CSEP 544: Lecture 08

Datalog

CSEP544 - Fall 2015

Announcements

- Homework 4 due tomorrow
- Homework 5 is posted
- Reading assignment due next Monday

 Reading assignment due on March 11: – C-stores (long), NoSQL (medium), blog (short)

Outline for Tday

Optimistic Concurrency Control

Datalog

Review

- Schedule
- Serializable/conflict-serializable
- 2PL
- Strict 2PL
- Phantoms

SQL isolation levels:

- Read uncommitted
- Read committed
- Repeatable reads
- Serializable

Optimistic Concurrency Control Mechanisms

- Pessimistic:
 - Locks
- Optimistic
 - Timestamp based: basic, multiversion
 - Validation
 - Snapshot isolation: a variant of both

Timestamps

 Each transaction receives a unique timestamp TS(T)

Could be:

- The system's clock
- A unique counter, incremented by the scheduler

Timestamps

Main invariant:

The timestamp order defines the serialization order of the transaction

Will generate a schedule that is view-equivalent to a serial schedule, and recoverable

Main Idea

• For any two conflicting actions, ensure that their order is the serialized order:

Check WT, RW, WW conflicts

When T requests $r_T(X)$, need to check $TS(U) \leq TS(T)$

Timestamps

With each element X, associate

- RT(X) = the highest timestamp of any transaction U that read X
- WT(X) = the highest timestamp of any transaction U that wrote X
- C(X) = the commit bit: true when transaction with highest timestamp that wrote X committed

If element = page, then these are associated with each page X in the buffer pool

Simplified Timestamp-based Scheduling

Start discussion with transactions that do not abort

Transaction wants to read element X If WT(X) > TS(T) then ROLLBACK Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to write element X If RT(X) > TS(T) then ROLLBACK Else if WT(X) > TS(T) ignore write & continue (Thomas Write Rule) Otherwise, WRITE and update WT(X) =TS(T)

Read too late:

T wants to read X, and WT(X) > TS(T)

Need to rollback T !

Write too late:

T wants to write X, and RT(X) > TS(T)

START(T) ... START(U) ... $r_U(X) ... w_T(X)$

Need to rollback T !

Write too late, but we can still handle it:

• T wants to write X, and $RT(X) \le TS(T)$ but WT(X) > TS(T)

 $START(T) \dots START(V) \dots w_V(X) \dots w_T(X)$

Don't write X at all ! (Thomas' rule)

View-Serializability

• By using Thomas' rule we do not obtain a conflict-serializable schedule

• But we obtain a view-serializable schedule

Ensuring Recoverable Schedules

• Review:

– Schedule that avoids cascading aborts

 Use the commit bit C(X) to keep track if the transaction that last wrote X has committed

Ensuring Recoverable Schedules

Read dirty data:

- T wants to read X, and WT(X) < TS(T)
- Seems OK, but...

START(U) ... START(T) ... w_U(X). . (r_T(X)... ABORT(U)

If C(X)=false, T needs to wait for it to become true

Ensuring Recoverable Schedules

Thomas' rule needs to be revised:

- T wants to write X, and WT(X) > TS(T)
- Seems OK not to write at all, but ...

START(T) ... START(U)... $w_U(X)$... $w_T(X)$... ABORT(U)

If C(X)=false, T needs to wait for it to become true

Timestamp-based Scheduling

Transaction wants to READ element X If WT(X) > TS(T) then ROLLBACK Else If C(X) = false, then WAIT Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to WRITE element X If RT(X) > TS(T) then ROLLBACK Else if WT(X) > TS(T) Then If C(X) = false then WAIT else IGNORE write (Thomas Write Rule) Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false

Summary of Timestamp-based Scheduling

• View-serializable

- Recoverable
 - Even avoids cascading aborts
- Does NOT handle phantoms

Multiversion Timestamp

- When transaction T requests r(X) but WT(X) > TS(T), then T must rollback
- Idea: keep multiple versions of X: X_t, X_{t-1}, X_{t-2}, . . .

$$TS(X_t) > TS(X_{t-1}) > TS(X_{t-2}) > ...$$

Let T read an older version, with appropriate timestamp

- When w_T(X) occurs, create a new version, denoted X_t where t = TS(T)
- When r_T(X) occurs, find most recent version X_t such that t < TS(T) Notes:
 - WT(X_t) = t and it never changes
 - RT(X_t) must still be maintained to check legality of writes
- Can delete X_t if we have a later version X_{t1} and all active transactions T have TS(T) > t1

Example (in class)

$$X_3 \quad X_9 \quad X_{12} \quad X_{18}$$

R6(X) -- what happens? W14(X) - what happens? R15(X) - what happens? W5(X) - what happens?

When can we delete X_3 ?

Summary of Timestamp-based Scheduling

• View-serializable

- Recoverable
 - Even avoids cascading aborts
- DOES handle phantoms

Concurrency Control by Validation

- Each transaction T defines a <u>read set</u> RS(T) and a <u>write set</u> WS(T)
- Each transaction proceeds in three phases:
 - Read all elements in RS(T). Time = START(T)
 - Validate (may need to rollback). Time = VAL(T)
 - Write all elements in WS(T). Time = FIN(T)

Main invariant: the serialization order is VAL(T)

Avoid $r_T(X) - w_U(X)$ Conflicts

IF RS(T) ∩ WS(U) and FIN(U) > START(T)
 (U has validated and U has not finished before T begun)
Then ROLLBACK(T)

Avoid
$$w_T(X) - w_U(X)$$
 Conflicts

IF WS(T) ∩ WS(U) and FIN(U) > VAL(T)
 (U has validated and U has not finished before T validates)
Then ROLLBACK(T)

Snapshot Isolation

 Another optimistic concurrency control method

Very efficient, and very popular
 – Oracle, Postgres, SQL Server 2005

WARNING: Not serializable, yet ORACLE uses it even for SERIALIZABLE transactions !

Snapshot Isolation Rules

- Each transactions receives a timestamp TS(T)
- Tnx sees the snapshot at time TS(T) of database
- When T commits, updated pages written to disk
- Write/write conflicts are resolved by the "<u>first committer wins</u>" rule

Snapshot Isolation (Details)

- Multiversion concurrency control:
 Versions of X: X_{t1}, X_{t2}, X_{t3}, . . .
- When T reads X, return $X_{TS(T)}$.
- When T writes X (to avoid lost update):
- If latest version of X is TS(T) then proceed
- If C(X) = true then abort
- If C(X) = false then wait

What Works and What Not

- No dirty reads (Why ?)
- No unconsistent reads (Why ?)
- No lost updates ("first committer wins")
- Moreover: no reads are ever delayed

• However: read-write conflicts not caught !

Write Skew

In our notation:

 $R_1(X), R_2(Y), W_1(Y), W_2(X), C_1, C_2$

Starting with X=50,Y=50, we end with X=-50, Y=-50. Non-serializable !!!

Write Skews Can Be Serious

- ACIDIand had two viceroys, Delta and Rho
- Budget had two registers: taXes, and spendYng
- They had HIGH taxes and LOW spending...

Rho: READ(Y); if Y= 'LOW' then $\{X = LOW'\}$; WRITE(X)COMMIT

... and they ran a deficit ever since.

Tradeoffs

- Pessimistic Concurrency Control (Locks):
 - Great when there are many conflicts
 - Poor when there are few conflicts
- Optimistic Concurrency Control (Timestamps):
 - Poor when there are many conflicts (rollbacks)
 - Great when there are few conflicts
- Compromise
 - READ ONLY transactions \rightarrow timestamps
 - READ/WRITE transactions \rightarrow locks

Commercial Systems

- DB2: Strict 2PL
- SQL Server:
 - Strict 2PL for standard 4 levels of isolation
 - Multiversion concurrency control for snapshot isolation
- PostgreSQL, Oracle
 - Snapshot isolation even for SERIALIZABLE
 - Postgres introduced novel, serializable scheduler in postgres 9.1

Datalog

Queries + Iterations

- For 30 years: a backwater of SQL
- Today: huge interest due to big data analytics
- Very few commercial datalog systems (e.g. Logicblox)
- Much larger number of hand-crafted applications (e.g. iteration + map-reduce)
Datalog

Review (from Lecture 2)

- Fact
- Rule
- Head and body of a rule
- Existential variable
- Head variable

Facts

Rules

Actor(344759, 'Douglas', 'Fowley'). Casts(344759, 29851). Casts(355713, 29000). Movie(7909, 'A Night in Armour', 1910). Movie(29000, 'Arizona', 1940). Movie(29445, 'Ave Maria', 1940).

Facts

Actor(344759, 'Douglas', 'Fowley'). Casts(344759, 29851). Casts(355713, 29000). Movie(7909, 'A Night in Armour', 1910). Movie(29000, 'Arizona', 1940). Movie(29445, 'Ave Maria', 1940). Rules

Q1(y) :- Movie(x,y,z), z='1940'.

Facts

Actor(344759, 'Douglas', 'Fowley'). Casts(344759, 29851). Casts(355713, 29000). Movie(7909, 'A Night in Armour', 1910). Movie(29000, 'Arizona', 1940). Movie(29445, 'Ave Maria', 1940). **Rules**

Q1(y) :- Movie(x,y,z), z='1940'.

Q2(f, l) :- Actor(z,f,l), Casts(z,x), Movie(x,y,'1940').

Facts

Actor(344759, 'Douglas', 'Fowley'). Casts(344759, 29851). Casts(355713, 29000). Movie(7909, 'A Night in Armour', 1910). Movie(29000, 'Arizona', 1940). Movie(29445, 'Ave Maria', 1940).

Rules

Q1(y) :- Movie(x,y,z), z='1940'.

Q2(f, l) :- Actor(z,f,l), Casts(z,x), Movie(x,y,'1940').

Q3(f,I) :- Actor(z,f,I), Casts(z,x1), Movie(x1,y1,1910), Casts(z,x2), Movie(x2,y2,1940)

Facts

Actor(344759, 'Douglas', 'Fowley'). Casts(344759, 29851). Casts(355713, 29000). Movie(7909, 'A Night in Armour', 1910). Movie(29000, 'Arizona', 1940). Movie(29445, 'Ave Maria', 1940).

Rules

Q1(y) :- Movie(x,y,z), z='1940'.

Q2(f, l) :- Actor(z,f,l), Casts(z,x), Movie(x,y,'1940').

Q3(f,I) :- Actor(z,f,I), Casts(z,x1), Movie(x1,y1,1910), Casts(z,x2), Movie(x2,y2,1940)

Facts = tuples in the database Rules = queries Extensional Database Predicates = EDB Intensional Database Predicates = IDB

f, I = head variables
x,y,z= existential variables

R encodes a graph 5

T(x,y) := R(x,y)T(x,y) := R(x,z), T(z,y)

What does it compute?

R=

1	2
2	1
2	3
1	4
3	4
4	5

R encodes a graph

T(x,y) := R(x,y)T(x,y) := R(x,z), T(z,y)

What does it compute?

R=

1	2
2	1
2	3
1	4
3	4
4	5

Initially: T is empty.

R encodes a graph

T(x,y) := R(x,y)T(x,y) := R(x,z), T(z,y)

What does it compute?

R=

1	2
2	1
2	3
1	4
3	4
4	5

Initially: T is empty.

1	2	
2	1	
2	3	
1	4	
3	4	
4	5	

First iteration:

T =

R encodes a graph

T(x,y) := R(x,y)T(x,y) := R(x,z), T(z,y)

What does it compute?

R=

2

1	2
2	1
2	3
1	4
3	4
4	5

Initially: T is empty.

4

5

First iteration: T =

1	2
2	1
2	3
1	4
3	4
4	5

Second iteration:

I = .		
•	1	2
	2	1
	2	3
	1	4
	3	4
	4	5
	1	1
	1 2	1 2
	1 2 1	1 2 3
	1 2 1 2	1 2 3 4
	1 2 1 2 1	1 2 3 4 5
	1 2 1 2 1 3	1 2 3 4 5 5

R encodes a graph

T(x,y) :- R(x,y) T(x,y) :- R(x,z), T(z,y)

Done

R=

1	2
2	1
2	3
1	4
3	4
4	5

Initially: T is empty.

First	iteration:
T =	

1	2
2	1
2	3
1	4
3	4
4	5

Second iteration:

•	1	2
	2	1
	2	3
	1	4
	3	4
	4	5
	1	1
	2	2
	2	2
	1	3
	2 1 2	2 3 4
	1 2 1	2 3 4 5

Third iteration:

T =

1	2
2	1
2	3
1	4
3	4
4	5
1	1
2	2
1	3
2	4
1	5
3	5
2	5

R encodes a graph

T(x,y) :- R(x,y) T(x,y) :- R(x,z), T(z,y)

Third iteration:

Т=

)	2	1
	1	2
Discovered	3	2
3 times!	4	1
	4	3
J	5	4
5	1	1
	2	2
Discovered	3	1
twice	4	2
	5	1
	5	3
Dena	5	2
Done		

R=	
----	--

1	2
2	1
2	3
1	4
3	4
4	5

Initially: T is empty.

First iteration: T =

1	2
2	1
2	3
1	4
3	4
4	5

Second iteration:

•	1	2
	2	1
	2	3
	1	4
	3	4
	4	5
	1	1
	2	0
	2	2
	1	2
	2 1 2	2 3 4
	1 2 1	2 3 4 5

1	2
2	1
2	3
1	4
3	4
4	5

Discuss pros/cons in class

Compute TC (ignoring color):

R encodes a colored graph

Compute pairs of nodes connected by the same color (e.g. (2,4))

R=

2
1
3
4
4
5

Compute TC (ignoring color):

R encodes a colored graph

Compute pairs of nodes connected by the same color (e.g. (2,4))

R=

1	Red	2
2	Blue	1
2	Green	3
1	Blue	4
3	Red	4
4	Yellow	5

Compute TC (ignoring color):

R encodes a colored graph

1	Red	2
2	Blue	1
2	Green	3
1	Blue	4
3	Red	4
4	Yellow	5

Compute pairs of nodes connected by the same color (e.g. (2,4))

T(x,c,y) := R(x,c,y)T(x,c,y) := R(x,c,z), T(z,c,y)Answer(x,y) :- T(x,c,y)

CSEP 544 - Winter 2014

R, G, B encodes a 3-colored graph

What does this program compute in general?

$$\begin{array}{l} S(x,y) := B(x,y) \\ S(x,y) := T(x,z), B(z,y) \\ T(x,y) := S(x,z), R(z,y) \\ T(x,y) := S(x,z), G(z,y) \\ Answer(x,y) := T(x,y) \end{array}$$

R, G, B encodes a 3-colored graph

What does this program compute in general?

$$S(x,y) := B(x,y)$$

 $S(x,y) := T(x,z), B(z,y)$
 $T(x,y) := S(x,z), R(z,y)$
 $T(x,y) := S(x,z), G(z,y)$
Answer(x,y) := T(x,y)

Answer: it computes pairs of nodes connected by a path spelling out these regular expressions:

- S = (B.(R or G))*.B
- $T = (B.(R \text{ or } G))^+$

Syntax of Datalog Programs

The schema consists of two sets of relations:

- Extensional Database (EDB): R₁, R₂, …
- Intentional Database (IDB): P₁, P₂, …
- A datalog program **P** has the form:

P:
$$P_{i1}(x_{11}, x_{12}, ...) := body_1$$

 $P_{i2}(x_{21}, x_{22}, ...) := body_2$
....

- Each head predicate P_i is an IDB
- Each body is a conjunction of IDB and/or EDB predicates
- See lecture 2

Note: no negation (yet)! Recursion OK.

 $\mathsf{P}_1 := \mathsf{body}_{11} \cup \mathsf{body}_{12} \cup \ \dots$ $P_1:=SPJU_1$ $P_2:=SPJU_2$ P_{i1} :- body₁ P_2 :- body₂₁U body₂₂U ... P_{i2} :- body₂ → Group by Each rule is a **IDB** predicate Select-Project-Join-Union query Example: T(x,y) := R(x,y)T(x,y) := R(x,z), T(z,y)➔ ?

Datalog program:

Endloop

Datalog program:

then exit

T = NewT

Endloop

Discussion

- A datalog program <u>always</u> terminates (why?)
- What is the running time of a datalog program as a function of the input database?

Discussion

 A datalog program <u>always</u> terminates (why?)

– Number of possible tuples in IDB is |Dom|^{arity(R)}

- What is the running time of a datalog program as a function of the input database?
 - Number of iteration is $\leq |Dom|^{arity(R)}$
 - Each iteration is a relational query

Problem with the Naïve Algorithm

The same facts are discovered over and over again

 The <u>semi-naïve</u> algorithm tries to reduce the number of facts discovered multiple times

Let V be a view computed by one datalog rule (no recursion)

If (some of) the relations are updated: $R_1 \leftarrow R_1 \cup \Delta R_1, R_1 \leftarrow R_2 \cup \Delta R_2, \dots$

Then the view is also modified as follows: $V \leftarrow V \cup \Delta V$

Incremental view maintenance:

Compute ΔV without having to recompute V

Example 1:

If $R \leftarrow R \cup \Delta R$ then what is $\Delta V(x,y)$?

Example 1:

If $R \leftarrow R \cup \Delta R$ then what is $\Delta V(x,y)$?

$$\Delta V(x,y) := \Delta R(x,z), S(z,y)$$

Example 2:

If $R \leftarrow R \cup \Delta R$ and $S \leftarrow S \cup \Delta S$ then what is $\Delta V(x,y)$?

Example 2:

$$V(x,y) := R(x,z),S(z,y)$$

If $R \leftarrow R \cup \Delta R$ and $S \leftarrow S \cup \Delta S$ then what is $\Delta V(x,y)$?

$$\begin{array}{l} \Delta V(x,y) := \Delta R(x,z), S(z,y) \\ \Delta V(x,y) := R(x,z), \Delta S(z,y) \\ \Delta V(x,y) := \Delta R(x,z), \Delta S(z,y) \end{array}$$

Example 3:

If $T \leftarrow T \cup \Delta T$ then what is $\Delta V(x,y)$?
Incremental View Maintenance

Example 3:

$$V(x,y) := T(x,z),T(z,y)$$

If $T \leftarrow T \cup \Delta T$ then what is $\Delta V(x,y)$?

$$\Delta V(x,y) := \Delta T(x,z), T(z,y)$$

$$\Delta V(x,y) := T(x,z), \Delta T(z,y)$$

$$\Delta V(x,y) := \Delta T(x,z), \Delta T(z,y)$$

• Naïve algorithm:

 P_0 = InitialValue **Repeat** $P_k = f(P_{k-1})$ **Until** no-more-change

Semi-naïve algorithm

• Naïve algorithm:

 P_0 = InitialValue **Repeat** $P_k = f(P_{k-1})$ **Until** no-more-change

Semi-naïve algorithm

 $P_{0} = \Delta_{0} = InitialValue$ **Repeat** $\Delta_{k} = \Delta f(P_{k-1}, \Delta_{k-1}) - P_{k-1}$ $P_{k} = P_{k-1} \cup \Delta_{k}$ **Until** no-more-change

Separate the Datalog program into the non-recursive, and the recursive part. Each P_i defined by non-recursive-SPJU_i and (recursive-)SPJU_i.

 $\begin{array}{l} \mathsf{P}_1 = \Delta \mathsf{P}_1 = \text{non-recursive-SPJU}_1, \ \mathsf{P}_2 = \Delta \mathsf{P}_2 = \text{non-recursive-SPJU}_2, \ \dots \\ \textbf{Loop} \\ \Delta \mathsf{P}_1 = \Delta \mathsf{SPJU}_1(\mathsf{P}_1, \mathsf{P}_2 \dots, \Delta \mathsf{P}_1, \Delta \mathsf{P}_2 \dots) - \mathsf{P}_1; \\ \Delta \mathsf{P}_2 = \Delta \mathsf{SPJU}_2(\mathsf{P}_1, \mathsf{P}_2 \dots, \Delta \mathsf{P}_1, \Delta \mathsf{P}_2 \dots) - \mathsf{P}_2; \\ \dots \\ \textbf{if} \ (\Delta \mathsf{P}_1 = \varnothing \text{ and } \Delta \mathsf{P}_2 = \varnothing \text{ and } \dots) \\ \qquad \textbf{then break} \\ \mathsf{P}_1 = \mathsf{P}_1 \cup \Delta \mathsf{P}_1; \ \mathsf{P}_2 = \mathsf{P}_2 \cup \Delta \mathsf{P}_2; \ \dots \\ \textbf{Endloop} \end{array}$

Separate the Datalog program into the non-recursive, and the recursive part. Each P_i defined by non-recursive-SPJU_i and (recursive-)SPJU_i.

 $\begin{array}{l} \mathsf{P}_1 = \Delta \mathsf{P}_1 = \text{non-recursive-SPJU}_1, \ \mathsf{P}_2 = \Delta \mathsf{P}_2 = \text{non-recursive-SPJU}_2, \ \dots \\ \textbf{Loop} \\ \Delta \mathsf{P}_1 = \Delta \mathsf{SPJU}_1(\mathsf{P}_1, \mathsf{P}_2 \dots, \Delta \mathsf{P}_1, \Delta \mathsf{P}_2 \dots) - \mathsf{P}_1; \\ \Delta \mathsf{P}_2 = \Delta \mathsf{SPJU}_2(\mathsf{P}_1, \mathsf{P}_2 \dots, \Delta \mathsf{P}_1, \Delta \mathsf{P}_2 \dots) - \mathsf{P}_2; \\ \dots \\ \textbf{if} \ (\Delta \mathsf{P}_1 = \varnothing \text{ and } \Delta \mathsf{P}_2 = \varnothing \text{ and } \dots) \\ \qquad \textbf{then break} \\ \mathsf{P}_1 = \mathsf{P}_1 \cup \Delta \mathsf{P}_1; \ \mathsf{P}_2 = \mathsf{P}_2 \cup \Delta \mathsf{P}_2; \ \dots \\ \textbf{Endloop} \end{array}$

Example:

 $T = \Delta T = ? \text{ (non-recursive rule)}$ Loop $\Delta T(x,y) = ? \text{ (recursive } \Delta - rule)$ if $(\Delta T = \emptyset)$ then break $T = T \cup \Delta T$ Endloop

Separate the Datalog program into the non-recursive, and the recursive part. Each P_i defined by non-recursive-SPJU_i and (recursive-)SPJU_i.

 $\begin{array}{l} \mathsf{P}_1 = \Delta \mathsf{P}_1 = \text{non-recursive-SPJU}_1, \ \mathsf{P}_2 = \Delta \mathsf{P}_2 = \text{non-recursive-SPJU}_2, \ \dots \\ \textbf{Loop} \\ \Delta \mathsf{P}_1 = \Delta \mathsf{SPJU}_1(\mathsf{P}_1, \mathsf{P}_2 \dots, \Delta \mathsf{P}_1, \Delta \mathsf{P}_2 \dots) - \mathsf{P}_1; \\ \Delta \mathsf{P}_2 = \Delta \mathsf{SPJU}_2(\mathsf{P}_1, \mathsf{P}_2 \dots, \Delta \mathsf{P}_1, \Delta \mathsf{P}_2 \dots) - \mathsf{P}_2; \\ \dots \\ \textbf{if} \ (\Delta \mathsf{P}_1 = \varnothing \text{ and } \Delta \mathsf{P}_2 = \varnothing \text{ and } \dots) \\ \textbf{then break} \\ \mathsf{P}_1 = \mathsf{P}_1 \cup \Delta \mathsf{P}_1; \ \mathsf{P}_2 = \mathsf{P}_2 \cup \Delta \mathsf{P}_2; \ \dots \\ \textbf{Endloop} \end{array}$

Example:

$$\begin{split} \mathsf{T}(\mathbf{x},\mathbf{y}) &= \Delta\mathsf{T}(\mathbf{x},\mathbf{y}) = \mathsf{R}(\mathbf{x},\mathbf{y}) \\ \mathsf{Loop} \\ & \Delta\mathsf{T}(\mathbf{x},\mathbf{y}) = \mathsf{R}(\mathbf{x},z), \ \Delta\mathsf{T}(z,y), \ \mathsf{not} \ \mathsf{T}(\mathbf{x},y) \\ & \mathsf{if} \ (\Delta\mathsf{T}=\varnothing) \\ & \mathsf{then \ break} \\ & \mathsf{T}=\mathsf{T}\cup\Delta\mathsf{T} \\ & \mathsf{Endloop} \end{split}$$

Separate the Datalog program into the non-recursive, and the recursive part. Each P_i defined by non-recursive-SPJU_i and (recursive-)SPJU_i.

 $\begin{array}{l} \mathsf{P}_1 = \Delta \mathsf{P}_1 = \text{non-recursive-SPJU}_1, \ \mathsf{P}_2 = \Delta \mathsf{P}_2 = \text{non-recursive-SPJU}_2, \ \dots \\ \textbf{Loop} \\ \Delta \mathsf{P}_1 = \Delta \mathsf{SPJU}_1(\mathsf{P}_1, \mathsf{P}_2 \dots, \Delta \mathsf{P}_1, \Delta \mathsf{P}_2 \dots) - \mathsf{P}_1; \\ \Delta \mathsf{P}_2 = \Delta \mathsf{SPJU}_2(\mathsf{P}_1, \mathsf{P}_2 \dots, \Delta \mathsf{P}_1, \Delta \mathsf{P}_2 \dots) - \mathsf{P}_2; \\ \dots \\ \textbf{if} \ (\Delta \mathsf{P}_1 = \varnothing \text{ and } \Delta \mathsf{P}_2 = \varnothing \text{ and } \dots) \\ \qquad \textbf{then break} \\ \mathsf{P}_1 = \mathsf{P}_1 \cup \Delta \mathsf{P}_1; \ \mathsf{P}_2 = \mathsf{P}_2 \cup \Delta \mathsf{P}_2; \ \dots \\ \textbf{Endloop} \end{array}$

Example:

Note: for any linear datalog programs, the semi-naïve algorithm has only one Δ -rule for each rule!

```
\begin{array}{l} \mathsf{T}(x,y)=\Delta\mathsf{T}(x,y)=\mathsf{R}(x,y)\\ \text{Loop}\\ \quad \Delta\mathsf{T}(x,y)=\mathsf{R}(x,z),\ \Delta\mathsf{T}(z,y),\ \text{not}\ \mathsf{T}(x,y)\\ \quad \text{if}\ (\Delta\mathsf{T}=\varnothing)\\ \quad \quad \text{then break}\\ \mathsf{T}=\mathsf{T}\cup\Delta\mathsf{T}\\ \hline \text{Endloop} \end{array}
```

Simple datalog programs

Simple datalog programs $T = \Delta T = R$ R encodes a graph Loop $\Delta T(x,y) = R(x,z), \Delta T(z,y), \text{not } T(x,y)$ T(x,y) := R(x,y)if $(\Delta T = \emptyset)$ then break T(x,y) := R(x,z), T(z,y) $T = T \cup \Delta T$ Endloop First iteration: T= R= Initially: T= $\Lambda T =$ ΔT= paths of length 2

Simple datalog programs $T = \Delta T = R$ R encodes a graph Loop $\Delta T(x,y) = R(x,z), \Delta T(z,y), \text{not } T(x,y)$ T(x,y) := R(x,y)**if** (ΔT = ∅) then break T(x,y) := R(x,z), T(z,y) $T = T \cup \Delta T$ Endloop Second iteration: First iteration: T= T= R= Initially: T= $\Lambda T =$ ΔT= $\Delta T =$ paths of paths of length 2 length 3

Simple datalog programs

Discussion of Semi-Naïve Algorithm

- Avoids re-computing some tuples, but not all tuples
- Easy to implement, no disadvantage over naïve
- A rule is called <u>linear</u> if its body contains only one recursive IDB predicate:
 - A linear rule always results in a single incremental rule
 - A non-linear rule may result in multiple incremental rules

Summary So Far

- Simple syntax for expressing queries with recursion
- Bottom-up evaluation always terminates
 - Naïve evaluation
 - Semi-naïve evaluation
- Next:
 - Datalog semantics
 - Datalog with negation

Semantics of a Datalog Program

Three different, equivalent semantics:

• Minimal model semantics

Least fixpoint semantics

• Proof-theoretic semantics

To each rule r: $P(x_1...x_k) := R_1(...), R_2(...), ...$

To each rule r: $P(x_1...x_k) := R_1(...), R_2(...), ...$ All variables in the rule Associate the logical sentence Σ_r : $\forall z_1...\forall z_n$. $[(R_1(...)\Lambda R_2(...)\Lambda ...) \rightarrow P(...)]$

 $\equiv \forall x. \forall y. (\exists z.R(x,z) \land T(z,y) \rightarrow T(x,y))$

<u>Definition</u>. A pair (I,J) where I is an EDB and J is an IDB is a *model* for P, if $(I,J) \models \Sigma_P$

Definition. Given an EDB database instance I and a datalog program P, the minimal model, denoted J = P(I) is a minimal database instance J s.t. $(I,J) \models \Sigma_P$

Theorem. The minimal model always exists, and is unique.

<u>Definition</u>. A pair (I,J) where I is an EDB and J is an IDB is a *model* for P, if $(I,J) \models \Sigma_P$

<u>Definition</u>. Given an EDB database instance I and a datalog program P, the minimal model, denoted J = P(I) is a minimal database instance J s.t. $(I,J) \models \Sigma_P$

Theorem. The minimal model always exists, and is unique.

Example:

$$1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5$$

Which of these IDBs are *models*? Which are *minimal models*?

R=	1	2	
	2	3	
	3	4	
	4	5	

T=	
1	2
2	3
3	4
4	5
1	3
2	4
3	5

<u>Definition</u>. A pair (I,J) where I is an EDB and J is an IDB is a *model* for P, if (I,J) $\models \Sigma_P$

<u>**Definition**</u>. Given an EDB database instance I and a datalog program P, the minimal model, denoted J = P(I) is a minimal database instance J s.t. $(I,J) \models \Sigma_P$

Theorem. The minimal model always exists, and is unique.

-

Example:

$$1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5$$

Which of these IDBs are *models*? Which are *minimal models*?

R=	1	2	
	2	3	
	3	4	
	4	5	

1=	
1	2
2	3
3	4
4	5
1	3
2	4
3	5

T=	
1	2
2	3
3	4
4	5
1	3
2	4
3	5
1	4
2	5
1	5

<u>Definition</u>. A pair (I,J) where I is an EDB and J is an IDB is a *model* for P, if (I,J) $\models \Sigma_P$

<u>**Definition**</u>. Given an EDB database instance I and a datalog program P, the minimal model, denoted J = P(I) is a minimal database instance J s.t. $(I,J) \models \Sigma_P$

Theorem. The minimal model always exists, and is unique.

-

Example:

$$1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5$$

Which of these IDBs are *models*? Which are *minimal models*?

R=	1	2
	2	3
	3	4
	4	5

1=	
1	2
2	3
3	4
4	5
1	3
2	4
3	5

T=	
1	2
2	3
3	4
4	5
1	3
2	4
3	5
1	4
2	5
1	5

Т=

1	1
1	2
1	3
1	4
1	5
5	4
5	5

All 25 pairs of nodes

Minimal Fixpoint Semantics

<u>Definition</u>. Fix an EDB I, and a datalog program **P**. The <u>immediate consequence</u> operator T_P is defined as follows. For any IDB J: $T_P(J) = all IDB$ facts that are immediate consequences from I and J.

<u>**Fact</u></u>. For any datalog program P, the immediate consequence operator is monotone. In other words, if J_1 \subseteq J_2 then T_P(J_1) \subseteq T_P(J_2).</u>**

Minimal Fixpoint Semantics

<u>**Definition**</u>. Fix an EDB I, and a datalog program **P**. The <u>immediate consequence</u> operator T_P is defined as follows. For any IDB J: $T_P(J) = all IDB$ facts that are immediate consequences from I and J.

<u>**Fact</u></u>. For any datalog program P, the immediate consequence operator is monotone. In other words, if J_1 \subseteq J_2 then T_P(J_1) \subseteq T_P(J_2).</u>**

<u>**Theorem</u></u>. The immediate consequence operator has a unique, minimal fixpoint J: fix(T_P) = J, where J is the minimal instance with the property T_P(J) = J.</u>**

Proof: using Knaster-Tarski's theorem for monotone functions. The fixpoint is given by:

fix $(T_P) = J_0 \cup J_1 \cup J_2 \cup \dots$ where $J_0 = \emptyset$, $J_{k+1} = T_P(J_k)$

Minimal Fixpoint Semantics

T(x,y) :- R(x,y) T(x,y) :- R(x,z), T(z,y)

R=

1	2
2	3
3	4
4	5

ļ	J ₁ = ⁻	Γ _Ρ (J _c))
	1	2	
	2	3	
	3	4	
	4	5	

_	J ₂ =	T _P (J	1)
	1	2	
	2	3	
	3	4	
	4	5	
	1	3	
	2	4	
	3	5	

$J_3 = T_{\mathbf{P}}(J_2)$					
	1	2			
	2	3			
	3	4			
	4	5			
	1	3			
	2	4			
	3	5			
	1	4			
		_			

2

5

J_4	=	Τ _Ρ	(J) ₃)

1	2
2	3
3	4
4	5
1	3
2	4
3	5
1	4
2	5
1	5

Proof Theoretic Semantics

Every fact in the IDB has a *derivation tree*, or *proof tree* justifying its existence.

Adding Negation: Datalog[¬]

Example: compute the complement of the transitive closure

What does this mean??

EDB: $I = \{ R(a) \}$

Which IDBs are models of **P**?

$$J_1 = \{ \}$$
 $J_2 = \{S(a)\}$ $J_3 = \{T(a)\}$ $J_4 = \{S(a), T(a)\}$

EDB: $I = \{ R(a) \}$

Which IDBs are models of **P**?

$$J_1 = \{ \}$$
 $J_2 = \{S(a)\}$ $J_3 = \{T(a)\}$ $J_4 = \{S(a), T(a)\}$
No: both
rules fail

EDB: $I = \{ R(a) \}$

Which IDBs are models of **P**?

 $J_{1} = \{ \} \qquad J_{2} = \{S(a)\} \qquad J_{3} = \{T(a)\} \qquad J_{4} = \{S(a), T(a)\}$ No: both rules fail $Yes: the facts in J_{2} are R(a), S(a), \neg T(a) and both rules are true.$

EDB: $I = \{ R(a) \}$

Which IDBs are models of **P**?

EDB: $I = \{ R(a) \}$

Which IDBs are models of **P**?

EDB: $I = \{ R(a) \}$

Which IDBs are models of **P**?

There is no *minimal* model!

EDB: $I = \{ R(a) \}$

Which IDBs are models of **P**?

There is no *minimal* model!

There is no minimal fixpoint! (Why does Knaster-Tarski's theorem fail?)

Adding Negation: datalog[¬]

- Solution 1: Stratified Datalog[¬]
 - Insist that the program be <u>stratified</u>: rules are partitioned into strata, and an IDB predicate that occurs only in strata ≤ k may be negated in strata ≥ k+1
- Solution 2: Inflationary-fixpoint Datalog[¬]
 - Compute the fixpoint of J \cup T_P(J)
 - Always terminates (why ?)
- Solution 3: Partial-fixpoint Datalog^{-,*}
 - Compute the fixpoint of $T_P(J)$
 - May not terminate
Stratified datalog[¬]

A datalog[¬] program is <u>stratified</u> if its rules can be partitioned into k strata, such that:
If an IDB predicate P appears negated in a rule in stratum i, then it can only appear in the head of a rule in strata 1, 2, ..., i-1

Note: a datalog[¬] program either is stratified or it ain't!

Which programs are stratified?

 $\begin{array}{l} T(x,y) := R(x,y) \\ T(x,y) := T(x,z), \ R(z,y) \\ CT(x,y) := Node(x), \ Node(y), \ not \ T(x,y) \end{array}$

S(x) :- R(x), not T(x) T(x) :- R(x), not S(x)

Stratified datalog[¬]

• Evaluation algorithm for stratified datalog⁻:

- For each stratum i = 1, 2, ..., do:
 - Treat all IDB's defined in prior strata as EBS
 - Evaluate the IDB's defined in stratum i, using either the naïve or the semi-naïve algorithm

Does this compute a minimal model?

T(x,y) := R(x,y)T(x,y) := T(x,z), R(z,y)

CT(x,y) :- Node(x), Node(y), not T(x,y)

Stratified datalog[¬]

• Evaluation algorithm for stratified datalog⁻:

- For each stratum i = 1, 2, ..., do:
 - Treat all IDB's defined in prior strata as EBS
 - Evaluate the IDB's defined in stratum i, using either the naïve or the semi-naïve algorithm

Does this compute a minimal model?	T(x,y) :- R(x,y) T(x,y) :- T(x,z), R(z,y)
NO: J ₁ = { T = transitive closure, CT = its complement} J ₂ = { T = all pairs of nodes, CT = empty}	CT(x,y) :- Node(x), Node(y), not T(x,y)

Inflationary-fixpoint datalog[¬]

Let **P** be any datalog[¬] program, and I an EDB. Let $T_P(J)$ be the <u>immediate consequence</u> operator. Let $F(J) = J \cup T_P(J)$ be the <u>inflationary immediate consequence</u> operator.

Define the sequence: $J_0 = \emptyset$, $J_{n+1} = F(J_n)$, for $n \ge 0$.

<u>**Definition**</u>. The inflationary fixpoint semantics of **P** is $J = J_n$ where n is such that $J_{n+1} = J_n$

Why does there always exists an n such that $J_n = F(J_n)$?

Find the inflationary semantics for:

T(x,y) := R(x,y) T(x,y) := T(x,z), R(z,y)CT(x,y) := Node(x), Node(y), not T(x,y)

Inflationary-fixpoint datalog[¬]

- Evaluation for Inflationary-fixpoint datalog[¬]
- Use the naïve, of the semi-naïve algorithm

 Inhibit any optimization that rely on monotonicity (e.g. out of order execution)

Partial-fixpoint datalog^{,*}

Let **P** be any datalog[¬] program, and I an EDB. Let $T_P(J)$ be the *immediate consequence* operator.

Define the sequence: $J_0 = \emptyset$, $J_{n+1} = T_P(J_n)$, for $n \ge 0$.

<u>**Definition**</u>. The partial fixpoint semantics of **P** is $J = J_n$ where n is such that $J_{n+1} = J_n$, if such an n exists, undefined otherwise.

Find the partial fixpoint semantics for:

Note: there may not exists an n such that $J_n = F(J_n)$

T(x,y) := R(x,y) T(x,y) := T(x,z), R(z,y)CT(x,y) := Node(x), Node(y), not T(x,y)

Summary of Datalog

- Recursion = easy and fun
- Recursion + negation = nightmare
- Powerful optimizations:
 - Incremental view updates
 - Magic sets (did not discuss in class)
- SQL implements limited recursion