
CSEP 544: Lecture 07 

Transactions Part 2:  
Concurrency Control 
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Announcements 

•  Homework 4 due next Tuesday 
–  Simple for you, but reflect on TXNs 

•  Rest of the quarter (revised!): 
–  Today: TXNs    - no paper 
–  11/23: finish TXNs, Datalog - no paper 
–  11/30: Advanced Query Processing - paper 
–  12/07: Column Store, Final Review - paper 
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ARIES 
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Aries 

•  ARIES pieces together several techniques 
into a comprehensive algorithm 

•  Developed at IBM Almaden, by Mohan 
•  IBM botched the patent, so everyone uses it 

now 
•  Several variations, e.g. for distributed 

transactions 
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ARIES Recovery Manager 

•  A redo/undo log 
•  Physiological logging 

–  Physical logging for REDO 
–  Logical logging for UNDO 

•  Efficient checkpointing 
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Why ? 
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ARIES Recovery Manager 

Log entries: 
•  <START T>   -- when T begins 
•  Update: <T,X,u,v> 

–  T updates X, old value=u, new value=v 
–  In practice: undo only and redo only entries 

•  <COMMIT T> or <ABORT T> 
•  CLR’s – we’ll talk about them later. 
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ARIES Recovery Manager 

Rule: 
•  If T modifies X, then <T,X,u,v> must be written 

to disk before OUTPUT(X) 

We are free to OUTPUT early or late 
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LSN = Log Sequence Number 
•  LSN = identifier of a log entry 

–  Log entries belonging to the same TXN are linked 

•  Each page contains a pageLSN: 
–  LSN of log record for latest update to that page 
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ARIES Data Structures 
•  Active Transactions Table 

–  Lists all active TXN’s  
–  For each TXN: lastLSN = its most recent update LSN 

•  Dirty Page Table 
–  Lists all dirty pages 
–  For each dirty page: recoveryLSN (recLSN)= first LSN 

that caused page to become dirty 
•  Write Ahead Log 

–  LSN, prevLSN = previous LSN for same txn 
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ARIES Data Structures 

pageID recLSN 
P5 102 
P6 103 
P7 101 

LSN prevLSN transID pageID Log entry 
101 - T100 P7 
102 - T200 P5 
103 102 T200 P6 
104 101 T100 P5 

Dirty pages Log (WAL) 

transID lastLSN 
T100 104 
T200 103 

Active transactions 
P8 P2 . . . 

. . . 

P5 
PageLSN=104 

P6 
PageLSN=103 

P7 
PageLSN=101 

Buffer Pool 

WT100(P7) 
WT200(P5) 
WT200(P6) 
WT100(P5) 
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ARIES Normal Operation 

T writes page P 
•  What do we do ? 
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ARIES Normal Operation 

T writes page P 
•  What do we do ? 

•  Write <T,P,u,v> in the Log 
•  pageLSN=LSN 
•  prevLSN=lastLSN 
•  lastLSN=LSN 
•  recLSN=if isNull then LSN 
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ARIES Normal Operation 

Buffer manager wants to OUTPUT(P) 
•  What do we do ? 

Buffer manager wants INPUT(P) 
•  What do we do ? 
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ARIES Normal Operation 

Buffer manager wants to OUTPUT(P) 
•  Flush log up to pageLSN 
•  Remove P from Dirty Pages table 
Buffer manager wants INPUT(P) 
•  Create entry in Dirty Pages table 

recLSN = NULL 
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ARIES Normal Operation 

Transaction T starts 
•  What do we do ? 

Transaction T commits/aborts 
•  What do we do ? 
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ARIES Normal Operation 

Transaction T starts 
•  Write <START T> in the log 
•  New entry T in Active TXN;  

lastLSN = null 
Transaction T commits/aborts 
•  Write <COMMIT T> in the log 
•  Flush log up to this entry 
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Checkpoints 

Write into the log 

•  Entire active transactions table 
•  Entire dirty pages table 
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Recovery always starts by analyzing latest checkpoint 

Background process periodically flushes dirty pages to disk  
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ARIES Recovery 
1.  Analysis pass 

–  Figure out what was going on at time of crash 
–  List of dirty pages and active transactions 

2.  Redo pass (repeating history principle) 
–  Redo all operations, even for transactions that will not commit 
–  Get back to state at the moment of the crash 

3.  Undo pass 
–  Remove effects of all uncommitted transactions 
–  Log changes during undo in case of another crash during undo  
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ARIES Method Illustration 

[Figure 3 from Franklin97] 
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First undo and first redo log entry might be 
in reverse order 
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1. Analysis Phase 
•  Goal 

–  Determine point in log where to start REDO 
–  Determine set of dirty pages when crashed 

•  Conservative estimate of dirty pages 
–  Identify active transactions when crashed  

•  Approach 
–  Rebuild active transactions table and dirty pages table 
–  Reprocess the log from the checkpoint 

•  Only update the two data structures 
–  Compute: firstLSN = smallest of all recoveryLSN 
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1. Analysis Phase 
(crash) Checkpoint 

Dirty 
pages 

Active 
txn 

Log 

pageID recLSN pageID 

transID lastLSN transID 

firstLSN=  ??? Where do we start 
the REDO phase ? 



1. Analysis Phase 
(crash) Checkpoint 

Dirty 
pages 

Active 
txn 

Log 

pageID recLSN pageID 

transID lastLSN transID 

firstLSN=min(recLSN) 



1. Analysis Phase 
(crash) Checkpoint 

Dirty 
pages 

Active 
txn 

Log 

pageID recLSN pageID 

transID lastLSN transID 

pageID recLSN pageID 

transID lastLSN transID 

Replay 
history 

firstLSN 



2. Redo Phase 

Main principle: replay history 
•  Process Log forward, starting from firstLSN 
•  Read every log record, sequentially 
•  Redo actions are not recorded in the log 
•  Needs the Dirty Page Table 
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2. Redo Phase: Details 

For each Log entry record LSN: <T,P,u,v> 
•  Re-do the action P=u and WRITE(P) 
•  But which actions can we skip, for efficiency ? 
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2. Redo Phase: Details 

For each Log entry record LSN: <T,P,u,v> 
•  If P is not in Dirty Page then no update 
•  If recLSN > LSN, then no update 
•  Read page from disk: 

If pageLSN > LSN, then no update 
•  Otherwise perform update 
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2. Redo Phase: Details 

What happens if system crashes during REDO ? 
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2. Redo Phase: Details 

What happens if system crashes during REDO ? 
 
We REDO again !  Each REDO operation is 

idempotent: doing it twice is the as as doing it 
once. 
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3. Undo Phase 

•  Cannot “unplay” history, in the same way as 
we “replay” history 

•  WHY NOT ? 
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3. Undo Phase 

•  Cannot “unplay” history, in the same way as 
we “replay” history 

•  WHY NOT ? 

•  Need to support ROLLBACK: selective undo, 
for one transaction 

•  Hence, logical undo v.s. physical redo 
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3. Undo Phase 

Main principle: “logical” undo 
•  Start from end of Log, move backwards 
•  Read only affected log entries 
•  Undo actions are written in the Log as special 

entries: CLR (Compensating Log Records) 
•  CLRs are redone, but never undone 
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3. Undo Phase: Details 
•  “Loser transactions” = uncommitted 

transactions in Active Transactions Table 

•  ToUndo = set of lastLSN of loser transactions 
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3. Undo Phase: Details 

While ToUndo not empty: 
•  Choose most recent (largest) LSN in ToUndo 
•  If LSN = regular record <T,P,u,v>: 

–  Undo v 
–  Write a CLR where CLR.undoNextLSN = LSN.prevLSN 

•  If LSN = CLR record: 
–  Don’t undo ! 

•  if CLR.undoNextLSN not null, insert in ToUndo 
otherwise, write <END TRANSACTION> in log 
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3. Undo Phase: Details 

[Figure 4 from Franklin97] 
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3. Undo Phase: Details 

What happens if system crashes during UNDO ? 
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3. Undo Phase: Details 

What happens if system crashes during UNDO ? 
 
We do not UNDO again !  Instead, each CLR is a 

REDO record: we simply redo the undo 
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Physical v.s. Logical Loging 

Why are redo records physical ? 
 
 
Why are undo records logical ? 
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Physical v.s. Logical Loging 

Why are redo records physical ? 
•  Simplicity: replaying history is easy, and 

idempotent 
 
Why are undo records logical ? 
•  Required for transaction rollback: this not 

“undoing history”, but selective undo 
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Concurrency Control 

Recap ACID: 

•  Atomicity – recovery 

•  Consistency 

•  Isolation – concurrency control 

•  Durability 39 



Reading Material 

Main textbook (Ramakrishnan and Gehrke): 
•  Chapters 16, 17, 18 
 
More background material: Garcia-Molina, 

Ullman, Widom: 
•  Chapters 17.2, 17.3, 17.4 
•  Chapters 18.1, 18.2, 18.3, 18.8, 18.9 
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Concurrency Control 

•  Multiple concurrent transactions T1, T2, … 

•  They read/write common elements A1, A2, … 

•  How can we prevent unwanted interference ? 
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The SCHEDULER is responsible for that 



Schedules 
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A schedule is a sequence  
of interleaved actions  
from all transactions 



Example 
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T1 T2 
READ(A, t) READ(A, s) 
t := t+100 s := s*2 
WRITE(A, t) WRITE(A,s) 
READ(B, t) READ(B,s) 
t := t+100 s := s*2 
WRITE(B,t) WRITE(B,s) 

A and B are elements 
in the database 

t and s are variables  
in tx source code 



A Serial Schedule 
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T1 T2 
READ(A, t) 
t := t+100 
WRITE(A, t) 
READ(B, t) 
t := t+100 
WRITE(B,t) 

READ(A,s) 
s := s*2 
WRITE(A,s) 
READ(B,s) 
s := s*2 
WRITE(B,s) 



Serializable Schedule 
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A schedule is serializable if it is  
equivalent to a serial schedule 



A Serializable Schedule 
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T1 T2 
READ(A, t) 
t := t+100 
WRITE(A, t) 

READ(A,s) 
s := s*2 
WRITE(A,s) 

READ(B, t) 
t := t+100 
WRITE(B,t) 

READ(B,s) 
s := s*2 
WRITE(B,s) 

This is a serializable schedule. 
This is NOT a serial schedule 



A Non-Serializable Schedule 
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T1 T2 
READ(A, t) 
t := t+100 
WRITE(A, t) 

READ(A,s) 
s := s*2 
WRITE(A,s) 
READ(B,s) 
s := s*2 
WRITE(B,s) 

READ(B, t) 
t := t+100 
WRITE(B,t) Why is it 

non-serializable? 



Serializable Schedules 

•  The role of the scheduler is to ensure that the 
schedule is serializable 
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Q: Why not run only serial schedules ?   
I.e. run one transaction after the other ? 



Serializable Schedules 

•  The role of the scheduler is to ensure that the 
schedule is serializable 
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Q: Why not run only serial schedules ?   
I.e. run one transaction after the other ? 

A: Because of very poor throughput due to disk latency. 
 
Lesson: main memory databases may do serial schedules only 



Still Serializable, but… 
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T1 T2 
READ(A, t) 
t := t+100 
WRITE(A, t) 

READ(A,s) 
s := s + 200 
WRITE(A,s) 
READ(B,s) 
s := s + 200 
WRITE(B,s) 

READ(B, t) 
t := t+100 
WRITE(B,t) 

…we don’t expect the scheduler to schedule this 

Schedule is serializable 
because t=t+100 and 
s=s+200 commute 



Ignoring Details 

•  Assume worst case updates: 
–  We never commute actions done by transactions 

•  As a consequence, we only care about reads and 
writes 
–  Transaction = sequence of R(A)’s and W(A)’s 
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T1: r1(A); w1(A); r1(B); w1(B) 
T2: r2(A); w2(A); r2(B); w2(B) 



Conflicts 

• Write-Read – WR 
• Read-Write – RW 
• Write-Write – WW 
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Conflict Serializability 
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Conflicts: 

ri(X); wi(Y) Two actions by same transaction Ti: 

wi(X); wj(X) Two writes by Ti, Tj to same element 

wi(X); rj(X) 
Read/write by Ti, Tj to same element 

ri(X); wj(X) 



Conflict Serializability 

•  Every conflict-serializable schedule is serializable 
•  The converse is not true in general 
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Definition A schedule is conflict serializable  
if it can be transformed into a serial 
schedule by a series of swappings  
of adjacent non-conflicting actions 



Conflict Serializability 
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Example: 
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B) 



Conflict Serializability 
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Example: 

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B) 

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B) 



Conflict Serializability 
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Example: 

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B) 

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B) 



Conflict Serializability 
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Example: 

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B) 

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B) 

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B) 



Conflict Serializability 

CSEP544 - Fall 2015 59 

Example: 

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B) 

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B) 

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B) 

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B) 

…. 



Testing for Conflict-Serializability 

Precedence graph: 
•  A node for each transaction Ti,  
•  An edge from Ti to Tj whenever an action in 

Ti conflicts with, and comes before an action 
in Tj 

•  The schedule is serializable iff the 
precedence graph is acyclic 
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Example 1 
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B) 

1 2 3 



Example 1 
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)  

1 2 3 

This schedule is conflict-serializable 

A B 



Example 2 
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r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B) 

1 2 3 



Example 2 
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1 2 3 

This schedule is NOT conflict-serializable 

A 
B 

B 

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B) 



View Equivalence 

•  A serializable schedule need not be conflict 
serializable, even under the “worst case 
update” assumption 
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w1(X); w2(X); w2(Y); w1(Y); w3(Y); 

Is this schedule conflict-serializable ? 



View Equivalence 

•  A serializable schedule need not be conflict 
serializable, even under the “worst case 
update” assumption 
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w1(X); w2(X); w2(Y); w1(Y); w3(Y); 

Is this schedule conflict-serializable ? No… 



View Equivalence 

•  A serializable schedule need not be conflict 
serializable, even under the “worst case 
update” assumption 
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w1(X); w1(Y); w2(X); w2(Y); w3(Y); 

w1(X); w2(X); w2(Y); w1(Y); w3(Y); 

Lost write 

Equivalent,  but not conflict-equivalent 



View Equivalence 
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T1 T2 T3 
W1(X) 

W2(X) 
W2(Y) 
CO2 

W1(Y) 
CO1 

W3(Y) 
CO3 

T1 T2 T3 
W1(X) 
W1(Y) 
CO1 

W2(X) 
W2(Y) 
CO2 

W3(Y) 
CO3 

Lost 

Serializable, but not conflict serializable 



View Equivalence 
Two schedules S, S’ are view equivalent if: 
•  If T reads an initial value of A in S,  

then T reads the initial value of A in S’ 
 

•  If T reads a value of A written by T’ in S, 
then T reads a value of A written by T’ in S’ 
 

•  If T writes the final value of A in S,  
then T writes the final value of A in S’ 



View-Serializability 

A schedule is view serializable if it is view 
equivalent to a serial schedule 

Remark: 
•  If a schedule is conflict serializable,  

then it is also view serializable 
•  But not vice versa 
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Schedules with Aborted Transactions 

•  When a transaction aborts, the recovery 
manager undoes its updates 

•  But some of its updates may have affected 
other transactions ! 
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Schedules with Aborted Transactions 
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T1 T2 
R(A) 
W(A) 

R(A) 
W(A) 
R(B) 
W(B) 
Commit 

Abort 

What’s wrong? 



Schedules with Aborted Transactions 
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T1 T2 
R(A) 
W(A) 

R(A) 
W(A) 
R(B) 
W(B) 
Commit 

Abort 

Cannot abort T1 because cannot undo T2 

What’s wrong? 



Recoverable Schedules 

A schedule is recoverable if: 
•  It is conflict-serializable, and 
•  Whenever a transaction T commits, all 

transactions who have written elements read 
by T have already committed 
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Recoverable Schedules 

75 

T1 T2 
R(A) 
W(A) 

R(A) 
W(A) 
R(B) 
W(B) 
Commit 

? 

T1 T2 
R(A) 
W(A) 

R(A) 
W(A) 
R(B) 
W(B) 

Commit 
Commit 

Nonrecoverable Recoverable 



Recoverable Schedules 
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T1 T2 T3 T4 
R(A) 
W(A) 

R(A) 
W(A) 
R(B) 
W(B) 

R(B) 
W(B) 
R(C) 
W(C) 

R(C) 
W(C) 
R(D) 
W(D) 

Abort 

How do we recover ? 



Cascading Aborts 

•  If a transaction T aborts, then we need to 
abort any other transaction T’ that has read 
an element written by T 

•  A schedule avoids cascading aborts if 
whenever a transaction reads an element, the 
transaction that has last written it has already 
committed. 
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Avoiding Cascading Aborts 
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T1 T2 
R(A) 
W(A) 
Commit 

R(A) 
W(A) 
R(B) 
W(B) 
. . . 

Without cascading aborts 

T1 T2 
R(A) 
W(A) 

R(A) 
W(A) 
R(B) 
W(B) 

. . . 
. . . 

With cascading aborts 



Review of Schedules 

Serializability 

•  Serial 
•  Serializable 
•  Conflict serializable 
•  View serializable 

Recoverability 

•  Recoverable 
•  Avoids cascading 

deletes 
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Scheduler 

•  The scheduler: 
•  Module that schedules the transaction’s 

actions, ensuring serializability 

•  Two main approaches 
•  Pessimistic: locks 
•  Optimistic: time stamps, MV, validation 



Pessimistic Scheduler 

Simple idea: 
•  Each element has a unique lock 
•  Each transaction must first acquire the lock 

before reading/writing that element 
•  If the lock is taken by another transaction, 

then wait 
•  The transaction must release the lock(s) 
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Notation 
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li(A) = transaction Ti acquires lock for element A 
 
ui(A) = transaction Ti releases lock for element A 



A Non-Serializable Schedule 
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T1 T2 
READ(A, t) 
t := t+100 
WRITE(A, t) 

READ(A,s) 
s := s*2 
WRITE(A,s) 
READ(B,s) 
s := s*2 
WRITE(B,s) 

READ(B, t) 
t := t+100 
WRITE(B,t) 



Example 
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T1 T2 
L1(A); READ(A, t) 
t := t+100 
WRITE(A, t); U1(A); L1(B) 

L2(A); READ(A,s) 
s := s*2 
WRITE(A,s); U2(A);  
L2(B); DENIED… 

READ(B, t) 
t := t+100 
WRITE(B,t); U1(B);  

…GRANTED; READ(B,s) 
s := s*2 
WRITE(B,s); U2(B);  

Scheduler has ensured a conflict-serializable schedule 



But… 
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T1 T2 
L1(A); READ(A, t) 
t := t+100 
WRITE(A, t); U1(A); 

L2(A); READ(A,s) 
s := s*2 
WRITE(A,s); U2(A); 
L2(B); READ(B,s) 
s := s*2 
WRITE(B,s); U2(B); 

L1(B); READ(B, t) 
t := t+100 
WRITE(B,t); U1(B);  

Locks did not enforce conflict-serializability !!! What’s wrong ? 



Two Phase Locking (2PL) 

The 2PL rule: 

•  In every transaction, all lock requests must 
preceed all unlock requests 

•  This ensures conflict serializability !  (will 
prove this shortly) 
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Example: 2PL transactions 

87 

T1 T2 
L1(A); L1(B); READ(A, t) 
t := t+100 
WRITE(A, t); U1(A)  

L2(A); READ(A,s) 
s := s*2 
WRITE(A,s);  
L2(B); DENIED… 

READ(B, t) 
t := t+100 
WRITE(B,t); U1(B);  

…GRANTED; READ(B,s) 
s := s*2 
WRITE(B,s); U2(A); U2(B);  

Now it is conflict-serializable 



Two Phase Locking (2PL) 

88 

Theorem: 2PL ensures conflict serializability 



Two Phase Locking (2PL) 

Theorem: 2PL ensures conflict serializability 

Proof.  Suppose not: then 
there exists a cycle 
in the precedence graph. 

T1 

T2 

T3 

B A 

C 



Two Phase Locking (2PL) 
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Theorem: 2PL ensures conflict serializability 

Proof.  Suppose not: then 
there exists a cycle 
in the precedence graph. 

T1 

T2 

T3 

B A 

C 

Then there is the 
following temporal 
cycle in the schedule: 
 



Two Phase Locking (2PL) 
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Theorem: 2PL ensures conflict serializability 

Proof.  Suppose not: then 
there exists a cycle 
in the precedence graph. 

T1 

T2 

T3 

B A 

C 

Then there is the 
following temporal 
cycle in the schedule: 
U1(A)àL2(A)     why? 



Two Phase Locking (2PL) 
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Theorem: 2PL ensures conflict serializability 

Proof.  Suppose not: then 
there exists a cycle 
in the precedence graph. 

T1 

T2 

T3 

B A 

C 

Then there is the 
following temporal 
cycle in the schedule: 
U1(A)àL2(A)  
L2(A)àU2(B)      why? 



Two Phase Locking (2PL) 
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Theorem: 2PL ensures conflict serializability 

Proof.  Suppose not: then 
there exists a cycle 
in the precedence graph. 

T1 

T2 

T3 

B A 

C 

Then there is the 
following temporal 
cycle in the schedule: 
U1(A)àL2(A) 
L2(A)àU2(B) 
U2(B)àL3(B) 
L3(B)àU3(C) 
U3(C)àL1(C) 
L1(C)àU1(A) Contradiction 



A New Problem:  
Non-recoverable Schedule 

94 

T1 T2 
L1(A); L1(B); READ(A, t) 
t := t+100 
WRITE(A, t); U1(A)  

L2(A); READ(A,s) 
s := s*2 
WRITE(A,s);  
L2(B); DENIED… 

READ(B, t) 
t := t+100 
WRITE(B,t); U1(B);  

…GRANTED; READ(B,s) 
s := s*2 
WRITE(B,s); U2(A); U2(B);  
Commit 

Abort 



Strict 2PL 

•  Strict 2PL: All locks held by a transaction are 
released when the transaction is completed; 
release happens at the time of COMMIT or 
ROLLBACK 

•  Schedule is recoverable 
•  Schedule avoids cascading aborts 
•  Schedule is strict: read book 
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Strict 2PL 
T1 T2 
L1(A); READ(A) 
A :=A+100 
WRITE(A);  

L2(A); DENIED… 
L1(B); READ(B) 
B :=B+100 
WRITE(B);  
U1(A),U1(B); Rollback 

…GRANTED; READ(A) 
A := A*2 
WRITE(A);  
L2(B);  READ(B) 
B := B*2 
WRITE(B); 
U2(A); U2(B); Commit 96 



Summary of Strict 2PL 

•  Ensures serializability, recoverability, and 
avoids cascading aborts 

•  Issues: implementation, lock modes, 
granularity, deadlocks, performance 
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The Locking Scheduler 

Task 1: -- act on behalf of the transaction 
 

Add lock/unlock requests to transactions 
•  Examine all READ(A) or WRITE(A) actions 
•  Add appropriate lock requests 
•  On COMMIT/ROLLBACK release all locks 
•  Ensures Strict 2PL ! 
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The Locking Scheduler 

Task 2: -- act on behalf of the system 
 Execute the locks accordingly 

•  Lock table: a big, critical data structure in a DBMS ! 
•  When a lock is requested, check the lock table 

–  Grant, or add the transaction to the element’s wait list 

•  When a lock is released, re-activate a transaction 
from its wait list 

•  When a transaction aborts, release all its locks 
•  Check for deadlocks occasionally 
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Lock Modes 

•  S = shared lock (for READ) 
•  X = exclusive lock (for WRITE) 

100 

None S X 
None OK OK OK 

S OK OK Conflict 
X OK Conflict Conflict 

Lock compatibility matrix: 



Lock Granularity 

•  Fine granularity locking (e.g., tuples) 
–  High concurrency 
–  High overhead in managing locks 

•  Coarse grain locking (e.g., tables, predicate locks) 
–  Many false conflicts 
–  Less overhead in managing locks 

•  Alternative techniques 
–  Hierarchical locking (and intentional locks) [commercial DBMSs] 
–  Lock escalation 
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Deadlocks 
•  Cycle in the wait-for graph: 

–  T1 waits for T2 
–  T2 waits for T3 
–  T3 waits for T1 

•  Deadlock detection 
–  Timeouts 
–  Wait-for graph 

•  Deadlock avoidance 
–  Acquire locks in pre-defined order 
–  Acquire all locks at once before starting 
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Lock Performance 
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Th
ro

ug
hp
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# Active Transactions 

thrashing 

Why ? 



The Tree Protocol 

•  An alternative to 2PL, for tree structures 
•  E.g. B-trees (the indexes of choice in 

databases) 

•  Because 
–  Indexes are hot spots! 
–  2PL would lead to great lock contention 
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The Tree Protocol 

Rules: 
•  The first lock may be any node of the tree 
•  Subsequently, a lock on a node A may only be acquired if the 

transaction holds a lock on its parent B 
•  Nodes can be unlocked in any order (no 2PL necessary) 
•  “Crabbing” 

–  First lock parent then lock child 
–  Keep parent locked only if may need to update it 
–  Release lock on parent if child is not full 

•  The tree protocol is NOT 2PL, yet ensures conflict-
serializability ! 
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Phantom Problem 
•  So far we have assumed the database to be a 

static collection of elements (=tuples) 

•  If tuples are inserted/deleted then the phantom 
problem appears 
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Phantom Problem 

Is this schedule serializable ? 

T1 T2 
SELECT * 
FROM Product 
WHERE color=‘blue’ 

INSERT INTO Product(name, color) 
VALUES (‘gizmo’,’blue’) 

SELECT * 
FROM Product 
WHERE color=‘blue’ 



Phantom Problem 
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Suppose there are two blue products, X1, X2: 
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3) 

T1 T2 
SELECT * 
FROM Product 
WHERE color=‘blue’ 

INSERT INTO Product(name, color) 
VALUES (‘gizmo’,’blue’) 

SELECT * 
FROM Product 
WHERE color=‘blue’ 



Phantom Problem 
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Suppose there are two blue products, X1, X2: 
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3) 

This is conflict serializable ! What’s wrong ?? 

T1 T2 
SELECT * 
FROM Product 
WHERE color=‘blue’ 

INSERT INTO Product(name, color) 
VALUES (‘gizmo’,’blue’) 

SELECT * 
FROM Product 
WHERE color=‘blue’ 



Phantom Problem 
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Suppose there are two blue products, X1, X2: 
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3) 

Not serializable due to phantoms 

T1 T2 
SELECT * 
FROM Product 
WHERE color=‘blue’ 

INSERT INTO Product(name, color) 
VALUES (‘gizmo’,’blue’) 

SELECT * 
FROM Product 
WHERE color=‘blue’ 



Phantom Problem 
•  A “phantom” is a tuple that is  

invisible during part of a transaction execution but 
not invisible during the entire execution 

•  In our example: 
–  T1: reads list of products 
–  T2: inserts a new product 
–  T1: re-reads: a new product appears ! 
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Phantom Problem 

•  In a static database: 
–  Conflict serializability implies serializability 

•  In a dynamic database, this may fail due to 
phantoms 

•  Strict 2PL guarantees conflict serializability, 
but not serializability 
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Dealing With Phantoms 

•  Lock the entire table, or 
•  Lock the index entry for ‘blue’ 

–  If index is available 

•  Or use predicate locks  
–  A lock on an arbitrary predicate 

Dealing with phantoms is expensive ! 



Isolation Levels in SQL 

1.  “Dirty reads” 
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED 
 

2.  “Committed reads” 
SET TRANSACTION ISOLATION LEVEL READ COMMITTED 
 

3.  “Repeatable reads” 
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ 
 

4.  Serializable transactions 
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE 
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ACID 



1. Isolation Level: Dirty Reads 

•  “Long duration” WRITE locks 
–  Strict 2PL 

•  No READ locks 
–  Read-only transactions are never delayed 
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Possible pbs: dirty and inconsistent reads 



2. Isolation Level: Read Committed  

•  “Long duration” WRITE locks 
–  Strict 2PL 

•  “Short duration” READ locks 
–  Only acquire lock while reading (not 2PL) 
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Unrepeatable reads  
When reading same element twice,  
may get two different values 



3. Isolation Level: Repeatable Read  

•  “Long duration” WRITE locks 
–  Strict 2PL 

•  “Long duration” READ locks 
–  Strict 2PL 
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This is not serializable yet !!! Why ? 



4. Isolation Level Serializable 

•  “Long duration” WRITE locks 
–  Strict 2PL 

•  “Long duration” READ locks 
–  Strict 2PL 

•  Deals with phantoms too 
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READ-ONLY Transactions 
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Client 1: START TRANSACTION 
 INSERT INTO SmallProduct(name, price) 
  SELECT pname, price 
  FROM Product 
  WHERE price <= 0.99 

 
 DELETE  FROM Product 
    WHERE price <=0.99 
 COMMIT 

 
Client 2: SET TRANSACTION READ ONLY 

 START TRANSACTION 
 SELECT count(*) 
 FROM Product 

 
 SELECT count(*) 
 FROM SmallProduct 
 COMMIT 

Can improve 
performance 



Optimistic Concurrency Control 
Mechanisms 

•  Pessimistic: 
–  Locks 

•  Optimistic 
–  Timestamp based: basic, multiversion 
–  Validation 
–  Snapshot isolation: a variant of both 
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Timestamps 

•  Each transaction receives a unique timestamp 
TS(T) 

 
Could be: 

•  The system’s clock 
•  A unique counter, incremented by the scheduler 
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Timestamps 
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The timestamp order defines 
 the serialization order of the transaction 

Main invariant: 

Will generate a schedule that is view-equivalent 
to a serial schedule, and recoverable 



Main Idea 

•  For any two conflicting actions, ensure that 
their order is the serialized order: 

Check WT, RW, WW conflicts 
•  wU(X) . . . rT(X) 
•  rU(X) . . . wT(X) 
•  wU(X) . . . wT(X) 
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When T requests rT(X), need to check TS(U) ≤ TS(T) 

Read too 
late ? 

Write too 
late ? 



Timestamps 

With each element X, associate 
•  RT(X) = the highest timestamp of any 

transaction U that read X 
•  WT(X) = the highest timestamp of any 

transaction U that wrote X 
•  C(X) = the commit bit: true when transaction 

with highest timestamp that wrote X committed 

124 
If element = page, then these are associated 
with each page X in the buffer pool 



Simplified Timestamp-based 
Scheduling 

Only for transactions that do not abort 
Otherwise, may result in non-recoverable schedule 
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Transaction wants to read element X 
If WT(X) > TS(T) then ROLLBACK 
Else READ and update RT(X) to larger of TS(T) or RT(X) 

Transaction wants to write element X 
If RT(X) > TS(T) then ROLLBACK 
Else if WT(X) > TS(T) ignore write & continue (Thomas Write Rule) 
Otherwise, WRITE and update WT(X) =TS(T) 



Details 

Read too late: 
•  T wants to read X, and WT(X) > TS(T) 
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START(T) … START(U) … wU(X) . . . rT(X) 

Need to rollback T ! 



Details 

Write too late: 
•  T wants to write X, and RT(X) > TS(T) 
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START(T) … START(U) … rU(X) . . . wT(X) 

Need to rollback T ! 



Details 

Write too late, but we can still handle it: 
•  T wants to write X, and  

RT(X) ≤ TS(T)  but WT(X) > TS(T) 
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START(T) … START(V) … wV(X) . . . wT(X) 

Don’t write X at all ! 
(Thomas’ rule) 



View-Serializability 

•  By using Thomas’ rule we do not obtain a 
conflict-serializable schedule 

•  But we obtain a view-serializable schedule 
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Ensuring Recoverable Schedules 

•  Recall the definition: if a transaction reads an 
element, then the transaction that wrote it 
must have already committed 

•  Use the commit bit C(X) to keep track if the 
transaction that last wrote X has committed 
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Ensuring Recoverable Schedules 

Read dirty data: 
•  T wants to read X, and WT(X) < TS(T) 
•  Seems OK, but… 
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START(U) … START(T) … wU(X). . . rT(X)… ABORT(U) 

If C(X)=false, T needs to wait for it to become true 



Ensuring Recoverable Schedules 

Thomas’ rule needs to be revised: 
•  T wants to write X, and WT(X) > TS(T) 
•  Seems OK not to write at all, but … 
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START(T) … START(U)… wU(X). . . wT(X)… ABORT(U) 

If C(X)=false, T needs to wait for it to become true 



Timestamp-based Scheduling 
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Transaction wants to READ element X 
If WT(X) > TS(T) then ROLLBACK 
Else If C(X) = false, then WAIT 
Else READ and update RT(X) to larger of TS(T) or RT(X) 

Transaction wants to WRITE element X 
If RT(X) > TS(T)  then ROLLBACK 
Else if WT(X) > TS(T) 

Then If C(X) = false then WAIT  
          else IGNORE write (Thomas Write Rule)  

Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false 



Summary of Timestamp-based 
Scheduling 

•  View-serializable 

•  Recoverable 
–  Even avoids cascading aborts 

•  Does NOT handle phantoms 
–  These need to be handled separately, e.g. 

predicate locks 
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Multiversion Timestamp 

•  When transaction T requests r(X) 
but WT(X) > TS(T), then T must rollback 

•  Idea: keep multiple versions of X: 
Xt, Xt-1, Xt-2, . . . 

•  Let T read an older version, with appropriate 
timestamp 
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TS(Xt) > TS(Xt-1) > TS(Xt-2) > . . . 



Details 

•  When wT(X) occurs,  
 create a new version, denoted  Xt where t = TS(T) 

•  When rT(X) occurs,  
 find most recent version Xt such that t < TS(T) 
 Notes: 

–  WT(Xt)  = t and it never changes 
–  RT(Xt) must still be maintained to check legality of writes 

•  Can delete Xt if we have a later version Xt1 and all active 
transactions T have TS(T) > t1 
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Example (in class) 
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X3     X9     X12     X18 

R6(X)  -- what happens? 
W14(X) – what happens? 
R15(X) – what happens? 
W5(X) – what happens? 
 
When can we delete X3? 



Concurrency Control by 
Validation 

•  Each transaction T defines a read set RS(T) and a 
write set WS(T) 

•  Each transaction proceeds in three phases: 
–  Read all elements in RS(T).  Time = START(T) 
–  Validate (may need to rollback).  Time = VAL(T) 
–  Write all elements in WS(T). Time = FIN(T) 
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Main invariant: the serialization order is VAL(T) 



Avoid rT(X) - wU(X) Conflicts 
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U: Read phase Validate Write phase 

START(U) VAL(U) FIN(U) 

T: Read phase Validate ? 

START(T) 
IF  RS(T) ∩ WS(U) and FIN(U) > START(T)  
        (U has validated and  U has not finished before T begun) 
Then ROLLBACK(T) 

conflicts 



Avoid wT(X) - wU(X) Conflicts 
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U: Read phase Validate Write phase 

START(U) VAL(U) FIN(U) 

T: Read phase Validate Write phase ? 

START(T) VAL(T) 
IF  WS(T) ∩ WS(U) and FIN(U) > VAL(T)  
        (U has validated and  U has not finished before T validates) 
Then ROLLBACK(T) 

conflicts 



Snapshot Isolation 

•  Another optimistic concurrency control 
method 

•  Very efficient, and very popular 
–  Oracle, Postgres, SQL Server 2005 
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WARNING: Not serializable, yet ORACLE uses 
it even for SERIALIZABLE transactions ! 



Snapshot Isolation Rules 

•  Each transactions receives a timestamp TS(T) 

•  Tnx sees the snapshot at time TS(T) of database 

•  When T commits, updated pages written to disk 

•  Write/write conflicts are resolved by the 
“first committer wins” rule 
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Snapshot Isolation (Details) 

•  Multiversion concurrency control: 
–  Versions of X:   Xt1, Xt2, Xt3, . . . 

•  When T reads X, return XTS(T). 
•  When T writes X (to avoid lost update): 
•  If latest version of X is TS(T) then proceed 
•  If C(X) = true then abort 
•  If C(X) = false then wait 
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What Works and What Not 

•  No dirty reads (Why ?) 
•  No unconsistent reads (Why ?) 
•  No lost updates (“first committer wins”) 

•  Moreover: no reads are ever delayed 

•  However: read-write conflicts not caught ! 
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Write Skew 

T1: 
   READ(X); 
   if X >= 50 
         then Y = -50; WRITE(Y) 
   COMMIT 

T2: 
   READ(Y); 
   if Y >= 50 
         then X = -50; WRITE(X) 
   COMMIT 

In our notation: 

R1(X), R2(Y), W1(Y), W2(X), C1,C2 

Starting with X=50,Y=50, we end with X=-50, Y=-50. 
Non-serializable !!! 



Write Skews Can Be Serious 

•  ACIDland had two viceroys, Delta and Rho 
•  Budget had two registers: taXes, and spendYng 
•  They had HIGH taxes and LOW spending… 
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Delta: 
   READ(X); 
   if X= ‘HIGH’ 
         then { Y= ‘HIGH’; 
                    WRITE(Y) } 
   COMMIT 

Rho: 
   READ(Y); 
   if Y= ‘LOW’ 
         then {X= ‘LOW’; 
                   WRITE(X) } 
   COMMIT 

… and they ran a deficit ever since. 



Tradeoffs 

•  Pessimistic Concurrency Control (Locks): 
–  Great when there are many conflicts 
–  Poor when there are few conflicts 

•  Optimistic Concurrency Control (Timestamps): 
–  Poor when there are many conflicts (rollbacks) 
–  Great when there are few conflicts 

•  Compromise 
–  READ ONLY transactions → timestamps 
–  READ/WRITE transactions → locks 
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Commercial Systems 
•  DB2: Strict 2PL 
•  SQL Server: 

–  Strict 2PL for standard 4 levels of isolation 
–  Multiversion concurrency control for snapshot isolation 

•  PostgreSQL, Oracle 
–  Snapshot isolation even for SERIALIZABLE 
–  Postgres introduced novel, serializable scheduler in 

postgres 9.1 
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