CSEP 544: Lecture 08

Datalog

Announcements

Homework 4 due tomorrow
Homework 5 is posted

Reading assignment due next Monday

Reading assignment due on March 11:
— C-stores (long), NoSQL (),blog (short)

Outline for Tday

» Optimistic Concurrency Control

« Datalog

Review

 Schedule

« Serializable/conflict-serializable
« 2PL

« Strict 2PL

« Phantoms

SQL isolation levels:
« Read uncommitted
« Read committed
 Repeatable reads
« Serializable

Optimistic Concurrency Control
Mechanisms

e Pessimistic:
— Locks

» Optimistic
— Timestamp based: basic, multiversion
— Validation
— Snhapshot isolation: a variant of both

CSEP544 - Fall 2015

Timestamps

« Each transaction receives a unique
timestamp TS(T)

Could be:

* The system’s clock

* A unique counter, incremented by the
scheduler

CSEP544 - Fall 2015

Timestamps

Main invariant:

The timestamp order defines
the serialization order of the transaction

Will generate a schedule that is view-equivalent
to a serial schedule, and recoverable

CSEP544 - Fall 2015 7

Main Idea

* For any two conflicting actions, ensure
that their order Is the serialized order:

Check WT, RW, WW conflicts
* W,(X)...r(X)
e ry(X) ... wo(
* Wy(X) ... w(X)

Read too
late ?

Write too
late ?

When T requests r(X), need to check TS(U) = TS(T)

CSEP544 - Fall 2015 8

Timestamps

With each element X, associate

 RT(X) =the hit%hest timestamp of any
transaction U that read X

» WT(X) = the highest timestamp of any
transaction U that wrote X

* C(X) =the commit bit: true when transaction
with highest timestamp that wrote X
committed

If element = page, then these are associated
with each page X in the buffer pool

Simplified Timestamp-based
Scheduling

Start discussion with transactions that do not abort

Transaction wants to read element X

If WT(X) >TS(T) then ROLLBACK
Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to write element X
If RT(X) > TS(T) then ROLLBACK
Else if WT(X) > TS(T) ignore write & continue (Thomas Write Rule)
Otherwise, WRITE and update WT(X) =TS(T)

CSEP544 - Fall 2015

10

Detalls

Read too late:
T wants to read X, and WT(X) > TS(T)

STAI%T(T) ... START(U) ... wU(;<) L r{(X)

Need to rollback T'!

CSEP544 - Fall 2015

11

Detalls

Write too late:
* T wants to write X, and RT(X) > TS(T)

STAI%T(T) ... START(U) ... rU(Xi) L w{(X)

Need to rollback T !

CSEP544 - Fall 2015

12

Detalls

Write too late, but we can still handle it:

T wants to write X, and

RT(X) < TS(T) but WT(X) > TS(T)

STAF%T(T) ... START(V) ... wv(§<) .

. We(X)

Don’t write X at all !
(Thomas’ rule)

CSEP544 - Fall 2015

13

View-Serializability

* By using Thomas'’ rule we do not obtain a
conflict-serializable schedule

« But we obtain a view-serializable schedule

CSEP544 - Fall 2015 14

Ensuring Recoverable Schedules

* Review:
— Schedule that avoids cascading aborts

* Use the commit bit C(X) to keep track if
the transaction that last wrote X has

committed

CSEP544 - Fall 2015

15

Ensuring Recoverable Schedules

Read dirty data:
* T wants to read X, and WT(X) < TS(T)
« Seems OK, but...

START(U) .. START(T) ... wy(X). . {r(X)).. ABOI%T(U)

If C(X)=false, T needs to wait for it to become true

CSEP544 - Fall 2015 16

Ensuring Recoverable Schedules

Thomas’ rule needs to be revised:
* T wants to write X, and WT(X) > TS(T)
« Seems OK not to write at all, but ...

START(T) .. START(U)... w(X). . . @(x). .. ABORT(U)

If C(X)=false, T needs to wait for it to become true

CSEP544 - Fall 2015 17

Timestamp-based Scheduling

Transaction wants to READ element X
If WT(X) > TS(T) then ROLLBACK
Else If C(X) = false, then WAIT
Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to WRITE element X
If RT(X)>TS(T) then ROLLBACK
Else if WT(X) > TS(T)
Then If C(X) = false then WAIT
else IGNORE write (Thomas Write Rule)
Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false

CSEP544 - Fall 2015

18

Summary of Timestamp-based
Scheduling

 View-serializable

 Recoverable
— Even avoids cascading aborts

* Does NOT handle phantoms

CSEP544 - Fall 2015

19

Multiversion Timestamp

* When transaction T requests r(X)
but WT(X) > TS(T), then T must rollback

» |dea: keep multiple versions of X:
Xo Xiqs Xigy -« - -

TS(X) > TS(X,.;) > TS(X,,) > . . .

 Let T read an older version, with appropriate
timestamp

CSEP544 - Fall 2015

20

Detalls

* When w(X) occurs,
create a new version, denoted X, where t = TS(T)

* When r(X) occurs,
find most recent version X, such that t < TS(T)

Notes:
— WT(X,) =tand it never changes
— RT(X,) must still be maintained to check legality of writes

« Can delete X, if we have a later version X, and all active
transactions ﬁ' have TS(T) > t1

CSEP544 - Fall 2015 21

Example (in class)

X3 X9 X12 X18

R6(X) -- what happens?
W14(X) — what happens?
R15(X) — what happens?
W5(X) — what happens?

When can we delete X;?

CSEP544 - Fall 2015

22

Summary of Timestamp-based
Scheduling

 View-serializable

 Recoverable
— Even avoids cascading aborts

« DOES handle phantoms

CSEP544 - Fall 2015

23

Concurrency Control by Validation

« Each transaction T defines a read set RS(T) and a
write set WS(T)

« Each transaction proceeds in three phases:
— Read all elements in RS(T). Time = START(T)
— Validate (may need to rollback). Time = VAL(T)
— Write all elements in WS(T). Time = FIN(T)

Main invariant: the serialization order is VAL(T)

CSEP544 - Fall 2015 24

Avoid r(X) - w,(X) Conflicts

START(U) VAL(U) FIN(U)

U: | Read phase | Validate | Write phase

conflicts

T. | Read phase | Validate ?

f
START(T)

IF RS(T) " WS(U) and FIN(U) > START(T)
(U has validated and U has not finished before T begun)
Then ROLLBACK(T)

CSEP544 - Fall 2015 25

Avoid w(X) - w,(X) Conflicts

START(U) VAL(U) FIN(U)

l

U: | Read phase | Validate | Write phase

N)nflicts
T. | Read phase Validate Write phase ?
f
START(T) VAL(T)

IF WS(T) N WS(U) and FIN(U) > VAL(T)
(U has validated and U has not finished before T validates)
Then ROLLBACK(T)

CSEP544 - Fall 2015 26

Snapshot Isolation

* Another optimistic concurrency control
method

* Very efficient, and very popular
— Oracle, Postgres, SQL Server 2005

WARNING: Not serializable, yet ORACLE uses
it even for SERIALIZABLE transactions !

CSEPS544 - Fall 2015

Snapshot Isolation Rules

Each transactions receives a timestamp TS(T)
Tnx sees the snapshot at time TS(T) of database
When T commits, updated pages written to disk

Write/write conflicts are resolved by the
“first committer wins” rule

CSEP544 - Fall 2015 28

Snapshot Isolation (Details)

Multiversion concurrency control:
— Versions of X: Xy, Xy, X, - -

When T reads X, return Xgq).

When T writes X (to avoid lost update):
If latest version of X is TS(T) then proceed
If C(X) = true then abort
If C(X) = false then wait

CSEP544 - Fall 2015 29

What Works and What Not

No dirty reads (Why ?)
No unconsistent reads (\WWhy ?)
No lost updates (“first committer wins”)

Moreover: no reads are ever delayed

However: read-write conflicts not caught !

CSEP544 - Fall 2015

30

Write Skew

T1: T2:
READ(X); READ(Y);
if X>=50 if Y >=50
then Y = -50; WRITE(Y) then X =-50; WRITE(X)
COMMIT COMMIT

In our notation:

R1(X), Ry(Y), W4(Y), Wy(X), C4,C,

Starting with X=50,Y=50, we end with X=-50, Y=-50.
Non-serializable !l

Write Skews Can Be Serious

« ACIDland had two viceroys, Delta and Rho
* Budget had two registers: taXes, and spend¥Yng
* They had HIGH taxes and LOW spending...

Delta:
READ(X);
if X="HIGH’
then { Y= "HIGH’;
WRITE(Y) }
COMMIT

Rho:
READ(Y);
if Y="LOW’
then {X=‘LOW;;
WRITE(X) }
COMMIT

... and they ran a deficit ever since.

32

Tradeoffs

« Pessimistic Concurrency Control (Locks):
— Great when there are many conflicts
— Poor when there are few conflicts

« Optimistic Concurrency Control (Timestamps):

— Poor when there are many conflicts (rollbacks)
— Great when there are few conflicts

« Compromise

— READ ONLY transactions — timestamps
— READ/WRITE transactions — locks

CSEP544 - Fall 2015

33

Commercial Systems

« DB2: Strict 2PL
« SQL Server:

— Strict 2PL for standard 4 levels of isolation

— Multiversion concurrency control for snapshot
Isolation

* PostgreSQL, Oracle
— Snapshot isolation even for SERIALIZABLE

— Postgres introduced novel, serializable
scheduler in postgres 9.1

34

Datalog

Queries + |Iterations

For 30 years: a backwater of SQL
Today: huge interest due to big data analytics

Very few commercial datalog systems (e.qg.
Logicblox)

Much larger number of hand-crafted
applications (e.g. iteration + map-reduce)

Datalog

Review (from Lecture 2)

* Fact

* Rule

 Head and body of a rule
» Existential variable

* Head variable

Review

Facts Rules

Actor(344759, Douglas’, ‘Fowley’).
Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database
Rules = queries

Review

Facts Rules

Actor(344759, Douglas’, ‘Fowley’).
Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940’.

Facts = tuples in the database
Rules = queries

Review

Facts Rules

Actor(344759, Douglas’, ‘Fowley’).
Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940’.

Q2(f, I) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,’1940°).

Facts = tuples in the database
Rules = queries

Review

Facts Rules

Actor(344759, Douglas’, ‘Fowley’).
Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940’.

Q2(f, I) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,’1940°).

Q3(f,!) :- Actor(z,f,1), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

Facts = tuples in the database
Rules = queries

Review

Facts Rules

Actor(344759, Douglas’, ‘Fowley’).
Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940’.

Q2(f, I) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,’1940°).

Q3(f,!) :- Actor(z,f,1), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

Facts = tuples in the database _ _
Intensional Database Predicates = IDB

Extensional Database Predicates = EDB
Rules = queries

Review

head body
/\ A
atom atom \

Q2(f, 1) :- Actor(z,f,l), Casts(z,x), Movie(x,y,’1940’).

f,1 = head variables
X,y,z= existential variables

CSEP544 - Fall 2015

43

Simple datalog programs

R encodes a graph

T(x,y) . R(x,y) What does

it compute?

T(X’y) - R(X’Z)’ T(Z’y)

PO ININ|=-
Al O N

Simple datalog programs

R encodes a graph

T(x,y) . R(x,y) What does

it compute?

T(X’y) - R(X’Z)’ T(Z’y)

Initially:

T is empty.

PO ININ|=-
Al O N

Simple datalog programs

R encodes a graph

What does
it compute?

R= First iteration:
Initially: T=
1 5 T is empty.
2 1 1 2
2 1
2 3 > | 3
1 4 1 4
3 4
3 4 7 | 5
4 5

Simple datalog programs

R encodes a graph

What does
it compute?

Second iteration:

R= First iteration: T=

Initially: T= ; f

1 5 T is empty. -
2 1 1 2 1 4
2 | 1 3 | 4

2 3 2 3 4 5
1 4 1| 4 1] 1
3 4 2 2

3 4 4 5 1 3
4 5 2 | 4
1 5

3 5

Simple datalog programs

R encodes a graph

What does
it compute?

Third iteration:

Second iteration: T=
R= First iteration: T= P
- ngn . _ 1 2
Initially: T= L T
1 2 T is empty. - TS
1 2 1 4 1 4
2 1
2 1 3 4 3 4
2 3 2 3 4 5 4 5
1 1
1 : - —_— 2 | 2
3 4 2 2 ; :
3 4 4 5 1 3 > -
4 S 2 4
1 5
1 5
3 5
3 5
2 5

Done

Simple datalog programs

R encodes a graph

What does
it compute?

Third iteration:

Second iteration: T=
_ First iteration: T= 1] 2])
R= i B 1| 2
Initially: T= T 2 |
1 2 T is empty. > | 3 2 | 3 Discovered
1 4 3 times!
o 1 1] 2 1| a4 T
2 | 1 3| 4 T
2 3 2 | 3 4 | s .
1] 4 1 | 1 LN
1 4 P
3| 4 2 | 2
3 4 2 | s 1| 3 ' | 3 I Ipiscovered
2 | 4 :
4 5 . P twice
1| 5
1] 5 T
3| s /
2 | 5

Done

Simple datalog programs

R encodes a graph

Alternative ways to compute TC:

T(x,y) :- R(x,y) Right linear
T(x,y) :- R(x,z), T(z,y)

T(X’y) - R(X’y)

R= T(x,y) . T(X,Z), R(z,y) Left linear
1 2
2 |] T(xy) - R(x,y) p
5 3 T(x,y) . T(X,Z), T(z,y) Non-linear
1 4
3 4
4 5 Discuss pros/cons in class

CSEP 544 - Winter 2014 50

Simple datalog programs

R encodes a colored graph

>

Red

Blue

Green

Blue

Red

Yellow

al(ld|[|O]I=~DN

()

Compute TC (ignoring color):

Compute pairs of nodes connected
by the same color (e.g. (2,4))

CSEP 544 - Winter 2014

51

Simple datalog programs

R encodes a colored graph

>

Red

Blue

Green

Blue

Red

O] ININ|[-

Yellow

al(ld|[|O]I=~DN

Compute TC (ignoring color):

@ T(x,y) :- R(x,c,y)
T(x,y) :- R(x,c,z), T(z,y)

Compute pairs of nodes connected
by the same color (e.g. (2,4))

CSEP 544 - Winter 2014

52

Simple datalog programs

R encodes a colored graph

>

Red

Blue

Green

Blue

Red

Yellow

al(ld|[|O]I=~DN

Compute TC (ignoring color):

@ T(x,y) :- R(x,c,y)
T(x,y) :- R(x,c,z), T(z,y)

Compute pairs of nodes connected
by the same color (e.g. (2,4))

T(x,c,y) :- R(x,c,y)
T(x,c,y) - R(x,c,z2), T(z,c,y)
Answer(x,y) :- T(x,c,y)

CSEP 544 - Winter 2014 53

Simple datalog programs

R, G, B encodes a 3-colored graph

o

R= 1 2
3 4
4 5
G= 2 | 3
B= 2 1
1 4

What does this program compute in general?

S(x,y) - B(x,y)

S(x,y) - T(x,z),B(z,y)
T(x,y) :- S(x,2),R(z,y)
T(x,y) - S(x, Z) G(z,y)

Answer(x,y) - T(X,y)

CSEP 544 - Winter 2014 54

Simple datalog programs

R, G, B encodes a 3-colored graph What does this program compute in general?

) [S(xy) - Bixy)
(1) (4) S(x,y) :- T(x,2),B(z.y)

T(x
T(xy) - S(x,2).R(z.Y)
(2) T(xy) - S(x,2),G(z.Y)

Answer(x,y) - T(X,y)
R= 1 2
3| 4
4 5
_ Answer: it computes pairs of nodes connected
G= 213 by a path spelling out these regular expressions:
S=(B.(RorG))*.B
B= 2 | 1 « T=(B.(RorG))*
! 4 CSEP 544 - Winter 2014 55

Syntax of Datalog Programs

The schema consists of two sets of relations:
« Extensional Database (EDB): R, R,, ...
 Intentional Database (IDB): P,, P,, ...

A datalog program P has the form:

Pi2(X21,X22,...) - bOdy2

« Each head predicate P, is an IDB
« Each body is a conjunction of IDB and/or EDB predicates
« See lecture 2

Note: no negation (yet)! Recursion OK.

Naive Datalog Evaluation Algorithm

Datalog program:

Naive Datalog Evaluation Algorithm

Datalog program:

U

Group by
IDB predicate

Naive Datalog Evaluation Algorithm

Datalog program:

> >

Group by Eachruleis a
IDB predicate Select-Project-Join-Union query

Naive Datalog Evaluation Algorithm

Datalog program:

Group by Eachruleis a
IDB predicate Select-Project-Join-Union query

Example:

> ?

Naive Datalog Evaluation Algorithm

Datalog program:

Group by Eachruleis a
IDB predicate Select-Project-Join-Union query

Example: T(x,y) - R(X,y)
T(X’y) - R(X’Z)’ T(Z’y)

9 T(X’y) - R(X’y) U nxy(R(X’Z) > T(Z’y))

Naive Datalog Evaluation Algorithm

Datalog program:

>

Group by
IDB predicate

>

Each rule is a
Select-Project-Join-Union query

Naive datalog evaluation algorithm:

P,=P,=...=92
Loop
NewP, = SPJU,; NewP, = SPJU,; ...
if (NewP, = P, and NewP, =P, and ...)
then exit
P, = NewP,; P, = NewP,; ...
Endloop

Example: T(x,y) - R(X,y)
T(X’y) - R(X’Z)’ T(Z’y)

9 T(X’y) - R(X’y) U nxy(R(X’Z) > T(Z’y))

62

Naive Datalog Evaluation Algorithm

Datalog program:

Group by Eachruleis a
IDB predicate Select-Project-Join-Union query

Naive datalog evaluation algorithm:

E— Example: T(x,y) - R(x,Y)
P,=P,=...=0 T(x,y) - R(x,2), T(z,y)

Loop
NewP, = SPJU,; NewP, = SPJU,; ...
if (NewP, = P, and NewP, =P, and ...)

9 T(X’y) - R(X’y) U nxy(R(X’Z) > T(Z’y))

then exit
— . — . T=2
P, = NewP,; P, = NewP,; ... Loop
Endloop NewT(xy) =R(xy) U My (R(x2) = T(z,y))
if (NewT = T)
then exit
T = NewT
Endloop

Discussion

* A datalog program always terminates
(Why?)

* What is the running time of a datalog
program as a function of the input
database?

Discussion

* A datalog program always terminates
(Why?)
— Number of possible tuples in IDB is |Dom|2"t¥(R)
* What is the running time of a datalog

program as a function of the input
database?

— Number of iteration is < |[Dom|a(R)
— Each iteration is a relational query

Problem with the Naive Algorithm

« The same facts are discovered over and
over again

* The semi-naive algorithm tries to reduce
the number of facts discovered multiple
times

Incremental View Maintenance

Let V be a view computed by one datalog rule (no recursion)

V :- body '

If (some of) the relations are updated: R, € R, UAR, R; € R, UAR,, ...

Then the view is also modified as follows: V €V UAV

Incremental view maintenance:
Compute AV without having to recompute V

Incremental View Maintenance

Example 1:

V(x,y) :- R(X,2),S(z,y) If R € R UAR then what is AV(x,y) ?

Incremental View Maintenance

Example 1:

V(x,y) :- R(X,2),S(z,y) If R € R UAR then what is AV(x,y) ?

AV(x,y) :- AR(x,z),S(z,y)

Incremental View Maintenance

Example 2:

_ IfR< R UAR and S ¢ S UAS
V(x,y) :- R(X,2),5(z,y) then what is AV(x,y) ?

Incremental View Maintenance

Example 2:

_ IfR< R UAR and S ¢ S UAS
V(x,y) :- R(X,2),5(z,y) then what is AV(x,y) ?

AV(x,y) :- AR(x,z),S(z,y)
AV(x,y) - R(x,2z), AS(z,y)
AV(x,y) - AR(x,z), AS(z,y)

Incremental View Maintenance

Example 3:

_ fT < T UAT
V(x,y) :- T(x,2),T(z,y) then what is AV(x,y) ?

Incremental View Maintenance

Example 3:

. IfT< T UAT
V(x,y) :- T(x,2),T(z,y) then what is AV(x,y) ?

AV(x,y) - AT(x,2),T(z,y)
AV(x,y) - T(x,z), AT(z,)y)
AV(x,y) - AT(x,z), AT(z,y)

Semi-naive Evaluation Algorithm

* Naive algorithm: P, = InitialValue

Repeat
Py = f(Py.4)
Until no-more-change

* Semi-naive algorithm

Semi-naive Evaluation Algorithm

* Nalve algorithm: P, = InitialValue
Repeat

Py = f(Py.4)
Until no-more-change

* Semi-naive algorithm |p_ = A, = Initialvalue
Repeat
Ay = APy q,81) — P
P.=P_ UA
Until no-more-change

Semi-naive Evaluation Algorithm

Separate the Datalog program into the non-recursive, and the recursive part.
Each P, defined by non-recursive-SPJU. and (recursive-)SPJU..

P, = AP, = non-recursive-SPJU,, P, = AP, = non-recursive-SPJU,, ...
Loop

AP, = ASPJU,(P,,P,..., AP,,AP, ...) — Py;

AP, = ASPJU,(P,,P,..., AP,,AP, ...) — Py;

if (AP, =2and AP, =2and ...)
then break
P,=P, UAP,; P,=P, U AP,; ...
Endloop

Semi-naive Evaluation Algorithm

Separate the Datalog program into the non-recursive, and the recursive part.
Each P, defined by non-recursive-SPJU. and (recursive-)SPJU..

P, = AP, = non-recursive-SPJU,, P, = AP, = non-recursive-SPJU,, ...
Loop

AP, = ASPJU,(P,,P,..., AP,,AP, ...) — Py;

AP, = ASPJU,(P,,P,..., AP,,AP, ...) — Py;

if (AP, =2and AP, =2and ...)

then break
P,=P,UAP,;P,=P, U AP,; ...
Endloop
Example: T=AT = ? (non-recursive rule)
Loop
AT(x,y) = ? (recursive A-rule)
if (AT = 92)
then break

T=TUAT

Endloop

Semi-naive Evaluation Algorithm

Separate the Datalog program into the non-recursive, and the recursive part.
Each P, defined by non-recursive-SPJU. and (recursive-)SPJU..

P, = AP, = non-recursive-SPJU,, P, = AP, = non-recursive-SPJU,, ...
Loop

AP, = ASPJU,(P,,P,..., AP,,AP, ...) — Py;

AP, = ASPJU,(P,,P,..., AP,,AP, ...) — Py;

if (AP, =2and AP, =2and ...)

then break
P,=P,UAP,;P,=P, UAP,; ...
Endloop
Example: T(xy) = AT(xy) = R(x)
Loop
AT(x,y) = R(x,z), AT(z,y), not T(x,y)
if (AT = 2)
then break

T=TUAT

Endloop

Semi-naive Evaluation Algorithm

Separate the Datalog program into the non-recursive, and the recursive part.
Each P, defined by non-recursive-SPJU. and (recursive-)SPJU..

P, = AP, = non-recursive-SPJU,, P, = AP, = non-recursive-SPJU,, ...
Loop

AP, = ASPJU,(P,,P,..., AP,,AP, ...) — Py;

AP, = ASPJU,(P,,P,..., AP,,AP, ...) — Py;

if (AP, =2and AP, =2and ...)

then break
P,=P, UAP,; P,=P, U AP,; ...
Endloop
Example: T(x,y) = AT(xy) = R(xy)
Loop
AT(x,y) = R(x,z), AT(z,y), not T(x,y)
if (AT = 2)
then break
Note: for any linear datalog programs, T=TUAT
the semi-naive algorithm has only Endloop

one A-rule for each rule!

Simple datalog programs

T= AT =R
Loop
AT(x,y)= R(x,z), AT(z,y),not T(x,y)
if (AT = 2)
then break
T=TUAT
Endloop

R encodes a graph

R= Initially:

AT= T=

Al ININ]I~]|-~
Al DN

1 2
1 4
2 1
2 3
3 4
4 5

AW [ININI~]-
16) I I~ BT I I)

Simple datalog programs

T= AT =R
Loop
AT(x,y)= R(x,z), AT(z,y),not T(x,y)
if (AT = 2)
then break
T=TUAT
Endloop

R encodes a graph

First iteration:

. T=
R= Initially:
1 2
AT= T= 1 2
1 2 1 2 1 2 AT: 2 1
1 4 1 4 1 4 paths Of 2 3
2 1 2 | 1 2 | 1 length2 [5 | 4
2 3 2 3 2 3 4 5
3 4 3 4 1 1 1 1
3 4 4 | 5 4 | 5 1| 3 1| 3
4 5 1 5 1 5
2 2 2 2
2 4 2 4
3 5 3 5

Simple datalog programs

T= AT=R
R encodes a graph Loop
AT(x,y)= R(x,z), AT(z,y),not T(X,y)
if (AT =92)
then break
T=TUAT
Endloop
First iteration: Second iteration:
: T- !
R= Initially: 1| 2
_ 1 2 1 4
1 > AT= T=) 1. T
1| 2 1| 2 AT= 2 | 1 AT= 2 | 3
1 4 A 1 4 paths of [51 T
lenath 2 paths of
2 1 2 ; 2 ; eng j : length 3 |4 |5
2 3 L
3 | 4 3| 4 1| 1 1| 1 1| 2 1] 3
3 4 4 | 5 4 | 5 1] 3 1] 3 1] 4 1] 5
4 5 1] 5 1] 5 o | 1 o | 2
2 | 2 2 | 2 2 | 3 2 | 4
2 4 2 4 2 5 3 5
3 5 3 5 2 5

Simple datalog programs

T= AT =R

R encodes a graph Loop

AT(x,y)= R(x,z), AT(z,y),not T(X,y)
if (AT = 92)
then break
T=TUAT
Endloop
First iteration: Second iteration: Third iteration:
T=
L T=
R= Initially: 1| 2
—_ T_ 1 2 1 4
1 2 AT= _ AT= 1] 4 2 | 1
1 p 1] 2 1] 2 - 2 | 1 AT= 2 | 3 AT=
1| 4 1| 4 Fathfhog 2 | 3| pathsof [3] 4 paths of
2 1 2 | 1 2 | 1 eng 3 | 4 length 3 4 | 5 length 4
2 | 3 2 | 3 4 | 5 1 1
2 3
3 4 3 4 1 1 1 1 1 2 1 3
3 4 4 5 4 5 1 3 1 3 1 4 1 5
4 5 1 5 1 5 5 | 1 o | o
2 | 2 2 | 2 2 | 3 2 | 4
2 | 4 2 | 4 > | 5 3 | s
3| 5 3| 5 2 | 5

Discussion of Semi-Naive
Algorithm

» Avoids re-computing some tuples, but not all
tuples

» Easy to implement, no disadvantage over
naive

* Arule is called linear if its body contains only
one recursive |IDB predicate:

— Alinear rule always results in a single incremental
rule

— A non-linear rule may result in multiple
iIncremental rules

Summary So Far

« Simple syntax for expressing queries with
recursion

* Bottom-up evaluation — always terminates
— Nailve evaluation
— Semi-nalve evaluation

 Next:

— Datalog semantics
— Datalog with negation

Semantics of a Datalog Program

Three different, equivalent semantics:
 Minimal model semantics
» Least fixpoint semantics

* Proof-theoretic semantics

Minimal Model Semantics

To eachrule r: | P(x4...x) - Ry(...),R5(...), ...

Minimal Model Semantics

All variables in the rule

/

Associate the logical sentence .. | Vz,...Vz,. [(R(...)AR,(...)A ...) 2 P(...)]

To each rule r;

Minimal Model Semantics

All variables in the rule

/

Associate the logical sentence .. | Vz,...Vz,. [(R(...)AR,(...)A ...) 2 P(...)]

To each rule r;

Same as: VX;...VX. [TY4... Y. (R{(..DAR(..IA ...) D P(...)]

A1 ™~

Head variables Existential variables

Minimal Model Semantics

All variables in the rule

/

Associate the logical sentence .. | Vz,...Vz,. [(R(...)AR,(...)A ...) 2 P(...)]

To each rule r;

Same as: VX;...VX. [TY4... Y. (R{(..DAR(..IA ...) D P(...)]

A1 ™~

Head variables Existential variables

Definition. If P is a datalog program,
2p is the set of all logical sentences associated to its rules.

Minimal Model Semantics

All variables in the rule

/

Associate the logical sentence .. | Vz,...Vz,. [(R(...)AR,(...)A ...) 2 P(...)]

To each rule r;

Same as: VX;...VX. [TY4... Y. (R{(..DAR(..IA ...) D P(...)]

A1 ™~

Head variables Existential variables

Definition. If P is a datalog program,
2p is the set of all logical sentences associated to its rules.

Example. Rule: | T(x,y) :- R(x,z), T(z,y) § Sentence: Vx.Vy.VZz.(R(x,2)AT(z,y)=>T(x,y))
= VX.VY.(Fz.R(X,2)AT(z,y)2>T(x,y))

Minimal Model Semantics

Definition. A pair (I,J) where | is an EDB and J is an IDB
is a model for P, if (I,J) F 2p

Definition. Given an EDB database instance | and a datalog program P,
the minimal model, denoted J = P(l) is a minimal database instance J s.t. (I,J) F 2

Theorem. The minimal model always exists, and is unique.

Minimal Model Semantics

Definition. A pair (I,J) where | is an EDB and J is an IDB
is a model for P, if (I,J) F 2p

Definition. Given an EDB database instance | and a datalog program P,
the minimal model, denoted J = P(l) is a minimal database instance J s.t. (I,J) F 2

Theorem. The minimal model always exists, and is unique.

Example:
(D—2—O

Which of these IDBs are models?
Which are minimal models?

WIN|=~2 BN~
Al jlwjlOa|Pr|WOWIDN

AW IN]| -~
Al |JwW]IDN

Minimal Model Semantics

Definition. A pair (I,J) where | is an EDB and J is an IDB
is a model for P, if (I,J) F 2p

Definition. Given an EDB database instance | and a datalog program P,
the minimal model, denoted J = P(l) is a minimal database instance J s.t. (I,J) F 2

Theorem. The minimal model always exists, and is unique.

Example:
(D—2—O

Which of these IDBs are models?
Which are minimal models?

= IN|2 O IN|~2] PP IDN]|~-

ajloa|ldlOa|lAr|lO|lO|B]IWOW]IDN

WIN|=~2 BN~
Al jlwjlOa|Pr|WOWIDN

AW IN]| -~
Al |JwW]IDN

Minimal Model Semantics

Definition. A pair (I,J) where | is an EDB and J is an IDB
is a model for P, if (I,J) F 2p

Definition. Given an EDB database instance | and a datalog program P,
the minimal model, denoted J = P(l) is a minimal database instance J s.t. (I,J) F 2

Theorem. The minimal model always exists, and is unique.

T=
Example:
1 2 T=
(D—=@—=)—=@—() K —
T= 3 4 1 2
Which of these IDBs are models? ; > 4 5 1 3
Which are minimal models? 1 3 1 4
2 3
3 4 2 4 : °
3 5
R= 1 2 4 5 1 .
2 3 1 3 5 4
3 4 2 4 2 > 5 5
1 5
4 5 3 5
All 25 pairs of nodes

Minimal Fixpoint Semantics

Definition. Fix an EDB |, and a datalog program P.
The immediate consequence operator Tp is defined as follows.
For any IDB J:
Tp(J) = all IDB facts that are immediate consequences from | and J.

Fact. For any datalog program P, the immediate consequence operator
is monotone. In other words, if J; € J, then Tp(J,) € Tp(Js).

Minimal Fixpoint Semantics

Definition. Fix an EDB |, and a datalog program P.
The immediate consequence operator Tp is defined as follows.

For any IDB J:
Tp(J) = all IDB facts that are immediate consequences from | and J.

Fact. For any datalog program P, the immediate consequence operator
is monotone. In other words, if J; € J, then Tp(J,) € Tp(Js).

Theorem. The immediate consequence operator has a unique, minimal fixpoint J:
fix(Tp) = J, where J is the minimal instance with the property Tp(J) = J.

Proof: using Knaster-Tarski’s theorem for monotone functions.
The fixpoint is given by:
fix (Tp)=Jo U J; U J,U... where Jy=2, J,1=Tp(J)

Minimal Fixpoint Semantics

T(X,y) - R(X,y)
(D—=(2—=()—()—(5 T(x,y) - R(x,z), T(z,y)

Al jJw]IDN

Jp=9 Ji1=Tp(Jo) Jy=Tp(Jy) J3 = Tp(Jy) Js = Tp(J3)

2 1 2

1

2 3
3 4
4 5

2
3
4
1
2
3

aldbjlwjlO|lbd|w®

N |2 W[N] IN]|~

2
3
4
5
3
4
5
4
5

= IN|=2 W IN]|~~2]PDO]DN
ajloo|lbhl]lOa|lA|]lw|lO|BDIOIDN

CSEP 544 - Winter 2014 98

Proof Theoretic Semantics

Every fact in the IDB has a derivation tree, or proof tree justifying its existence.

(=235

R Derivation tree
112 of T(1,4)
2 3
3 4
4 5

G Crow

R(3,4)

CSEP 544 - Winter 2014

99

Adding Negation: Datalog-

Example: compute the complement of the transitive closure

T(X’y) - R(X!y)
T(X’y) - T(X’Z)’ R(Z’y)

CT(x,y) :- Node(x), Node(y), not T(x,y)

What does this mean??

100

Recursion and Negation
Don’t Like Each Other

EDB: | ={R(a)} S(X) :- R(x), not T(x)
T(x) - R(x), not S(x)

Which IDBs are models of P?

Ji=1{} Jp = 1{S(a); J3 = 1T(a); J,=18(a), T(a) }

Recursion and Negation
Don’t Like Each Other

EDB: | ={R(a)} S(X) :- R(x), not T(x)
T(x) - R(x), not S(x)

Which IDBs are models of P?

Ji=1{} Jp = 1{S(a); J3 = 1T(a); J,=18(a), T(a) }

No: both
rules fail

Recursion and Negation
Don’t Like Each Other

EDB: | ={R(a)} S(X) :- R(x), not T(x)
T(x) - R(x), not S(x)

Which IDBs are models of P?

Ji=1{} Jp = 1{S(a); J3 = 1T(a); J,=18(a), T(a) }

No: both Yes: the facts in J, are
rules fail R(a), S(a), 7 T(a)
and both rules are frue.

Recursion and Negation
Don’t Like Each Other

EDB: | ={R(a)} S(X) :- R(x), not T(x)
T(x) - R(x), not S(x)

Which IDBs are models of P?

Ji=1{} Jp = 1{S(a); J3 = 1T(a); J,=18(a), T(a) }

No: both Yes: the facts in J, are
rules fail R(a), S(a), 7 T(a)
and both rules are true.

Recursion and Negation
Don’t Like Each Other

EDB: | ={R(a)} S(X) :- R(x), not T(x)
T(x) - R(x), not S(x)

Which IDBs are models of P?

Ji=1{} Jp = 1{S(a); J3 = 1T(a); Jy=1S(a

No: both Yes: the facts in J, are
rules fail R(a), S(a), =T(a)

and both rules are true.

Recursion and Negation
Don’t Like Each Other

EDB: | ={R(a)} S(X) :- R(x), not T(x)
T(x) - R(x), not S(x)

Which IDBs are models of P?

Ji=1{} Jp = 1{S(a); J3 = 1T(a); Jy=1S(a

No: both Yes: the facts in J, are
rules fail R(a), S(a), T(a)

and both rules are true.

There is no minimal model!

Recursion and Negation
Don’t Like Each Other

EDB: | ={R(a)}

Which IDBs are models of P?

Ji=1{} Jp = 1{S(a);

No: both
rules fail

Yes: the facts in J, are
R(a), S(a), =T(a)
and both rules are frue.

There is no minimal model!

S(X) :- R(x), not T(x)
T(x) - R(x), not S(x)

Jy = {T(a)} J,={S(a

There is no minimal fixpoint!
(Why does Knaster-Tarski’s
theorem fail?)

Adding Negation: datalog-

» Solution 1: Stratified Datalog-

— Insist that the program be stratified: rules are
partitioned into strata, and an IDB predicate that
occurs only in strata < k may be negated in strata
> K+1

« Solution 2: Inflationary-fixpoint Datalog-

— Compute the fixpoint of J U Tp(J)

— Always terminates (why ?)

 Solution 3: Partial-fixpoint Datalog~"
— Compute the fixpoint of Tp(J)
— May not terminate

Stratified datalog~

A datalog™ program is stratified if its rules can be partitioned into k strata, such that:
» If an IDB predicate P appears negated in a rule in stratum i,
then it can only appear in the head of a rule in strata 1, 2, ..., i-1

Note: a datalog™ program
either is stratified or it ain’t!

Which programs are stratified?

T(X’y) - R(X,y)

Stratum i T(x,y) - T(x,z), R(z,y)
CT(x,y) :- Node(x), Node(y), not T(x,y)

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

Stratified datalog~

 Evaluation algorithm for stratified datalog™:

« Foreach stratumi=1, 2, ..., do:
— Treat all IDB’s defined in prior strata as EBS

— Evaluate the IDB’s defined in stratum i, using
either the nalve or the semi-naive algorithm

Does this compute a
minimal model?

T(X’y) - R(X’y)
T(X’y) - T(X’Z)’ R(Z’y)

CT(x,y) :- Node(x), Node(y), not T(x,y)

Stratified datalog~

 Evaluation algorithm for stratified datalog™:

« Foreach stratumi=1, 2, ..., do:
— Treat all IDB’s defined in prior strata as EBS

— Evaluate the IDB’s defined in stratum i, using
either the nalve or the semi-naive algorithm

Does this compute a
minimal model?

NO:
J, ={ T = transitive closure, CT = its complement}
J, ={ T = all pairs of nodes, CT = empty}

T(X’y) - R(X’y)
T(X’y) - T(X’Z)’ R(Z’y)

CT(x,y) :- Node(x), Node(y), not T(x,y)

Inflationary-fixpoint datalog-

Let P be any datalog~ program, and | an EDB.
Let Tp(J) be the immediate consequence operator.
Let F(J) =J UTp(J) be the inflationary immediate consequence operator.

Define the sequence: J, =92, J.., = F(J,), for n = 0.

Definition. The inflationary fixpoint semantics of P is J = J
where n is such that J,,, = J,,

Find the inflationary semantics for:

Why does there always exists an n
such that Jn = F(Jn)? T(x,y) - R(X,y)
T(x,y) - T(x,2), R(z,y)

CT(x,y) :- Node(x), Node(y), not T(x,y)

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

Inflationary-fixpoint datalog-

« Evaluation for Inflationary-fixpoint datalog-
* Use the naive, of the semi-naive algorithm

* Inhibit any optimization that rely on
monotonicity (e.g. out of order execution)

Partial-fixpoint datalog~

Let P be any datalog~ program, and | an EDB.
Let Tp(J) be the immediate consequence operator.

Define the sequence: J, =92, J,., = Tp(J,,), for n = 0.

Definition. The partial fixpoint semantics of P is J = J_
where n is such that J.,, = J,, if such an n exists,
undefined otherwise.

Find the partial fixpoint semantics for:

T(X’y) - R(X,y)

T(X’y) - T(X’Z)’ R(Z’y)

Note: there may not exists an n CT(x,y) :- Node(x), Node(y), not T(x,y)
such that J, = F(J,)

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

Summary of Datalog

Recursion = easy and fun
Recursion + negation = nightmare

Powerful optimizations:
— Incremental view updates
— Magic sets (did not discuss in class)

SQL implements limited recursion

