
CSEP 544: Lecture 08 

Datalog 
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Announcements 

•  Homework 4 due tomorrow 

•  Homework 5 is posted 

•  Reading assignment due next Monday 

•  Reading assignment due on March 11: 
– C-stores (long), NoSQL (medium),blog (short) 
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Outline for Tday 

•  Optimistic Concurrency Control 

•  Datalog 



Review 
•  Schedule 
•  Serializable/conflict-serializable 
•  2PL 
•  Strict 2PL 
•  Phantoms 

SQL isolation levels: 
•  Read uncommitted 
•  Read committed 
•  Repeatable reads 
•  Serializable 



Optimistic Concurrency Control 
Mechanisms 

•  Pessimistic: 
– Locks 

•  Optimistic 
– Timestamp based: basic, multiversion 
– Validation 
– Snapshot isolation: a variant of both 

CSEP544 - Fall 2015      5 



Timestamps 

•  Each transaction receives a unique 
timestamp TS(T) 

 
Could be: 

•  The system’s clock 
•  A unique counter, incremented by the 

scheduler 
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Timestamps 
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The timestamp order defines 
 the serialization order of the transaction 

Main invariant: 

Will generate a schedule that is view-equivalent 
to a serial schedule, and recoverable 



Main Idea 

•  For any two conflicting actions, ensure 
that their order is the serialized order: 

Check WT, RW, WW conflicts 
•  wU(X) . . . rT(X) 
•  rU(X) . . . wT(X) 
•  wU(X) . . . wT(X) 
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When T requests rT(X), need to check TS(U) ≤ TS(T) 

Read too 
late ? 

Write too 
late ? 



Timestamps 

With each element X, associate 
•  RT(X) = the highest timestamp of any 

transaction U that read X 
•  WT(X) = the highest timestamp of any 

transaction U that wrote X 
•  C(X) = the commit bit: true when transaction 

with highest timestamp that wrote X 
committed 

9 

If element = page, then these are associated 
with each page X in the buffer pool 



Simplified Timestamp-based 
Scheduling 

Start discussion with transactions that do not abort 
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Transaction wants to read element X 
If WT(X) > TS(T) then ROLLBACK 
Else READ and update RT(X) to larger of TS(T) or RT(X) 

Transaction wants to write element X 
If RT(X) > TS(T) then ROLLBACK 
Else if WT(X) > TS(T) ignore write & continue (Thomas Write Rule) 
Otherwise, WRITE and update WT(X) =TS(T) 



Details 

Read too late: 
•  T wants to read X, and WT(X) > TS(T) 
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START(T) … START(U) … wU(X) . . . rT(X) 

Need to rollback T ! 



Details 

Write too late: 
•  T wants to write X, and RT(X) > TS(T) 
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START(T) … START(U) … rU(X) . . . wT(X) 

Need to rollback T ! 



Details 

Write too late, but we can still handle it: 
•  T wants to write X, and  

RT(X) ≤ TS(T)  but WT(X) > TS(T) 
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START(T) … START(V) … wV(X) . . . wT(X) 

Don’t write X at all ! 
(Thomas’ rule) 



View-Serializability 

•  By using Thomas’ rule we do not obtain a 
conflict-serializable schedule 

•  But we obtain a view-serializable schedule 
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Ensuring Recoverable Schedules 

•  Review: 
– Schedule that avoids cascading aborts 

•  Use the commit bit C(X) to keep track if 
the transaction that last wrote X has 
committed 
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Ensuring Recoverable Schedules 

Read dirty data: 
•  T wants to read X, and WT(X) < TS(T) 
•  Seems OK, but… 
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START(U) … START(T) … wU(X). . . rT(X)… ABORT(U) 

If C(X)=false, T needs to wait for it to become true 



Ensuring Recoverable Schedules 

Thomas’ rule needs to be revised: 
•  T wants to write X, and WT(X) > TS(T) 
•  Seems OK not to write at all, but … 
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START(T) … START(U)… wU(X). . . wT(X)… ABORT(U) 

If C(X)=false, T needs to wait for it to become true 



Timestamp-based Scheduling 
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Transaction wants to READ element X 
If WT(X) > TS(T) then ROLLBACK 
Else If C(X) = false, then WAIT 
Else READ and update RT(X) to larger of TS(T) or RT(X) 

Transaction wants to WRITE element X 
If RT(X) > TS(T)  then ROLLBACK 
Else if WT(X) > TS(T) 

Then If C(X) = false then WAIT  
          else IGNORE write (Thomas Write Rule)  

Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false 



Summary of Timestamp-based 
Scheduling 

•  View-serializable 

•  Recoverable 
– Even avoids cascading aborts 

•  Does NOT handle phantoms 
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Multiversion Timestamp 

•  When transaction T requests r(X) 
but WT(X) > TS(T), then T must rollback 

•  Idea: keep multiple versions of X: 
Xt, Xt-1, Xt-2, . . . 

•  Let T read an older version, with appropriate 
timestamp 
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TS(Xt) > TS(Xt-1) > TS(Xt-2) > . . . 



Details 

•  When wT(X) occurs,  
 create a new version, denoted  Xt where t = TS(T) 

•  When rT(X) occurs,  
 find most recent version Xt such that t < TS(T) 
 Notes: 

–  WT(Xt)  = t and it never changes 
–  RT(Xt) must still be maintained to check legality of writes 

•  Can delete Xt if we have a later version Xt1 and all active 
transactions T have TS(T) > t1 
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Example (in class) 
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X3     X9     X12     X18 

R6(X)  -- what happens? 
W14(X) – what happens? 
R15(X) – what happens? 
W5(X) – what happens? 
 
When can we delete X3? 



Summary of Timestamp-based 
Scheduling 

•  View-serializable 

•  Recoverable 
– Even avoids cascading aborts 

•  DOES handle phantoms 
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Concurrency Control by Validation 

•  Each transaction T defines a read set RS(T) and a 
write set WS(T) 

•  Each transaction proceeds in three phases: 
–  Read all elements in RS(T).  Time = START(T) 
–  Validate (may need to rollback).  Time = VAL(T) 
–  Write all elements in WS(T). Time = FIN(T) 
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Main invariant: the serialization order is VAL(T) 



Avoid rT(X) - wU(X) Conflicts 
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U: Read phase Validate Write phase 

START(U) VAL(U) FIN(U) 

T: Read phase Validate ? 

START(T) 

IF  RS(T) ∩ WS(U) and FIN(U) > START(T)  
        (U has validated and  U has not finished before T begun) 
Then ROLLBACK(T) 

conflicts 



Avoid wT(X) - wU(X) Conflicts 
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U: Read phase Validate Write phase 

START(U) VAL(U) FIN(U) 

T: Read phase Validate Write phase ? 

START(T) VAL(T) 

IF  WS(T) ∩ WS(U) and FIN(U) > VAL(T)  
        (U has validated and  U has not finished before T validates) 
Then ROLLBACK(T) 

conflicts 



Snapshot Isolation 

•  Another optimistic concurrency control 
method 

•  Very efficient, and very popular 
– Oracle, Postgres, SQL Server 2005 
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WARNING: Not serializable, yet ORACLE uses 
it even for SERIALIZABLE transactions ! 



Snapshot Isolation Rules 

•  Each transactions receives a timestamp TS(T) 

•  Tnx sees the snapshot at time TS(T) of database 

•  When T commits, updated pages written to disk 

•  Write/write conflicts are resolved by the 
“first committer wins” rule 
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Snapshot Isolation (Details) 

•  Multiversion concurrency control: 
– Versions of X:   Xt1, Xt2, Xt3, . . . 

•  When T reads X, return XTS(T). 
•  When T writes X (to avoid lost update): 
•  If latest version of X is TS(T) then proceed 
•  If C(X) = true then abort 
•  If C(X) = false then wait 
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What Works and What Not 

•  No dirty reads (Why ?) 
•  No unconsistent reads (Why ?) 
•  No lost updates (“first committer wins”) 

•  Moreover: no reads are ever delayed 

•  However: read-write conflicts not caught ! 
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Write Skew 

T1: 
   READ(X); 
   if X >= 50 
         then Y = -50; WRITE(Y) 
   COMMIT 

T2: 
   READ(Y); 
   if Y >= 50 
         then X = -50; WRITE(X) 
   COMMIT 

In our notation: 

R1(X), R2(Y), W1(Y), W2(X), C1,C2 

Starting with X=50,Y=50, we end with X=-50, Y=-50. 
Non-serializable !!! 



Write Skews Can Be Serious 

•  ACIDland had two viceroys, Delta and Rho 
•  Budget had two registers: taXes, and spendYng 
•  They had HIGH taxes and LOW spending… 

32 

Delta: 
   READ(X); 
   if X= ‘HIGH’ 
         then { Y= ‘HIGH’; 
                    WRITE(Y) } 
   COMMIT 

Rho: 
   READ(Y); 
   if Y= ‘LOW’ 
         then {X= ‘LOW’; 
                   WRITE(X) } 
   COMMIT 

… and they ran a deficit ever since. 



Tradeoffs 
•  Pessimistic Concurrency Control (Locks): 

–  Great when there are many conflicts 
–  Poor when there are few conflicts 

•  Optimistic Concurrency Control (Timestamps): 
–  Poor when there are many conflicts (rollbacks) 
–  Great when there are few conflicts 

•  Compromise 
–  READ ONLY transactions → timestamps 
–  READ/WRITE transactions → locks 
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Commercial Systems 

•  DB2: Strict 2PL 
•  SQL Server: 

– Strict 2PL for standard 4 levels of isolation 
– Multiversion concurrency control for snapshot 

isolation 
•  PostgreSQL, Oracle 

– Snapshot isolation even for SERIALIZABLE 
– Postgres introduced novel, serializable 

scheduler in postgres 9.1 
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Datalog 



Queries + Iterations 

•  For 30 years: a backwater of SQL 

•  Today: huge interest due to big data analytics 

•  Very few commercial datalog systems (e.g. 
Logicblox) 

•  Much larger number of hand-crafted 
applications (e.g. iteration + map-reduce) 



Datalog 

Review (from Lecture 2) 
•  Fact 
•  Rule 
•  Head and body of a rule 
•  Existential variable 
•  Head variable 
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Review 

Actor(344759,‘Douglas’, ‘Fowley’). 
Casts(344759, 29851). 
Casts(355713, 29000). 
Movie(7909, ‘A Night in Armour’, 1910). 
Movie(29000, ‘Arizona’, 1940). 
Movie(29445, ‘Ave Maria’, 1940). 

Facts Rules 

Facts = tuples in the database 
Rules = queries 



Review 

Actor(344759,‘Douglas’, ‘Fowley’). 
Casts(344759, 29851). 
Casts(355713, 29000). 
Movie(7909, ‘A Night in Armour’, 1910). 
Movie(29000, ‘Arizona’, 1940). 
Movie(29445, ‘Ave Maria’, 1940). 

Facts Rules 

Q1(y) :-  Movie(x,y,z), z=‘1940’. 

Facts = tuples in the database 
Rules = queries 



Review 

Actor(344759,‘Douglas’, ‘Fowley’). 
Casts(344759, 29851). 
Casts(355713, 29000). 
Movie(7909, ‘A Night in Armour’, 1910). 
Movie(29000, ‘Arizona’, 1940). 
Movie(29445, ‘Ave Maria’, 1940). 

Facts Rules 

Q1(y) :-  Movie(x,y,z), z=‘1940’. 

Q2(f, l) :-  Actor(z,f,l), Casts(z,x),  
                 Movie(x,y,’1940’). 

Facts = tuples in the database 
Rules = queries 



Review 

Actor(344759,‘Douglas’, ‘Fowley’). 
Casts(344759, 29851). 
Casts(355713, 29000). 
Movie(7909, ‘A Night in Armour’, 1910). 
Movie(29000, ‘Arizona’, 1940). 
Movie(29445, ‘Ave Maria’, 1940). 

Facts Rules 

Q1(y) :-  Movie(x,y,z), z=‘1940’. 

Q2(f, l) :-  Actor(z,f,l), Casts(z,x),  
                 Movie(x,y,’1940’). 

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910), 
                                 Casts(z,x2), Movie(x2,y2,1940) 

Facts = tuples in the database 
Rules = queries 



Review 

Actor(344759,‘Douglas’, ‘Fowley’). 
Casts(344759, 29851). 
Casts(355713, 29000). 
Movie(7909, ‘A Night in Armour’, 1910). 
Movie(29000, ‘Arizona’, 1940). 
Movie(29445, ‘Ave Maria’, 1940). 

Facts Rules 

Q1(y) :-  Movie(x,y,z), z=‘1940’. 

Q2(f, l) :-  Actor(z,f,l), Casts(z,x),  
                 Movie(x,y,’1940’). 

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910), 
                                 Casts(z,x2), Movie(x2,y2,1940) 

Facts = tuples in the database 
Rules = queries 

Extensional Database Predicates = EDB 
Intensional Database Predicates = IDB 



Review 
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Q2(f, l) :-  Actor(z,f,l), Casts(z,x), Movie(x,y,’1940’). 

body head 

atom atom atom 

f, l  = head variables 
x,y,z = existential variables 



Simple datalog programs 

1 

2 

4 

3 

R encodes a graph 

1 2 

2 1 
2 3 

1 4 

3 4 

4 5 

R= 

T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

What does 
it compute? 

5 



Simple datalog programs 

1 

2 

4 

3 

R encodes a graph 

1 2 

2 1 
2 3 

1 4 

3 4 

4 5 

R= 

T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

What does 
it compute? 

Initially:  
T is empty. 

5 



Simple datalog programs 

1 

2 

4 

3 

R encodes a graph 

1 2 

2 1 
2 3 

1 4 

3 4 

4 5 

R= 

T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

What does 
it compute? 

Initially:  
T is empty. 

1 2 

2 1 

2 3 

1 4 

3 4 

4 5 

First iteration: 
T = 

5 



Simple datalog programs 

1 

2 

4 

3 

R encodes a graph 

1 2 

2 1 
2 3 

1 4 

3 4 

4 5 

R= 

T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

What does 
it compute? 

Initially:  
T is empty. 

1 2 

2 1 

2 3 

1 4 

3 4 

4 5 

Second iteration: 
T = 

1 2 

2 1 

2 3 

1 4 

3 4 

4 5 

1 1 

2 2 

1 3 

2 4 

1 5 

3 5 

First iteration: 
T = 

5 



Simple datalog programs 

1 

2 

4 

3 

R encodes a graph 

1 2 

2 1 
2 3 

1 4 

3 4 

4 5 

R= 

T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

What does 
it compute? 

Initially:  
T is empty. 

1 2 

2 1 

2 3 

1 4 

3 4 

4 5 

Second iteration: 
T = 

1 2 

2 1 

2 3 

1 4 

3 4 

4 5 

1 1 

2 2 

1 3 

2 4 

1 5 

3 5 

First iteration: 
T = 

Done 

5 

Third iteration: 
T = 

1 2 

2 1 

2 3 

1 4 

3 4 

4 5 

1 1 

2 2 

1 3 

2 4 

1 5 

3 5 

2 5 



Simple datalog programs 

1 

2 

4 

3 

R encodes a graph 

1 2 

2 1 
2 3 

1 4 

3 4 

4 5 

R= 

T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

What does 
it compute? 

Initially:  
T is empty. 

1 2 

2 1 

2 3 

1 4 

3 4 

4 5 

Second iteration: 
T = 

1 2 

2 1 

2 3 

1 4 

3 4 

4 5 

1 1 

2 2 

1 3 

2 4 

1 5 

3 5 

First iteration: 
T = 

Done 

5 

Third iteration: 
T = 

1 2 

2 1 

2 3 

1 4 

3 4 

4 5 

1 1 

2 2 

1 3 

2 4 

1 5 

3 5 

2 5 

  Discovered 
  3 times! 

  Discovered 
  twice 
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Simple datalog programs 

CSEP 544 - Winter 2014 

T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

Alternative ways to compute TC: 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z), R(z,y) 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z), T(z,y) 

Right linear 

Left linear 

Non-linear 

Discuss pros/cons in class 

1 

2 

4 

3 

1 2 

2 1 
2 3 

1 4 

3 4 

4 5 

R= 

5 
R encodes a graph 
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Simple datalog programs 

CSEP 544 - Winter 2014 

1 Red 2 

2 Blue 1 

2 Green 3 

1 Blue 4 

3 Red 4 

4 Yellow 5 

R= 

Compute TC (ignoring color): 

Compute pairs of nodes connected  
by the same color (e.g. (2,4)) 

1 

2 

4 

3 

5 

R encodes a colored graph 
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Simple datalog programs 

CSEP 544 - Winter 2014 

1 Red 2 

2 Blue 1 

2 Green 3 

1 Blue 4 

3 Red 4 

4 Yellow 5 

R= 

T(x,y) :- R(x,c,y) 
T(x,y) :- R(x,c,z), T(z,y) 

Compute TC (ignoring color): 

Compute pairs of nodes connected  
by the same color (e.g. (2,4)) 

1 

2 

4 

3 

5 

R encodes a colored graph 
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Simple datalog programs 

CSEP 544 - Winter 2014 

1 Red 2 

2 Blue 1 

2 Green 3 

1 Blue 4 

3 Red 4 

4 Yellow 5 

R= 

T(x,y) :- R(x,c,y) 
T(x,y) :- R(x,c,z), T(z,y) 

Compute TC (ignoring color): 

Compute pairs of nodes connected  
by the same color (e.g. (2,4)) 

T(x,c,y) :- R(x,c,y) 
T(x,c,y) :- R(x,c,z), T(z,c,y) 
Answer(x,y) :- T(x,c,y) 

1 

2 

4 

3 

5 

R encodes a colored graph 
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Simple datalog programs 

CSEP 544 - Winter 2014 

1 

2 

4 

3 

R, G, B encodes a 3-colored graph 

1 2 

3 4 

4 5 

R= 

What does this program compute in general? 

S(x,y) :- B(x,y) 
S(x,y) :- T(x,z),B(z,y) 
T(x,y) :- S(x,z),R(z,y) 
T(x,y) :- S(x,z),G(z,y) 
Answer(x,y) :- T(x,y) 

2 3 

2 1 

1 4 

G= 

B= 

5 
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Simple datalog programs 

CSEP 544 - Winter 2014 

1 

2 

4 

3 

R, G, B encodes a 3-colored graph 

1 2 

3 4 

4 5 

R= 

What does this program compute in general? 

S(x,y) :- B(x,y) 
S(x,y) :- T(x,z),B(z,y) 
T(x,y) :- S(x,z),R(z,y) 
T(x,y) :- S(x,z),G(z,y) 
Answer(x,y) :- T(x,y) 

2 3 

2 1 

1 4 

G= 

B= 

Answer: it computes pairs of nodes connected 
by a path spelling out these regular expressions: 
•  S = (B.(R or G))*.B 
•  T = (B.(R or G))+ 

5 
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Syntax of Datalog Programs 
The schema consists of two sets of relations: 
•  Extensional Database (EDB): R1, R2, … 
•  Intentional Database (IDB): P1, P2, … 
A datalog program P has the form: 

Pi1(x11,x12,…) :- body1 
Pi2(x21,x22,…) :- body2 
 
           …. 

•  Each head predicate Pi is an IDB 
•  Each body is a conjunction of IDB and/or EDB predicates 
•  See lecture 2 

Note: no negation (yet)! Recursion OK. 

P: 



Naïve Datalog Evaluation Algorithm 
Datalog program: 

Pi1 :-  body1 
Pi2 :-  body2 
     …. 



Naïve Datalog Evaluation Algorithm 
Datalog program: 

Pi1 :-  body1 
Pi2 :-  body2 
     …. 

è 
P1 :-  body11∪ body12∪ … 
P2 :-  body21∪ body22∪ … 
…. 

Group by  
IDB predicate 



Naïve Datalog Evaluation Algorithm 
Datalog program: 

Pi1 :-  body1 
Pi2 :-  body2 
     …. 

è 
P1 :-  body11∪ body12∪ … 
P2 :-  body21∪ body22∪ … 
…. 

Group by  
IDB predicate 

è 
P1 :-  SPJU1 
P2 :-  SPJU2 
…. 

Each rule is a 
Select-Project-Join-Union query 



Naïve Datalog Evaluation Algorithm 
Datalog program: 

Pi1 :-  body1 
Pi2 :-  body2 
     …. 

è 
P1 :-  body11∪ body12∪ … 
P2 :-  body21∪ body22∪ … 
…. 

Group by  
IDB predicate 

è 
P1 :-  SPJU1 
P2 :-  SPJU2 
…. 

Each rule is a 
Select-Project-Join-Union query 

Example: T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

è ? 



Naïve Datalog Evaluation Algorithm 
Datalog program: 

Pi1 :-  body1 
Pi2 :-  body2 
     …. 

è 
P1 :-  body11∪ body12∪ … 
P2 :-  body21∪ body22∪ … 
…. 

Group by  
IDB predicate 

è 
P1 :-  SPJU1 
P2 :-  SPJU2 
…. 

Each rule is a 
Select-Project-Join-Union query 

Example: T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

T(x,y) :- R(x,y) ∪ Πxy(R(x,z) ⋈ T(z,y)) è 
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Naïve Datalog Evaluation Algorithm 

Naïve datalog evaluation algorithm: 

Datalog program: 

Pi1 :-  body1 
Pi2 :-  body2 
     …. 

è 
P1 :-  body11∪ body12∪ … 
P2 :-  body21∪ body22∪ … 
…. 

Group by  
IDB predicate 

è 
P1 :-  SPJU1 
P2 :-  SPJU2 
…. 

Each rule is a 
Select-Project-Join-Union query 

P1 = P2 = … = ∅ 
Loop 

 NewP1 = SPJU1; NewP2 = SPJU2;  … 
       if (NewP1 = P1 and NewP2 = P2 and …) 
              then exit 
       P1 = NewP1; P2 = NewP2; … 
Endloop 

Example: T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

T(x,y) :- R(x,y) ∪ Πxy(R(x,z) ⋈ T(z,y)) è 
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Naïve Datalog Evaluation Algorithm 

Naïve datalog evaluation algorithm: 

Datalog program: 

Pi1 :-  body1 
Pi2 :-  body2 
     …. 

è 
P1 :-  body11∪ body12∪ … 
P2 :-  body21∪ body22∪ … 
…. 

Group by  
IDB predicate 

è 
P1 :-  SPJU1 
P2 :-  SPJU2 
…. 

Each rule is a 
Select-Project-Join-Union query 

P1 = P2 = … = ∅ 
Loop 

 NewP1 = SPJU1; NewP2 = SPJU2;  … 
       if (NewP1 = P1 and NewP2 = P2 and …) 
              then exit 
       P1 = NewP1; P2 = NewP2; … 
Endloop 

Example: T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

T= ∅ 
Loop 

 NewT(x,y)  = R(x,y) ∪ Πxy(R(x,z) ⋈ T(z,y)) 
       if (NewT = T) 
              then exit 
       T = NewT 
Endloop 

T(x,y) :- R(x,y) ∪ Πxy(R(x,z) ⋈ T(z,y)) è 



Discussion 

•  A datalog program always terminates 
(why?) 

•  What is the running time of a datalog 
program as a function of the input 
database? 



Discussion 

•  A datalog program always terminates 
(why?) 
– Number of possible tuples in IDB is |Dom|arity(R) 

•  What is the running time of a datalog 
program as a function of the input 
database? 
– Number of iteration is ≤ |Dom|arity(R) 
– Each iteration is a relational query 



Problem with the Naïve Algorithm 

•  The same facts are discovered over and 
over again 

•  The semi-naïve algorithm tries to reduce 
the number of facts discovered multiple 
times 



Incremental View Maintenance 
Let V be a view computed by one datalog rule (no recursion) 

V :- body 

If (some of) the relations are updated:  R1 ß R1 ∪ΔR1, R1 ß R2 ∪ΔR2, … 
 
Then the view is also modified as follows:  V ß V ∪ΔV 

Incremental view maintenance: 
Compute ΔV without having to recompute V 
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V(x,y) :- R(x,z),S(z,y) If R ß R ∪ΔR  then what is ΔV(x,y) ? 

Example 1: 
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Example 1: 

ΔV(x,y) :- ΔR(x,z),S(z,y) 



Incremental View Maintenance 

V(x,y) :- R(x,z),S(z,y) If R ß R ∪ΔR  and S ß S ∪ΔS 
then what is ΔV(x,y) ? 

Example 2: 



Incremental View Maintenance 

V(x,y) :- R(x,z),S(z,y) If R ß R ∪ΔR  and S ß S ∪ΔS 
then what is ΔV(x,y) ? 

Example 2: 

ΔV(x,y) :- ΔR(x,z),S(z,y) 
ΔV(x,y) :- R(x,z), ΔS(z,y) 
ΔV(x,y) :- ΔR(x,z), ΔS(z,y) 



Incremental View Maintenance 

V(x,y) :- T(x,z),T(z,y) If T ß T ∪ΔT 
then what is ΔV(x,y) ? 

Example 3: 



Incremental View Maintenance 

V(x,y) :- T(x,z),T(z,y) If T ß T ∪ΔT 
then what is ΔV(x,y) ? 

Example 3: 

ΔV(x,y) :- ΔT(x,z),T(z,y) 
ΔV(x,y) :- T(x,z), ΔT(z,y) 
ΔV(x,y) :- ΔT(x,z), ΔT(z,y) 



Semi-naïve Evaluation Algorithm 

•  Naïve algorithm: 

•  Semi-naïve algorithm 

P0 = InitialValue 
Repeat 

 Pk = f(Pk-1) 
Until no-more-change 



Semi-naïve Evaluation Algorithm 

•  Naïve algorithm: 

•  Semi-naïve algorithm 

P0 = InitialValue 
Repeat 

 Pk = f(Pk-1) 
Until no-more-change 

P0 =  Δ0 = InitialValue 
Repeat 

 Δk = Δf(Pk-1,Δk-1) – Pk-1 
  Pk = Pk-1∪Δk 
Until no-more-change 



Semi-naïve Evaluation Algorithm 
Separate the Datalog program into the non-recursive, and the recursive part. 
Each Pi defined by non-recursive-SPJUi and (recursive-)SPJUi. 

P1 = ΔP1 = non-recursive-SPJU1, P2 = ΔP2 = non-recursive-SPJU2, … 
Loop 

 ΔP1 = ΔSPJU1(P1,P2…, ΔP1,ΔP2 …) – P1;  
       ΔP2 = ΔSPJU2(P1,P2…, ΔP1,ΔP2 …) – P2;  
       … 
       if (ΔP1 = ∅ and ΔP2 = ∅ and  …) 
              then break 
       P1 = P1 ∪ ΔP1; P2 = P2 ∪ ΔP2;  … 
Endloop 



Semi-naïve Evaluation Algorithm 
Separate the Datalog program into the non-recursive, and the recursive part. 
Each Pi defined by non-recursive-SPJUi and (recursive-)SPJUi. 

Example: T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

T= ΔT = ? (non-recursive rule) 
Loop 

 ΔT(x,y)  =  ? (recursive Δ-rule) 
       if (ΔT = ∅) 
              then break 
       T = T∪ΔT 
Endloop 

P1 = ΔP1 = non-recursive-SPJU1, P2 = ΔP2 = non-recursive-SPJU2, … 
Loop 

 ΔP1 = ΔSPJU1(P1,P2…, ΔP1,ΔP2 …) – P1;  
       ΔP2 = ΔSPJU2(P1,P2…, ΔP1,ΔP2 …) – P2;  
       … 
       if (ΔP1 = ∅ and ΔP2 = ∅ and  …) 
              then break 
       P1 = P1 ∪ ΔP1; P2 = P2 ∪ ΔP2;  … 
Endloop 



Semi-naïve Evaluation Algorithm 
Separate the Datalog program into the non-recursive, and the recursive part. 
Each Pi defined by non-recursive-SPJUi and (recursive-)SPJUi. 

Example: T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

T(x,y) = ΔT(x,y) = R(x,y) 
Loop 

 ΔT(x,y)  = R(x,z),  ΔT(z,y), not T(x,y) 
       if (ΔT = ∅) 
              then break 
       T = T∪ΔT 
Endloop 

P1 = ΔP1 = non-recursive-SPJU1, P2 = ΔP2 = non-recursive-SPJU2, … 
Loop 

 ΔP1 = ΔSPJU1(P1,P2…, ΔP1,ΔP2 …) – P1;  
       ΔP2 = ΔSPJU2(P1,P2…, ΔP1,ΔP2 …) – P2;  
       … 
       if (ΔP1 = ∅ and ΔP2 = ∅ and  …) 
              then break 
       P1 = P1 ∪ ΔP1; P2 = P2 ∪ ΔP2;  … 
Endloop 



Semi-naïve Evaluation Algorithm 
Separate the Datalog program into the non-recursive, and the recursive part. 
Each Pi defined by non-recursive-SPJUi and (recursive-)SPJUi. 

Example: T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

Note: for any linear datalog programs, 
the semi-naïve algorithm has only 
one Δ-rule for each rule! 

P1 = ΔP1 = non-recursive-SPJU1, P2 = ΔP2 = non-recursive-SPJU2, … 
Loop 

 ΔP1 = ΔSPJU1(P1,P2…, ΔP1,ΔP2 …) – P1;  
       ΔP2 = ΔSPJU2(P1,P2…, ΔP1,ΔP2 …) – P2;  
       … 
       if (ΔP1 = ∅ and ΔP2 = ∅ and  …) 
              then break 
       P1 = P1 ∪ ΔP1; P2 = P2 ∪ ΔP2;  … 
Endloop 

T(x,y) = ΔT(x,y) = R(x,y) 
Loop 

 ΔT(x,y)  = R(x,z),  ΔT(z,y), not T(x,y) 
       if (ΔT = ∅) 
              then break 
       T = T∪ΔT 
Endloop 



Simple datalog programs 
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Initially: 
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T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

T= ΔT= 

T=  ΔT = R 
Loop 
 ΔT(x,y)= R(x,z), ΔT(z,y),not T(x,y) 
 if (ΔT = ∅) 
        then break 
 T = T∪ΔT 
Endloop 
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1 3 

1 5 

2 2 
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First iteration: 

T= 

ΔT= 
paths of 
length 2 

T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

T=  ΔT = R 
Loop 
 ΔT(x,y)= R(x,z), ΔT(z,y),not T(x,y) 
 if (ΔT = ∅) 
        then break 
 T = T∪ΔT 
Endloop 



Simple datalog programs 
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First iteration: 

T= 

ΔT= 
paths of 
length 2 

Second iteration: 
T= 

ΔT= 
paths of 
length 3 
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T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

T=  ΔT = R 
Loop 
 ΔT(x,y)= R(x,z), ΔT(z,y),not T(x,y) 
 if (ΔT = ∅) 
        then break 
 T = T∪ΔT 
Endloop 



Simple datalog programs 
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T= ΔT= 
1 2 

1 4 

2 1 

2 3 

3 4 

4 5 

1 2 

1 4 

2 1 

2 3 

3 4 

4 5 

1 1 

1 3 

1 5 

2 2 

2 4 
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1 1 

1 3 
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2 2 
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First iteration: 

T= 

ΔT= 
paths of 
length 2 

Second iteration: 
T= 

ΔT= 
paths of 
length 3 

1 2 

1 4 

2 1 

2 3 
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Third iteration: 

ΔT= 
paths of 
length 4 

1 2 

1 4 
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T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

T=  ΔT = R 
Loop 
 ΔT(x,y)= R(x,z), ΔT(z,y),not T(x,y) 
 if (ΔT = ∅) 
        then break 
 T = T∪ΔT 
Endloop 



Discussion of Semi-Naïve 
Algorithm 

•  Avoids re-computing some tuples, but not all 
tuples 

•  Easy to implement, no disadvantage over 
naïve 

•  A rule is called linear if its body contains only 
one recursive IDB predicate: 
– A linear rule always results in a single incremental 

rule 
– A non-linear rule may result in multiple 

incremental rules 



Summary So Far 

•  Simple syntax for expressing queries with 
recursion 

•  Bottom-up evaluation – always terminates 
– Naïve evaluation 
– Semi-naïve evaluation 

•  Next: 
– Datalog semantics 
– Datalog with negation 



Semantics of a Datalog Program 

Three different, equivalent semantics: 

•  Minimal model semantics 

•  Least fixpoint semantics 

•  Proof-theoretic semantics 



Minimal Model Semantics 
To each rule r: P(x1…xk) :- R1(…),R2(…), … 



Minimal Model Semantics 
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All variables in the rule 
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Definition. If P is a datalog program,  
ΣP is the set of all logical sentences associated to its rules. 



Minimal Model Semantics 
To each rule r: P(x1…xk) :- R1(…),R2(…), … 

Associate the logical sentence Σr: ∀z1…∀zn. [(R1(…)∧R2(…)∧ …) è P(…)] 

Same as: ∀x1…∀xk. [∃y1…∃ym.(R1(…)∧R2(…)∧ …) è P(…)] 

All variables in the rule 

Head variables Existential variables 

Example.  Rule: T(x,y) :- R(x,z), T(z,y) Sentence: ∀x.∀y.∀z.(R(x,z)∧T(z,y)àT(x,y)) 
≡ ∀x.∀y.(∃z.R(x,z)∧T(z,y)àT(x,y)) 

Definition. If P is a datalog program,  
ΣP is the set of all logical sentences associated to its rules. 



Minimal Model Semantics 

Definition. Given an EDB database instance I and a datalog program P, 
the minimal model, denoted J = P(I) is a minimal database instance J s.t. (I,J) ⊨ ΣP 

Definition.  A pair (I,J) where I is an EDB and J is an IDB 
is a model for P, if (I,J) ⊨ ΣP 

Theorem. The minimal model always exists, and is unique. 



Minimal Model Semantics 

Definition. Given an EDB database instance I and a datalog program P, 
the minimal model, denoted J = P(I) is a minimal database instance J s.t. (I,J) ⊨ ΣP 

Definition.  A pair (I,J) where I is an EDB and J is an IDB 
is a model for P, if (I,J) ⊨ ΣP 

T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

Which of these IDBs are models? 
Which are minimal models? 

T= 

R= 1 2 

2 3 

3 4 

4 5 

1 2 

2 3 

3 4 

4 5 

1 3 

2 4 

3 5 

Theorem. The minimal model always exists, and is unique. 
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Minimal Model Semantics 

Definition. Given an EDB database instance I and a datalog program P, 
the minimal model, denoted J = P(I) is a minimal database instance J s.t. (I,J) ⊨ ΣP 

Definition.  A pair (I,J) where I is an EDB and J is an IDB 
is a model for P, if (I,J) ⊨ ΣP 

T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

Which of these IDBs are models? 
Which are minimal models? 

T= 

R= 1 2 

2 3 

3 4 

4 5 

1 2 
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4 5 

1 3 

2 4 
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T= 

Theorem. The minimal model always exists, and is unique. 
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Minimal Model Semantics 

Definition. Given an EDB database instance I and a datalog program P, 
the minimal model, denoted J = P(I) is a minimal database instance J s.t. (I,J) ⊨ ΣP 

Definition.  A pair (I,J) where I is an EDB and J is an IDB 
is a model for P, if (I,J) ⊨ ΣP 

T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

Which of these IDBs are models? 
Which are minimal models? 

T= 

R= 1 2 

2 3 

3 4 

4 5 

1 2 

2 3 

3 4 

4 5 

1 3 

2 4 

3 5 

T= 

Theorem. The minimal model always exists, and is unique. 

1 1 

1 2 

1 3 

1 4 

1 5 

… … 

… … 

5 4 

5 5 

1 2 4 3 5 

Example: 
1 2 
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T= 

All 25 pairs of nodes 



Minimal Fixpoint Semantics 
Definition.  Fix an EDB I, and a datalog program P. 
The immediate consequence operator TP is defined as follows. 
For any IDB J: 
    TP(J) = all IDB facts that are immediate consequences from I and J. 

Fact. For any datalog program P, the immediate consequence operator 
is monotone. In other words, if J1 ⊆ J2 then TP(J1) ⊆ TP(J2). 



Minimal Fixpoint Semantics 
Definition.  Fix an EDB I, and a datalog program P. 
The immediate consequence operator TP is defined as follows. 
For any IDB J: 
    TP(J) = all IDB facts that are immediate consequences from I and J. 

Fact. For any datalog program P, the immediate consequence operator 
is monotone. In other words, if J1 ⊆ J2 then TP(J1) ⊆ TP(J2). 

Theorem. The immediate consequence operator has a unique, minimal fixpoint J: 
fix(TP) = J, where J is the minimal instance with the property TP(J) = J. 

Proof: using Knaster-Tarski’s theorem for monotone functions. 
The fixpoint is given by: 
   fix (TP) = J0 ∪  J1 ∪ J2∪…   where  J0 = ∅ ,   Jk+1 = TP(Jk)  
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Minimal Fixpoint Semantics 
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4 5 

R= 

T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

T = 

5 

J0 = ∅ J1 = TP(J0) J2 = TP(J1) J3 = TP(J2) J4 = TP(J3)  
1 2 
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3 4 

4 5 
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Proof Theoretic Semantics 
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1 2 4 3 

1 2 

2 3 

3 4 

4 5 

R= 

T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

5 

Every fact in the IDB has a derivation tree, or proof tree justifying its existence. 

Derivation tree 
of T(1,4) T(1,4) 

R(1,2) T(2,4) 

R(2,3) T(3,4) 

R(3,4) 



100 

Adding Negation:  Datalog¬ 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z), R(z,y) 
CT(x,y) :- Node(x), Node(y), not T(x,y) 

Example: compute the complement of the transitive closure 

What does this mean?? 



Recursion and Negation 
Don’t Like Each Other 

S(x) :- R(x), not T(x) 
T(x) :- R(x), not S(x) 

EDB:    I  = { R(a) } 

Which IDBs are models of P? 

J1 = { } J2 = {S(a)} J3 = {T(a)} J4 = {S(a), T(a) } 
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J1 = { } J2 = {S(a)} J3 = {T(a)} J4 = {S(a), T(a) } 

No: both 
rules fail 
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No: both 
rules fail 



Recursion and Negation 
Don’t Like Each Other 

S(x) :- R(x), not T(x) 
T(x) :- R(x), not S(x) 

EDB:    I  = { R(a) } 

Which IDBs are models of P? 
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Yes: the facts in J2 are 
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and both rules are true. 

Yes No: both 
rules fail 
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S(x) :- R(x), not T(x) 
T(x) :- R(x), not S(x) 

EDB:    I  = { R(a) } 

Which IDBs are models of P? 

J1 = { } J2 = {S(a)} J3 = {T(a)} J4 = {S(a), T(a) } 

Yes: the facts in J2 are 
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and both rules are true. 

Yes Yes No: both 
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Recursion and Negation 
Don’t Like Each Other 

S(x) :- R(x), not T(x) 
T(x) :- R(x), not S(x) 

EDB:    I  = { R(a) } 

Which IDBs are models of P? 

J1 = { } J2 = {S(a)} J3 = {T(a)} J4 = {S(a), T(a) } 

Yes: the facts in J2 are 
R(a), S(a), ¬T(a) 

and both rules are true. 

Yes Yes 

There is no minimal model! 

No: both 
rules fail 



Recursion and Negation 
Don’t Like Each Other 

S(x) :- R(x), not T(x) 
T(x) :- R(x), not S(x) 

EDB:    I  = { R(a) } 

Which IDBs are models of P? 

J1 = { } J2 = {S(a)} J3 = {T(a)} J4 = {S(a), T(a) } 

Yes: the facts in J2 are 
R(a), S(a), ¬T(a) 

and both rules are true. 

Yes Yes 

There is no minimal model! 

No: both 
rules fail 

There is no minimal fixpoint! 
(Why does Knaster-Tarski’s 
theorem fail?) 



Adding Negation:  datalog¬ 
•  Solution 1: Stratified Datalog¬ 

–  Insist that the program be stratified: rules are 
partitioned into strata, and an IDB predicate that 
occurs only in strata ≤ k may be negated in strata 
≥ k+1 

•  Solution 2: Inflationary-fixpoint Datalog¬ 
– Compute the fixpoint of J ∪ TP(J) 
– Always terminates (why ?) 

•  Solution 3: Partial-fixpoint Datalog¬,* 
– Compute the fixpoint of TP(J) 
– May not terminate 
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Stratified datalog¬ 

P1 :- body1 
P2 :- body2 
           …. 
 
           …. 
 
Pj :- bodyj 
 
           …. 
           …. 
 
           …. 
Pn :- bodyn 

P: 

A datalog¬ program is stratified if its rules can be partitioned into k strata, such that: 
•  If an IDB predicate P appears negated in a rule in stratum i, 

then it can only appear in the head of a rule in strata 1, 2, …, i-1 

   Stratum i 

Note: a datalog¬ program 
either is stratified or it ain’t! 

Which programs are stratified? 

S(x) :- R(x), not T(x) 
T(x) :- R(x), not S(x) 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z), R(z,y) 
CT(x,y) :- Node(x), Node(y), not T(x,y) 



Stratified datalog¬ 

•  Evaluation algorithm for stratified datalog¬: 

•  For each stratum i = 1, 2, …, do: 
– Treat all IDB’s defined in prior strata as EBS 
– Evaluate the IDB’s defined in stratum i, using 

either the naïve or the semi-naïve algorithm 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z), R(z,y) 
 
CT(x,y) :- Node(x), Node(y), not T(x,y) 

Does this compute a 
minimal model? 



Stratified datalog¬ 

•  Evaluation algorithm for stratified datalog¬: 

•  For each stratum i = 1, 2, …, do: 
– Treat all IDB’s defined in prior strata as EBS 
– Evaluate the IDB’s defined in stratum i, using 

either the naïve or the semi-naïve algorithm 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z), R(z,y) 
 
CT(x,y) :- Node(x), Node(y), not T(x,y) 

Does this compute a 
minimal model? 

NO:  
J1 = { T = transitive closure, CT = its complement} 
J2 = { T = all pairs of nodes, CT = empty} 



Inflationary-fixpoint datalog¬ 

Definition. The inflationary fixpoint semantics of P is J = Jn  
where n is such that Jn+1 = Jn 

Why does there always exists an n 
such that Jn = F(Jn)? 

Find the inflationary semantics for: 

S(x) :- R(x), not T(x) 
T(x) :- R(x), not S(x) 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z), R(z,y) 
CT(x,y) :- Node(x), Node(y), not T(x,y) 

Let P be any datalog¬ program, and I an EDB. 
Let TP(J) be the immediate consequence operator. 
Let F(J) = J ∪TP(J) be the inflationary immediate consequence operator. 
 
Define the sequence: J0 = ∅, Jn+1 = F(Jn), for n ≥ 0. 



Inflationary-fixpoint datalog¬ 

•  Evaluation for Inflationary-fixpoint datalog¬ 

•  Use the naïve, of the semi-naïve algorithm 

•  Inhibit any optimization that rely on 
monotonicity (e.g. out of order execution) 



Partial-fixpoint datalog¬,* 

Definition. The partial fixpoint semantics of P is J = Jn  
where n is such that Jn+1 = Jn, if such an n exists, 
undefined otherwise. 

Note: there may not exists an n 
such that Jn = F(Jn) 

Find the partial fixpoint semantics for: 

S(x) :- R(x), not T(x) 
T(x) :- R(x), not S(x) 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z), R(z,y) 
CT(x,y) :- Node(x), Node(y), not T(x,y) 

Let P be any datalog¬ program, and I an EDB. 
Let TP(J) be the immediate consequence operator. 
 
 
Define the sequence: J0 = ∅, Jn+1 = TP (Jn), for n ≥ 0. 



Summary of Datalog 

•  Recursion = easy and fun 
•  Recursion + negation = nightmare 
•  Powerful optimizations: 

–  Incremental view updates 
– Magic sets (did not discuss in class) 

•  SQL implements limited recursion 


