CSEP 544: Lecture 08

Datalog

Announcements

- Homework 4 due tomorrow
- Homework 5 is posted
- Reading assignment due next Monday
- Reading assignment due on March 11:
- C-stores (long), NoSQL (medium),blog (short)

Outline for Tday

- Optimistic Concurrency Control
- Datalog

Review

- Schedule
- Serializable/conflict-serializable
- 2PL
- Strict 2PL
- Phantoms

SQL isolation levels:

- Read uncommitted
- Read committed
- Repeatable reads
- Serializable

Optimistic Concurrency Control Mechanisms

- Pessimistic:
- Locks
- Optimistic
- Timestamp based: basic, multiversion
- Validation
- Snapshot isolation: a variant of both

Timestamps

- Each transaction receives a unique timestamp TS(T)

Could be:

- The system's clock
- A unique counter, incremented by the scheduler

Timestamps

Main invariant:

The timestamp order defines the serialization order of the transaction

Will generate a schedule that is view-equivalent to a serial schedule, and recoverable

Main Idea

- For any two conflicting actions, ensure that their order is the serialized order:
Check WT, RW, WW conflicts
- $w_{U}(X) \ldots r_{T}(X)$

Read too late?

- $r_{U}(X) \ldots w_{T}(X)$
- $\mathrm{w}_{\mathrm{U}}(\mathrm{X}) \ldots \mathrm{w}_{\mathrm{T}}(\mathrm{X})$

Write too late?

When T requests $r_{T}(X)$, need to check $T S(U) \leq T S(T)$

Timestamps

With each element X, associate

- $R T(X)=$ the highest timestamp of any transaction U that read X
- WT(X) = the highest timestamp of any transaction U that wrote X
- $C(X)=$ the commit bit: true when transaction with highest timestamp that wrote X committed

If element = page, then these are associated with each page X in the buffer pool

Simplified Timestamp-based Scheduling

Start discussion with transactions that do not abort

Transaction wants to read element X
If $\mathrm{WT}(\mathrm{X})>\mathrm{TS}(\mathrm{T})$ then ROLLBACK
Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to write element X
If RT(X) > TS(T) then ROLLBACK
Else if $W T(X)>T S(T)$ ignore write \& continue (Thomas Write Rule) Otherwise, WRITE and update WT $(X)=T S(T)$

Details

Read too late:

- T wants to read X , and $\mathrm{WT}(\mathrm{X})>\mathrm{TS}(\mathrm{T})$

Need to rollback T !

Details

Write too late:

- T wants to write X , and $\mathrm{RT}(\mathrm{X})>\mathrm{TS}(\mathrm{T})$

Need to rollback T !

Details

Write too late, but we can still handle it:

- T wants to write X , and $R T(X) \leq T S(T)$ but $W T(X)>T S(T)$
$\operatorname{START}(T) \ldots \operatorname{START}(\mathrm{V}) \ldots \mathrm{w}_{\mathrm{V}}(\mathrm{X}) \ldots \mathrm{w}_{\mathrm{T}}(\mathrm{X})$

Don't write X at all !
 (Thomas' rule)

View-Serializability

- By using Thomas' rule we do not obtain a conflict-serializable schedule
- But we obtain a view-serializable schedule

Ensuring Recoverable Schedules

- Review:
- Schedule that avoids cascading aborts
- Use the commit bit $\mathrm{C}(\mathrm{X})$ to keep track if the transaction that last wrote X has committed

Ensuring Recoverable Schedules

Read dirty data:

- T wants to read X, and WT(X) < TS(T)
- Seems OK, but...
$\operatorname{START}(U) \ldots \operatorname{START}(T) \ldots w_{U}(X) \ldots r_{T}(X) . . . \operatorname{ABORT}(U)$
If $C(X)=$ false, T needs to wait for it to become true

Ensuring Recoverable Schedules

Thomas' rule needs to be revised:

- T wants to write X , and $\mathrm{WT}(\mathrm{X})>\mathrm{TS}(\mathrm{T})$
- Seems OK not to write at all, but ...

$\operatorname{START}(T) \ldots \operatorname{START}(U) \ldots w_{U}(X) \ldots w_{T}(X) \ldots \operatorname{ABORT}(U)$

If $C(X)=$ false,T needs to wait for it to become true

Timestamp-based Scheduling

Transaction wants to READ element X
If $W T(X)>T S(T)$ then ROLLBACK
Else If C(X) = false, then WAIT
Else READ and update RT(X) to larger of $T S(T)$ or $R T(X)$

```
Transaction wants to WRITE element X
    If RT(X) > TS(T) then ROLLBACK
    Else if WT(X) > TS(T)
            Then If C(X) = false then WAIT
            else IGNORE write (Thomas Write Rule)
    Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false
```


Summary of Timestamp-based Scheduling

- View-serializable
- Recoverable
- Even avoids cascading aborts
- Does NOT handle phantoms

Multiversion Timestamp

- When transaction T requests $r(X)$ but $\mathrm{WT}(\mathrm{X})>\mathrm{TS}(\mathrm{T})$, then T must rollback
- Idea: keep multiple versions of X : $X_{t}, X_{t-1}, X_{t-2}, \ldots$
$T S\left(X_{t}\right)>T S\left(X_{t-1}\right)>T S\left(X_{t-2}\right)>\ldots$
- Let T read an older version, with appropriate timestamp

Details

- When $\mathrm{w}_{\mathrm{T}}(\mathrm{X})$ occurs, create a new version, denoted X_{t} where $t=T S(T)$
- When $r_{T}(X)$ occurs, find most recent version X_{t} such that $t<T S(T)$ Notes:
- $\mathrm{WT}\left(\mathrm{X}_{\mathrm{t}}\right)=\mathrm{t}$ and it never changes
$-R T\left(X_{t}\right)$ must still be maintained to check legality of writes
- Can delete X_{t} if we have a later version $X_{t 1}$ and all active transactions \dagger have $T S(T)>t 1$

Example (in class)

$$
\begin{array}{llll}
\mathrm{X}_{3} & \mathrm{X}_{9} & \mathrm{X}_{12} & \mathrm{X}_{18}
\end{array}
$$

R6(X) -- what happens?
W14(X) - what happens?
R15(X) - what happens?
W5(X) - what happens?
When can we delete X_{3} ?

Summary of Timestamp-based Scheduling

- View-serializable
- Recoverable
- Even avoids cascading aborts
- DOES handle phantoms

Concurrency Control by Validation

- Each transaction T defines a read set $R S(T)$ and a write set $\mathrm{WS}(\mathrm{T})$
- Each transaction proceeds in three phases:
- Read all elements in RS(T). Time $=$ START(T)
- Validate (may need to rollback). Time $=\operatorname{VAL}(T)$
- Write all elements in WS(T). Time $=$ FIN(T)

Main invariant: the serialization order is VAL(T)

Avoid $r_{T}(X)-W_{U}(X)$ Conflicts

IF $\operatorname{RS}(\mathrm{T}) \cap \mathrm{WS}(\mathrm{U})$ and $\mathrm{FIN}(\mathrm{U})>\operatorname{START}(\mathrm{T})$
(U has validated and U has not finished before T begun)
Then ROLLBACK(T)

Avoid $w_{T}(X)-w_{U}(X)$ Conflicts

START(U)

conflicts

IF $\mathrm{WS}(\mathrm{T}) \cap \mathrm{WS}(\mathrm{U})$ and $\mathrm{FIN}(\mathrm{U})>\operatorname{VAL}(\mathrm{T})$
(U has validated and U has not finished before T validates)
Then ROLLBACK(T)

Snapshot Isolation

- Another optimistic concurrency control method
- Very efficient, and very popular
- Oracle, Postgres, SQL Server 2005

WARNING: Not serializable, yet ORACLE uses it even for SERIALIZABLE transactions !

Snapshot Isolation Rules

- Each transactions receives a timestamp TS(T)
- Tnx sees the snapshot at time TS(T) of database
- When T commits, updated pages written to disk
- Write/write conflicts are resolved by the "first committer wins" rule

Snapshot Isolation (Details)

- Multiversion concurrency control:
- Versions of X : $\mathrm{X}_{\mathrm{t} 1}, \mathrm{X}_{\mathrm{t} 2}, \mathrm{X}_{\mathrm{t} 3}, \ldots$
- When T reads X, return $X_{T S(T)}$.
- When T writes X (to avoid lost update):
- If latest version of X is TS(T) then proceed
- If $C(X)=$ true then abort
- If $C(X)=$ false then wait

What Works and What Not

- No dirty reads (Why ?)
- No unconsistent reads (Why ?)
- No lost updates ("first committer wins")
- Moreover: no reads are ever delayed
- However: read-write conflicts not caught !

Write Skew

```
T1:
    READ(X);
    if X >= 50
        then Y = -50; WRITE(Y)
    COMMIT
```


T2:

READ(Y);
if $Y>=50$
then $\mathrm{X}=-50$; $\operatorname{WRITE}(\mathrm{X})$
COMMIT

In our notation:

$$
\mathrm{R}_{1}(\mathrm{X}), \mathrm{R}_{2}(\mathrm{Y}), \mathrm{W}_{1}(\mathrm{Y}), \mathrm{W}_{2}(\mathrm{X}), \mathrm{C}_{1}, \mathrm{C}_{2}
$$

Starting with $X=50, Y=50$, we end with $X=-50, Y=-50$.
Non-serializable !!!

Write Skews Can Be Serious

- ACIDland had two viceroys, Delta and Rho
- Budget had two registers: taXes, and spend \underline{Y} ng
- They had HIGH taxes and LOW spending...

```
Delta:
    READ(X);
    if X= 'HIGH'
        then { Y= 'HIGH';
            WRITE(Y) }
    COMMIT
```

```
Rho:
    READ(Y);
    if Y= 'LOW'
        then {X= 'LOW';
        WRITE(X) }
    COMMIT
```


Tradeoffs

- Pessimistic Concurrency Control (Locks):
- Great when there are many conflicts
- Poor when there are few conflicts
- Optimistic Concurrency Control (Timestamps):
- Poor when there are many conflicts (rollbacks)
- Great when there are few conflicts
- Compromise
- READ ONLY transactions \rightarrow timestamps
- READ/WRITE transactions \rightarrow locks

Commercial Systems

- DB2: Strict 2PL
- SQL Server:
- Strict 2PL for standard 4 levels of isolation
- Multiversion concurrency control for snapshot isolation
- PostgreSQL, Oracle
- Snapshot isolation even for SERIALIZABLE
- Postgres introduced novel, serializable scheduler in postgres 9.1

Datalog

Queries + Iterations

- For 30 years: a backwater of SQL
- Today: huge interest due to big data analytics
- Very few commercial datalog systems (e.g. Logicblox)
- Much larger number of hand-crafted applications (e.g. iteration + map-reduce)

Datalog

Review (from Lecture 2)

- Fact
- Rule
- Head and body of a rule
- Existential variable
- Head variable

Review

```
Facts
Actor(344759, 'Douglas', 'Fowley'). Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, 'A Night in Armour', 1910).
Movie(29000, 'Arizona', 1940). Movie(29445, 'Ave Maria', 1940).
```

Rules

Facts $=$ tuples in the database Rules = queries

Review

```
Facts
Actor(344759,'Douglas', 'Fowley'). Casts(344759, 29851). Casts(355713, 29000). Movie(7909, 'A Night in Armour', 1910). Movie(29000, 'Arizona', 1940). Movie(29445, 'Ave Maria', 1940).
```

Facts = tuples in the database Rules = queries

Review

Facts

Actor(344759,'Douglas’, 'Fowley'). Casts(344759, 29851). Casts $(355713,29000)$. Movie(7909, 'A Night in Armour', 1910). Movie(29000, 'Arizona', 1940). Movie(29445, 'Ave Maria', 1940).

Rules

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, I) :- Actor(z,f,I), Casts(z,x), Movie(x,y,'1940').

Facts = tuples in the database
Rules = queries

Review

Facts
Actor(344759,'Douglas', 'Fowley'). Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, 'A Night in Armour', 1910).
Movie(29000, 'Arizona', 1940). Movie(29445, 'Ave Maria', 1940).

Rules

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, I) :- Actor(z,f,I), Casts(z,x), Movie(x,y,'1940').

$$
\begin{aligned}
& \text { Q3(f,l) :- Actor(z,f,I), Casts(z,x1), Movie(x1,y1,1910), } \\
& \text { Casts(z,x2), Movie(x2,y2,1940) }
\end{aligned}
$$

Facts $=$ tuples in the database Rules = queries

Review

Facts

Actor(344759,'Douglas', 'Fowley').
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, 'A Night in Armour', 1910).
Movie(29000, 'Arizona', 1940).
Movie(29445, 'Ave Maria', 1940).

Rules

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, I) :- Actor(z,f,I), Casts(z,x), Movie(x,y,'1940').

$$
\begin{aligned}
& \text { Q3(f,I) :- Actor(z,f,I), Casts(z,x1), Movie(x1,y1,1910), } \\
& \text { Casts(z,x2), Movie(x2,y2,1940) }
\end{aligned}
$$

Facts $=$ tuples in the database Rules = queries

Extensional Database Predicates = EDB Intensional Database Predicates = IDB

Review

Simple datalog programs

What does it compute?

Simple datalog programs

What does it compute?

Simple datalog programs

R encodes a graph

$$
\begin{aligned}
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

What does it compute?

First iteration: $\mathrm{T}=$

1	2
2	1
2	3
1	4
3	4
4	5

Simple datalog programs

R encodes a graph
$R=$

1	2
2	1
2	3
1	4
3	4
4	5

$$
\begin{aligned}
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

First iteration: $\mathrm{T}=$

1	2
2	1
2	3
1	4
3	4
4	5

Second iteration:
T =

1	2
2	1
2	3
1	4
3	4
4	5
1	1
2	2
1	3
2	4
1	5
3	5

What does it compute?

Simple datalog programs

$R=$

1	2
2	1
2	3
1	4
3	4
4	5

$$
\begin{aligned}
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

What does it compute?

First iteration:
Initially:
T is empty.

Second itera

$T=$| 1 | 2 |
| :---: | :---: |
| 2 | 1 |
| 2 | 3 |
| 1 | 4 |
| 3 | 4 |
| 4 | 5 |
| 1 | 1 |
| 2 | 2 |
| 1 | 3 |
| 2 | 4 |
| 1 | 5 |
| 3 | 5 |

Third iteration:
$\mathrm{T}=$
1 2 2 1 2 3 1 4 3 4 4 5 1 1 2 2 1 3 2 4 1 5 3 5 2 5
:---

Simple datalog programs

$R=$

1	2
2	1
2	3
1	4
3	4
4	5

$$
\begin{aligned}
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

What does it compute?

First iteration:
Initially:
T is empty.

Second itera

$T=$| 1 | 2 |
| :---: | :---: |
| 2 | 1 |
| 2 | 3 |
| 1 | 4 |
| 3 | 4 |
| 4 | 5 |
| 1 | 1 |
| 2 | 2 |
| 1 | 3 |
| 2 | 4 |
| 1 | 5 |
| 3 | 5 |

Third iteration:
T =

1	2
2	1
2	3
1	4
3	4
4	5
1	1
2	2
1	3
2	4
1	5
3	5
2	5

Discovered
Discovered
twice
Done

Simple datalog programs

Alternative ways to compute TC:

> | $\mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y})$ |
| :--- |
| $\mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})$ |

$$
\begin{aligned}
& \mathrm{T}(x, y):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{T}(\mathrm{x}, \mathrm{z}), \mathrm{R}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

Right linear

Left linear

$$
\begin{aligned}
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{T}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

Non-linear

Discuss pros/cons in class

Simple datalog programs

Compute TC (ignoring color):
R encodes a colored graph

$\mathrm{R}=$

1	Red	2
2	Blue	1
2	Green	3
1	Blue	4
3	Red	4
4	Yellow	5

Compute pairs of nodes connected by the same color (e.g. $(2,4)$)

Simple datalog programs

Compute TC (ignoring color):
R encodes a colored graph

$\mathrm{R}=$

1	Red	2
2	Blue	1
2	Green	3
1	Blue	4
3	Red	4
4	Yellow	5

Simple datalog programs

Compute TC (ignoring color):
R encodes a colored graph

$\mathrm{R}=$

1	Red	2
2	Blue	1
2	Green	3
1	Blue	4
3	Red	4
4	Yellow	5

$\mathrm{R}=$

$$
\begin{aligned}
& T(x, c, y):-R(x, c, y) \\
& T(x, c, y):-R(x, c, z), T(z, c, y) \\
& \text { Answer(x,y) :- }(x, c, y) \\
& \hline
\end{aligned}
$$

Simple datalog programs

R, G, B encodes a 3-colored graph

$$
\begin{aligned}
& S(x, y):-B(x, y) \\
& S(x, y):-T(x, z), B(z, y) \\
& T(x, y):-S(x, z), R(z, y) \\
& T(x, y):-S(x, z), G(z, y) \\
& \text { Answer(x,y) :-T(x,y)}
\end{aligned}
$$

$G=$| 2 | 3 |
| :--- | :--- |

$B=$| 2 | 1 |
| :--- | :--- |
| 1 | 4 |

Simple datalog programs

R, G, B encodes a 3-colored graph

What does this program compute in general?

$$
\begin{aligned}
& S(x, y):-B(x, y) \\
& S(x, y):-T(x, z), B(z, y) \\
& T(x, y):-S(x, z), R(z, y) \\
& T(x, y):-S(x, z), G(z, y) \\
& \text { Answer(x,y) :-T(x,y)}
\end{aligned}
$$

$G=$| 2 | 3 |
| :--- | :--- |

$B=$| 2 | 1 |
| :--- | :--- |
| 1 | 4 |

Answer: it computes pairs of nodes connected by a path spelling out these regular expressions:

- $S=(B .(R \text { or } G))^{*} . B$
- $\quad T=(B \cdot(R \text { or } G))^{+}$

Syntax of Datalog Programs

The schema consists of two sets of relations:

- Extensional Database (EDB): $\mathrm{R}_{1}, \mathrm{R}_{2}, \ldots$
- Intentional Database (IDB): $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots$

A datalog program \mathbf{P} has the form:

$$
\text { P: } \begin{aligned}
& P_{i 1}\left(x_{11}, x_{12}, \ldots\right):- \text { body }_{1} \\
& P_{i 2}\left(x_{21}, x_{22}, \ldots\right):- \text { body }_{2}
\end{aligned}
$$

- Each head predicate P_{i} is an IDB
- Each body is a conjunction of IDB and/or EDB predicates
- See lecture 2

Naïve Datalog Evaluation Algorithm

Datalog program:

$$
\begin{aligned}
& \mathrm{P}_{i 1}:- \text { body }_{1} \\
& \mathrm{P}_{\mathrm{i} 2}:- \text { body }_{2}
\end{aligned}
$$

Naïve Datalog Evaluation Algorithm

Datalog program:

$\quad \rightarrow \quad \begin{aligned} & P_{1}:-\operatorname{body}_{11} \cup \operatorname{body}_{12} \cup \ldots \\ & P_{2}:-\operatorname{body}_{21} \cup \operatorname{body}_{22} \cup \ldots \\ & \ldots\end{aligned}$
Group by
IDB predicate

Naïve Datalog Evaluation Algorithm

Datalog program:

Naïve Datalog Evaluation Algorithm

Datalog program:

$\quad \rightarrow$	$P_{1}:-\mathrm{SPJU}_{1}$ $\mathrm{P}_{2}:-\mathrm{SPJU}_{2}$ \ldots.
Each rule is a	
Select-Project-Join-Union query	

$$
\begin{array}{ll}
\text { Example: } & \begin{array}{l}
T(x, y):-R(x, y) \\
T(x, y):-R(x, z), T(z, y)
\end{array}
\end{array}
$$

\rightarrow
 ?

Naïve Datalog Evaluation Algorithm

Datalog program:

Example: $\begin{aligned} & \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\ & \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})\end{aligned}$
$\rightarrow \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \cup \Pi_{\mathrm{xy}}(\mathrm{R}(\mathrm{x}, \mathrm{z}) \bowtie \mathrm{T}(\mathrm{z}, \mathrm{y}))$

Naïve Datalog Evaluation Algorithm

Datalog program:

$\begin{aligned} & \mathrm{P}_{\mathrm{in} 1}:- \text { body }_{1} \\ & \mathrm{P}_{\mathrm{i} 2}:- \text { body }_{2} \end{aligned}$

$\Rightarrow \quad$| $\mathrm{P}_{1}:-\mathrm{SPJU}_{1}$ |
| :--- |
| $\mathrm{P}_{2}:-\mathrm{SPJU}_{2}$ |
| \ldots. |

Each rule is a
Select-Project-Join-Union query

Naïve datalog evaluation algorithm:

$$
\begin{aligned}
& \mathrm{P}_{1}=\mathrm{P}_{2}=\ldots=\varnothing \\
& \text { Loop } \\
& \quad \mathrm{NewP}_{1}=\text { SPJU }_{1} ; \operatorname{NewP}_{2}=\operatorname{SPJU}_{2} ; \ldots \\
& \quad \text { if }\left(\mathrm{NewP}_{1}=\mathrm{P}_{1} \text { and } \text { NewP }_{2}=\mathrm{P}_{2} \text { and } \ldots\right) \\
& \text { then exit } \\
& \mathrm{P}_{1}=\text { NewP }_{1} ; \mathrm{P}_{2}=\operatorname{NewP}_{2} ; \ldots \\
& \text { Endloop }
\end{aligned}
$$

Example:

$$
\begin{aligned}
& T(x, y):-R(x, y) \\
& T(x, y):-R(x, z), T(z, y)
\end{aligned}
$$

$$
\rightarrow \quad T(x, y):-R(x, y) \cup \Pi_{x y}(R(x, z) \bowtie T(z, y))
$$

Naïve Datalog Evaluation Algorithm

Datalog program:
 IDB predicate

\rightarrow	$P_{1}:-$ $P_{2}:-$ \ldots \ldots
EPJUU	
Each rule is a	
Select-Project-Join-Union query	

Naïve datalog evaluation algorithm:

$$
\begin{aligned}
& P_{1}=P_{2}=\ldots=\varnothing \\
& \text { Loop } \\
& \quad \text { NewP }_{1}=\text { SPJU }_{1} ; \text { NewP }_{2}=\text { SPJU }_{2} ; \ldots \\
& \text { if }\left(\operatorname{NewP}_{1}=P_{1} \text { and } \text { NewP }_{2}=P_{2} \text { and } \ldots\right) \\
& \quad \text { then exit } \\
& P_{1}=\text { NewP }_{1} ; P_{2}=\operatorname{NewP}_{2} ; \ldots \\
& \text { Endloop }
\end{aligned}
$$

Example:

$$
\begin{aligned}
& T(x, y):-R(x, y) \\
& T(x, y):-R(x, z), T(z, y)
\end{aligned}
$$

$$
\rightarrow \quad T(x, y):-R(x, y) \cup \Pi_{x y}(R(x, z) \bowtie T(z, y))
$$

T=\varnothing
T=\varnothing
Loop
Loop
NewT(x,y) = R(x,y) U \mp@subsup{\Pi}{xy}{}(R(x,z)\bowtieT(z,y))
NewT(x,y) = R(x,y) U \mp@subsup{\Pi}{xy}{}(R(x,z)\bowtieT(z,y))
if (NewT = T)
if (NewT = T)
then exit
then exit
T = NewT
T = NewT
Endloop
Endloop

Discussion

- A datalog program always terminates (why?)
- What is the running time of a datalog program as a function of the input database?

Discussion

- A datalog program always terminates (why?)
- Number of possible tuples in IDB is |Dom|arity(R)
- What is the running time of a datalog program as a function of the input database?
- Number of iteration is $\leq|D o m|$ arity (R)
- Each iteration is a relational query

Problem with the Naïve Algorithm

- The same facts are discovered over and over again
- The semi-naïve algorithm tries to reduce the number of facts discovered multiple times

Incremental View Maintenance

Let V be a view computed by one datalog rule (no recursion)
V :- body

If (some of) the relations are updated: $R_{1} \leftarrow R_{1} \cup \Delta R_{1}, R_{1} \leftarrow R_{2} \cup \Delta R_{2}, \ldots$
Then the view is also modified as follows: $\mathrm{V} \leftarrow \mathrm{V} \cup \Delta \mathrm{V}$

Incremental view maintenance:
 Compute $\Delta \mathrm{V}$ without having to recompute V

Incremental View Maintenance

Example 1:

$V(x, y):-R(x, z), S(z, y)$
If $R \leftarrow R \cup \Delta R$ then what is $\Delta V(x, y)$?

Incremental View Maintenance

Example 1:

$V(x, y):-R(x, z), S(z, y) \quad$ If $R \leftarrow R \cup \Delta R$ then what is $\Delta V(x, y)$?

$$
\Delta V(x, y):-\Delta R(x, z), S(z, y)
$$

Incremental View Maintenance

Example 2:

$V(x, y):-R(x, z), S(z, y)$
If $R \leftarrow R \cup \Delta R$ and $S \leftarrow S \cup \Delta S$ then what is $\Delta V(x, y)$?

Incremental View Maintenance

Example 2:

$V(x, y):-R(x, z), S(z, y)$
If $R \leftarrow R \cup \Delta R$ and $S \leftarrow S \cup \Delta S$ then what is $\Delta V(x, y)$?

$$
\begin{aligned}
& \Delta V(x, y):-\Delta R(x, z), S(z, y) \\
& \Delta V(x, y):-R(x, z), \Delta S(z, y) \\
& \Delta V(x, y):-\Delta R(x, z), \Delta S(z, y)
\end{aligned}
$$

Incremental View Maintenance

Example 3:

$V(x, y):-T(x, z), T(z, y)$
If $T \leftarrow T \cup \Delta T$
then what is $\Delta \mathrm{V}(\mathrm{x}, \mathrm{y})$?

Incremental View Maintenance

Example 3:

$\mathrm{V}(\mathrm{x}, \mathrm{y}):-\mathrm{T}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})$
If $T \leftarrow T \cup \Delta T$
then what is $\Delta \mathrm{V}(\mathrm{x}, \mathrm{y})$?

$$
\begin{aligned}
& \Delta V(x, y):-\Delta T(x, z), T(z, y) \\
& \Delta V(x, y):-\mathrm{T}(\mathrm{x}, \mathrm{z}), \Delta \mathrm{T}(\mathrm{z}, \mathrm{y}) \\
& \Delta \mathrm{V}(\mathrm{x}, \mathrm{y}):-\Delta \mathrm{T}(\mathrm{x}, \mathrm{z}), \Delta \mathrm{T}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

Semi-naïve Evaluation Algorithm

- Naïve algorithm:

$$
\begin{aligned}
& P_{0}=\text { InitialValue } \\
& \text { Repeat } \\
& \quad P_{k}=f\left(P_{k-1}\right) \\
& \text { Until no-more-change }
\end{aligned}
$$

- Semi-naïve algorithm

Semi-naïve Evaluation Algorithm

- Naïve algorithm:

$$
\begin{aligned}
& P_{0}=\text { InitialValue } \\
& \text { Repeat } \\
& \quad P_{k}=f\left(P_{k-1}\right) \\
& \text { Until no-more-change }
\end{aligned}
$$

- Semi-naïve algorithm
$P_{0}=\Delta_{0}=$ InitialValue Repeat

$$
\begin{aligned}
& \Delta_{k}=\Delta f\left(P_{k-1}, \Delta_{k-1}\right)-P_{k-1} \\
& P_{k}=P_{k-1} \cup \Delta_{k}
\end{aligned}
$$

Until no-more-change

Semi-naïve Evaluation Algorithm

Separate the Datalog program into the non-recursive, and the recursive part. Each P_{i} defined by non-recursive-SPJU i_{i} and (recursive-)SPJU ${ }_{\text {i }}$.

```
P
Loop
    \DeltaP
    \DeltaP
    if (\Delta\mp@subsup{P}{1}{}=\varnothing\mathrm{ and }\Delta\mp@subsup{P}{2}{}=\varnothing\mathrm{ and ...)}
        then break
    P
Endloop
```


Semi-naïve Evaluation Algorithm

Separate the Datalog program into the non-recursive, and the recursive part. Each P_{i} defined by non-recursive-SPJU i_{i} and (recursive-)SPJU ${ }_{\text {i }}$.

```
P
Loop
    \Delta\mp@subsup{P}{1}{}=\DeltaSPJU
    \DeltaP
    if (\Delta\mp@subsup{P}{1}{}=\varnothing\mathrm{ and }\Delta\mp@subsup{P}{2}{}=\varnothing\mathrm{ and ...)}
        then break
    P
Endloop
```

Example:

```
T(x,y) :- R(x,y)
    T(x,y) :- R(x,z),T(z,y)
```

```
T= \DeltaT = ? (non-recursive rule)
Loop
    \DeltaT(x,y) = ? (recursive \Delta-rule)
    if (\DeltaT=\varnothing)
        then break
    T=TU\DeltaT
Endloop
```


Semi-naïve Evaluation Algorithm

Separate the Datalog program into the non-recursive, and the recursive part. Each P_{i} defined by non-recursive-SPJU i_{i} and (recursive-)SPJU ${ }_{\text {i }}$.

```
P
Loop
    \Delta\mp@subsup{P}{1}{}=\Delta\mp@subsup{SPJU}{1}{(}+\mp@subsup{P}{1}{},\mp@subsup{P}{2}{}\ldots,\Delta\mp@subsup{P}{1}{},\Delta\mp@subsup{P}{2}{}\ldots)-\mp@subsup{P}{1}{};
    \DeltaP}\mp@subsup{P}{2}{}=\Delta\mp@subsup{SPJU}{2}{(P
    if (\Delta\mp@subsup{P}{1}{}=\varnothing\mathrm{ and }\Delta\mp@subsup{P}{2}{}=\varnothing\mathrm{ and }\ldots)
        then break
    P}\mp@subsup{P}{1}{}=\mp@subsup{P}{1}{}\cup\Delta\mp@subsup{P}{1}{};\mp@subsup{P}{2}{}=\mp@subsup{P}{2}{}\cup\Delta\mp@subsup{P}{2}{};
Endloop
```

Example:

```
T(x,y) :- R(x,y)
    T(x,y) :- R(x,z),T(z,y)
```

```
T(x,y) = \DeltaT(x,y)=R(x,y)
Loop
    \DeltaT(x,y)=R(x,z),\DeltaT(z,y), not T(x,y)
    if ( }\DeltaT=\varnothing
        then break
    T=TU\DeltaT
Endloop
```


Semi-naïve Evaluation Algorithm

Separate the Datalog program into the non-recursive, and the recursive part. Each P_{i} defined by non-recursive-SPJU i_{i} and (recursive-)SPJU ${ }_{\text {i }}$.

```
P
Loop
    \Delta\mp@subsup{P}{1}{}=\Delta\mp@subsup{\operatorname{SPJU}}{1}{}(\mp@subsup{P}{1}{},\mp@subsup{P}{2}{}\ldots,\Delta\mp@subsup{P}{1}{},\Delta\mp@subsup{P}{2}{}\ldots)-\mp@subsup{P}{1}{};
    \DeltaP}\mp@subsup{P}{2}{}=\Delta\mp@subsup{SPJU}{2}{(P
    if (\Delta\mp@subsup{P}{1}{}=\varnothing\mathrm{ and }\Delta\mp@subsup{P}{2}{}=\varnothing\mathrm{ and ...)}
        then break
    P
Endloop
```

Example:

$$
\begin{aligned}
& T(x, y):-R(x, y) \\
& T(x, y):-R(x, z), T(z, y)
\end{aligned}
$$

Note: for any linear datalog programs, the semi-naïve algorithm has only

```
T(x,y) = \DeltaT(x,y)=R(x,y)
Loop
    \DeltaT(x,y)=R(x,z), \DeltaT(z,y), not T(x,y)
    if ( }\DeltaT=\varnothing
        then break
    T=TU\DeltaT
Endloop
```


Simple datalog programs

Simple datalog programs

First iteration:


```
T= \DeltaT = R
Loop
\DeltaT(x,y)=R(x,z),\DeltaT(z,y),not T(x,y)
if ( }\Delta\textrm{T}=\varnothing\mathrm{ )
                                    then break
T=TU\DeltaT
Endloop
```


Simple datalog programs

```
T= \DeltaT = R
```

T= \DeltaT = R
Loop
Loop
\DeltaT(x,y)= R(x,z), \DeltaT(z,y),not T(x,y)
if (}\Delta\textrm{T}=\varnothing
if (}\Delta\textrm{T}=\varnothing
then break
then break
T = T U\DeltaT
T = T U\DeltaT
Endloop

```
Endloop
```

First iteration:
Second iteration:

Simple datalog programs

$\mathrm{T}=$

```
T= \DeltaT = R
```

T= \DeltaT = R
Loop
Loop
\DeltaT(x,y)= R(x,z), \DeltaT(z,y),not T(x,y)
\DeltaT(x,y)= R(x,z), \DeltaT(z,y),not T(x,y)
if (}\Delta\textrm{T}=\varnothing
if (}\Delta\textrm{T}=\varnothing
then break
then break
T = T U\DeltaT
T = T U\DeltaT
Endloop

```
Endloop
```

First iteration:

1	2
1	4
2	1
2	3
3	4
4	5
1	1
1	3
1	5
2	2
2	4
3	5

Second iteration: Third iteration:
 paths of length 4

Discussion of Semi-Naïve Algorithm

- Avoids re-computing some tuples, but not all tuples
- Easy to implement, no disadvantage over naïve
- A rule is called linear if its body contains only one recursive IDB predicate:
- A linear rule always results in a single incremental rule
- A non-linear rule may result in multiple incremental rules

Summary So Far

- Simple syntax for expressing queries with recursion
- Bottom-up evaluation - always terminates
- Naïve evaluation
- Semi-naïve evaluation
- Next:
- Datalog semantics
- Datalog with negation

Semantics of a Datalog Program

Three different, equivalent semantics:

- Minimal model semantics
- Least fixpoint semantics
- Proof-theoretic semantics

Minimal Model Semantics

To each rule r: $P\left(x_{1} \ldots x_{k}\right):-R_{1}(\ldots), R_{2}(\ldots), \ldots$

Minimal Model Semantics

Minimal Model Semantics

To each rule $r: P\left(x_{1} \ldots x_{k}\right):-R_{1}(\ldots), R_{2}(\ldots), \ldots$

Associate the logical sentence Σ_{r} :

$$
\forall z_{1} \ldots \forall z_{n} \cdot\left[\left(R_{1}(\ldots) \wedge R_{2}(\ldots) \wedge \ldots\right) \rightarrow P(\ldots)\right]
$$

Same as: $\forall x_{1} \ldots \forall x_{k} \cdot\left[\exists y_{1} \ldots \exists y_{m} \cdot\left(R_{1}(\ldots) \wedge R_{2}(\ldots) \wedge \ldots\right) \rightarrow P(\ldots)\right]$

Minimal Model Semantics

To each rule $r: P\left(x_{1} \ldots x_{k}\right):-R_{1}(\ldots), R_{2}(\ldots), \ldots$

Associate the logical sentence Σ_{r} :

$$
\forall z_{1} \ldots \forall z_{n} \cdot\left[\left(R_{1}(\ldots) \wedge R_{2}(\ldots) \wedge \ldots\right) \rightarrow P(\ldots)\right]
$$

Same as: $\forall x_{1} \ldots \forall x_{k} \cdot\left[\exists y_{1} \ldots \exists y_{m} \cdot\left(R_{1}(\ldots) \wedge R_{2}(\ldots) \wedge \ldots\right) \rightarrow P(\ldots)\right]$

Definition. If \mathbf{P} is a datalog program, Σ_{P} is the set of all logical sentences associated to its rules.

Minimal Model Semantics

To each rule $r: \quad P\left(x_{1} \ldots x_{k}\right):-R_{1}(\ldots), R_{2}(\ldots), \ldots$

Associate the logical sentence Σ_{r} :

$$
\forall z_{1} \ldots \forall z_{n} \cdot\left[\left(R_{1}(\ldots) \wedge R_{2}(\ldots) \wedge \ldots\right) \rightarrow P(\ldots)\right]
$$

Same as: $\forall x_{1} \ldots \forall x_{k} \cdot\left[\exists y_{1} \ldots \exists y_{m} \cdot\left(R_{1}(\ldots) \wedge R_{2}(\ldots) \wedge \ldots\right) \rightarrow P(\ldots)\right]$

Definition. If \mathbf{P} is a datalog program, Σ_{P} is the set of all logical sentences associated to its rules.

Example. Rule: $T(x, y):-R(x, z), T(z, y)$ Sentence: $\forall x . \forall y . \forall z .(R(x, z) \wedge T(z, y) \rightarrow T(x, y))$ $\equiv \forall x \cdot \forall y \cdot(\exists z \cdot R(x, z) \wedge T(z, y) \rightarrow T(x, y))$

Minimal Model Semantics

Definition. A pair (I, J) where I is an EDB and J is an IDB is a model for P, if $(I, J) \vDash \Sigma_{P}$

Definition. Given an EDB database instance I and a datalog program \mathbf{P}, the minimal model, denoted $J=\mathbf{P}(\mathrm{I})$ is a minimal database instance J s.t. $(\mathrm{I}, \mathrm{J}) \vDash \Sigma_{\mathbf{P}}$

Theorem. The minimal model always exists, and is unique.

Minimal Model Semantics

Definition. A pair $(1, J)$ where I is an EDB and J is an IDB is a model for P, if $(1, J) \vDash \Sigma_{P}$

Definition. Given an EDB database instance I and a datalog program \mathbf{P}, the minimal model, denoted $J=P(I)$ is a minimal database instance J s.t. $(I, J) \vDash \Sigma_{p}$

Theorem. The minimal model always exists, and is unique.

Minimal Model Semantics

Definition. A pair (I, J) where I is an EDB and J is an IDB is a model for P, if $(I, J) \vDash \Sigma_{P}$

Definition. Given an EDB database instance I and a datalog program \mathbf{P}, the minimal model, denoted $J=P(I)$ is a minimal database instance J s.t. $(I, J) \vDash \Sigma_{P}$

Theorem. The minimal model always exists, and is unique.

Minimal Model Semantics

Definition. A pair (I, J) where I is an EDB and J is an IDB is a model for P, if $(I, J) \vDash \Sigma_{P}$

Definition. Given an EDB database instance I and a datalog program \mathbf{P}, the minimal model, denoted $J=P(I)$ is a minimal database instance J s.t. $(I, J) \vDash \Sigma_{P}$

Theorem. The minimal model always exists, and is unique.

Example:			$\begin{aligned} & \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\ & \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y}) \end{aligned}$		1	2	$\mathrm{T}=$	
					3	4	1	1
Which of these ID Which are minima			T=				1	2
			1	2	4	5	1	3
			2	3	1	3	1	4
			3	4	2	4	1	5
					3	5
$\mathrm{R}=$	1	2	4	5	1	4	\ldots	...
	2	3	1	3	2	5	5	4
	3	4	2	4	2	5	5	5
	4	5	3	5	1	5	All 25 pairs of nodes	

Minimal Fixpoint Semantics

Definition. Fix an EDB I, and a datalog program \mathbf{P}. The immediate consequence operator T_{p} is defined as follows. For any IDB J:
$T_{p}(J)=$ all IDB facts that are immediate consequences from I and J.

Fact. For any datalog program P, the immediate consequence operator is monotone. In other words, if $J_{1} \subseteq J_{2}$ then $T_{p}\left(J_{1}\right) \subseteq T_{p}\left(J_{2}\right)$.

Minimal Fixpoint Semantics

Definition. Fix an EDB I, and a datalog program \mathbf{P}.
The immediate consequence operator T_{P} is defined as follows.
For any IDB J:
$T_{p}(J)=$ all IDB facts that are immediate consequences from I and J .

Fact. For any datalog program P, the immediate consequence operator is monotone. In other words, if $\mathrm{J}_{1} \subseteq \mathrm{~J}_{2}$ then $\mathrm{T}_{\mathrm{P}}\left(\mathrm{J}_{1}\right) \subseteq \mathrm{T}_{\mathrm{p}}\left(\mathrm{J}_{2}\right)$.

Theorem. The immediate consequence operator has a unique, minimal fixpoint J : fix $\left(T_{p}\right)=J$, where J is the minimal instance with the property $T_{p}(J)=J$.

Proof: using Knaster-Tarski's theorem for monotone functions.
The fixpoint is given by:

$$
\operatorname{fix}\left(T_{p}\right)=J_{0} \cup J_{1} \cup J_{2} \cup \ldots \text { where } J_{0}=\varnothing, \quad J_{k+1}=T_{p}\left(J_{k}\right)
$$

Minimal Fixpoint Semantics

$$
\begin{aligned}
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

$\mathrm{R}=$

1	2
2	3
3	4
4	5

$J_{1}=T_{P}\left(J_{0}\right)$

1	2
2	3
3	4
4	5

$J_{3}=T_{P}\left(J_{2}\right)$

1	2
2	3
3	4
4	5
1	3
2	4
3	5
1	4
2	5

$$
J_{4}=T_{p}\left(J_{3}\right)
$$

1	2
2	3
3	4
4	5
1	3
2	4
3	5

1	2
2	3
3	4
4	5
1	3
2	4
3	5
1	4
2	5
1	5

Proof Theoretic Semantics

Every fact in the IDB has a derivation tree, or proof tree justifying its existence.

$$
\begin{aligned}
& T(x, y):-R(x, y) \\
& T(x, y):-R(x, z), T(z, y)
\end{aligned}
$$

Adding Negation: Datalog ${ }^{-}$

Example: compute the complement of the transitive closure

$$
\begin{aligned}
& T(x, y):-R(x, y) \\
& T(x, y):-T(x, z), R(z, y) \\
& C T(x, y):-\operatorname{Node}(x), \operatorname{Node}(y), \operatorname{not} T(x, y)
\end{aligned}
$$

What does this mean??

Recursion and Negation Don't Like Each Other

EDB: $I=\{R(a)\}$

$$
\begin{aligned}
& S(x):-R(x), \operatorname{not} T(x) \\
& T(x):-R(x), \operatorname{not} S(x) \\
& \hline
\end{aligned}
$$

Which IDBs are models of \mathbf{P} ?

$$
J_{1}=\{ \} \quad J_{2}=\{S(a)\} \quad J_{3}=\{T(a)\} \quad J_{4}=\{S(a), T(a)\}
$$

Recursion and Negation Don't Like Each Other

EDB: $I=\{R(a)\}$

$$
\begin{aligned}
& S(x):-R(x), \operatorname{not} T(x) \\
& T(x):-R(x), \operatorname{not} S(x) \\
& \hline
\end{aligned}
$$

Which IDBs are models of \mathbf{P} ?

$$
J_{1}=\{ \} \quad J_{2}=\{S(a)\} \quad J_{3}=\{T(a)\} \quad J_{4}=\{S(a), T(a)\}
$$

Recursion and Negation Don't Like Each Other

EDB: $\quad I=\{R(a)\}$

$$
\begin{aligned}
& S(x):-R(x), \operatorname{not} T(x) \\
& T(x):-R(x), \operatorname{not} S(x) \\
& \hline
\end{aligned}
$$

Which IDBs are models of \mathbf{P} ?

$$
J_{1}=\{ \} \quad J_{2}=\{S(a)\} \quad J_{3}=\{T(a)\} \quad J_{4}=\{S(a), T(a)\}
$$

Yes: the facts in J_{2} are $R(a), S(a), \neg T(a)$
and both rules are true.

Recursion and Negation Don't Like Each Other

EDB: $\quad I=\{R(a)\}$

$$
\begin{aligned}
& S(x):-R(x), \operatorname{not} T(x) \\
& T(x):-R(x), \operatorname{not} S(x) \\
& \hline
\end{aligned}
$$

Which IDBs are models of \mathbf{P} ?

$$
J_{1}=\{ \} \quad J_{2}=\{S(a)\} \quad J_{3}=\{T(a)\} \quad J_{4}=\{S(a), T(a)\}
$$

Recursion and Negation Don't Like Each Other

EDB: $\quad I=\{R(a)\}$

$$
\begin{aligned}
& S(x):-R(x), \text { not T(x) } \\
& T(x):-R(x), \operatorname{not} S(x) \\
& \hline
\end{aligned}
$$

Which IDBs are models of \mathbf{P} ?

$$
J_{1}=\{ \} \quad J_{2}=\{S(a)\} \quad J_{3}=\{T(a)\} \quad J_{4}=\{S(a), T(a)\}
$$

Recursion and Negation Don't Like Each Other

EDB: $\quad I=\{R(a)\}$

$$
\begin{aligned}
& S(x):-R(x), \operatorname{not} T(x) \\
& T(x):-R(x), \operatorname{not} S(x) \\
& \hline
\end{aligned}
$$

Which IDBs are models of \mathbf{P} ?

$$
J_{2}=\{S(a)\}
$$

$$
J_{3}=\{T(a)\}
$$

$$
J_{4}=\{S(a), T(a)\}
$$

There is no minimal model!

Recursion and Negation Don't Like Each Other

EDB: $\quad I=\{R(a)\}$

$$
\begin{aligned}
& S(x):-R(x), \operatorname{not} T(x) \\
& T(x):-R(x), \operatorname{not} S(x)
\end{aligned}
$$

Which IDBs are models of \mathbf{P} ?

$$
J_{1}=\{ \} \quad J_{2}=\{\mathrm{S}(\mathrm{a})\} \quad \mathrm{J}_{3}=\{\mathrm{T}(\mathrm{a})\} \quad \mathrm{J}_{4}=\{\mathrm{S}(\mathrm{a}), \mathrm{T}(\mathrm{a})\}
$$

There is no minimal model!

There is no minimal fixpoint! (Why does Knaster-Tarski's theorem fail?)

Adding Negation: datalog ${ }^{-}$

- Solution 1: Stratified Datalog ${ }^{-}$
- Insist that the program be stratified: rules are partitioned into strata, and an IDB predicate that occurs only in strata $\leq k$ may be negated in strata $\geq k+1$
- Solution 2: Inflationary-fixpoint Datalog ${ }^{-}$
- Compute the fixpoint of $J \cup T_{p}(J)$
- Always terminates (why ?)
- Solution 3: Partial-fixpoint Datalog-,*
- Compute the fixpoint of $T_{p}(J)$
- May not terminate

Stratified datalog ${ }^{-}$

A datalog ${ }^{\wedge}$ program is stratified if its rules can be partitioned into k strata, such that:

- If an IDB predicate P appears negated in a rule in stratum i, then it can only appear in the head of a rule in strata $1,2, \ldots, \mathrm{i}-1$

Note: a datalog` program either is stratified or it ain't!

Which programs are stratified?

$$
\begin{aligned}
& T(x, y):-R(x, y) \\
& T(x, y):-T(x, z), R(z, y) \\
& C T(x, y):-\operatorname{Node}(x), \operatorname{Node}(y), \operatorname{not} T(x, y)
\end{aligned}
$$

$$
\begin{aligned}
& S(x):-R(x), \operatorname{not} T(x) \\
& T(x):-R(x), \operatorname{not} S(x)
\end{aligned}
$$

Stratified datalog ${ }^{-}$

- Evaluation algorithm for stratified datalog ${ }^{\text {: }}$
- For each stratum $i=1,2, \ldots$, do:
- Treat all IDB's defined in prior strata as EBS
- Evaluate the IDB's defined in stratum i, using either the naïve or the semi-naïve algorithm

Does this compute a minimal model?

$$
\begin{aligned}
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{T}(\mathrm{x}, \mathrm{z}), \mathrm{R}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

CT(x,y) :- Node(x), Node(y), not T(x,y)

Stratified datalog ${ }^{-}$

- Evaluation algorithm for stratified datalog ${ }^{\text {: }}$
- For each stratum $i=1,2, \ldots$, do:
- Treat all IDB's defined in prior strata as EBS
- Evaluate the IDB's defined in stratum i, using either the naïve or the semi-naïve algorithm

Does this compute a minimal model?

NO:
$\mathrm{J}_{1}=\{\mathrm{T}=$ transitive closure, $\mathrm{CT}=$ its complement $\}$

$$
\begin{aligned}
& T(x, y):-R(x, y) \\
& T(x, y):-T(x, z), R(z, y)
\end{aligned}
$$

CT(x,y) :- Node(x), Node(y), not T(x,y)
$\mathrm{J}_{2}=\{T=$ all pairs of nodes, CT = empty $\}$

Inflationary-fixpoint datalog ${ }^{-}$

Let \mathbf{P} be any datalog program, and I an EDB.
Let $T_{p}(J)$ be the immediate consequence operator.
Let $\mathrm{F}(\mathrm{J})=\mathrm{J} \cup \mathrm{T}_{\mathrm{p}}(\mathrm{J})$ be the inflationary immediate consequence operator.
Define the sequence: $J_{0}=\varnothing, J_{n+1}=F\left(J_{n}\right)$, for $n \geq 0$.
Definition. The inflationary fixpoint semantics of \mathbf{P} is $J=J_{n}$ where n is such that $\mathrm{J}_{\mathrm{n}+1}=J_{\mathrm{n}}$

Why does there always exists an n such that $J_{n}=F\left(J_{n}\right)$?

Find the inflationary semantics for:

$$
\begin{aligned}
& T(x, y):-R(x, y) \\
& T(x, y):-T(x, z), R(z, y) \\
& C T(x, y):-\operatorname{Node}(x), \operatorname{Node}(y), \operatorname{not} T(x, y)
\end{aligned}
$$

$$
\begin{aligned}
& S(x):-R(x), n o t T(x) \\
& T(x):-R(x), n o t S(x) \\
& \hline
\end{aligned}
$$

Inflationary-fixpoint datalog ${ }^{-}$

- Evaluation for Inflationary-fixpoint datalog ${ }^{-}$
- Use the naïve, of the semi-naïve algorithm
- Inhibit any optimization that rely on monotonicity (e.g. out of order execution)

Partial-fixpoint datalog-,*

Let \mathbf{P} be any datalog program, and I an EDB.
Let $\mathrm{T}_{\mathrm{P}}(\mathrm{J})$ be the immediate consequence operator.

Define the sequence: $J_{0}=\varnothing, J_{n+1}=T_{p}\left(J_{n}\right)$, for $n \geq 0$.
Definition. The partial fixpoint semantics of \mathbf{P} is $\mathrm{J}=\mathrm{J}_{\mathrm{n}}$ where n is such that $J_{n+1}=J_{n}$, if such an n exists, undefined otherwise.

Find the partial fixpoint semantics for:

Note: there may not exists an n

$$
\begin{aligned}
& T(x, y):-R(x, y) \\
& T(x, y):-T(x, z), R(z, y) \\
& C T(x, y):-\operatorname{Node}(x), \operatorname{Node}(y), \operatorname{not} T(x, y)
\end{aligned}
$$ such that $J_{n}=F\left(J_{n}\right)$

$$
\begin{aligned}
& S(x):-R(x), n o t T(x) \\
& T(x):-R(x), n o t S(x)
\end{aligned}
$$

Summary of Datalog

- Recursion = easy and fun
- Recursion + negation = nightmare
- Powerful optimizations:
- Incremental view updates
- Magic sets (did not discuss in class)
- SQL implements limited recursion

