
CSEP 544: Lecture 08

Datalog

CSEP544 - Fall 2015 1

Announcements

•  Homework 4 due tomorrow

•  Homework 5 is posted

•  Reading assignment due next Monday

•  Reading assignment due on March 11:
– C-stores (long), NoSQL (medium),blog (short)

CSEP544 - Fall 2015 2

Outline for Tday

•  Optimistic Concurrency Control

•  Datalog

Review
•  Schedule
•  Serializable/conflict-serializable
•  2PL
•  Strict 2PL
•  Phantoms

SQL isolation levels:
•  Read uncommitted
•  Read committed
•  Repeatable reads
•  Serializable

Optimistic Concurrency Control
Mechanisms

•  Pessimistic:
– Locks

•  Optimistic
– Timestamp based: basic, multiversion
– Validation
– Snapshot isolation: a variant of both

CSEP544 - Fall 2015 5

Timestamps

•  Each transaction receives a unique
timestamp TS(T)

Could be:

•  The system’s clock
•  A unique counter, incremented by the

scheduler
CSEP544 - Fall 2015 6

Timestamps

CSEP544 - Fall 2015 7

The timestamp order defines
 the serialization order of the transaction

Main invariant:

Will generate a schedule that is view-equivalent
to a serial schedule, and recoverable

Main Idea

•  For any two conflicting actions, ensure
that their order is the serialized order:

Check WT, RW, WW conflicts
•  wU(X) . . . rT(X)
•  rU(X) . . . wT(X)
•  wU(X) . . . wT(X)

CSEP544 - Fall 2015 8

When T requests rT(X), need to check TS(U) ≤ TS(T)

Read too
late ?

Write too
late ?

Timestamps

With each element X, associate
•  RT(X) = the highest timestamp of any

transaction U that read X
•  WT(X) = the highest timestamp of any

transaction U that wrote X
•  C(X) = the commit bit: true when transaction

with highest timestamp that wrote X
committed

9

If element = page, then these are associated
with each page X in the buffer pool

Simplified Timestamp-based
Scheduling

Start discussion with transactions that do not abort

CSEP544 - Fall 2015 10

Transaction wants to read element X
If WT(X) > TS(T) then ROLLBACK
Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to write element X
If RT(X) > TS(T) then ROLLBACK
Else if WT(X) > TS(T) ignore write & continue (Thomas Write Rule)
Otherwise, WRITE and update WT(X) =TS(T)

Details

Read too late:
•  T wants to read X, and WT(X) > TS(T)

CSEP544 - Fall 2015 11

START(T) … START(U) … wU(X) . . . rT(X)

Need to rollback T !

Details

Write too late:
•  T wants to write X, and RT(X) > TS(T)

CSEP544 - Fall 2015 12

START(T) … START(U) … rU(X) . . . wT(X)

Need to rollback T !

Details

Write too late, but we can still handle it:
•  T wants to write X, and

RT(X) ≤ TS(T) but WT(X) > TS(T)

CSEP544 - Fall 2015 13

START(T) … START(V) … wV(X) . . . wT(X)

Don’t write X at all !
(Thomas’ rule)

View-Serializability

•  By using Thomas’ rule we do not obtain a
conflict-serializable schedule

•  But we obtain a view-serializable schedule

CSEP544 - Fall 2015 14

Ensuring Recoverable Schedules

•  Review:
– Schedule that avoids cascading aborts

•  Use the commit bit C(X) to keep track if
the transaction that last wrote X has
committed

CSEP544 - Fall 2015 15

Ensuring Recoverable Schedules

Read dirty data:
•  T wants to read X, and WT(X) < TS(T)
•  Seems OK, but…

CSEP544 - Fall 2015 16

START(U) … START(T) … wU(X). . . rT(X)… ABORT(U)

If C(X)=false, T needs to wait for it to become true

Ensuring Recoverable Schedules

Thomas’ rule needs to be revised:
•  T wants to write X, and WT(X) > TS(T)
•  Seems OK not to write at all, but …

CSEP544 - Fall 2015 17

START(T) … START(U)… wU(X). . . wT(X)… ABORT(U)

If C(X)=false, T needs to wait for it to become true

Timestamp-based Scheduling

CSEP544 - Fall 2015 18

Transaction wants to READ element X
If WT(X) > TS(T) then ROLLBACK
Else If C(X) = false, then WAIT
Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to WRITE element X
If RT(X) > TS(T) then ROLLBACK
Else if WT(X) > TS(T)

Then If C(X) = false then WAIT
 else IGNORE write (Thomas Write Rule)

Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false

Summary of Timestamp-based
Scheduling

•  View-serializable

•  Recoverable
– Even avoids cascading aborts

•  Does NOT handle phantoms

CSEP544 - Fall 2015 19

Multiversion Timestamp

•  When transaction T requests r(X)
but WT(X) > TS(T), then T must rollback

•  Idea: keep multiple versions of X:
Xt, Xt-1, Xt-2, . . .

•  Let T read an older version, with appropriate
timestamp

CSEP544 - Fall 2015 20

TS(Xt) > TS(Xt-1) > TS(Xt-2) > . . .

Details

•  When wT(X) occurs,
 create a new version, denoted Xt where t = TS(T)

•  When rT(X) occurs,
 find most recent version Xt such that t < TS(T)
 Notes:

–  WT(Xt) = t and it never changes
–  RT(Xt) must still be maintained to check legality of writes

•  Can delete Xt if we have a later version Xt1 and all active
transactions T have TS(T) > t1

CSEP544 - Fall 2015 21

Example (in class)

CSEP544 - Fall 2015 22

X3 X9 X12 X18

R6(X) -- what happens?
W14(X) – what happens?
R15(X) – what happens?
W5(X) – what happens?

When can we delete X3?

Summary of Timestamp-based
Scheduling

•  View-serializable

•  Recoverable
– Even avoids cascading aborts

•  DOES handle phantoms

CSEP544 - Fall 2015 23

Concurrency Control by Validation

•  Each transaction T defines a read set RS(T) and a
write set WS(T)

•  Each transaction proceeds in three phases:
–  Read all elements in RS(T). Time = START(T)
–  Validate (may need to rollback). Time = VAL(T)
–  Write all elements in WS(T). Time = FIN(T)

CSEP544 - Fall 2015 24

Main invariant: the serialization order is VAL(T)

Avoid rT(X) - wU(X) Conflicts

CSEP544 - Fall 2015 25

U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

T: Read phase Validate ?

START(T)

IF RS(T) ∩ WS(U) and FIN(U) > START(T)
 (U has validated and U has not finished before T begun)
Then ROLLBACK(T)

conflicts

Avoid wT(X) - wU(X) Conflicts

CSEP544 - Fall 2015 26

U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

T: Read phase Validate Write phase ?

START(T) VAL(T)

IF WS(T) ∩ WS(U) and FIN(U) > VAL(T)
 (U has validated and U has not finished before T validates)
Then ROLLBACK(T)

conflicts

Snapshot Isolation

•  Another optimistic concurrency control
method

•  Very efficient, and very popular
– Oracle, Postgres, SQL Server 2005

CSEP544 - Fall 2015 27

WARNING: Not serializable, yet ORACLE uses
it even for SERIALIZABLE transactions !

Snapshot Isolation Rules

•  Each transactions receives a timestamp TS(T)

•  Tnx sees the snapshot at time TS(T) of database

•  When T commits, updated pages written to disk

•  Write/write conflicts are resolved by the
“first committer wins” rule

CSEP544 - Fall 2015 28

Snapshot Isolation (Details)

•  Multiversion concurrency control:
– Versions of X: Xt1, Xt2, Xt3, . . .

•  When T reads X, return XTS(T).
•  When T writes X (to avoid lost update):
•  If latest version of X is TS(T) then proceed
•  If C(X) = true then abort
•  If C(X) = false then wait

CSEP544 - Fall 2015 29

What Works and What Not

•  No dirty reads (Why ?)
•  No unconsistent reads (Why ?)
•  No lost updates (“first committer wins”)

•  Moreover: no reads are ever delayed

•  However: read-write conflicts not caught !

CSEP544 - Fall 2015 30

Write Skew

T1:
 READ(X);
 if X >= 50
 then Y = -50; WRITE(Y)
 COMMIT

T2:
 READ(Y);
 if Y >= 50
 then X = -50; WRITE(X)
 COMMIT

In our notation:

R1(X), R2(Y), W1(Y), W2(X), C1,C2

Starting with X=50,Y=50, we end with X=-50, Y=-50.
Non-serializable !!!

Write Skews Can Be Serious

•  ACIDland had two viceroys, Delta and Rho
•  Budget had two registers: taXes, and spendYng
•  They had HIGH taxes and LOW spending…

32

Delta:
 READ(X);
 if X= ‘HIGH’
 then { Y= ‘HIGH’;
 WRITE(Y) }
 COMMIT

Rho:
 READ(Y);
 if Y= ‘LOW’
 then {X= ‘LOW’;
 WRITE(X) }
 COMMIT

… and they ran a deficit ever since.

Tradeoffs
•  Pessimistic Concurrency Control (Locks):

–  Great when there are many conflicts
–  Poor when there are few conflicts

•  Optimistic Concurrency Control (Timestamps):
–  Poor when there are many conflicts (rollbacks)
–  Great when there are few conflicts

•  Compromise
–  READ ONLY transactions → timestamps
–  READ/WRITE transactions → locks

CSEP544 - Fall 2015 33

Commercial Systems

•  DB2: Strict 2PL
•  SQL Server:

– Strict 2PL for standard 4 levels of isolation
– Multiversion concurrency control for snapshot

isolation
•  PostgreSQL, Oracle

– Snapshot isolation even for SERIALIZABLE
– Postgres introduced novel, serializable

scheduler in postgres 9.1

34

Datalog

Queries + Iterations

•  For 30 years: a backwater of SQL

•  Today: huge interest due to big data analytics

•  Very few commercial datalog systems (e.g.
Logicblox)

•  Much larger number of hand-crafted
applications (e.g. iteration + map-reduce)

Datalog

Review (from Lecture 2)
•  Fact
•  Rule
•  Head and body of a rule
•  Existential variable
•  Head variable

CSEP544 - Fall 2015 37

Review

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts Rules

Facts = tuples in the database
Rules = queries

Review

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts Rules

Q1(y) :- Movie(x,y,z), z=‘1940’.

Facts = tuples in the database
Rules = queries

Review

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts Rules

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
 Movie(x,y,’1940’).

Facts = tuples in the database
Rules = queries

Review

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts Rules

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
 Movie(x,y,’1940’).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
 Casts(z,x2), Movie(x2,y2,1940)

Facts = tuples in the database
Rules = queries

Review

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts Rules

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
 Movie(x,y,’1940’).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
 Casts(z,x2), Movie(x2,y2,1940)

Facts = tuples in the database
Rules = queries

Extensional Database Predicates = EDB
Intensional Database Predicates = IDB

Review

CSEP544 - Fall 2015 43

Q2(f, l) :- Actor(z,f,l), Casts(z,x), Movie(x,y,’1940’).

body head

atom atom atom

f, l = head variables
x,y,z = existential variables

Simple datalog programs

1

2

4

3

R encodes a graph

1 2

2 1
2 3

1 4

3 4

4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

What does
it compute?

5

Simple datalog programs

1

2

4

3

R encodes a graph

1 2

2 1
2 3

1 4

3 4

4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

What does
it compute?

Initially:
T is empty.

5

Simple datalog programs

1

2

4

3

R encodes a graph

1 2

2 1
2 3

1 4

3 4

4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

What does
it compute?

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

First iteration:
T =

5

Simple datalog programs

1

2

4

3

R encodes a graph

1 2

2 1
2 3

1 4

3 4

4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

What does
it compute?

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

Second iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

First iteration:
T =

5

Simple datalog programs

1

2

4

3

R encodes a graph

1 2

2 1
2 3

1 4

3 4

4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

What does
it compute?

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

Second iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

First iteration:
T =

Done

5

Third iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

2 5

Simple datalog programs

1

2

4

3

R encodes a graph

1 2

2 1
2 3

1 4

3 4

4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

What does
it compute?

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

Second iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

First iteration:
T =

Done

5

Third iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

2 5

 Discovered
 3 times!

 Discovered
 twice

50

Simple datalog programs

CSEP 544 - Winter 2014

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Alternative ways to compute TC:

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), T(z,y)

Right linear

Left linear

Non-linear

Discuss pros/cons in class

1

2

4

3

1 2

2 1
2 3

1 4

3 4

4 5

R=

5
R encodes a graph

51

Simple datalog programs

CSEP 544 - Winter 2014

1 Red 2

2 Blue 1

2 Green 3

1 Blue 4

3 Red 4

4 Yellow 5

R=

Compute TC (ignoring color):

Compute pairs of nodes connected
by the same color (e.g. (2,4))

1

2

4

3

5

R encodes a colored graph

52

Simple datalog programs

CSEP 544 - Winter 2014

1 Red 2

2 Blue 1

2 Green 3

1 Blue 4

3 Red 4

4 Yellow 5

R=

T(x,y) :- R(x,c,y)
T(x,y) :- R(x,c,z), T(z,y)

Compute TC (ignoring color):

Compute pairs of nodes connected
by the same color (e.g. (2,4))

1

2

4

3

5

R encodes a colored graph

53

Simple datalog programs

CSEP 544 - Winter 2014

1 Red 2

2 Blue 1

2 Green 3

1 Blue 4

3 Red 4

4 Yellow 5

R=

T(x,y) :- R(x,c,y)
T(x,y) :- R(x,c,z), T(z,y)

Compute TC (ignoring color):

Compute pairs of nodes connected
by the same color (e.g. (2,4))

T(x,c,y) :- R(x,c,y)
T(x,c,y) :- R(x,c,z), T(z,c,y)
Answer(x,y) :- T(x,c,y)

1

2

4

3

5

R encodes a colored graph

54

Simple datalog programs

CSEP 544 - Winter 2014

1

2

4

3

R, G, B encodes a 3-colored graph

1 2

3 4

4 5

R=

What does this program compute in general?

S(x,y) :- B(x,y)
S(x,y) :- T(x,z),B(z,y)
T(x,y) :- S(x,z),R(z,y)
T(x,y) :- S(x,z),G(z,y)
Answer(x,y) :- T(x,y)

2 3

2 1

1 4

G=

B=

5

55

Simple datalog programs

CSEP 544 - Winter 2014

1

2

4

3

R, G, B encodes a 3-colored graph

1 2

3 4

4 5

R=

What does this program compute in general?

S(x,y) :- B(x,y)
S(x,y) :- T(x,z),B(z,y)
T(x,y) :- S(x,z),R(z,y)
T(x,y) :- S(x,z),G(z,y)
Answer(x,y) :- T(x,y)

2 3

2 1

1 4

G=

B=

Answer: it computes pairs of nodes connected
by a path spelling out these regular expressions:
•  S = (B.(R or G))*.B
•  T = (B.(R or G))+

5

56

Syntax of Datalog Programs
The schema consists of two sets of relations:
•  Extensional Database (EDB): R1, R2, …
•  Intentional Database (IDB): P1, P2, …
A datalog program P has the form:

Pi1(x11,x12,…) :- body1
Pi2(x21,x22,…) :- body2

 ….

•  Each head predicate Pi is an IDB
•  Each body is a conjunction of IDB and/or EDB predicates
•  See lecture 2

Note: no negation (yet)! Recursion OK.

P:

Naïve Datalog Evaluation Algorithm
Datalog program:

Pi1 :- body1
Pi2 :- body2
 ….

Naïve Datalog Evaluation Algorithm
Datalog program:

Pi1 :- body1
Pi2 :- body2
 ….

è
P1 :- body11∪ body12∪ …
P2 :- body21∪ body22∪ …
….

Group by
IDB predicate

Naïve Datalog Evaluation Algorithm
Datalog program:

Pi1 :- body1
Pi2 :- body2
 ….

è
P1 :- body11∪ body12∪ …
P2 :- body21∪ body22∪ …
….

Group by
IDB predicate

è
P1 :- SPJU1
P2 :- SPJU2
….

Each rule is a
Select-Project-Join-Union query

Naïve Datalog Evaluation Algorithm
Datalog program:

Pi1 :- body1
Pi2 :- body2
 ….

è
P1 :- body11∪ body12∪ …
P2 :- body21∪ body22∪ …
….

Group by
IDB predicate

è
P1 :- SPJU1
P2 :- SPJU2
….

Each rule is a
Select-Project-Join-Union query

Example: T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

è ?

Naïve Datalog Evaluation Algorithm
Datalog program:

Pi1 :- body1
Pi2 :- body2
 ….

è
P1 :- body11∪ body12∪ …
P2 :- body21∪ body22∪ …
….

Group by
IDB predicate

è
P1 :- SPJU1
P2 :- SPJU2
….

Each rule is a
Select-Project-Join-Union query

Example: T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

T(x,y) :- R(x,y) ∪ Πxy(R(x,z) ⋈ T(z,y)) è

62

Naïve Datalog Evaluation Algorithm

Naïve datalog evaluation algorithm:

Datalog program:

Pi1 :- body1
Pi2 :- body2
 ….

è
P1 :- body11∪ body12∪ …
P2 :- body21∪ body22∪ …
….

Group by
IDB predicate

è
P1 :- SPJU1
P2 :- SPJU2
….

Each rule is a
Select-Project-Join-Union query

P1 = P2 = … = ∅
Loop

 NewP1 = SPJU1; NewP2 = SPJU2; …
 if (NewP1 = P1 and NewP2 = P2 and …)
 then exit
 P1 = NewP1; P2 = NewP2; …
Endloop

Example: T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

T(x,y) :- R(x,y) ∪ Πxy(R(x,z) ⋈ T(z,y)) è

63

Naïve Datalog Evaluation Algorithm

Naïve datalog evaluation algorithm:

Datalog program:

Pi1 :- body1
Pi2 :- body2
 ….

è
P1 :- body11∪ body12∪ …
P2 :- body21∪ body22∪ …
….

Group by
IDB predicate

è
P1 :- SPJU1
P2 :- SPJU2
….

Each rule is a
Select-Project-Join-Union query

P1 = P2 = … = ∅
Loop

 NewP1 = SPJU1; NewP2 = SPJU2; …
 if (NewP1 = P1 and NewP2 = P2 and …)
 then exit
 P1 = NewP1; P2 = NewP2; …
Endloop

Example: T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

T= ∅
Loop

 NewT(x,y) = R(x,y) ∪ Πxy(R(x,z) ⋈ T(z,y))
 if (NewT = T)
 then exit
 T = NewT
Endloop

T(x,y) :- R(x,y) ∪ Πxy(R(x,z) ⋈ T(z,y)) è

Discussion

•  A datalog program always terminates
(why?)

•  What is the running time of a datalog
program as a function of the input
database?

Discussion

•  A datalog program always terminates
(why?)
– Number of possible tuples in IDB is |Dom|arity(R)

•  What is the running time of a datalog
program as a function of the input
database?
– Number of iteration is ≤ |Dom|arity(R)
– Each iteration is a relational query

Problem with the Naïve Algorithm

•  The same facts are discovered over and
over again

•  The semi-naïve algorithm tries to reduce
the number of facts discovered multiple
times

Incremental View Maintenance
Let V be a view computed by one datalog rule (no recursion)

V :- body

If (some of) the relations are updated: R1 ß R1 ∪ΔR1, R1 ß R2 ∪ΔR2, …

Then the view is also modified as follows: V ß V ∪ΔV

Incremental view maintenance:
Compute ΔV without having to recompute V

Incremental View Maintenance

V(x,y) :- R(x,z),S(z,y) If R ß R ∪ΔR then what is ΔV(x,y) ?

Example 1:

Incremental View Maintenance

V(x,y) :- R(x,z),S(z,y) If R ß R ∪ΔR then what is ΔV(x,y) ?

Example 1:

ΔV(x,y) :- ΔR(x,z),S(z,y)

Incremental View Maintenance

V(x,y) :- R(x,z),S(z,y) If R ß R ∪ΔR and S ß S ∪ΔS
then what is ΔV(x,y) ?

Example 2:

Incremental View Maintenance

V(x,y) :- R(x,z),S(z,y) If R ß R ∪ΔR and S ß S ∪ΔS
then what is ΔV(x,y) ?

Example 2:

ΔV(x,y) :- ΔR(x,z),S(z,y)
ΔV(x,y) :- R(x,z), ΔS(z,y)
ΔV(x,y) :- ΔR(x,z), ΔS(z,y)

Incremental View Maintenance

V(x,y) :- T(x,z),T(z,y) If T ß T ∪ΔT
then what is ΔV(x,y) ?

Example 3:

Incremental View Maintenance

V(x,y) :- T(x,z),T(z,y) If T ß T ∪ΔT
then what is ΔV(x,y) ?

Example 3:

ΔV(x,y) :- ΔT(x,z),T(z,y)
ΔV(x,y) :- T(x,z), ΔT(z,y)
ΔV(x,y) :- ΔT(x,z), ΔT(z,y)

Semi-naïve Evaluation Algorithm

•  Naïve algorithm:

•  Semi-naïve algorithm

P0 = InitialValue
Repeat

 Pk = f(Pk-1)
Until no-more-change

Semi-naïve Evaluation Algorithm

•  Naïve algorithm:

•  Semi-naïve algorithm

P0 = InitialValue
Repeat

 Pk = f(Pk-1)
Until no-more-change

P0 = Δ0 = InitialValue
Repeat

 Δk = Δf(Pk-1,Δk-1) – Pk-1
 Pk = Pk-1∪Δk
Until no-more-change

Semi-naïve Evaluation Algorithm
Separate the Datalog program into the non-recursive, and the recursive part.
Each Pi defined by non-recursive-SPJUi and (recursive-)SPJUi.

P1 = ΔP1 = non-recursive-SPJU1, P2 = ΔP2 = non-recursive-SPJU2, …
Loop

 ΔP1 = ΔSPJU1(P1,P2…, ΔP1,ΔP2 …) – P1;
 ΔP2 = ΔSPJU2(P1,P2…, ΔP1,ΔP2 …) – P2;
 …
 if (ΔP1 = ∅ and ΔP2 = ∅ and …)
 then break
 P1 = P1 ∪ ΔP1; P2 = P2 ∪ ΔP2; …
Endloop

Semi-naïve Evaluation Algorithm
Separate the Datalog program into the non-recursive, and the recursive part.
Each Pi defined by non-recursive-SPJUi and (recursive-)SPJUi.

Example: T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

T= ΔT = ? (non-recursive rule)
Loop

 ΔT(x,y) = ? (recursive Δ-rule)
 if (ΔT = ∅)
 then break
 T = T∪ΔT
Endloop

P1 = ΔP1 = non-recursive-SPJU1, P2 = ΔP2 = non-recursive-SPJU2, …
Loop

 ΔP1 = ΔSPJU1(P1,P2…, ΔP1,ΔP2 …) – P1;
 ΔP2 = ΔSPJU2(P1,P2…, ΔP1,ΔP2 …) – P2;
 …
 if (ΔP1 = ∅ and ΔP2 = ∅ and …)
 then break
 P1 = P1 ∪ ΔP1; P2 = P2 ∪ ΔP2; …
Endloop

Semi-naïve Evaluation Algorithm
Separate the Datalog program into the non-recursive, and the recursive part.
Each Pi defined by non-recursive-SPJUi and (recursive-)SPJUi.

Example: T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

T(x,y) = ΔT(x,y) = R(x,y)
Loop

 ΔT(x,y) = R(x,z), ΔT(z,y), not T(x,y)
 if (ΔT = ∅)
 then break
 T = T∪ΔT
Endloop

P1 = ΔP1 = non-recursive-SPJU1, P2 = ΔP2 = non-recursive-SPJU2, …
Loop

 ΔP1 = ΔSPJU1(P1,P2…, ΔP1,ΔP2 …) – P1;
 ΔP2 = ΔSPJU2(P1,P2…, ΔP1,ΔP2 …) – P2;
 …
 if (ΔP1 = ∅ and ΔP2 = ∅ and …)
 then break
 P1 = P1 ∪ ΔP1; P2 = P2 ∪ ΔP2; …
Endloop

Semi-naïve Evaluation Algorithm
Separate the Datalog program into the non-recursive, and the recursive part.
Each Pi defined by non-recursive-SPJUi and (recursive-)SPJUi.

Example: T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Note: for any linear datalog programs,
the semi-naïve algorithm has only
one Δ-rule for each rule!

P1 = ΔP1 = non-recursive-SPJU1, P2 = ΔP2 = non-recursive-SPJU2, …
Loop

 ΔP1 = ΔSPJU1(P1,P2…, ΔP1,ΔP2 …) – P1;
 ΔP2 = ΔSPJU2(P1,P2…, ΔP1,ΔP2 …) – P2;
 …
 if (ΔP1 = ∅ and ΔP2 = ∅ and …)
 then break
 P1 = P1 ∪ ΔP1; P2 = P2 ∪ ΔP2; …
Endloop

T(x,y) = ΔT(x,y) = R(x,y)
Loop

 ΔT(x,y) = R(x,z), ΔT(z,y), not T(x,y)
 if (ΔT = ∅)
 then break
 T = T∪ΔT
Endloop

Simple datalog programs

1

2

4

3

R encodes a graph

1 2

1 4
2 1

2 3

3 4

4 5

R=

1 2

1 4

2 1

2 3

3 4

4 5

Initially:

5

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

T= ΔT=

T= ΔT = R
Loop
 ΔT(x,y)= R(x,z), ΔT(z,y),not T(x,y)
 if (ΔT = ∅)
 then break
 T = T∪ΔT
Endloop

1 2

1 4

2 1

2 3

3 4

4 5

Simple datalog programs

1

2

4

3

R encodes a graph

1 2

1 4
2 1

2 3

3 4

4 5

R=

1 2

1 4

2 1

2 3

3 4

4 5

Initially:

5

T= ΔT=
1 2

1 4

2 1

2 3

3 4

4 5

1 2

1 4

2 1

2 3

3 4

4 5

1 1

1 3

1 5

2 2

2 4

3 5

1 1

1 3

1 5

2 2

2 4

3 5

First iteration:

T=

ΔT=
paths of
length 2

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

T= ΔT = R
Loop
 ΔT(x,y)= R(x,z), ΔT(z,y),not T(x,y)
 if (ΔT = ∅)
 then break
 T = T∪ΔT
Endloop

Simple datalog programs

1

2

4

3

R encodes a graph

1 2

1 4
2 1

2 3

3 4

4 5

R=

1 2

1 4

2 1

2 3

3 4

4 5

Initially:

5

T= ΔT=
1 2

1 4

2 1

2 3

3 4

4 5

1 2

1 4

2 1

2 3

3 4

4 5

1 1

1 3

1 5

2 2

2 4

3 5

1 1

1 3

1 5

2 2

2 4

3 5

First iteration:

T=

ΔT=
paths of
length 2

Second iteration:
T=

ΔT=
paths of
length 3

1 2

1 4

2 1

2 3

3 4

4 5

1 1

1 3

1 5

2 2

2 4

3 5

2 5

1 2

1 4

2 1

2 3

2 5

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

T= ΔT = R
Loop
 ΔT(x,y)= R(x,z), ΔT(z,y),not T(x,y)
 if (ΔT = ∅)
 then break
 T = T∪ΔT
Endloop

Simple datalog programs

1

2

4

3

R encodes a graph

1 2

1 4
2 1

2 3

3 4

4 5

R=

1 2

1 4

2 1

2 3

3 4

4 5

Initially:

5

T= ΔT=
1 2

1 4

2 1

2 3

3 4

4 5

1 2

1 4

2 1

2 3

3 4

4 5

1 1

1 3

1 5

2 2

2 4

3 5

1 1

1 3

1 5

2 2

2 4

3 5

First iteration:

T=

ΔT=
paths of
length 2

Second iteration:
T=

ΔT=
paths of
length 3

1 2

1 4

2 1

2 3

2 5

Third iteration:

ΔT=
paths of
length 4

1 2

1 4

2 1

2 3

3 4

4 5

1 1

1 3

1 5

2 2

2 4

3 5

2 5

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

T= ΔT = R
Loop
 ΔT(x,y)= R(x,z), ΔT(z,y),not T(x,y)
 if (ΔT = ∅)
 then break
 T = T∪ΔT
Endloop

Discussion of Semi-Naïve
Algorithm

•  Avoids re-computing some tuples, but not all
tuples

•  Easy to implement, no disadvantage over
naïve

•  A rule is called linear if its body contains only
one recursive IDB predicate:
– A linear rule always results in a single incremental

rule
– A non-linear rule may result in multiple

incremental rules

Summary So Far

•  Simple syntax for expressing queries with
recursion

•  Bottom-up evaluation – always terminates
– Naïve evaluation
– Semi-naïve evaluation

•  Next:
– Datalog semantics
– Datalog with negation

Semantics of a Datalog Program

Three different, equivalent semantics:

•  Minimal model semantics

•  Least fixpoint semantics

•  Proof-theoretic semantics

Minimal Model Semantics
To each rule r: P(x1…xk) :- R1(…),R2(…), …

Minimal Model Semantics
To each rule r: P(x1…xk) :- R1(…),R2(…), …

Associate the logical sentence Σr: ∀z1…∀zn. [(R1(…)∧R2(…)∧ …) è P(…)]

All variables in the rule

Minimal Model Semantics
To each rule r: P(x1…xk) :- R1(…),R2(…), …

Associate the logical sentence Σr: ∀z1…∀zn. [(R1(…)∧R2(…)∧ …) è P(…)]

Same as: ∀x1…∀xk. [∃y1…∃ym.(R1(…)∧R2(…)∧ …) è P(…)]

All variables in the rule

Head variables Existential variables

Minimal Model Semantics
To each rule r: P(x1…xk) :- R1(…),R2(…), …

Associate the logical sentence Σr: ∀z1…∀zn. [(R1(…)∧R2(…)∧ …) è P(…)]

Same as: ∀x1…∀xk. [∃y1…∃ym.(R1(…)∧R2(…)∧ …) è P(…)]

All variables in the rule

Head variables Existential variables

Definition. If P is a datalog program,
ΣP is the set of all logical sentences associated to its rules.

Minimal Model Semantics
To each rule r: P(x1…xk) :- R1(…),R2(…), …

Associate the logical sentence Σr: ∀z1…∀zn. [(R1(…)∧R2(…)∧ …) è P(…)]

Same as: ∀x1…∀xk. [∃y1…∃ym.(R1(…)∧R2(…)∧ …) è P(…)]

All variables in the rule

Head variables Existential variables

Example. Rule: T(x,y) :- R(x,z), T(z,y) Sentence: ∀x.∀y.∀z.(R(x,z)∧T(z,y)àT(x,y))
≡ ∀x.∀y.(∃z.R(x,z)∧T(z,y)àT(x,y))

Definition. If P is a datalog program,
ΣP is the set of all logical sentences associated to its rules.

Minimal Model Semantics

Definition. Given an EDB database instance I and a datalog program P,
the minimal model, denoted J = P(I) is a minimal database instance J s.t. (I,J) ⊨ ΣP

Definition. A pair (I,J) where I is an EDB and J is an IDB
is a model for P, if (I,J) ⊨ ΣP

Theorem. The minimal model always exists, and is unique.

Minimal Model Semantics

Definition. Given an EDB database instance I and a datalog program P,
the minimal model, denoted J = P(I) is a minimal database instance J s.t. (I,J) ⊨ ΣP

Definition. A pair (I,J) where I is an EDB and J is an IDB
is a model for P, if (I,J) ⊨ ΣP

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Which of these IDBs are models?
Which are minimal models?

T=

R= 1 2

2 3

3 4

4 5

1 2

2 3

3 4

4 5

1 3

2 4

3 5

Theorem. The minimal model always exists, and is unique.

1 2 4 3 5

Example:

Minimal Model Semantics

Definition. Given an EDB database instance I and a datalog program P,
the minimal model, denoted J = P(I) is a minimal database instance J s.t. (I,J) ⊨ ΣP

Definition. A pair (I,J) where I is an EDB and J is an IDB
is a model for P, if (I,J) ⊨ ΣP

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Which of these IDBs are models?
Which are minimal models?

T=

R= 1 2

2 3

3 4

4 5

1 2

2 3

3 4

4 5

1 3

2 4

3 5

T=

Theorem. The minimal model always exists, and is unique.

1 2 4 3 5

Example:
1 2

2 3

3 4

4 5

1 3

2 4

3 5

1 4

2 5

1 5

Minimal Model Semantics

Definition. Given an EDB database instance I and a datalog program P,
the minimal model, denoted J = P(I) is a minimal database instance J s.t. (I,J) ⊨ ΣP

Definition. A pair (I,J) where I is an EDB and J is an IDB
is a model for P, if (I,J) ⊨ ΣP

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Which of these IDBs are models?
Which are minimal models?

T=

R= 1 2

2 3

3 4

4 5

1 2

2 3

3 4

4 5

1 3

2 4

3 5

T=

Theorem. The minimal model always exists, and is unique.

1 1

1 2

1 3

1 4

1 5

… …

… …

5 4

5 5

1 2 4 3 5

Example:
1 2

2 3

3 4

4 5

1 3

2 4

3 5

1 4

2 5

1 5

T=

All 25 pairs of nodes

Minimal Fixpoint Semantics
Definition. Fix an EDB I, and a datalog program P.
The immediate consequence operator TP is defined as follows.
For any IDB J:
 TP(J) = all IDB facts that are immediate consequences from I and J.

Fact. For any datalog program P, the immediate consequence operator
is monotone. In other words, if J1 ⊆ J2 then TP(J1) ⊆ TP(J2).

Minimal Fixpoint Semantics
Definition. Fix an EDB I, and a datalog program P.
The immediate consequence operator TP is defined as follows.
For any IDB J:
 TP(J) = all IDB facts that are immediate consequences from I and J.

Fact. For any datalog program P, the immediate consequence operator
is monotone. In other words, if J1 ⊆ J2 then TP(J1) ⊆ TP(J2).

Theorem. The immediate consequence operator has a unique, minimal fixpoint J:
fix(TP) = J, where J is the minimal instance with the property TP(J) = J.

Proof: using Knaster-Tarski’s theorem for monotone functions.
The fixpoint is given by:
 fix (TP) = J0 ∪ J1 ∪ J2∪… where J0 = ∅ , Jk+1 = TP(Jk)

98

Minimal Fixpoint Semantics

CSEP 544 - Winter 2014

1 2 4 3

1 2

2 3

3 4

4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

T =

5

J0 = ∅ J1 = TP(J0) J2 = TP(J1) J3 = TP(J2) J4 = TP(J3)
1 2

2 3

3 4

4 5

1 2

2 3

3 4

4 5

1 3

2 4

3 5

1 2

2 3

3 4

4 5

1 3

2 4

3 5

1 4

2 5

1 2

2 3

3 4

4 5

1 3

2 4

3 5

1 4

2 5

1 5

99

Proof Theoretic Semantics

CSEP 544 - Winter 2014

1 2 4 3

1 2

2 3

3 4

4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

5

Every fact in the IDB has a derivation tree, or proof tree justifying its existence.

Derivation tree
of T(1,4) T(1,4)

R(1,2) T(2,4)

R(2,3) T(3,4)

R(3,4)

100

Adding Negation: Datalog¬

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)
CT(x,y) :- Node(x), Node(y), not T(x,y)

Example: compute the complement of the transitive closure

What does this mean??

Recursion and Negation
Don’t Like Each Other

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

EDB: I = { R(a) }

Which IDBs are models of P?

J1 = { } J2 = {S(a)} J3 = {T(a)} J4 = {S(a), T(a) }

Recursion and Negation
Don’t Like Each Other

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

EDB: I = { R(a) }

Which IDBs are models of P?

J1 = { } J2 = {S(a)} J3 = {T(a)} J4 = {S(a), T(a) }

No: both
rules fail

Recursion and Negation
Don’t Like Each Other

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

EDB: I = { R(a) }

Which IDBs are models of P?

J1 = { } J2 = {S(a)} J3 = {T(a)} J4 = {S(a), T(a) }

Yes: the facts in J2 are
R(a), S(a), ¬T(a)

and both rules are true.

No: both
rules fail

Recursion and Negation
Don’t Like Each Other

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

EDB: I = { R(a) }

Which IDBs are models of P?

J1 = { } J2 = {S(a)} J3 = {T(a)} J4 = {S(a), T(a) }

Yes: the facts in J2 are
R(a), S(a), ¬T(a)

and both rules are true.

Yes No: both
rules fail

Recursion and Negation
Don’t Like Each Other

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

EDB: I = { R(a) }

Which IDBs are models of P?

J1 = { } J2 = {S(a)} J3 = {T(a)} J4 = {S(a), T(a) }

Yes: the facts in J2 are
R(a), S(a), ¬T(a)

and both rules are true.

Yes Yes No: both
rules fail

Recursion and Negation
Don’t Like Each Other

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

EDB: I = { R(a) }

Which IDBs are models of P?

J1 = { } J2 = {S(a)} J3 = {T(a)} J4 = {S(a), T(a) }

Yes: the facts in J2 are
R(a), S(a), ¬T(a)

and both rules are true.

Yes Yes

There is no minimal model!

No: both
rules fail

Recursion and Negation
Don’t Like Each Other

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

EDB: I = { R(a) }

Which IDBs are models of P?

J1 = { } J2 = {S(a)} J3 = {T(a)} J4 = {S(a), T(a) }

Yes: the facts in J2 are
R(a), S(a), ¬T(a)

and both rules are true.

Yes Yes

There is no minimal model!

No: both
rules fail

There is no minimal fixpoint!
(Why does Knaster-Tarski’s
theorem fail?)

Adding Negation: datalog¬
•  Solution 1: Stratified Datalog¬

–  Insist that the program be stratified: rules are
partitioned into strata, and an IDB predicate that
occurs only in strata ≤ k may be negated in strata
≥ k+1

•  Solution 2: Inflationary-fixpoint Datalog¬
– Compute the fixpoint of J ∪ TP(J)
– Always terminates (why ?)

•  Solution 3: Partial-fixpoint Datalog¬,*
– Compute the fixpoint of TP(J)
– May not terminate

CSEP 544 - Winter 2014 108

Stratified datalog¬

P1 :- body1
P2 :- body2
 ….

 ….

Pj :- bodyj

 ….
 ….

 ….
Pn :- bodyn

P:

A datalog¬ program is stratified if its rules can be partitioned into k strata, such that:
•  If an IDB predicate P appears negated in a rule in stratum i,

then it can only appear in the head of a rule in strata 1, 2, …, i-1

 Stratum i

Note: a datalog¬ program
either is stratified or it ain’t!

Which programs are stratified?

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)
CT(x,y) :- Node(x), Node(y), not T(x,y)

Stratified datalog¬

•  Evaluation algorithm for stratified datalog¬:

•  For each stratum i = 1, 2, …, do:
– Treat all IDB’s defined in prior strata as EBS
– Evaluate the IDB’s defined in stratum i, using

either the naïve or the semi-naïve algorithm

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)

CT(x,y) :- Node(x), Node(y), not T(x,y)

Does this compute a
minimal model?

Stratified datalog¬

•  Evaluation algorithm for stratified datalog¬:

•  For each stratum i = 1, 2, …, do:
– Treat all IDB’s defined in prior strata as EBS
– Evaluate the IDB’s defined in stratum i, using

either the naïve or the semi-naïve algorithm

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)

CT(x,y) :- Node(x), Node(y), not T(x,y)

Does this compute a
minimal model?

NO:
J1 = { T = transitive closure, CT = its complement}
J2 = { T = all pairs of nodes, CT = empty}

Inflationary-fixpoint datalog¬

Definition. The inflationary fixpoint semantics of P is J = Jn
where n is such that Jn+1 = Jn

Why does there always exists an n
such that Jn = F(Jn)?

Find the inflationary semantics for:

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)
CT(x,y) :- Node(x), Node(y), not T(x,y)

Let P be any datalog¬ program, and I an EDB.
Let TP(J) be the immediate consequence operator.
Let F(J) = J ∪TP(J) be the inflationary immediate consequence operator.

Define the sequence: J0 = ∅, Jn+1 = F(Jn), for n ≥ 0.

Inflationary-fixpoint datalog¬

•  Evaluation for Inflationary-fixpoint datalog¬

•  Use the naïve, of the semi-naïve algorithm

•  Inhibit any optimization that rely on
monotonicity (e.g. out of order execution)

Partial-fixpoint datalog¬,*

Definition. The partial fixpoint semantics of P is J = Jn
where n is such that Jn+1 = Jn, if such an n exists,
undefined otherwise.

Note: there may not exists an n
such that Jn = F(Jn)

Find the partial fixpoint semantics for:

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)
CT(x,y) :- Node(x), Node(y), not T(x,y)

Let P be any datalog¬ program, and I an EDB.
Let TP(J) be the immediate consequence operator.

Define the sequence: J0 = ∅, Jn+1 = TP (Jn), for n ≥ 0.

Summary of Datalog

•  Recursion = easy and fun
•  Recursion + negation = nightmare
•  Powerful optimizations:

–  Incremental view updates
– Magic sets (did not discuss in class)

•  SQL implements limited recursion

