
CSEP 544: Lecture 07

Transactions Part 2:
Concurrency Control

CSEP544 - Fall 2015 1

Announcements

•  Homework 4 due next Tuesday
–  Simple for you, but reflect on TXNs

•  Rest of the quarter (revised!):
–  Today: TXNs - no paper
–  11/23: finish TXNs, Datalog - no paper
–  11/30: Advanced Query Processing - paper
–  12/07: Column Store, Final Review - paper

CSEP 544 – Winter 2014 2

ARIES

CSEP544 - Fall 2015 3

4

Aries

•  ARIES pieces together several techniques
into a comprehensive algorithm

•  Developed at IBM Almaden, by Mohan
•  IBM botched the patent, so everyone uses it

now
•  Several variations, e.g. for distributed

transactions

CSEP544 - Fall 2015

ARIES Recovery Manager

•  A redo/undo log
•  Physiological logging

–  Physical logging for REDO
–  Logical logging for UNDO

•  Efficient checkpointing

CSEP544 - Fall 2015 5

Why ?

6

ARIES Recovery Manager

Log entries:
•  <START T> -- when T begins
•  Update: <T,X,u,v>

–  T updates X, old value=u, new value=v
–  In practice: undo only and redo only entries

•  <COMMIT T> or <ABORT T>
•  CLR’s – we’ll talk about them later.

CSEP544 - Fall 2015

7

ARIES Recovery Manager

Rule:
•  If T modifies X, then <T,X,u,v> must be written

to disk before OUTPUT(X)

We are free to OUTPUT early or late

CSEP544 - Fall 2015

8

LSN = Log Sequence Number
•  LSN = identifier of a log entry

–  Log entries belonging to the same TXN are linked

•  Each page contains a pageLSN:
–  LSN of log record for latest update to that page

CSEP544 - Fall 2015

9

ARIES Data Structures
•  Active Transactions Table

–  Lists all active TXN’s
–  For each TXN: lastLSN = its most recent update LSN

•  Dirty Page Table
–  Lists all dirty pages
–  For each dirty page: recoveryLSN (recLSN)= first LSN

that caused page to become dirty
•  Write Ahead Log

–  LSN, prevLSN = previous LSN for same txn

CSEP544 - Fall 2015

ARIES Data Structures

pageID recLSN
P5 102
P6 103
P7 101

LSN prevLSN transID pageID Log entry
101 - T100 P7
102 - T200 P5
103 102 T200 P6
104 101 T100 P5

Dirty pages Log (WAL)

transID lastLSN
T100 104
T200 103

Active transactions
P8 P2 . . .

. . .

P5
PageLSN=104

P6
PageLSN=103

P7
PageLSN=101

Buffer Pool

WT100(P7)
WT200(P5)
WT200(P6)
WT100(P5)

11

ARIES Normal Operation

T writes page P
•  What do we do ?

CSEP544 - Fall 2015

12

ARIES Normal Operation

T writes page P
•  What do we do ?

•  Write <T,P,u,v> in the Log
•  pageLSN=LSN
•  prevLSN=lastLSN
•  lastLSN=LSN
•  recLSN=if isNull then LSN

CSEP544 - Fall 2015

13

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
•  What do we do ?

Buffer manager wants INPUT(P)
•  What do we do ?

CSEP544 - Fall 2015

14

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
•  Flush log up to pageLSN
•  Remove P from Dirty Pages table
Buffer manager wants INPUT(P)
•  Create entry in Dirty Pages table

recLSN = NULL

CSEP544 - Fall 2015

15

ARIES Normal Operation

Transaction T starts
•  What do we do ?

Transaction T commits/aborts
•  What do we do ?

CSEP544 - Fall 2015

16

ARIES Normal Operation

Transaction T starts
•  Write <START T> in the log
•  New entry T in Active TXN;

lastLSN = null
Transaction T commits/aborts
•  Write <COMMIT T> in the log
•  Flush log up to this entry

CSEP544 - Fall 2015

17

Checkpoints

Write into the log

•  Entire active transactions table
•  Entire dirty pages table

CSEP544 - Fall 2015

Recovery always starts by analyzing latest checkpoint

Background process periodically flushes dirty pages to disk

18

ARIES Recovery
1.  Analysis pass

–  Figure out what was going on at time of crash
–  List of dirty pages and active transactions

2.  Redo pass (repeating history principle)
–  Redo all operations, even for transactions that will not commit
–  Get back to state at the moment of the crash

3.  Undo pass
–  Remove effects of all uncommitted transactions
–  Log changes during undo in case of another crash during undo

CSEP544 - Fall 2015

19

ARIES Method Illustration

[Figure 3 from Franklin97]
CSEP544 - Fall 2015

First undo and first redo log entry might be
in reverse order

20

1. Analysis Phase
•  Goal

–  Determine point in log where to start REDO
–  Determine set of dirty pages when crashed

•  Conservative estimate of dirty pages
–  Identify active transactions when crashed

•  Approach
–  Rebuild active transactions table and dirty pages table
–  Reprocess the log from the checkpoint

•  Only update the two data structures
–  Compute: firstLSN = smallest of all recoveryLSN

CSEP544 - Fall 2015

1. Analysis Phase
(crash) Checkpoint

Dirty
pages

Active
txn

Log

pageID recLSN pageID

transID lastLSN transID

firstLSN= ??? Where do we start
the REDO phase ?

1. Analysis Phase
(crash) Checkpoint

Dirty
pages

Active
txn

Log

pageID recLSN pageID

transID lastLSN transID

firstLSN=min(recLSN)

1. Analysis Phase
(crash) Checkpoint

Dirty
pages

Active
txn

Log

pageID recLSN pageID

transID lastLSN transID

pageID recLSN pageID

transID lastLSN transID

Replay
history

firstLSN

2. Redo Phase

Main principle: replay history
•  Process Log forward, starting from firstLSN
•  Read every log record, sequentially
•  Redo actions are not recorded in the log
•  Needs the Dirty Page Table

CSEP544 - Fall 2015 24

25

2. Redo Phase: Details

For each Log entry record LSN: <T,P,u,v>
•  Re-do the action P=u and WRITE(P)
•  But which actions can we skip, for efficiency ?

CSEP544 - Fall 2015

26

2. Redo Phase: Details

For each Log entry record LSN: <T,P,u,v>
•  If P is not in Dirty Page then no update
•  If recLSN > LSN, then no update
•  Read page from disk:

If pageLSN > LSN, then no update
•  Otherwise perform update

CSEP544 - Fall 2015

27

2. Redo Phase: Details

What happens if system crashes during REDO ?

CSEP544 - Fall 2015

28

2. Redo Phase: Details

What happens if system crashes during REDO ?

We REDO again ! Each REDO operation is

idempotent: doing it twice is the as as doing it
once.

CSEP544 - Fall 2015

3. Undo Phase

•  Cannot “unplay” history, in the same way as
we “replay” history

•  WHY NOT ?

CSEP544 - Fall 2015 29

3. Undo Phase

•  Cannot “unplay” history, in the same way as
we “replay” history

•  WHY NOT ?

•  Need to support ROLLBACK: selective undo,
for one transaction

•  Hence, logical undo v.s. physical redo

CSEP544 - Fall 2015 30

3. Undo Phase

Main principle: “logical” undo
•  Start from end of Log, move backwards
•  Read only affected log entries
•  Undo actions are written in the Log as special

entries: CLR (Compensating Log Records)
•  CLRs are redone, but never undone

CSEP544 - Fall 2015 31

3. Undo Phase: Details
•  “Loser transactions” = uncommitted

transactions in Active Transactions Table

•  ToUndo = set of lastLSN of loser transactions

CSEP544 - Fall 2015 32

3. Undo Phase: Details

While ToUndo not empty:
•  Choose most recent (largest) LSN in ToUndo
•  If LSN = regular record <T,P,u,v>:

–  Undo v
–  Write a CLR where CLR.undoNextLSN = LSN.prevLSN

•  If LSN = CLR record:
–  Don’t undo !

•  if CLR.undoNextLSN not null, insert in ToUndo
otherwise, write <END TRANSACTION> in log

CSEP544 - Fall 2015 33

34

3. Undo Phase: Details

[Figure 4 from Franklin97]

CSEP544 - Fall 2015

35

3. Undo Phase: Details

What happens if system crashes during UNDO ?

CSEP544 - Fall 2015

36

3. Undo Phase: Details

What happens if system crashes during UNDO ?

We do not UNDO again ! Instead, each CLR is a

REDO record: we simply redo the undo

CSEP544 - Fall 2015

37

Physical v.s. Logical Loging

Why are redo records physical ?

Why are undo records logical ?

CSEP544 - Fall 2015

38

Physical v.s. Logical Loging

Why are redo records physical ?
•  Simplicity: replaying history is easy, and

idempotent

Why are undo records logical ?
•  Required for transaction rollback: this not

“undoing history”, but selective undo

CSEP544 - Fall 2015

Concurrency Control

Recap ACID:

•  Atomicity – recovery

•  Consistency

•  Isolation – concurrency control

•  Durability 39

Reading Material

Main textbook (Ramakrishnan and Gehrke):
•  Chapters 16, 17, 18

More background material: Garcia-Molina,

Ullman, Widom:
•  Chapters 17.2, 17.3, 17.4
•  Chapters 18.1, 18.2, 18.3, 18.8, 18.9

CSEP544 - Fall 2015 40

Concurrency Control

•  Multiple concurrent transactions T1, T2, …

•  They read/write common elements A1, A2, …

•  How can we prevent unwanted interference ?

CSEP544 - Fall 2015 41

The SCHEDULER is responsible for that

Schedules

CSEP544 - Fall 2015 42

A schedule is a sequence
of interleaved actions
from all transactions

Example

CSEP544 - Fall 2015 43

T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

A and B are elements
in the database

t and s are variables
in tx source code

A Serial Schedule

CSEP544 - Fall 2015 44

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

Serializable Schedule

CSEP544 - Fall 2015 45

A schedule is serializable if it is
equivalent to a serial schedule

A Serializable Schedule

CSEP544 - Fall 2015 46

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is a serializable schedule.
This is NOT a serial schedule

A Non-Serializable Schedule

CSEP544 - Fall 2015 47

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t) Why is it

non-serializable?

Serializable Schedules

•  The role of the scheduler is to ensure that the
schedule is serializable

CSEP544 - Fall 2015 48

Q: Why not run only serial schedules ?
I.e. run one transaction after the other ?

Serializable Schedules

•  The role of the scheduler is to ensure that the
schedule is serializable

CSEP544 - Fall 2015 49

Q: Why not run only serial schedules ?
I.e. run one transaction after the other ?

A: Because of very poor throughput due to disk latency.

Lesson: main memory databases may do serial schedules only

Still Serializable, but…

CSEP544 - Fall 2015 50

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s + 200
WRITE(A,s)
READ(B,s)
s := s + 200
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

…we don’t expect the scheduler to schedule this

Schedule is serializable
because t=t+100 and
s=s+200 commute

Ignoring Details

•  Assume worst case updates:
–  We never commute actions done by transactions

•  As a consequence, we only care about reads and
writes
–  Transaction = sequence of R(A)’s and W(A)’s

CSEP544 - Fall 2015 51

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Conflicts

• Write-Read – WR
• Read-Write – RW
• Write-Write – WW

CSEP544 - Fall 2015 52

Conflict Serializability

CSEP544 - Fall 2015 53

Conflicts:

ri(X); wi(Y) Two actions by same transaction Ti:

wi(X); wj(X) Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)

Conflict Serializability

•  Every conflict-serializable schedule is serializable
•  The converse is not true in general

CSEP544 - Fall 2015 54

Definition A schedule is conflict serializable
if it can be transformed into a serial
schedule by a series of swappings
of adjacent non-conflicting actions

Conflict Serializability

CSEP544 - Fall 2015 55

Example:
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSEP544 - Fall 2015 56

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSEP544 - Fall 2015 57

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSEP544 - Fall 2015 58

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

Conflict Serializability

CSEP544 - Fall 2015 59

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

….

Testing for Conflict-Serializability

Precedence graph:
•  A node for each transaction Ti,
•  An edge from Ti to Tj whenever an action in

Ti conflicts with, and comes before an action
in Tj

•  The schedule is serializable iff the
precedence graph is acyclic

CSEP544 - Fall 2015 60

Example 1

CSEP544 - Fall 2015 61

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

Example 1

CSEP544 - Fall 2015 62

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

A B

Example 2

CSEP544 - Fall 2015 63

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

Example 2

CSEP544 - Fall 2015 64

1 2 3

This schedule is NOT conflict-serializable

A
B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

View Equivalence

•  A serializable schedule need not be conflict
serializable, even under the “worst case
update” assumption

CSEP544 - Fall 2015 65

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ?

View Equivalence

•  A serializable schedule need not be conflict
serializable, even under the “worst case
update” assumption

CSEP544 - Fall 2015 66

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ? No…

View Equivalence

•  A serializable schedule need not be conflict
serializable, even under the “worst case
update” assumption

CSEP544 - Fall 2015 67

w1(X); w1(Y); w2(X); w2(Y); w3(Y);

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Lost write

Equivalent, but not conflict-equivalent

View Equivalence

CSEP544 - Fall 2015 68

T1 T2 T3
W1(X)

W2(X)
W2(Y)
CO2

W1(Y)
CO1

W3(Y)
CO3

T1 T2 T3
W1(X)
W1(Y)
CO1

W2(X)
W2(Y)
CO2

W3(Y)
CO3

Lost

Serializable, but not conflict serializable

View Equivalence
Two schedules S, S’ are view equivalent if:
•  If T reads an initial value of A in S,

then T reads the initial value of A in S’

•  If T reads a value of A written by T’ in S,
then T reads a value of A written by T’ in S’

•  If T writes the final value of A in S,
then T writes the final value of A in S’

View-Serializability

A schedule is view serializable if it is view
equivalent to a serial schedule

Remark:
•  If a schedule is conflict serializable,

then it is also view serializable
•  But not vice versa

CSEP544 - Fall 2015 70

Schedules with Aborted Transactions

•  When a transaction aborts, the recovery
manager undoes its updates

•  But some of its updates may have affected
other transactions !

CSEP544 - Fall 2015 71

Schedules with Aborted Transactions

CSEP544 - Fall 2015 72

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

What’s wrong?

Schedules with Aborted Transactions

CSEP544 - Fall 2015 73

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

Cannot abort T1 because cannot undo T2

What’s wrong?

Recoverable Schedules

A schedule is recoverable if:
•  It is conflict-serializable, and
•  Whenever a transaction T commits, all

transactions who have written elements read
by T have already committed

CSEP544 - Fall 2015 74

Recoverable Schedules

75

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

?

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Commit
Commit

Nonrecoverable Recoverable

Recoverable Schedules

76

T1 T2 T3 T4
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

R(B)
W(B)
R(C)
W(C)

R(C)
W(C)
R(D)
W(D)

Abort

How do we recover ?

Cascading Aborts

•  If a transaction T aborts, then we need to
abort any other transaction T’ that has read
an element written by T

•  A schedule avoids cascading aborts if
whenever a transaction reads an element, the
transaction that has last written it has already
committed.

CSEP544 - Fall 2015 77

Avoiding Cascading Aborts

78

T1 T2
R(A)
W(A)
Commit

R(A)
W(A)
R(B)
W(B)
. . .

Without cascading aborts

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

. . .
. . .

With cascading aborts

Review of Schedules

Serializability

•  Serial
•  Serializable
•  Conflict serializable
•  View serializable

Recoverability

•  Recoverable
•  Avoids cascading

deletes

CSEP544 - Fall 2015 79

Scheduler

•  The scheduler:
•  Module that schedules the transaction’s

actions, ensuring serializability

•  Two main approaches
•  Pessimistic: locks
•  Optimistic: time stamps, MV, validation

Pessimistic Scheduler

Simple idea:
•  Each element has a unique lock
•  Each transaction must first acquire the lock

before reading/writing that element
•  If the lock is taken by another transaction,

then wait
•  The transaction must release the lock(s)

CSEP544 - Fall 2015 81

Notation

CSEP544 - Fall 2015 82

li(A) = transaction Ti acquires lock for element A

ui(A) = transaction Ti releases lock for element A

A Non-Serializable Schedule

CSEP544 - Fall 2015 83

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

Example

84

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B);

Scheduler has ensured a conflict-serializable schedule

But…

85

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A);

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); READ(B,s)
s := s*2
WRITE(B,s); U2(B);

L1(B); READ(B, t)
t := t+100
WRITE(B,t); U1(B);

Locks did not enforce conflict-serializability !!! What’s wrong ?

Two Phase Locking (2PL)

The 2PL rule:

•  In every transaction, all lock requests must
preceed all unlock requests

•  This ensures conflict serializability ! (will
prove this shortly)

CSEP544 - Fall 2015 86

Example: 2PL transactions

87

T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);

Now it is conflict-serializable

Two Phase Locking (2PL)

88

Theorem: 2PL ensures conflict serializability

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Two Phase Locking (2PL)

90

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Then there is the
following temporal
cycle in the schedule:

Two Phase Locking (2PL)

91

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) why?

Two Phase Locking (2PL)

92

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B) why?

Two Phase Locking (2PL)

93

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)
L3(B)àU3(C)
U3(C)àL1(C)
L1(C)àU1(A) Contradiction

A New Problem:
Non-recoverable Schedule

94

T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);
Commit

Abort

Strict 2PL

•  Strict 2PL: All locks held by a transaction are
released when the transaction is completed;
release happens at the time of COMMIT or
ROLLBACK

•  Schedule is recoverable
•  Schedule avoids cascading aborts
•  Schedule is strict: read book

CSEP544 - Fall 2015 95

Strict 2PL
T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A);

L2(A); DENIED…
L1(B); READ(B)
B :=B+100
WRITE(B);
U1(A),U1(B); Rollback

…GRANTED; READ(A)
A := A*2
WRITE(A);
L2(B); READ(B)
B := B*2
WRITE(B);
U2(A); U2(B); Commit 96

Summary of Strict 2PL

•  Ensures serializability, recoverability, and
avoids cascading aborts

•  Issues: implementation, lock modes,
granularity, deadlocks, performance

CSEP 544 – Winter 2014 97

The Locking Scheduler

Task 1: -- act on behalf of the transaction

Add lock/unlock requests to transactions
•  Examine all READ(A) or WRITE(A) actions
•  Add appropriate lock requests
•  On COMMIT/ROLLBACK release all locks
•  Ensures Strict 2PL !

CSEP544 - Fall 2015 98

The Locking Scheduler

Task 2: -- act on behalf of the system
 Execute the locks accordingly

•  Lock table: a big, critical data structure in a DBMS !
•  When a lock is requested, check the lock table

–  Grant, or add the transaction to the element’s wait list

•  When a lock is released, re-activate a transaction
from its wait list

•  When a transaction aborts, release all its locks
•  Check for deadlocks occasionally

CSEP544 - Fall 2015 99

Lock Modes

•  S = shared lock (for READ)
•  X = exclusive lock (for WRITE)

100

None S X
None OK OK OK

S OK OK Conflict
X OK Conflict Conflict

Lock compatibility matrix:

Lock Granularity

•  Fine granularity locking (e.g., tuples)
–  High concurrency
–  High overhead in managing locks

•  Coarse grain locking (e.g., tables, predicate locks)
–  Many false conflicts
–  Less overhead in managing locks

•  Alternative techniques
–  Hierarchical locking (and intentional locks) [commercial DBMSs]
–  Lock escalation

CSEP544 - Fall 2015 101

Deadlocks
•  Cycle in the wait-for graph:

–  T1 waits for T2
–  T2 waits for T3
–  T3 waits for T1

•  Deadlock detection
–  Timeouts
–  Wait-for graph

•  Deadlock avoidance
–  Acquire locks in pre-defined order
–  Acquire all locks at once before starting

CSEP544 - Fall 2015 102

Lock Performance

CSEP544 - Fall 2015 103

Th
ro

ug
hp

ut

Active Transactions

thrashing

Why ?

The Tree Protocol

•  An alternative to 2PL, for tree structures
•  E.g. B-trees (the indexes of choice in

databases)

•  Because
–  Indexes are hot spots!
–  2PL would lead to great lock contention

CSEP544 - Fall 2015 104

The Tree Protocol

Rules:
•  The first lock may be any node of the tree
•  Subsequently, a lock on a node A may only be acquired if the

transaction holds a lock on its parent B
•  Nodes can be unlocked in any order (no 2PL necessary)
•  “Crabbing”

–  First lock parent then lock child
–  Keep parent locked only if may need to update it
–  Release lock on parent if child is not full

•  The tree protocol is NOT 2PL, yet ensures conflict-
serializability !

CSEP544 - Fall 2015 105

Phantom Problem
•  So far we have assumed the database to be a

static collection of elements (=tuples)

•  If tuples are inserted/deleted then the phantom
problem appears

CSEP544 - Fall 2015 106

Phantom Problem

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Phantom Problem

108

Suppose there are two blue products, X1, X2:
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Phantom Problem

109

Suppose there are two blue products, X1, X2:
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

This is conflict serializable ! What’s wrong ??

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Phantom Problem

110

Suppose there are two blue products, X1, X2:
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

Not serializable due to phantoms

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Phantom Problem
•  A “phantom” is a tuple that is

invisible during part of a transaction execution but
not invisible during the entire execution

•  In our example:
–  T1: reads list of products
–  T2: inserts a new product
–  T1: re-reads: a new product appears !

CSEP544 - Fall 2015 111

Phantom Problem

•  In a static database:
–  Conflict serializability implies serializability

•  In a dynamic database, this may fail due to
phantoms

•  Strict 2PL guarantees conflict serializability,
but not serializability

112

Dealing With Phantoms

•  Lock the entire table, or
•  Lock the index entry for ‘blue’

–  If index is available

•  Or use predicate locks
–  A lock on an arbitrary predicate

Dealing with phantoms is expensive !

Isolation Levels in SQL

1.  “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2.  “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3.  “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4.  Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

CSEP544 - Fall 2015 114

ACID

1. Isolation Level: Dirty Reads

•  “Long duration” WRITE locks
–  Strict 2PL

•  No READ locks
–  Read-only transactions are never delayed

CSEP544 - Fall 2015 115

Possible pbs: dirty and inconsistent reads

2. Isolation Level: Read Committed

•  “Long duration” WRITE locks
–  Strict 2PL

•  “Short duration” READ locks
–  Only acquire lock while reading (not 2PL)

CSEP544 - Fall 2015 116

Unrepeatable reads
When reading same element twice,
may get two different values

3. Isolation Level: Repeatable Read

•  “Long duration” WRITE locks
–  Strict 2PL

•  “Long duration” READ locks
–  Strict 2PL

CSEP544 - Fall 2015 117

This is not serializable yet !!! Why ?

4. Isolation Level Serializable

•  “Long duration” WRITE locks
–  Strict 2PL

•  “Long duration” READ locks
–  Strict 2PL

•  Deals with phantoms too

CSEP544 - Fall 2015 118

READ-ONLY Transactions

CSEP544 - Fall 2015 119

Client 1: START TRANSACTION
 INSERT INTO SmallProduct(name, price)
 SELECT pname, price
 FROM Product
 WHERE price <= 0.99

 DELETE FROM Product
 WHERE price <=0.99
 COMMIT

Client 2: SET TRANSACTION READ ONLY

 START TRANSACTION
 SELECT count(*)
 FROM Product

 SELECT count(*)
 FROM SmallProduct
 COMMIT

Can improve
performance

Optimistic Concurrency Control
Mechanisms

•  Pessimistic:
–  Locks

•  Optimistic
–  Timestamp based: basic, multiversion
–  Validation
–  Snapshot isolation: a variant of both

CSEP544 - Fall 2015 120

Timestamps

•  Each transaction receives a unique timestamp
TS(T)

Could be:

•  The system’s clock
•  A unique counter, incremented by the scheduler

CSEP544 - Fall 2015 121

Timestamps

CSEP544 - Fall 2015 122

The timestamp order defines
 the serialization order of the transaction

Main invariant:

Will generate a schedule that is view-equivalent
to a serial schedule, and recoverable

Main Idea

•  For any two conflicting actions, ensure that
their order is the serialized order:

Check WT, RW, WW conflicts
•  wU(X) . . . rT(X)
•  rU(X) . . . wT(X)
•  wU(X) . . . wT(X)

CSEP544 - Fall 2015 123

When T requests rT(X), need to check TS(U) ≤ TS(T)

Read too
late ?

Write too
late ?

Timestamps

With each element X, associate
•  RT(X) = the highest timestamp of any

transaction U that read X
•  WT(X) = the highest timestamp of any

transaction U that wrote X
•  C(X) = the commit bit: true when transaction

with highest timestamp that wrote X committed

124
If element = page, then these are associated
with each page X in the buffer pool

Simplified Timestamp-based
Scheduling

Only for transactions that do not abort
Otherwise, may result in non-recoverable schedule

CSEP544 - Fall 2015 125

Transaction wants to read element X
If WT(X) > TS(T) then ROLLBACK
Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to write element X
If RT(X) > TS(T) then ROLLBACK
Else if WT(X) > TS(T) ignore write & continue (Thomas Write Rule)
Otherwise, WRITE and update WT(X) =TS(T)

Details

Read too late:
•  T wants to read X, and WT(X) > TS(T)

CSEP544 - Fall 2015 126

START(T) … START(U) … wU(X) . . . rT(X)

Need to rollback T !

Details

Write too late:
•  T wants to write X, and RT(X) > TS(T)

CSEP544 - Fall 2015 127

START(T) … START(U) … rU(X) . . . wT(X)

Need to rollback T !

Details

Write too late, but we can still handle it:
•  T wants to write X, and

RT(X) ≤ TS(T) but WT(X) > TS(T)

CSEP544 - Fall 2015 128

START(T) … START(V) … wV(X) . . . wT(X)

Don’t write X at all !
(Thomas’ rule)

View-Serializability

•  By using Thomas’ rule we do not obtain a
conflict-serializable schedule

•  But we obtain a view-serializable schedule

CSEP544 - Fall 2015 129

Ensuring Recoverable Schedules

•  Recall the definition: if a transaction reads an
element, then the transaction that wrote it
must have already committed

•  Use the commit bit C(X) to keep track if the
transaction that last wrote X has committed

CSEP544 - Fall 2015 130

Ensuring Recoverable Schedules

Read dirty data:
•  T wants to read X, and WT(X) < TS(T)
•  Seems OK, but…

CSEP544 - Fall 2015 131

START(U) … START(T) … wU(X). . . rT(X)… ABORT(U)

If C(X)=false, T needs to wait for it to become true

Ensuring Recoverable Schedules

Thomas’ rule needs to be revised:
•  T wants to write X, and WT(X) > TS(T)
•  Seems OK not to write at all, but …

CSEP544 - Fall 2015 132

START(T) … START(U)… wU(X). . . wT(X)… ABORT(U)

If C(X)=false, T needs to wait for it to become true

Timestamp-based Scheduling

CSEP544 - Fall 2015 133

Transaction wants to READ element X
If WT(X) > TS(T) then ROLLBACK
Else If C(X) = false, then WAIT
Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to WRITE element X
If RT(X) > TS(T) then ROLLBACK
Else if WT(X) > TS(T)

Then If C(X) = false then WAIT
 else IGNORE write (Thomas Write Rule)

Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false

Summary of Timestamp-based
Scheduling

•  View-serializable

•  Recoverable
–  Even avoids cascading aborts

•  Does NOT handle phantoms
–  These need to be handled separately, e.g.

predicate locks

CSEP544 - Fall 2015 134

Multiversion Timestamp

•  When transaction T requests r(X)
but WT(X) > TS(T), then T must rollback

•  Idea: keep multiple versions of X:
Xt, Xt-1, Xt-2, . . .

•  Let T read an older version, with appropriate
timestamp

CSEP544 - Fall 2015 135

TS(Xt) > TS(Xt-1) > TS(Xt-2) > . . .

Details

•  When wT(X) occurs,
 create a new version, denoted Xt where t = TS(T)

•  When rT(X) occurs,
 find most recent version Xt such that t < TS(T)
 Notes:

–  WT(Xt) = t and it never changes
–  RT(Xt) must still be maintained to check legality of writes

•  Can delete Xt if we have a later version Xt1 and all active
transactions T have TS(T) > t1

CSEP544 - Fall 2015 136

Example (in class)

CSEP544 - Fall 2015 137

X3 X9 X12 X18

R6(X) -- what happens?
W14(X) – what happens?
R15(X) – what happens?
W5(X) – what happens?

When can we delete X3?

Concurrency Control by
Validation

•  Each transaction T defines a read set RS(T) and a
write set WS(T)

•  Each transaction proceeds in three phases:
–  Read all elements in RS(T). Time = START(T)
–  Validate (may need to rollback). Time = VAL(T)
–  Write all elements in WS(T). Time = FIN(T)

CSEP544 - Fall 2015 138

Main invariant: the serialization order is VAL(T)

Avoid rT(X) - wU(X) Conflicts

CSEP544 - Fall 2015 139

U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

T: Read phase Validate ?

START(T)
IF RS(T) ∩ WS(U) and FIN(U) > START(T)
 (U has validated and U has not finished before T begun)
Then ROLLBACK(T)

conflicts

Avoid wT(X) - wU(X) Conflicts

CSEP544 - Fall 2015 140

U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

T: Read phase Validate Write phase ?

START(T) VAL(T)
IF WS(T) ∩ WS(U) and FIN(U) > VAL(T)
 (U has validated and U has not finished before T validates)
Then ROLLBACK(T)

conflicts

Snapshot Isolation

•  Another optimistic concurrency control
method

•  Very efficient, and very popular
–  Oracle, Postgres, SQL Server 2005

CSEP544 - Fall 2015 141

WARNING: Not serializable, yet ORACLE uses
it even for SERIALIZABLE transactions !

Snapshot Isolation Rules

•  Each transactions receives a timestamp TS(T)

•  Tnx sees the snapshot at time TS(T) of database

•  When T commits, updated pages written to disk

•  Write/write conflicts are resolved by the
“first committer wins” rule

CSEP544 - Fall 2015 142

Snapshot Isolation (Details)

•  Multiversion concurrency control:
–  Versions of X: Xt1, Xt2, Xt3, . . .

•  When T reads X, return XTS(T).
•  When T writes X (to avoid lost update):
•  If latest version of X is TS(T) then proceed
•  If C(X) = true then abort
•  If C(X) = false then wait

CSEP544 - Fall 2015 143

What Works and What Not

•  No dirty reads (Why ?)
•  No unconsistent reads (Why ?)
•  No lost updates (“first committer wins”)

•  Moreover: no reads are ever delayed

•  However: read-write conflicts not caught !

CSEP544 - Fall 2015 144

Write Skew

T1:
 READ(X);
 if X >= 50
 then Y = -50; WRITE(Y)
 COMMIT

T2:
 READ(Y);
 if Y >= 50
 then X = -50; WRITE(X)
 COMMIT

In our notation:

R1(X), R2(Y), W1(Y), W2(X), C1,C2

Starting with X=50,Y=50, we end with X=-50, Y=-50.
Non-serializable !!!

Write Skews Can Be Serious

•  ACIDland had two viceroys, Delta and Rho
•  Budget had two registers: taXes, and spendYng
•  They had HIGH taxes and LOW spending…

146

Delta:
 READ(X);
 if X= ‘HIGH’
 then { Y= ‘HIGH’;
 WRITE(Y) }
 COMMIT

Rho:
 READ(Y);
 if Y= ‘LOW’
 then {X= ‘LOW’;
 WRITE(X) }
 COMMIT

… and they ran a deficit ever since.

Tradeoffs

•  Pessimistic Concurrency Control (Locks):
–  Great when there are many conflicts
–  Poor when there are few conflicts

•  Optimistic Concurrency Control (Timestamps):
–  Poor when there are many conflicts (rollbacks)
–  Great when there are few conflicts

•  Compromise
–  READ ONLY transactions → timestamps
–  READ/WRITE transactions → locks

CSEP544 - Fall 2015 147

Commercial Systems
•  DB2: Strict 2PL
•  SQL Server:

–  Strict 2PL for standard 4 levels of isolation
–  Multiversion concurrency control for snapshot isolation

•  PostgreSQL, Oracle
–  Snapshot isolation even for SERIALIZABLE
–  Postgres introduced novel, serializable scheduler in

postgres 9.1

148

