering indexes” (pp. 204) 
And what is their connection to column-
oriented databases? 

•  What is the main takeaway from Fig. 1.2? 
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Discussion 

•  What are “covering indexes” (pp. 204) 
And what is their connection to column-
oriented databases? 
– A set of indexes that can completely answer 

the query; one index ≈ one column 
•  What is the main takeaway from Fig. 1.2? 

– Column-oriented databases don’t work!  
Unless you really optimize them well 
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Vectorized Processing 

Review: 
•  Volcano-style iterator model 

– Next() method 
– Pipelining 

•  Materialization of all intermediate results 
•  Discuss in class: 
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select avg(A) from R where A < 100 



Vectorized Processing 

•  Vectorized processing: 
– Next() returns a block of tuples (e.g. N=1000) 

instead of single tuple 
•  Pros: 

– No more large intermediate results 
– Tight inner loop for selection and/or avg  

•  Discuss in class: 
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select avg(A) from R where A < 100 



Compression (Sec. 4) 

•  What is the advantage of compression in 
databases? 

•  Discuss main column-at-a-time 
compression techniques 
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Compression (Sec. 4) 

•  What is the advantage of compression in 
databases? 

•  Discuss main column-at-a-time 
compression techniques 
– Row-length encoding: F,F,F,F,M,Mà4F,2M 
– Bit-vector (see also bit-map indexes) 
– Dictionary.  More generally: Ziv-Lempel 
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Late Materialization (Sec. 4) 

•  What is it? 

•  Discuss ΠC(σA=‘a’ ∧ B=‘b’(R(A,B,C,D,…)) 
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Late Materialization (Sec. 4) 

•  What is it? 
– The result is an array of positions 

•  Discuss ΠC(σA=‘a’ ∧ B=‘b’(R(A,B,C,D,…)) 
– Retrieve positions in column A: 2, 4, 5, 9, 25… 
– Retrieve positions in column B: 3, 4, 7, 9,12,.. 
–  Intersect: 4, 9, … 
– Lookup values in column C: C[4], C[9], … 
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Joins (Sec. 4) 
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The result of a join R.A ⋈ S.A is an array 
of positions in R.A and S.A.   
Note: sorted on R.A only. 

1 Value42 
2 Value36 
3 Value42 
4 Value44 
5 Value38 

1 Value38 
2 Value42 
3 Value46 
4 Value36 

R.A S.A 

⋈ = 
1 1 2 
2 2 4 
3 3 2 
4 5 1 

Positions 
in R.A 

(sorted) 
Positions 

in S.A 
(unsorted) 



Jive-Join (Sec. 4) 

Problem: accessing the values in the second table 
has poor memory locality 
Solution: re-sort by the second column, fetch, sort back 
E.g. ΠS.C(R(A,…) ⋈ S(B,C,… ) 

= 
1 1 2 
2 2 4 
3 3 2 
4 5 1 

Sort 
on positions 

in S.B 

4 5 1 
1 1 2 
3 3 2 
2 2 4 



Jive-Join (Sec. 4) 

Problem: accessing the values in the second table 
has poor memory locality 
Solution: re-sort by the second coljun, fetch, sort back 
E.g. ΠS.C(R(A,…) ⋈ S(B,C,… ) 

1 Smith 
2 Johnson 
3 Williams 
4 Jones 

= 
1 1 2 
2 2 4 
3 3 2 
4 5 1 

Sort 
on positions 

in S.B 

4 5 1 
1 1 2 
3 3 2 
2 2 4 

Lookup S.C 
(this is a 

merge-join; 
why?) 

⋈ 



Jive-Join (Sec. 4) 

Problem: accessing the values in the second table 
has poor memory locality 
Solution: re-sort by the second coljun, fetch, sort back 
E.g. ΠS.C(R(A,…) ⋈ S(B,C,… ) 

1 Smith 
2 Johnson 
3 Williams 
4 Jones 

= 
1 1 2 
2 2 4 
3 3 2 
4 5 1 

Sort 
on positions 

in S.B 

4 5 1 
1 1 2 
3 3 2 
2 2 4 

Lookup S.C 
(this is a 

merge-join; 
why?) 

4 5 1 Smith 
1 1 2 Johnson 
3 3 2 Johnson 
2 2 4 Jones 

= ⋈ 



Jive-Join (Sec. 4) 

Problem: accessing the values in the second table 
has poor memory locality 
Solution: re-sort by the second coljun, fetch, sort back 
E.g. ΠS.C(R(A,…) ⋈ S(B,C,… ) 

1 Smith 
2 Johnson 
3 Williams 
4 Jones 

= 
1 1 2 
2 2 4 
3 3 2 
4 5 1 

Sort 
on positions 

in S.B 

4 5 1 
1 1 2 
3 3 2 
2 2 4 

Lookup S.C 
(this is a 

merge-join; 
why?) 

4 5 1 Smith 
1 1 2 Johnson 
3 3 2 Johnson 
2 2 4 Jones 

= ⋈ 

Re-sort 
on positions 

in R.A 

1 1 2 Johnson 
2 2 4 Jones 
3 3 2 Johnson 
4 5 1 Smith 

= 



Late Materialization 
select sum(R.a) from R, S 
where R.c = S.b  
  and 5<R.a<20 and 40<R.b<50 
 and 30<S.a<40 



Late Materialization 
select sum(R.a) from R, S 
where R.c = S.b  
  and 5<R.a<20 and 40<R.b<50 
 and 30<S.a<40 

40,50 

------ 



Late Materialization 
select sum(R.a) from R, S 
where R.c = S.b  
  and 5<R.a<20 and 40<R.b<50 
 and 30<S.a<40 

??? 

------ 



Late Materialization 
select sum(R.a) from R, S 
where R.c = S.b  
  and 5<R.a<20 and 40<R.b<50 
 and 30<S.a<40 



NoSQL Databases 
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Based on paper by Cattell, in SIGMOD Record 2010 



NoSLQ: Overview 
•  Main objective: implement distributed state 

– Different objects stored on different servers 
– Same object replicated on different servers 

•  Main idea: give up some of the ACID 
constraints to improve performance 

•  Simple interface: 
– Write (=Put): needs to write all replicas 
– Read (=Get): may get only one 

•  Eventual consistency ß Strong consistency 

CSEP544 - Fall 2015         28 



NoSQL 

“Not Only SQL” or “Not Relational”.   
Six key features: 
1.  Scale horizontally “simple operations” 
2.  Replicate/distribute data over many servers 
3.  Simple call level interface (contrast w/ SQL) 
4.  Weaker concurrency model than ACID 
5.  Efficient use of distributed indexes and RAM 
6.  Flexible schema 

CSEP544 - Fall 2015         29 

Cattell, SIGMOD Record 2010 



Outline of this Lecture 

•  Main techniques and concepts: 
– Distributed storage using DHTs 
– Consistency: 2PC, vector clocks 
– The CAP theorem 

•  Overview of No-SQL systems (Cattell) 

•  Critique (c.f. Stonebraker) 
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Main Techniques and Concepts 
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Main Techniques, Concepts 

•  Distributed Hash Tables 

•  Consistency: 2PC, Vector Clocks 

•  The CAP theorem 

CSEP544 - Fall 2015         32 



A Note 

•  These techniques belong to a course on 
distributed systems, and not databases 

•  We will mention them because they are 
very relevant to NoSQL, but this is not an 
exhaustive treatment 
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Distributed Hash Table 
Implements a distributed storage 
•  Each key-value pair (k,v) is stored at some server h(k) 
•  API: write(k,v);  read(k) 

Use standard hash function: service key k by server h(k) 
•  Problem 1: a client knows only one server, does’t 

know how to access h(k) 

•  Problem 2. if new server joins, then N à N+1, and the 
entire hash table needs to be reorganized 

•  Problem 3: we want replication, i.e. store the object at 
more than one server 
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Distributed Hash Table 
h=0 h=2n-1 

A 

B 

C D 

Responsibility of B 

Responsibility of C 

Responsibility of A 



Problem 1: Routing 
A client doesn’t know server h(k), but some other server 
 
•  Naive routing algorithm: 

–  Each node knows its neighbors 
–  Send message to nearest neighbor 
–  Hop-by-hop from there 
–  Obviously this is O(n), So no good 

•  Better algorithm: “finger table” 
–  Memorize locations of other nodes in the ring 
–  a, a + 2, a + 4, a + 8, a + 16, ... a + 2n – 1 
–  Send message to closest node to destination 
–  Hop-by-hop again: this is log(n) 
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Problem 1: Routing 
h=0 h=2n-1 

A 

B 

D 

C 

Read(k) 

F 
E 

Client 
 only “knows” 

server A 

Redirect 
request 

 to A + 2m 

G 

 to D + 2p 

 to F + 1 

Found 
Read(k) ! 

h(k) handled 
by server G 

O(log n) 



Problem 2: Joining 
h=0 h=2n-1 

A 

B 

C D 

Responsibility of D 

When X joins: 
select random ID 



Problem 2: Joining 
h=0 h=2n-1 

A 

B 

C D 

When X joins: 
select random ID 

X Responsibility of D 



Problem 2: Joining 
h=0 h=2n-1 

A 

B 

C D 

When X joins: 
select random ID 

X Responsibility of X 

Redistribute 
the load at D 

Responsibility of D 



Problem 3: Replication 

•  Need to have some degree of replication 
to cope with node failure 

•  Let N=degree of replication 

•  Assign key k to  h(k), h(k)+1, …, h(k)+N-1 
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Problem 3: Replication 
h=0 h=2n-1 

A 

B 

C D 

Responsibility of B,C,D 

Responsibility of C,D,E 

Responsibility of A,B,C 



Consistency 

•  ACID 
– Two phase commit 
– Paxos (will not discuss) 

•  Eventual consistency 
– Vector clocks 
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ACID and 2PC 

•  Need to partition the db across machines 

•  If a transaction touches one machine 
– Life is good 

•  If a transaction touches multiple machines 
– ACID becomes extremely expensive!  
– Need two-phase commit 

44 
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Two-Phase Commit: Motivation 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

Each subordinate 
holds fraction of 
database 

Example: Each node holds 
some subset of bank accounts 
Transaction transfers money 
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Two-Phase Commit: Motivation 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

1) User decides 
to commit 

Each subordinate 
holds fraction of 
database 

Example: Each node holds 
some subset of bank accounts 
Transaction transfers money 
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Two-Phase Commit: Motivation 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

1) User decides 
to commit 

2) COMMIT 

Each subordinate 
holds fraction of 
database 

Example: Each node holds 
some subset of bank accounts 
Transaction transfers money 
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Two-Phase Commit: Motivation 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

1) User decides 
to commit 

2) COMMIT 

3) COMMIT 
Each subordinate 
holds fraction of 
database 

Example: Each node holds 
some subset of bank accounts 
Transaction transfers money 
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Two-Phase Commit: Motivation 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

1) User decides 
to commit 

2) COMMIT 

3) COMMIT 4) Coordinator 
crashes 

Each subordinate 
holds fraction of 
database 

Example: Each node holds 
some subset of bank accounts 
Transaction transfers money 
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Two-Phase Commit: Motivation 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

1) User decides 
to commit 

2) COMMIT 

3) COMMIT 4) Coordinator 
crashes 

But I already committed! 

Each subordinate 
holds fraction of 
database 

Example: Each node holds 
some subset of bank accounts 
Transaction transfers money 
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Two-Phase Commit: Motivation 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

1) User decides 
to commit 

2) COMMIT 

3) COMMIT 4) Coordinator 
crashes 

But I already committed! 

What do we do now? 

Each subordinate 
holds fraction of 
database 

Example: Each node holds 
some subset of bank accounts 
Transaction transfers money 
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2PC: Phase 1 Illustrated 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 
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2PC: Phase 1 Illustrated 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

1) User decides 
to commit 
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2PC: Phase 1 Illustrated 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

1) User decides 
to commit 

2) PREPARE 
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2PC: Phase 1 Illustrated 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

1) User decides 
to commit 

2) PREPARE 

2) PREPARE 
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2PC: Phase 1 Illustrated 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

1) User decides 
to commit 

2) PREPARE 

2) PREPARE 

2) PREPARE 
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2PC: Phase 1 Illustrated 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

1) User decides 
to commit 

2) PREPARE 

2) PREPARE 

2) PREPARE 

3) YES 
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2PC: Phase 1 Illustrated 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

1) User decides 
to commit 

2) PREPARE 

2) PREPARE 

2) PREPARE 

3) YES 

3) YES 
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2PC: Phase 1 Illustrated 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

1) User decides 
to commit 

2) PREPARE 

2) PREPARE 

2) PREPARE 

3) YES 

3) YES 
3) YES 
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2PC: Phase 2 Illustrated 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

Transaction is 
now committed! 
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2PC: Phase 2 Illustrated 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

2) COMMIT 

Transaction is 
now committed! 
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2PC: Phase 2 Illustrated 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

2) COMMIT 

2) COMMIT Transaction is 
now committed! 
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2PC: Phase 2 Illustrated 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

2) COMMIT 

2) COMMIT 

2) COMMIT 

Transaction is 
now committed! 
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2PC: Phase 2 Illustrated 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

2) COMMIT 

2) COMMIT 

2) COMMIT 

3) ACK 

Transaction is 
now committed! 
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2PC: Phase 2 Illustrated 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

2) COMMIT 

2) COMMIT 

2) COMMIT 

3) ACK 

3) ACK 

Transaction is 
now committed! 
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2PC: Phase 2 Illustrated 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

2) COMMIT 

2) COMMIT 

2) COMMIT 

3) ACK 

3) ACK 
3) ACK 

Transaction is 
now committed! 



Two Phase Commit 

•  Multiple servers run parts of the same 
transaction 

•  They all must commit, or none should 
commit 

•  Two-phase commit is a complicated 
protocol that ensures that 

•  2PC can also be used for WRITE with 
replication: commit the write at all replicas 
before declaring success 
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Two Phase Commit 

Assumptions: 
•  Each site logs actions at that site, but 

there is no global log 
•  There is a special site, called the 

coordinator, which plays a special role 
•  2PC involves sending certain messages: 

as each message is sent, it is logged at 
the sending site, to aid in case of recovery 
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Two Phase Commit 
Book, Sec. 22.14.1 
1.  Coordinator sends prepare message 

2.  Subordinates receive prepare statement; force-write 
<prepare> log entry; answers yes or no 

3.  If coordinator receives only yes, force write <commit>, sends 
commit messages;  
If at least one no, or timeout, force write <abort>, sends abort 
messages 

4.  If subordinate receives abort, force-write <abort>, sends ack 
message and aborts; if receives commit, force-write 
<commit>, sends ack, commits. 

5.  When coordinator receives all ack, writes <end log> 



Two Phase Commit 
Restart after failure:  each server recovers locally 
1.  If it finds a <commit> or <abort> log entry, then: redo 

or undo; if the server is coordinator, then re-request all 
ack messages, then write <end log> 

2.  If it finds a <prepare> entry, then re-contact the 
coordinator to ask for commit/abort 

3.  If no <prepare> , <commit> or <abort>, presume abort 



Two Phase Commit 

•  ACID properties, but expensive 

•  Relies on central coordinator: both 
performance bottleneck, and single-point-
of-failure 

•  Solution: Paxos = distributed protocol 
– Complex: will not discuss at all 
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Vector Clocks 
•  An extension of Multiversion Concurrency 

Control (MVCC) to multiple servers 

•  Standard MVCC:  
each data item X has a timestamp t: 
          X4, X9, X10, X14, …, Xt 

•  Vector Clocks:  
X has set of [server, timestamp] pairs 
          X([s1,t1], [s2,t2],…) 
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Vector Clocks Dynamo:2007 



Vector Clocks: Example 
•  A client writes D1 at server SX:   

   D1 ([SX,1]) 
•     

  
    

•    
  
     

•     
  
     

•    
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Vector Clocks: Example 
•  A client writes D1 at server SX:   

   D1 ([SX,1]) 
•  Another client reads D1, writes back D2; also 

handled by server SX: 
   D2 ([SX,2])  (D1 garbage collected) 

•    
  
     

•     
  
     

•    
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Vector Clocks: Example 
•  A client writes D1 at server SX:   

   D1 ([SX,1]) 
•  Another client reads D1, writes back D2; also 

handled by server SX: 
   D2 ([SX,2])  (D1 garbage collected) 

•  Another client reads D2, writes back D3; 
handled by server SY: 
   D3 ([SX,2], [SY,1]) 

•     
  
     

•    
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Vector Clocks: Example 
•  A client writes D1 at server SX:   

   D1 ([SX,1]) 
•  Another client reads D1, writes back D2; also 

handled by server SX: 
   D2 ([SX,2])  (D1 garbage collected) 

•  Another client reads D2, writes back D3; 
handled by server SY: 
   D3 ([SX,2], [SY,1]) 

•  Another client reads D2, writes back D4; 
handled by server SZ: 
   D4 ([SX,2], [SZ,1]) 

•    
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Vector Clocks: Example 
•  A client writes D1 at server SX:   

   D1 ([SX,1]) 
•  Another client reads D1, writes back D2; also 

handled by server SX: 
   D2 ([SX,2])  (D1 garbage collected) 

•  Another client reads D2, writes back D3; 
handled by server SY: 
   D3 ([SX,2], [SY,1]) 

•  Another client reads D2, writes back D4; 
handled by server SZ: 
   D4 ([SX,2], [SZ,1]) 

•  Another client reads D3, D4: CONFLICT ! 
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Vector Clocks: Meaning 

•  A data item D[(S1,v1),(S2,v2),…] means a 
value that represents version v1 for S1, 
version v2 for S2, etc. 

•  If server Si updates D, then: 
–  It must increment vi, if (Si, vi) exists 
– Otherwise, it must create a new entry (Si,1) 
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Vector Clocks: Conflicts 

•  A data item D is an ancestor of D’ if for all 
(S,v)∈D there exists (S,v’)∈D’ s.t. v ≤ v’  

•  Otherwise, D and D’ are on parallel 
branches, and it means that they have a 
conflict that needs to be reconciled 
semantically 
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Vector Clocks: Conflict or not? 
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Data 1 Data 2 Conflict ? 

([SX,3],[SY,6]) ([SX,3],[SZ,2]) 



Vector Clocks: Conflict or not? 
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Data 1 Data 2 Conflict ? 

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes 



Vector Clocks: Conflict or not? 
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Data 1 Data 2 Conflict ? 

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes 

([SX,3]) ([SX,5]) 



Vector Clocks: Conflict or not? 
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Data 1 Data 2 Conflict ? 

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes 

([SX,3]) ([SX,5]) No 



Vector Clocks: Conflict or not? 
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Data 1 Data 2 Conflict ? 

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes 

([SX,3]) ([SX,5]) No 

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) 



Vector Clocks: Conflict or not? 
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Data 1 Data 2 Conflict ? 

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes 

([SX,3]) ([SX,5]) No 

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No 



Vector Clocks: Conflict or not? 
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Data 1 Data 2 Conflict ? 

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes 

([SX,3]) ([SX,5]) No 

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No 

([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2]) 



Vector Clocks: Conflict or not? 
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Data 1 Data 2 Conflict ? 

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes 

([SX,3]) ([SX,5]) No 

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No 

([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2]) Yes 



Vector Clocks: Conflict or not? 
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Data 1 Data 2 Conflict ? 

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes 

([SX,3]) ([SX,5]) No 

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No 

([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2]) Yes 

([SX,3],[SY,10]) ([SX,3],[SY,20],[SZ,2]) 



Vector Clocks: Conflict or not? 
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Data 1 Data 2 Conflict ? 

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes 

([SX,3]) ([SX,5]) No 

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No 

([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2]) Yes 

([SX,3],[SY,10]) ([SX,3],[SY,20],[SZ,2]) No 



CAP Theorem 

Brewer 2000: 
 
 
You can only have two of the following three: 
•  Consistency 
•  Availability 
•  Tolerance to Partitions 
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CAP Theorem: No Partitions 

•  CA = Consistency + Availability 

•  Single site database 
•  Cluster database 

•  Need 2 phase commit 
•  Need cache validation protocol 
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CAP Theorem: No Availability 

•  CP = Consistency + tolerance to Partitions 

•  Distributed databases 
•  Majority protocols 

•  Make minority partitions unavailable 
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CAP Theorem: No Consistency 

•  AP = Availability + tolerance to Partitions 

•  DNS 
•  Web caching 
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CAP Theorem: Criticism 

•  Not really a “theorem”, since definitions 
are imprecise: a real theorem was proven 
a few years later, but under more limiting 
assumptions 

•  Many tradeoffs possible 
•  D.Abadi: “CP makes no sense” because it 

suggest never available. A, C asymmetric! 
– No “C” = all the time 
– No “A” = only when the network is partitioned 
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Overview of No-SQL systems 
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Early “Proof of Concepts” 

•  Memcached: demonstrated that in-
memory indexes (DHT) can be highly 
scalable 

•  Dynamo: pioneered eventual consistency 
for higher availability and scalability 

•  BigTable: demonstrated that persistent 
record storage can be scaled to thousands 
of nodes 
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ACID v.s. BASE 

•  ACID = Atomicity, Consistency, Isolation, 
and Durability 

•  BASE = Basically Available, Soft state, 
Eventually consistent 
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Terminology 

•  Simple operations = key lookups, read/writes 
of one record, or a small number of records 

•  Sharding = horizontal partitioning by some 
key, and storing records on different servers 
in order to improve performance. 

•  Horizontal scalability = distribute both data 
and  load over many servers 

•  Vertical scaling = when a dbms uses multiple 
cores and/or CPUs 
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Not exactly same as 
horizontal partitioning 

Definitely different 
from vertical partitioning 



Data Model 

•  Tuple = row in a relational db 
•  Document = nested values, extensible 

records (think XML or JSON) 
•  Extensible record = families of attributes 

have a schema, but new attributes may be 
added 

•  Object = like in a programming language, 
but without methods 
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1. Key-value Stores 

Think “file system” more than “database” 
•  Persistence, 
•  Replication 
•  Versioning, 
•  Locking 
•  Transactions 
•  Sorting 

CSEP544 - Fall 2015         101 

Cattell, SIGMOD Record 2010 



1. Key-value Stores 

•  Voldemort, Riak, Redis, Scalaris, Tokyo 
Cabinet, Memcached/Membrain/Membase 

•  Consistent hashing (DHT) 
•  Only primary index: lookup by key 
•  No secondary indexes 
•  Transactions: single- or multi-update TXNs 

–  locks, or MVCC 
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2. Document Stores 

•  A "document" = a pointerless object = e.g. 
JSON = nested or not = schema-less 

•  In addition to KV stores, may have 
secondary indexes 
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2. Document Stores 

•  SimpleDB, CouchDB, MongoDB, 
Terrastore 

•  Scalability: 
– Replication (e.g. SimpleDB, CounchDB – 

means entire db is replicated), 
– Sharding (MongoDB); 
– Both 
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3. Extensible Record Stores 
•  Based on Google’s BigTable  

•  Data model is rows and columns  

•  Scalability by splitting rows and columns over nodes 
–  Rows partitioned through sharding on primary key 
–  Columns of a table are distributed over multiple nodes by using 

“column groups” 

•  HBase is an open source implementation of BigTable 
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Bigtable 

•  Distributed storage system 
•  Designed to 

– Hold structured data  
– Scale to thousands of servers 
– Store up to PB 
– Perform backend bulk processing 
– Perform real-time data serving 

•  To scale, Bigtable has a limited set of 
features 
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Bigtable Data Model 
•  Sparse, multidimensional sorted map 
 (row:string, column:string, time:int64)è string 
 Notice how everything but time is a string 

•  Example from Fig 1: 
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BigTable Key Features 

•  Read/writes of data under single row key is 
atomic 
– Only single-row transactions! 

•  Data is stored in lexicographical order 
–  Improves data access locality 

•  Column families are unit of access control 
•  Data is versioned (old versions garbage 

collected) 
– Ex: most recent three crawls of each page, with 

times 
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BigTable API 

•  Data definition 
– Creating/deleting tables or column families 
– Changing access control rights 

•  Data manipulation 
– Writing or deleting values 
– Supports single-row transactions 
– Looking up values from individual rows 
–  Iterating over subset of data in the table 

•  Can select on rows, columns, and timestamps 
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Megastore 

•  BigTable is implemented, used within Google 

•  Megastore is a layer on top of BigTable 
– Transactions that span nodes 
– A database schema defined in a SQL-like language  
– Hierarchical paths that allow some limited joins 

•  Megastore is made available through the 
Google App Engine Datastore 
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4. Scalable Relational Systems 
•  Means RDBS that are offering sharding 

•  Key difference: NoSQL make it difficult or 
impossible to perform large-scope operations 
and transactions (to ensure performance), 
while scalable RDBMS do not *preclude* 
these operations, but users pay a price only 
when they need them. 

•  MySQL Cluster, VoltDB, Clusterix, ScaleDB, 
Megastore (the new BigTable) 
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Application 1 

•  Web application that needs to display lots 
of customer information; the users data is 
rarely updated, and when it is, you know 
when it changes because updates go 
through the same interface.  Store this 
information persistently using a KV store. 
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Application 2 

•  Department of Motor Vehicle: lookup 
objects by multiple fields (driver's name, 
license number, birth date, etc); "eventual 
consistency" is ok, since updates are 
usually performed at a single location. 
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Application 3 

•  eBay stile application.  Cluster customers 
by country; separate the rarely changed 
"core” customer information (address, 
email) from frequently-updated info 
(current bids). 
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Application 4 

•  Everything else (e.g. a serious DMV 
application) 
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Criticism 
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Criticism 

•  Two ways to improve OLTP performance: 
– Sharding over shared-nothing 
–  Improve per-server OLTP performance 

•  Recent RDBMs do provide sharding: 
Greenplum, Aster Data, Vertica, ParAccel 

•  Hence, the discussion is about single-
node performance 
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Criticism (cont’d) 

•  Single-node performance: 
•  Major performance bottleneck: 

communication with DBMS using ODBC or 
JDBC 
– Solution: stored procedures, OR embedded 

databases 
•  Server-side performance (next slide) 
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Criticism (cont’d) 

Server-side performance: abut 25% each 
•  Logging 

– Everything written twice; log must be forced 
•  Locking 

– Needed for ACID semantics 
•  Latching 

– This is when the DBMS itself is multithreaded; 
e.g. latch for the lock table 

•  Buffer management 
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Criticism (cont’d) 

Main take-away:  
•  NoSQL databases give up 1, or 2, or 3 of 

those features 
•  Thus, performance improvement can only 

be modest 
•  Need to give up all 4 features for 

significantly higher performance 
•  On the downside, NoSQL give up ACID 
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Criticism (cont’d) 

Who are the customers of NoSQL? 
•  Lots of startups 
•  Very few enterprises. Why? most 

applications are traditional OLTP on 
structured data; a few other applications 
around the “edges”, but considered less 
important 
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Criticism (cont’d) 

•  No ACID Equals No Interest 
– Screwing up mission-critical data is no-no-no 

•  Low-level Query Language is Death 
– Remember CODASYL? 

•  NoSQL means NoStandards 
– One (typical) large enterprise has 10,000 

databases.  These need accepted standards 
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End of CSEP 544 

•  “Big data” is here to stay 
•  Requires unique tecniques/abstractions 

– Logic (SQL, Relational Calculus) 
– Conceptual modeling (FD’s) 
– Algorithms (query processing) 
– Transactions 

•  Technology evolving rapidly, but 
•  Techniques/abstracts persist over may 

years, e.g. What goes around 
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