
CSEP 544: Lecture 05

Query Optimization,
Parallel Databases,

MapReduce

CSEP544 - Fall 2015 1

Homework 3

•  PigLatin (MapReduce) on AWS

•  Go to http://aws.amazon.com/grants/ click
on AWS Educate, get code for $100 credit
for AWS

•  Remember to turn off your instances!

CSEP544 - Fall 2015 2

Overview of Today’s Lecture
•  Query Execution/Optimization

– Review two papers

•  Parallel databases

•  Map/Reduce
– Next week: MR paper review

•  Not in class: PigLatin
– Read for HW3

CSEP544 - Fall 2015 3

Query Execution/Optimization

•  Execution: logical/physical operators
– Started last lecture, reviewed today

•  Optimization: Query plans + rewrite rules
– Today

•  Size estimation: statistics + assumptions
– Today

Will discuss in this order: 3, 1, 2

Database Statistics

•  Collect statistical summaries of stored data

•  Estimate size (=cardinality), bottom-up

•  Estimate cost by using the estimated size

CSEP544 - Fall 2015 5

Database Statistics

•  Number of tuples = cardinality
•  Indexes: number of keys in the index
•  Number of physical pages, clustering info
•  Statistical information on attributes

–  Min value, max value, number distinct values
–  Histograms

•  Correlations between columns

CSEP544 - Fall 2015 6
Collection approach: periodic, using sampling

Size Estimation Problem

CSEP544 - Fall 2015 7

S = SELECT list
 FROM R1, …, Rn
 WHERE cond1 AND cond2 AND . . . AND condk

Given T(R1), T(R2), …, T(Rn)
Estimate T(S)

How can we do this ? Note: doesn’t have to be exact.

Size Estimation Problem

CSEP544 - Fall 2015 8

Remark: T(S) ≤ T(R1) × T(R2) × … × T(Rn)

S = SELECT list
 FROM R1, …, Rn
 WHERE cond1 AND cond2 AND . . . AND condk

Selectivity Factor

•  Each condition cond reduces the size by
some factor called selectivity factor

•  Assuming independence, multiply the
selectivity factors

CSEP544 - Fall 2015 9

Example

CSEP544 - Fall 2015 10

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B is 1/3
Selectivity of S.C = T.C is 1/10
Selectivity of R.A < 40 is ½

What is the estimated size of the query output ?

Example

CSEP544 - Fall 2015 11

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B is 1/3
Selectivity of S.C = T.C is 1/10
Selectivity of R.A < 40 is ½

What is the estimated size of the query output ?

30k * 200k * 10k * 1/3 * 1/10 * ½
= 1TB

Discussion: Paper

S = SELECT list
 FROM R1 as x1, …, Rk as xk
 WHERE Cond -- a conjunction of predicates

What is the probability space?

Discussion: Paper

(x1, x2, …, xk), drawn randomly, independently from R1, ..., Rk

Pr(R1.A = 40) = prob. that random tuple in R1 has A=40

Pr(R1.A = 40 and JR1.B = R2.C and R2.D = 90) = prob. that …

E[|SELECT ... WHERE Cond|] = Pr(Cond) * T(R1) * T(R2) * ... * T(Rk)

What is the probability space?

S = SELECT list
 FROM R1 as x1, …, Rk as xk
 WHERE Cond -- a conjunction of predicates

Join indicator (in class…) Descriptive attribute

Discussion: Paper

What is the probability space?

What are the three simplifying assumptions?

S = SELECT list
 FROM R1 as x1, …, Rk as xk
 WHERE Cond -- a conjunction of predicates

Discussion: Paper

What is the probability space?

What are the three simplifying assumptions?

Uniform: Pr(R1.A = ‘a’) = 1/V(R1, A)

Attribute Indep.: Pr(R1.A = ‘a’ and R1.B = ‘b’) = Pr(R1.A = ‘a’) Pr(R1.B = ‘b’)

Join Indep.: Pr(R1.A = ‘a’ and JR1.B = R2.C) = Pr(R1.A = ‘a’) Pr(JR1.B = R2.C)

S = SELECT list
 FROM R1 as x1, …, Rk as xk
 WHERE Cond -- a conjunction of predicates

Rule of Thumb

•  If selectivities are unknown, then:
selectivity factor = 1/10
[System R, 1979]

CSEP544 - Fall 2015 16

Using Data Statistics

•  Condition is A = c /* value selection on R */
–  Selectivity = 1/V(R,A)

•  Condition is A < c /* range selection on R */
–  Selectivity = (c - Low(R, A))/(High(R,A) - Low(R,A))T(R)

•  Condition is A = B /* R ⨝A=B S */
–  Selectivity = 1 / max(V(R,A),V(S,A))
–  (will explain next)

CSEP544 - Fall 2015 17

Selectivity of Join Predicates

Assumptions:
•  Containment of values: if V(R,A) <= V(S,B), then

the set of A values of R is included in the set of B
values of S
–  Note: this indeed holds when A is a foreign key in R,

and B is a key in S

•  Preservation of values: for any other attribute C,
V(R ⨝A=B S, C) = V(R, C) (or V(S, C))

CSEP544 - Fall 2015 18

Selectivity of Join Predicates

Assume V(R,A) <= V(S,B)

•  Each tuple t in R joins with T(S)/V(S,B) tuple(s) in S

•  Hence T(R ⨝A=B S) = T(R) T(S) / V(S,B)

In general: T(R ⨝A=B S) = T(R) T(S) / max(V(R,A),V(S,B))

CSEP544 - Fall 2015 19

Selectivity of Join Predicates

Example:
•  T(R) = 10000, T(S) = 20000
•  V(R,A) = 100, V(S,B) = 200
•  How large is R ⨝A=B S ?

CSEP544 - Fall 2015 20

Histograms

•  Statistics on data maintained by the
RDBMS

•  Makes size estimation much more
accurate (hence, cost estimations are
more accurate)

CSEP544 - Fall 2015 21

Histograms

CSEP544 - Fall 2015 22

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

Histograms

CSEP544 - Fall 2015

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Estimate = 1200 Estimate = 1*80 + 5*500 = 2580

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

Types of Histograms

•  How should we determine the bucket
boundaries in a histogram ?

CSEP544 - Fall 2015 25

Types of Histograms

•  How should we determine the bucket
boundaries in a histogram ?

•  Eq-Width
•  Eq-Depth
•  Compressed
•  V-Optimal histograms

CSEP544 - Fall 2015 26

Histograms

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

Employee(ssn, name, age)

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 1800 2000 2100 2200 1900 1800

Eq-width:

Eq-depth:

Compressed: store separately highly frequent values: (48,1900)

V-Optimal Histograms

•  Defines bucket boundaries in an optimal
way, to minimize the error over all point
queries

•  Computed rather expensively, using
dynamic programming

•  Modern databases systems use V-optimal
histograms or some variations

CSEP544 - Fall 2015 28

Difficult Questions on Histograms
•  Small number of buckets

– Hundreds, or thousands, but not more
– WHY ?

•  Not updated during database update, but
recomputed periodically
– WHY ?

CSEP544 - Fall 2015 29

Multidimensional Histograms

Classical example:

SQL query: SELECT … FROM …
WHERE Person.city = ‘Seattle’ …

User “optimizes” it to:

SELECT … FROM …
WHERE Person.city = ‘Seattle’
 and Person.state = ‘WA’

Big problem! (Why?)

Multidimensional Histograms

•  Store distributions on two or more
attributes

•  Curse of dimensionality: space grows
exponentially with dimension

•  Paper: discusses using only two
dimensional histograms

CSEP544 - Fall 2015 31

Paper: Bayesian Networks

PBN(A, B, C, D, E) = P(E|D)P(D|B)P(C|A, B) P(A)P(B).

Paper: Bayesian Networks

PBN(A, B, C, D, E) = P(E|D)P(D|B)P(C|A, B) P(A)P(B).

Paper: Bayesian Networks

PBN(A, B, C, D, E) = P(E|D)P(D|B)P(C|A, B) P(A)P(B).

Paper Highlights

•  Universal table (what is it?)
•  Acyclic v.s. Cyclic Schemas
•  Within a table: tree-BN only
•  Join indicator: two parents only
•  Hence: acyclic schema à 2D-histograms

only in the junction tree
•  Simplifies construction, estimation

CSEP544 - Fall 2015 35

Summary of Size Estimation

•  Critical, yet very difficult piece of a query
optimizer

•  Selectivity estimation: simple probability
space (outcome = 1 tuple) to estimate a
selection (includes joins)

•  More complex estimations: much more
difficult (e.g. estimate the size of
DISTINCT)

CSEP544 - Fall 2015 36

Query Execution

•  Logical operators:
– Select/project/join/union/difference
– Group-by/sort

•  Physical operators:
– Main memory (“in core”)

e.g. hash-join, merge-join
– External memory (“out of core”)

index-join, partitioned hash join, merge join

CSEP544 - Fall 2015 37

Discussion: Shapiro’s paper

•  Describe the merge-join algorithm. How
long are the initial runs?

•  What is classic hashing?
•  What is simple hash-join?
•  What is Grace-join?
•  What is Hybrid hash-join?

CSEP544 - Fall 2015 38

Advanced Stuff

•  Semi-joins
•  Anti-semi-joins

CSEP544 - Fall 2015 39

Semijoin

R ⋉C S = Π A1,…,An (R ⨝C S)

Formally, R ⋉C S means this: retain from R only those
tuples that have some matching tuple in S
 Duplicates in R are preserved
 Duplicates in S don’t matter

Where A1, …, An are the attributes in R

Applications: distributed query execution,
standard query execution for complex queries

Semijoins in Distributed Databases

SSN Name Stuff
.

EmpSSN DepName Age Stuff
.

Employee
Dependent

network

Assumptions
•  Very few employees start with M
•  Very few dependents have age > 71.
•  “Stuff” is big.

σname like ‘M%’(Employee) ⨝SSN=EmpSSN (σ age>71 (Dependent))

Semijoins in Distributed Databases

CSEP544 - Fall 2015 42

SSN Name Stuff
.

EmpSSN DepName Age Stuff
.

Employee
Dependent

network

σname like ‘M%’(Employee) ⨝SSN=EmpSSN (σ age>71 (Dependent))

T = Π EmpSSN σ age>71 (Dependents)

Semijoins in Distributed Databases

R = σname like ‘M%’(Employee) ⨝SSN=EmpSSN T

SSN Name Stuff
.

EmpSSN DepName Age Stuff
.

Employee
Dependent

network

σname like ‘M%’(Employee) ⨝SSN=EmpSSN (σ age>71 (Dependent))

T = Π EmpSSN σ age>71 (Dependents)

Semijoins in Distributed Databases

Answer = R ⨝SSN=EmpSSN σ age>71 Dependents`

SSN Name Stuff
.

EmpSSN DepName Age Stuff
.

Employee
Dependent

network

σname like ‘M%’(Employee) ⨝SSN=EmpSSN (σ age>71 (Dependent))

R = σname like ‘M%’(Employee) ⨝SSN=EmpSSN T

T = Π EmpSSN σ age>71 (Dependents)

Anti-Semi-Join

•  Notation: R ⊳ S
– Warning: not a standard notation

•  Meaning: all tuples in R that do NOT have
a matching tuple in S

CSEP544 - Fall 2015 45

Set Difference v.s.
Anti-semijoin

SELECT DISTINCT R.B
FROM R
WHERE not exists (SELECT *

 FROM S
 WHERE R.B=S.B)

R(A,B)
S(B)

Plan=

SELECT DISTINCT *
FROM R
WHERE not exists (SELECT *

 FROM S
 WHERE R.B=S.B)

Set Difference v.s.
Anti-semijoin

SELECT DISTINCT R.B
FROM R
WHERE not exists (SELECT *

 FROM S
 WHERE R.B=S.B)

R(A,B)
S(B)

Plan=
−

ΠB

R(A,B) S(B)

SELECT DISTINCT *
FROM R
WHERE not exists (SELECT *

 FROM S
 WHERE R.B=S.B)

Set Difference v.s.
Anti-semijoin

SELECT DISTINCT R.B
FROM R
WHERE not exists (SELECT *

 FROM S
 WHERE R.B=S.B)

R(A,B)
S(B)

Plan=
−

ΠB

R(A,B) S(B)

SELECT DISTINCT *
FROM R
WHERE not exists (SELECT *

 FROM S
 WHERE R.B=S.B)

Plan=

Set Difference v.s.
Anti-semijoin

SELECT DISTINCT R.B
FROM R
WHERE not exists (SELECT *

 FROM S
 WHERE R.B=S.B)

R(A,B)
S(B)

Plan=
−

ΠB

R(A,B) S(B)

SELECT DISTINCT *
FROM R
WHERE not exists (SELECT *

 FROM S
 WHERE R.B=S.B)

Plan=

−

ΠB

R(A,B) S(B) R(A,B)

⋉

Semi-join

Set Difference v.s.
Anti-semijoin

SELECT DISTINCT R.B
FROM R
WHERE not exists (SELECT *

 FROM S
 WHERE R.B=S.B)

R(A,B)
S(B)

Plan=
−

ΠB

R(A,B) S(B)

SELECT DISTINCT *
FROM R
WHERE not exists (SELECT *

 FROM S
 WHERE R.B=S.B)

Plan=

R(A,B) S(B)

⊳
Anti-semi-join

−

ΠB

R(A,B) S(B) R(A,B)

⋉

Semi-join

Operators on Bags

•  Duplicate elimination δ
δ(R) = SELECT DISTINCT * FROM R

•  Grouping γ
γA,sum(B) (R) =

 SELECT A,sum(B) FROM R GROUP BY A

•  Sorting τ

Query Optimization

•  Search space = set of all physical query
plans considered

•  Search algorithm = a heuristics-based
algorithm for searching the space and
selecting an optimal plan

CSEP544 - Fall 2015 52

Relational Algebra Laws: Joins

CSEP544 - Fall 2015 53

Commutativity : R ⋈ S = S ⋈ R
Associativity: R ⋈ (S ⋈ T) = (R ⋈ S) ⋈ T
Distributivity: R ⨝ (S ∪ T) = (R ⨝ S) ∪ (R ⨝ T)

Outer joins get more complicated

Relational Algebra Laws:
Selections

CSEP544 - Fall 2015 54

R(A, B, C, D), S(E, F, G)

σ F=3 (R ⨝ D=E S) = ?
σ A=5 AND G=9 (R ⨝ D=E S) = ?

Relational Algebra Laws:
Selections

CSEP544 - Fall 2015 55

R(A, B, C, D), S(E, F, G)

σ F=3 (R ⨝ D=E S) = R ⨝ D=E (σ F=3 (S))
σ A=5 AND G=9 (R ⨝ D=E S) =σA=5(R) ⨝D=E σG=9(S)

Group-by and Join

CSEP544 - Fall 2015 56

γA, sum(D)(R(A,B) ⨝ B=C S(C,D)) = ?

R(A, B), S(C,D)

Group-by and Join

CSEP544 - Fall 2015 57

γA, sum(D)(R(A,B) ⨝ B=C S(C,D)) =
 γA, sum(D)(R(A,B) ⨝ B=C (γC, sum(D)S(C,D)))

These are very powerful laws.
They were introduced only in the 90’s.

R(A, B), S(C,D)

Laws Involving Constraints

CSEP544 - Fall 2015 58

Foreign key

Πpid, price(Product ⨝cid=cid Company) = ?

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

Laws Involving Constraints

CSEP544 - Fall 2015 59

Need a second constraint for this law to hold. Which ?

Πpid, price(Product ⨝cid=cid Company) = Πpid, price(Product)

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

Foreign key

Why such queries occur

CSEP544 - Fall 2015 60

CREATE VIEW CheapProductCompany
 SELECT *
 FROM Product x, Company y
 WHERE x.cid = y.cid and x.price < 100

SELECT pname, price
FROM CheapProductCompany

SELECT pname, price
FROM Product
WHERE price < 100

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

Foreign key

61

Law of Semijoins

•  Input: R(A1,…An), S(B1,…,Bm)
•  Output: T(A1,…,An)
•  Semjoin is: R ⋉ S = Π A1,…,An (R ⨝ S)

•  The law of semijoins is:

CSEP544 - Fall 2015

R ⨝ S = (R ⋉ S) ⨝ S

Laws with Semijoins

•  Used in parallel/distributed databases

•  Often combined with Bloom Filters

•  Read pp. 747 in the textbook

CSEP544 - Fall 2015 62

The Iterator Model

Each operator implements this interface

•  open()

•  get_next()

•  close()

See details on the slides of the previous lecture

Classic Hash Join

What do these operators do for the classic Hash
Join?

•  open()

•  get_next()

•  close()

CSEP544 - Fall 2015 64

⨝cid=cid

Purchase Customer

Purchase(pid,cid,store) ⨝cid=cid Customer(cid, name, city) Purchase(pid, cid, store)
Customer(cid, name, city)

Main Memory Hash Join
open() {
 Customer.open();
 while (c = Customer.get_next())
 hashTable.insert(c.cid, c);
 Customer.close();
 Purchase.open();
}

get_next() {
 repeat {
 p = Purchase.get_next();
 if (p == NULL)
 { c = hashTable.find(p.cid); }
 until (p == NULL or c != NULL);
 return (p,c)
}

close() {
 Purchase.close();
}

Purchase(pid,cid,store) ⨝cid=cid Customer(cid, name, city) Purchase(pid, cid, store)
Customer(cid, name, city)

Main Memory Hash Join
open() {
 Customer.open();
 while (c = Customer.get_next())
 hashTable.insert(c.cid, c);
 Customer.close();
 Purchase.open();
}

get_next() {
 repeat {
 p = Purchase.get_next();
 if (p == NULL)
 { c = hashTable.find(p.cid); }
 until (p == NULL or c != NULL);
 return (p,c)
}

close() {
 Purchase.close();
}

Purchase(pid,cid,store) ⨝cid=cid Customer(cid, name, city) Purchase(pid, cid, store)
Customer(cid, name, city)

What changes if we don’t
join on a key-foreign key?

67

Discussion in class

⋈

⋈ T(C,D)

R(A,B) S(B,C)

CSEP544 - Fall 2015

Every operator is a hash-join
and implements the iterator model

What happens:
•  When we call open() at the top?
•  When we call get_next() at the top?

Discussion in class

⋈

⋈

⋈ T

R S

U

HashTable1 ß S
HashTable2 ß T
HashTable3 ß U
repeat read(R, x)

 y ß join(HashTable1, x)
 z ß join(HashTable2, y)
 u ß join(HashTable3, z)
 write(Answer, u)

What is the total cost?
What is the requirement on M?

Discussion in class

⋈

⋈

⋈ T

R S

U

HashTable ß S
repeat read(R, x)

 y ß join(HashTable, x)
 write(V1, y)

HashTable ß T
repeat read(V1, y)

 z ß join(HashTable, y)
 write(V2, z)

HashTable ß U
repeat read(V2, z)

 u ß join(HashTable, z)
 write(Answer, u)

V1

V2

What is the total cost?
What is the requirement on M?

70

Discussion in class

⋈

⋈

⋈

X R S

⋈

⋈
Z

Y

⋈

V

T

⋈

I
CSEP544 - Fall 2015

Left-Deep Plans and
Bushy Plans

CSEP544 - Fall 2015 71

R3 R1 R2 R4 R3 R1

R4

R2

Left-deep plan Bushy plan

System R considered only left deep plans,
and so do some optimizers today

Search Algorithms

Goal: start with any query plan, find an equivalent plan
with lowest estimated cost
•  Dynamic programming

–  Pioneered by System R for computing optimal join order

•  Search space pruning
–  Drop unpromising partial plans; bottom-up v.s. top-down plans

•  Access path selection
–  Refers to the plan for accessing a single table

CSEP544 - Fall 2015 72

Complete Plans

CSEP544 - Fall 2015 73

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

⨝

S σA<40

R

⨝

T

⨝

S

σA<40

R

⨝

T

If the algorithm
enumerates
complete plans,
then it is difficult
to prune out
unpromising
sets of plans.

R(A,B)
S(B,C)
T(C,D)

Bottom-up Partial Plans

74

R(A,B)
S(B,C)
T(C,D)

⨝ σA<40

R S T

⨝

S σA<40

R

⨝

R S

⨝

S σA<40

R

⨝

T

…..

If the algorithm enumerates
partial bottom-up plans,
then pruning can be done
more efficiently

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

Top-down Partial Plans

75

R(A,B)
S(B,C)
T(C,D)

⨝ σA<40

T ⨝

S

⨝

T

…..

SELECT R.A, T.D
FROM R, S, T
WHERE R.B=S.B
 and S.C=T.C

SELECT *
FROM R, S
WHERE R.B=S.B
 and R.A < 40 SELECT *

FROM R
WHERE R.A < 40

Same here.

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

Access Path Selection

CSEP544 - Fall 2015 76

Supplier(sid,sname,scategory,scity,sstate)

V(Supplier,city) = 1000
V(Supplier,scategory)=100 Clustered index on scity

Unclustered index on (scategory,scity)

B(Supplier) = 10k
T(Supplier) = 1M

Access plan options:
•  Table scan: cost = ?
•  Index scan on scity: cost = ?
•  Index scan on scategory,scity: cost = ?

σscategory = ‘organic’ ∧ scity=‘Seattle’ (Supplier)

Access Path Selection

CSEP544 - Fall 2015 77

V(Supplier,city) = 1000
V(Supplier,scategory)=100 Clustered index on scity

Unclustered index on (scategory,scity)

B(Supplier) = 10k
T(Supplier) = 1M

Access plan options:
•  Table scan: cost = 10k = 10k
•  Index scan on scity: cost = 10k/1000 = 10
•  Index scan on scategory,scity: cost = 1M/1000*100 = 10

Supplier(sid,sname,scategory,scity,sstate)

σscategory = ‘organic’ ∧ scity=‘Seattle’ (Supplier)

Summary of Query Optimization

•  Three parts:
– search space, algorithms, size/cost estimation

•  Ideal goal: find optimal plan. But
–  Impossible to estimate accurately
–  Impossible to search the entire space

•  Goal of today’s optimizers:
– Avoid very bad plans

CSEP544 - Fall 2015 78

Overview of Today’s Lecture
•  Query Execution/Optimization

•  Parallel databases

– Book: Ch. 22.1 – 22.10

•  Map/Reduce
– Next week: MR paper review

•  Not in class: PigLatin
– Read for HW3

CSEP544 - Fall 2015 79

Parallel Databases

CSEP544 - Fall 2015 80

Parallel Computation Today

Two Major Forces Pushing towards Parallel
Computing:

•  Change in Moore’s law

•  Cloud computing

CSEP544 - Fall 2015 81

Parallel Computation Today

1.  Change in Moore's law* (exponential growth in
transistors per chip density) no longer results in
increased clock speeds

–  Increased hw performance available only through
parallelism

–  Think multicore: 4 cores today, perhaps 64 in a few
years

* Moore's law says that the number of transistors that can be
placed inexpensively on an integrated circuit doubles approximately
every two years [Intel co-founder Gordon E. Moore described the
trend in his 1965 paper and predicted that it will last for at least 10 years]

82

Parallel Computation Today

2.  Cloud computing commoditizes access to
large clusters

–  Ten years ago, only Google could afford 1000
servers;

–  Today you can rent this from Amazon Web
Services (AWS)

83

Jeff Dean, SOCC’2010:

Dan Suciu - U. of Washington 84

Memory
access

Communication

Jeff Dean, SOCC’2010:

Dan Suciu - U. of Washington 85

Memory
access

Communication

Jeff Dean, SOCC’2010:

Dan Suciu - U. of Washington 86

Memory
access

Communication

Jeff Dean, SOCC’2010:

Dan Suciu - U. of Washington 87

Memory
access

Communication

Jeff Dean, SOCC’2010:

Dan Suciu - U. of Washington 88

Memory
access

Communication

Local access is
significantly faster
than communication

Parallel DBMSs
•  Goal

–  Improve performance by executing multiple
operations in parallel

•  Key benefit

– Cheaper to scale than relying on a single
increasingly more powerful processor

•  Key challenge
– Ensure overhead and contention do not kill

performance

CSEP544 - Fall 2015 89

Performance Metrics
for Parallel DBMSs

•  Speedup
–  More processors è higher speed
–  Individual queries should run faster
–  Should do more transactions per second (TPS)

•  Scaleup
–  More processors è can process more data
–  Batch scaleup

•  Same query on larger input data should take the same time
–  Transaction scaleup

•  N-times as many TPS on N-times larger database
•  But each transaction typically remains small

CSEP544 - Fall 2015 90

Linear v.s. Non-linear Speedup

CSEP544 - Fall 2015

processors (=P)

Speedup

91

Linear v.s. Non-linear Scaleup

processors (=P) AND data size

Batch
Scaleup

×1 ×5 ×10 ×15

CSEP544 - Fall 2015 92

Challenges to
Linear Speedup and Scaleup

•  Startup cost
– Cost of starting an operation on many

processors

•  Interference
– Contention for resources between processors

•  Skew
– Slowest processor becomes the bottleneck

CSEP544 - Fall 2015 93

Architectures for Parallel
Databases

•  Shared memory

•  Shared disk

•  Shared nothing

CSEP544 - Fall 2015 94

Architectures for Parallel
Databases

95

From: Greenplum Database Whitepaper

Shared Memory
•  Nodes share both RAM and disk
•  Dozens to hundreds of processors

Example: SQL Server runs on a single machine
and can leverage many threads to get a query
to run faster (see query plans)

•  Easy to use and program
•  But very expensive to scale: last remaining

cash cows in the hardware industry

CSEP544 - Fall 2015 96

Shared Disk
•  All nodes access the same disks
•  Found in the largest "single-box" (non-

cluster) multiprocessors

Oracle dominates this class of systems.

Characteristics:
•  Also hard to scale past a certain point:

existing deployments typically have fewer
than 10 machines

CSEP544 - Fall 2015 97

Shared Nothing
•  Cluster of machines on high-speed network
•  Called "clusters" or "blade servers”
•  Each machine has its own memory and disk: lowest

contention.

NOTE: Because all machines today have many cores
and many disks, then shared-nothing systems typically
run many "nodes” on a single physical machine.

Characteristics:
•  Today, this is the most scalable architecture.
•  Most difficult to administer and tune.

We discuss only Shared Nothing in class
98

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Taxonomy for
Parallel Query Evaluation

•  Inter-query parallelism
– Each query runs on one processor

• 
– 
– 

• 
– 

CSEP544 - Fall 2015 99

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Taxonomy for
Parallel Query Evaluation

•  Inter-query parallelism
– Each query runs on one processor

•  Inter-operator parallelism
– A query runs on multiple processors
– An operator runs on one processor

• 
– 

CSEP544 - Fall 2015 100

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Taxonomy for
Parallel Query Evaluation

•  Inter-query parallelism
– Each query runs on one processor

•  Inter-operator parallelism
– A query runs on multiple processors
– An operator runs on one processor

•  Intra-operator parallelism
– An operator runs on multiple processors

CSEP544 - Fall 2015 101

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Taxonomy for
Parallel Query Evaluation

•  Inter-query parallelism
– Each query runs on one processor

•  Inter-operator parallelism
– A query runs on multiple processors
– An operator runs on one processor

•  Intra-operator parallelism
– An operator runs on multiple processors

We study only intra-operator parallelism: most scalable

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Parallel Query Processing
How do we compute these operations on a shared-nothing parallel db?

•  Selection: σA=123(R) (that’s easy, won’t discuss…)

•  Group-by: γA,sum(B)(R)

•  Join: R ⋈ S

Before we answer that: how do we store R (and S) on a shared-nothing
parallel db?

CSEP544 - Fall 2015 103

Horizontal Data Partitioning

CSEP544 - Fall 2015 104

1 2 P . . .

Data: Servers:

K A B
… …

Horizontal Data Partitioning

CSEP544 - Fall 2015 105

K A B
… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Horizontal Data Partitioning

CSEP544 - Fall 2015 106

K A B
… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Which tuples
go to what server?

Horizontal Data Partitioning
•  Block Partition:

–  Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)

•  Hash partitioned on attribute A:
–  Tuple t goes to chunk i, where i = h(t.A) mod P + 1

•  Range partitioned on attribute A:
–  Partition the range of A into -∞ = v0 < v1 < … < vP = ∞
–  Tuple t goes to chunk i, if vi-1 < t.A < vi

107 CSEP544 - Fall 2015

Basic Parallel GroupBy
Data: R(K,A,B,C)
Query: γA,sum(C)(R)
Discuss in class how to compute in each case:

•  R is hash-partitioned on A

•  R is block-partitioned

•  R is hash-partitioned on K

108 CSEP544 - Fall 2015

Basic Parallel GroupBy

Data: R(K,A,B,C)
Query: γA,sum(C)(R)
•  R is block-partitioned or hash-partitioned

on K

109

R1 R2 RP . . .

R1’ R2’ RP’

. . .

Reshuffle R
on attribute A

CSEP544 - Fall 2015

Basic Parallel Join

•  Data: R(K1,A, B), S(K2, B, C)
•  Query: R(K1,A,B) ⋈ S(K2,B,C)

110 CSEP544 - Fall 2015

Initially, both R and S are horizontally partitioned on K1 and K2

R1, S1 R2, S2 RP, SP

Basic Parallel Join

•  Data: R(K1,A, B), S(K2, B, C)
•  Query: R(K1,A,B) ⋈ S(K2,B,C)

111

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally

CSEP544 - Fall 2015

Initially, both R and S are horizontally partitioned on K1 and K2

Speedup and Scaleup

•  Consider:
– Query: γA,sum(C)(R)
– Runtime: dominated by reading chunks from

disk
•  If we double the number of nodes P, what

is the new running time?

•  If we double both P and the size of R,
what is the new running time?

CSEP544 - Fall 2015 112

Speedup and Scaleup

•  Consider:
– Query: γA,sum(C)(R)
– Runtime: dominated by reading chunks from disk

•  If we double the number of nodes P, what is
the new running time?
– Half (each server holds ½ as many chunks)

•  If we double both P and the size of R, what is
the new running time?
– Same (each server holds the same # of chunks)

CSEP544 - Fall 2015 113

Uniform Data v.s. Skewed Data

•  Let R(K,A,B,C); which of the following
partition methods may result in skewed
partitions?

•  Block partition

•  Hash-partition
– On the key K
– On the attribute A

CSEP544 - Fall 2015 114

Uniform Data v.s. Skewed Data

•  Let R(K,A,B,C); which of the following
partition methods may result in skewed
partitions?

•  Block partition

•  Hash-partition
– On the key K
– On the attribute A

Uniform

Uniform

May be skewed

Assuming good
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition

CSEP544 - Fall 2015 115

Parallel DBMS

•  Parallel query plan: tree of parallel operators
Intra-operator parallelism
– Data streams from one operator to the next
– Typically all cluster nodes process all operators

•  Can run multiple queries at the same time
Inter-query parallelism
– Queries will share the nodes in the cluster

•  Notice that user does not need to know how
his/her SQL query was processed

CSEP544 - Fall 2015 116

117

Example: Teradata – Loading

AMP = “Access Module Processor” = unit of parallelism

CSEP544 - Fall 2015

118

Example: Teradata – Query Execution

SELECT *
 FROM Order o, Line i
 WHERE o.item = i.item
 AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order o Item i

Find all orders from today, along with the items
ordered

CSEP544 - Fall 2015

Order(oid, item, date), Line(item, …)

Query Execution

CSEP544 - Fall 2015 119

AMP 1 AMP 2 AMP 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

AMP 1 AMP 2 AMP 3

join

select

scan

date = today()

o.item = i.item

Order o

Order(oid, item, date), Line(item, …)

Query Execution

CSEP544 - Fall 2015 120

AMP 1 AMP 2 AMP 3

scan
Item i

AMP 1 AMP 2 AMP 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Item i

Order(oid, item, date), Line(item, …)

Query Execution

CSEP544 - Fall 2015 121

AMP 1 AMP 2 AMP 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

Order(oid, item, date), Line(item, …)

Overview of Today’s Lecture
•  Query Execution/Optimization

•  Parallel databases

•  Map/Reduce
– Next week: MR paper review

•  Not in class: PigLatin
– Read for HW3

CSEP544 - Fall 2015 122

Cluster Computing

CSEP544 - Fall 2015 123

Cluster Computing

•  Large number of commodity servers,
connected by high speed, commodity
network

•  Rack: holds a small number of servers
•  Data center: holds many racks

CSEP544 - Fall 2015 124

Cluster Computing

•  Massive parallelism:
– 100s, or 1000s, or 10000s servers
– Many hours

•  Failure:
–  If medium-time-between-failure is 1 year
– Then 10000 servers have one failure / hour

CSEP544 - Fall 2015 125

Distributed File System (DFS)

•  For very large files: TBs, PBs
•  Each file is partitioned into chunks,

typically 64MB
•  Each chunk is replicated several times

(≥3), on different racks, for fault tolerance
•  Implementations:

– Google’s DFS: GFS, proprietary
– Hadoop’s DFS: HDFS, open source

CSEP544 - Fall 2015 126

Map Reduce

•  Google: paper published 2004
•  Free variant: Hadoop

•  Map-reduce = high-level programming
model and implementation for large-scale
parallel data processing

127 CSEP544 - Fall 2015

Data Model

Files !

A file = a bag of (key, value) pairs

A MapReduce program:
•  Input: a bag of (inputkey, value)pairs
•  Output: a bag of (outputkey, value)pairs

128 CSEP544 - Fall 2015

Step 1: the MAP Phase

User provides the MAP-function:
•  Input: (input key, value)
•  Ouput:

bag of (intermediate key, value)

System applies the map function in parallel
to all (input key, value) pairs in
the input file

129 CSEP544 - Fall 2015

Step 2: the REDUCE Phase

User provides the REDUCE function:
•  Input:
(intermediate key, bag of values)

•  Output: bag of output (values)

System groups all pairs with the same

intermediate key, and passes the bag of
values to the REDUCE function

130 CSEP544 - Fall 2015

Example

•  Counting the number of occurrences of each
word in a large collection of documents

•  Each Document
–  The key = document id (did)
–  The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

 EmitIntermediate(w, “1”);

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

 result += ParseInt(v);
Emit(AsString(result));

MAP REDUCE

(Bob,1)

(the,1)

(Bob,1)

…

(of,1)

(to,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(of, (1,1,1,…,1))

(the, (1,1,…))

(Bob,(1…))

…

…

…

…

(of, 25)

(the, 77)

(Bob, 12)

…

…

…

…

Shuffle

132

Jobs v.s. Tasks

•  A MapReduce Job
– One single “query”, e.g. count the words in all

docs
– More complex queries may consists of multiple

jobs

•  A Map Task, or a Reduce Task
– A group of instantiations of the map-, or reduce-

function, which are scheduled on a single worker

CSEP544 - Fall 2015 133

Workers

•  A worker is a process that executes one
task at a time

•  Typically there is one worker per
processor, hence 4 or 8 per node

CSEP544 - Fall 2015 134

MAP Tasks REDUCE Tasks

(Bob,1)

(the,1)

(Bob,1)

…

(of,1)

(to,1)

…

(Bob,1)

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(of, (1,1,1,…,1))

(the, (1,1,…))

(Bob,(1…))

…

…

…

…

(of, 25)

(the, 77)

(Bob, 12)

…

…

…

…

Shuffle

MapReduce Job

MapReduce Execution Details

CSEP544 - Fall 2015 136

Map

(Shuffle)

Reduce

Data	not	
necessarily	local	

Intermediate	data	
goes	to	local		disk	

Output	to	disk,	
replicated	in	cluster	

File	system:	GFS	
or	HDFS	

Task

Task

Local	storage	`	

MR Phases

•  Each Map and Reduce task has multiple phases:

137 CSEP544 - Fall 2015

Implementation

•  There is one master node
•  Master partitions input file into M splits, by key
•  Master assigns workers (=servers) to the M

map tasks, keeps track of their progress
•  Workers write their output to local disk,

partition into R regions
•  Master assigns workers to the R reduce tasks
•  Reduce workers read regions from the map

workers’ local disks
138 CSEP544 - Fall 2015

Interesting Implementation Details

Worker failure:

•  Master pings workers periodically,

•  If down then reassigns the task to another
worker

139 CSEP544 - Fall 2015

Interesting Implementation Details
Backup tasks:
•  Straggler = a machine that takes unusually

long time to complete one of the last tasks.
Eg:
– Bad disk forces frequent correctable errors

(30MB/s à 1MB/s)
– The cluster scheduler has scheduled other tasks

on that machine
•  Stragglers are a main reason for slowdown
•  Solution: pre-emptive backup execution of

the last few remaining in-progress tasks

140 CSEP544 - Fall 2015

MapReduce Summary

•  Hides scheduling and parallelization
details

•  However, very limited queries
– Difficult to write more complex queries
– Need multiple MapReduce jobs

•  Solution: declarative query language

141 CSEP544 - Fall 2015

Declarative Languages on MR

•  PIG Latin (Yahoo!)
– New language, like Relational Algebra
– Open source

•  HiveQL (Facebook)
– SQL-like language
– Open source

•  SQL / Dremmel / Tenzing (Google)
– BigQuery – SQL in the cloud

142 CSEP544 - Fall 2015

Overview of Today’s Lecture
•  Query Execution/Optimization

•  Parallel databases

•  Map/Reduce
– Next week: MR paper review

•  Not in class: PigLatin
– Read for HW3

CSEP544 - Fall 2015 143

Pig Latin – Reference only
(will not discuss in class)

CSEP544 - Fall 2015 144

- 145 -

What is Pig?

•  An engine for executing programs on top of Hadoop
•  It provides a language, Pig Latin, to specify these programs
•  An Apache open source project

http://hadoop.apache.org/pig/

Credit: Alan Gates, Yahoo!

- 146 -

Map Reduce Illustrated

map

reduce

map

reduce

Credit: Alan Gates, Yahoo!

- 147 -

Map Reduce Illustrated

map

reduce

map

reduce

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?

Credit: Alan Gates, Yahoo!

- 148 -

Map Reduce Illustrated

map

reduce

map

reduce

Romeo, Romeo, wherefore art thou Romeo?

Romeo, 1
Romeo, 1
wherefore, 1
art, 1
thou, 1
Romeo, 1

What, art thou hurt?

What, 1
art, 1
thou, 1
hurt, 1

Credit: Alan Gates, Yahoo!

- 149 -

Map Reduce Illustrated

map

reduce

map

reduce

Romeo, Romeo, wherefore art thou Romeo?

Romeo, 1
Romeo, 1
wherefore, 1
art, 1
thou, 1
Romeo, 1

art, (1, 1)
hurt (1),
thou (1, 1)

What, art thou hurt?

What, 1
art, 1
thou, 1
hurt, 1

Romeo, (1, 1, 1)
wherefore, (1)
what, (1)

Credit: Alan Gates, Yahoo!

- 150 -

Map Reduce Illustrated

map

reduce

map

reduce

Romeo, Romeo, wherefore art thou Romeo?

Romeo, 1
Romeo, 1
wherefore, 1
art, 1
thou, 1
Romeo, 1

art, (1, 1)
hurt (1),
thou (1, 1)

art, 2
hurt, 1
thou, 2

What, art thou hurt?

What, 1
art, 1
thou, 1
hurt, 1

Romeo, (1, 1, 1)
wherefore, (1)
what, (1)

Romeo, 3
wherefore, 1
what, 1

Credit: Alan Gates, Yahoo!

- 151 -

Why use Pig?

 Suppose you have
user data in one
file, website data in
another, and you
need to find the top
5 most visited sites
by users aged 18 -
25.

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Credit: Alan Gates, Yahoo!

- 152 -

In Map-Reduce
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.KeyValueTextInputFormat;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.RecordReader;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.SequenceFileInputFormat;
import org.apache.hadoop.mapred.SequenceFileOutputFormat;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.jobcontrol.Job;
import org.apache.hadoop.mapred.jobcontrol.JobControl;
import org.apache.hadoop.mapred.lib.IdentityMapper;

public class MRExample {
 public static class LoadPages extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, Text> {

 public void map(LongWritable k, Text val,
 OutputCollector<Text, Text> oc,
 Reporter reporter) throws IOException {
 // Pull the key out
 String line = val.toString();
 int firstComma = line.indexOf(',');
 String key = line.substring(0, firstComma);
 String value = line.substring(firstComma + 1);
 Text outKey = new Text(key);
 // Prepend an index to the value so we know which file
 // it came from.
 Text outVal = new Text("1" + value);
 oc.collect(outKey, outVal);
 }
 }
 public static class LoadAndFilterUsers extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, Text> {

 public void map(LongWritable k, Text val,
 OutputCollector<Text, Text> oc,
 Reporter reporter) throws IOException {
 // Pull the key out
 String line = val.toString();
 int firstComma = line.indexOf(',');
 String value = line.substring(firstComma + 1);
 int age = Integer.parseInt(value);
 if (age < 18 || age > 25) return;
 String key = line.substring(0, firstComma);
 Text outKey = new Text(key);
 // Prepend an index to the value so we know which file
 // it came from.
 Text outVal = new Text("2" + value);
 oc.collect(outKey, outVal);
 }
 }
 public static class Join extends MapReduceBase
 implements Reducer<Text, Text, Text, Text> {

 public void reduce(Text key,
 Iterator<Text> iter,
 OutputCollector<Text, Text> oc,
 Reporter reporter) throws IOException {
 // For each value, figure out which file it's from and
store it
 // accordingly.
 List<String> first = new ArrayList<String>();
 List<String> second = new ArrayList<String>();

 while (iter.hasNext()) {
 Text t = iter.next();
 String value = t.toString();
 if (value.charAt(0) == '1')
first.add(value.substring(1));
 else second.add(value.substring(1));

 reporter.setStatus("OK");
 }

 // Do the cross product and collect the values
 for (String s1 : first) {
 for (String s2 : second) {
 String outval = key + "," + s1 + "," + s2;
 oc.collect(null, new Text(outval));
 reporter.setStatus("OK");
 }
 }
 }
 }
 public static class LoadJoined extends MapReduceBase
 implements Mapper<Text, Text, Text, LongWritable> {

 public void map(
 Text k,
 Text val,
 OutputCollector<Text, LongWritable> oc,
 Reporter reporter) throws IOException {
 // Find the url
 String line = val.toString();
 int firstComma = line.indexOf(',');
 int secondComma = line.indexOf(',', firstComma);
 String key = line.substring(firstComma, secondComma);
 // drop the rest of the record, I don't need it anymore,
 // just pass a 1 for the combiner/reducer to sum instead.
 Text outKey = new Text(key);
 oc.collect(outKey, new LongWritable(1L));
 }
 }
 public static class ReduceUrls extends MapReduceBase
 implements Reducer<Text, LongWritable, WritableComparable,
Writable> {

 public void reduce(
 Text key,
 Iterator<LongWritable> iter,
 OutputCollector<WritableComparable, Writable> oc,
 Reporter reporter) throws IOException {
 // Add up all the values we see

 long sum = 0;
 while (iter.hasNext()) {
 sum += iter.next().get();
 reporter.setStatus("OK");
 }

 oc.collect(key, new LongWritable(sum));
 }
 }
 public static class LoadClicks extends MapReduceBase
 implements Mapper<WritableComparable, Writable, LongWritable,
Text> {

 public void map(
 WritableComparable key,
 Writable val,
 OutputCollector<LongWritable, Text> oc,
 Reporter reporter) throws IOException {
 oc.collect((LongWritable)val, (Text)key);
 }
 }
 public static class LimitClicks extends MapReduceBase
 implements Reducer<LongWritable, Text, LongWritable, Text> {

 int count = 0;
 public void reduce(
 LongWritable key,
 Iterator<Text> iter,
 OutputCollector<LongWritable, Text> oc,
 Reporter reporter) throws IOException {

 // Only output the first 100 records
 while (count < 100 && iter.hasNext()) {
 oc.collect(key, iter.next());
 count++;
 }
 }
 }
 public static void main(String[] args) throws IOException {
 JobConf lp = new JobConf(MRExample.class);
 lp.setJobName("Load Pages");
 lp.setInputFormat(TextInputFormat.class);

 lp.setOutputKeyClass(Text.class);
 lp.setOutputValueClass(Text.class);
 lp.setMapperClass(LoadPages.class);
 FileInputFormat.addInputPath(lp, new
Path("/user/gates/pages"));
 FileOutputFormat.setOutputPath(lp,
 new Path("/user/gates/tmp/indexed_pages"));
 lp.setNumReduceTasks(0);
 Job loadPages = new Job(lp);

 JobConf lfu = new JobConf(MRExample.class);
 lfu.setJobName("Load and Filter Users");
 lfu.setInputFormat(TextInputFormat.class);
 lfu.setOutputKeyClass(Text.class);
 lfu.setOutputValueClass(Text.class);
 lfu.setMapperClass(LoadAndFilterUsers.class);
 FileInputFormat.addInputPath(lfu, new
Path("/user/gates/users"));
 FileOutputFormat.setOutputPath(lfu,
 new Path("/user/gates/tmp/filtered_users"));
 lfu.setNumReduceTasks(0);
 Job loadUsers = new Job(lfu);

 JobConf join = new JobConf(MRExample.class);
 join.setJobName("Join Users and Pages");
 join.setInputFormat(KeyValueTextInputFormat.class);
 join.setOutputKeyClass(Text.class);
 join.setOutputValueClass(Text.class);
 join.setMapperClass(IdentityMapper.class);
 join.setReducerClass(Join.class);
 FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/indexed_pages"));
 FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/filtered_users"));
 FileOutputFormat.setOutputPath(join, new
Path("/user/gates/tmp/joined"));
 join.setNumReduceTasks(50);
 Job joinJob = new Job(join);
 joinJob.addDependingJob(loadPages);
 joinJob.addDependingJob(loadUsers);

 JobConf group = new JobConf(MRExample.class);
 group.setJobName("Group URLs");
 group.setInputFormat(KeyValueTextInputFormat.class);
 group.setOutputKeyClass(Text.class);
 group.setOutputValueClass(LongWritable.class);
 group.setOutputFormat(SequenceFileOutputFormat.class);
 group.setMapperClass(LoadJoined.class);
 group.setCombinerClass(ReduceUrls.class);
 group.setReducerClass(ReduceUrls.class);
 FileInputFormat.addInputPath(group, new
Path("/user/gates/tmp/joined"));
 FileOutputFormat.setOutputPath(group, new
Path("/user/gates/tmp/grouped"));
 group.setNumReduceTasks(50);
 Job groupJob = new Job(group);
 groupJob.addDependingJob(joinJob);

 JobConf top100 = new JobConf(MRExample.class);
 top100.setJobName("Top 100 sites");
 top100.setInputFormat(SequenceFileInputFormat.class);
 top100.setOutputKeyClass(LongWritable.class);
 top100.setOutputValueClass(Text.class);
 top100.setOutputFormat(SequenceFileOutputFormat.class);
 top100.setMapperClass(LoadClicks.class);
 top100.setCombinerClass(LimitClicks.class);
 top100.setReducerClass(LimitClicks.class);
 FileInputFormat.addInputPath(top100, new
Path("/user/gates/tmp/grouped"));
 FileOutputFormat.setOutputPath(top100, new
Path("/user/gates/top100sitesforusers18to25"));
 top100.setNumReduceTasks(1);
 Job limit = new Job(top100);
 limit.addDependingJob(groupJob);

 JobControl jc = new JobControl("Find top 100 sites for users
18 to 25");
 jc.addJob(loadPages);
 jc.addJob(loadUsers);
 jc.addJob(joinJob);
 jc.addJob(groupJob);
 jc.addJob(limit);
 jc.run();
 }
}

170 lines of code, 4 hours to write
Credit: Alan Gates, Yahoo!

- 153 -

In Pig Latin

Users = load ‘users’ as (name, age);
Fltrd = filter Users by
 age >= 18 and age <= 25;
Pages = load ‘pages’ as (user, url);
Jnd = join Fltrd by name, Pages by user;
Grpd = group Jnd by url;
Smmd = foreach Grpd generate group,
 COUNT(Jnd) as clicks;
Srtd = order Smmd by clicks desc;
Top5 = limit Srtd 5;
store Top5 into ‘top5sites’;

9 lines of code, 15 minutes to write

Credit: Alan Gates, Yahoo!

Background: Pig system

154

Pig Latin
program

A = LOAD 'file1' AS (sid,pid,mass,px:double);
B = LOAD 'file2' AS (sid,pid,mass,px:double);
C = FILTER A BY px < 1.0;
D = JOIN C BY sid,
 B BY sid;
 STORE g INTO 'output.txt';

Ensemble of
MapReduce jobs

- 155 -

But can it fly?

Credit: Alan Gates, Yahoo!

- 156 -

Essence of Pig

•  Map-Reduce is too low a level to program, SQL too high
•  Pig Latin, a language intended to sit between the two:

–  Imperative
–  Provides standard relational transforms (join, sort, etc.)
–  Schemas are optional, used when available, can be defined at

runtime
–  User Defined Functions are first class citizens
–  Opportunities for advanced optimizer but optimizations by

programmer also possible

Credit: Alan Gates, Yahoo!

- 157 -

How It Works

Parser

Script
A = load
B = filter
C = group
D = foreach

Logical Plan
Semantic
Checks

Logical Plan
Logical
Optimizer

Logical Plan

Logical to
Physical
Translator Physical Plan

Physical
To MR
Translator

MapReduce
Launcher

Jar to
hadoop

Map-Reduce Plan

Logical Plan ≈
relational algebra

Plan standard
optimizations

Physical Plan =
physical operators
to be executed

Map-Reduce Plan =
physical operators
broken into Map,
Combine, and
Reduce stages

Credit: Alan Gates, Yahoo!

Tenzing

•  Google’s implementation of SQL
•  Supports full SQL92
•  On top of google’s Map/Reduce
•  Uses traditional query optimizer, plus

optimizations to MR
•  Widely adopted inside Google, especially

by the non-engineering community

158

Join Algorithms on Map/Reduce

•  Broadcast join

•  Hash-join

•  Skew join

•  Merge join

CSEP544 - Fall 2015 159

- 160 -

Fragment Replicate Join

Pages Users

Aka
“Broakdcast Join”

Credit: Alan Gates, Yahoo!

- 161 -

Fragment Replicate Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Aka
“Broakdcast Join”

Credit: Alan Gates, Yahoo!

- 162 -

Fragment Replicate Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Aka
“Broakdcast Join”

Credit: Alan Gates, Yahoo!

- 163 -

Fragment Replicate Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Map 1

Map 2

Aka
“Broakdcast Join”

Credit: Alan Gates, Yahoo!

- 164 -

Fragment Replicate Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Map 1

Map 2

Users

Users

Pages
block 1

Pages
block 2

Aka
“Broakdcast Join”

Credit: Alan Gates, Yahoo!

- 165 -

Hash Join

Pages Users

Credit: Alan Gates, Yahoo!

- 166 -

Hash Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

Credit: Alan Gates, Yahoo!

- 167 -

Hash Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

Credit: Alan Gates, Yahoo!

- 168 -

Hash Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

Map 1

User
block n

Map 2

Page
block m

Credit: Alan Gates, Yahoo!

- 169 -

Hash Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

Map 1

User
block n

Map 2

Page
block m

(1, user)

(2, name)

Credit: Alan Gates, Yahoo!

Means: it comes
from relation #1

Means: it comes
from relation #2

- 170 -

Hash Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

Map 1

User
block n

Map 2

Page
block m

Reducer 1

Reducer 2

(1, user)

(2, name)

(1, fred)
(2, fred)
(2, fred)

(1, jane)
(2, jane)
(2, jane)

Credit: Alan Gates, Yahoo!

- 171 -

Skew Join

Pages Users

Credit: Alan Gates, Yahoo!

- 172 -

Skew Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

Credit: Alan Gates, Yahoo!

- 173 -

Skew Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

Credit: Alan Gates, Yahoo!

- 174 -

Skew Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

Map 1

Pages
block n

Map 2

Users
block m

Credit: Alan Gates, Yahoo!

- 175 -

Skew Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

Map 1

Pages
block n

Map 2

Users
block m

S
P

S
P

Credit: Alan Gates, Yahoo!

- 176 -

Skew Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

Map 1

Pages
block n

Map 2

Users
block m

(1, user)

(2, name)

S
P

S
P

Credit: Alan Gates, Yahoo!

- 177 -

Skew Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

Map 1

Pages
block n

Map 2

Users
block m

Reducer 1

Reducer 2

(1, user)

(2, name)

(1, fred, p1)
(1, fred, p2)
(2, fred)

(1, fred, p3)
(1, fred, p4)
(2, fred)

S
P

S
P

Credit: Alan Gates, Yahoo!

- 178 -

Merge Join

Pages Users
aaron
 .
 .
 .
 .
 .
 .
 .
 .
zach

aaron
 .
 .
 .
 .
 .
 .
 .
 .
zach

Credit: Alan Gates, Yahoo!

- 179 -

Merge Join

Pages Users
aaron
 .
 .
 .
 .
 .
 .
 .
 .
zach

aaron
 .
 .
 .
 .
 .
 .
 .
 .
zach

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “merge”;

Credit: Alan Gates, Yahoo!

- 180 -

Merge Join

Pages Users
aaron
 .
 .
 .
 .
 .
 .
 .
 .
zach

aaron
 .
 .
 .
 .
 .
 .
 .
 .
zach

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “merge”;

Credit: Alan Gates, Yahoo!

- 181 -

Merge Join

Pages Users
aaron
 .
 .
 .
 .
 .
 .
 .
 .
zach

aaron
 .
 .
 .
 .
 .
 .
 .
 .
zach

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “merge”;

Map 1

Map 2

Users

Users

Pages

Pages

aaron…
amr

aaron
…

amy…
barb

amy
…

Credit: Alan Gates, Yahoo!

- 182 -

Multi-store script

A = load ‘users’ as (name, age, gender,
 city, state);
B = filter A by name is not null;
C1 = group B by age, gender;
D1 = foreach C1 generate group, COUNT(B);
store D into ‘bydemo’;
C2= group B by state;
D2 = foreach C2 generate group, COUNT(B);
store D2 into ‘bystate’;

load users filter nulls

group by state

group by age,
gender

apply UDFs

apply UDFs

store into
‘bystate’

store into
‘bydemo’

Credit: Alan Gates, Yahoo!

- 183 -

Multi-Store Map-Reduce Plan

map filter

local rearrange
split

local rearrange

reduce

demux package package

foreach foreach

Credit: Alan Gates, Yahoo!

Other Optimizations in Tenzing

•  Keep processes running: process pool
•  Remove reducer-side sort for hash-based

algorithms
– Note: the data must fit in main memory,

otherwise the task fails
•  Pipelining
•  Indexes

CSEP544 - Fall 2015 184

Final Thoughts

Challenging problems in MR jobs:

•  Skew

•  Fault tolerance

CSEP544 - Fall 2015 185

Skew
Balazinska, A study of Skew

Skew
Balazinska, A study of Skew

Skew
Balazinska, A study of Skew

Fault Tolerance

•  Fundamental tension:
•  Materialize after each Map and each Reduce

– This is what MR does
–  Ideal for fault tolerance
– Very poor performance

•  Pipeline between steps
– This is what Parallel DBs usually do
–  Ideal for performance
– Very poor fault tolerance

CSEP544 - Fall 2015 189

Pig Latin Mini-Tutorial

(will skip in class; please read in
order to do homework 6)

190

Outline

Based entirely on Pig Latin: A not-so-foreign
language for data processing, by Olston,
Reed, Srivastava, Kumar, and Tomkins,
2008

Quiz section tomorrow: in CSE 403

(this is CSE, don’t go to EE1)

191

Pig-Latin Overview

•  Data model = loosely typed nested relations
•  Query model = a sql-like, dataflow language

•  Execution model:
–  Option 1: run locally on your machine
–  Option 2: compile into sequence of map/reduce, run on

a cluster supporting Hadoop

•  Main idea: use Opt1 to debug, Opt2 to execute

192

Example

•  Input: a table of urls:
 (url, category, pagerank)

•  Compute the average pagerank of all
sufficiently high pageranks, for each
category

•  Return the answers only for categories
with sufficiently many such pages

193

First in SQL…

194

SELECT category, AVG(pagerank)
FROM urls
WHERE pagerank > 0.2
GROUP By category
HAVING COUNT(*) > 106

…then in Pig-Latin

195

good_urls = FILTER urls BY pagerank > 0.2
groups = GROUP good_urls BY category
big_groups = FILTER groups

 BY COUNT(good_urls) > 106

output = FOREACH big_groups GENERATE
 category, AVG(good_urls.pagerank)

Types in Pig-Latin

•  Atomic: string or number, e.g. ‘Alice’ or 55

•  Tuple: (‘Alice’, 55, ‘salesperson’)

•  Bag: {(‘Alice’, 55, ‘salesperson’),
 (‘Betty’,44, ‘manager’), …}

•  Maps: we will try not to use these

196

Types in Pig-Latin

Bags can be nested !

•  {(‘a’, {1,4,3}), (‘c’,{ }), (‘d’, {2,2,5,3,2})}

Tuple components can be referenced by
number

•  $0, $1, $2, …

197

198

Loading data

•  Input data = FILES !
– Heard that before ?

•  The LOAD command parses an input file
into a bag of records

•  Both parser (=“deserializer”) and output
type are provided by user

199

Loading data

200

queries = LOAD ‘query_log.txt’
 USING myLoad()
 AS (userID, queryString, timeStamp)

Loading data

•  USING userfuction() -- is optional
–  Default deserializer expects tab-delimited file

•  AS type – is optional
–  Default is a record with unnamed fields; refer to them

as $0, $1, …
•  The return value of LOAD is just a handle to a

bag
–  The actual reading is done in pull mode, or

parallelized

201

FOREACH

202

expanded_queries =
 FOREACH queries
 GENERATE userId, expandQuery(queryString)

expandQuery() is a UDF that produces likely expansions
Note: it returns a bag, hence expanded_queries is a nested bag

FOREACH

203

expanded_queries =
 FOREACH queries
 GENERATE userId,
 flatten(expandQuery(queryString))

Now we get a flat collection

204

FLATTEN

Note that it is NOT a first class function !
(that’s one thing I don’t like about Pig-latin)

•  First class FLATTEN:
– FLATTEN({{2,3},{5},{},{4,5,6}}) = {2,3,5,4,5,6}
– Type: {{T}} à {T}

•  Pig-latin FLATTEN
– FLATTEN({4,5,6}) = 4, 5, 6
– Type: {T} à T, T, T, …, T ?????

205

FILTER

206

real_queries = FILTER queries BY userId neq ‘bot’

Remove all queries from Web bots:

real_queries = FILTER queries
 BY NOT isBot(userId)

Better: use a complex UDF to detect Web bots:

JOIN

207

join_result = JOIN results BY queryString
 revenue BY queryString

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

join_result : {(queryString, url, position, adSlot, amount)}

208

GROUP BY

209

grouped_revenue = GROUP revenue BY queryString
query_revenues =
 FOREACH grouped_revenue
 GENERATE queryString,
 SUM(revenue.amount) AS totalRevenue

revenue: {(queryString, adSlot, amount)}

grouped_revenue: {(queryString, {(adSlot, amount)})}
query_revenues: {(queryString, totalRevenue)}

Simple Map-Reduce

210

map_result = FOREACH input
 GENERATE FLATTEN(map(*))
key_groups = GROUP map_result BY $0
output = FOREACH key_groups

 GENERATE reduce($1)

input : {(field1, field2, field3,)}

map_result : {(a1, a2, a3, . . .)}
key_groups : {(a1, {(a2, a3, . . .)})}

Co-Group

211

grouped_data =
 COGROUP results BY queryString,
 revenue BY queryString;

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

grouped_data: {(queryString, results:{(url, position)},
 revenue:{(adSlot, amount)})}

What is the output type in general ?

Co-Group

212

Is this an inner join, or an outer join ?

Co-Group

213

url_revenues = FOREACH grouped_data
 GENERATE
 FLATTEN(distributeRevenue(results, revenue));

grouped_data: {(queryString, results:{(url, position)},
 revenue:{(adSlot, amount)})}

distributeRevenue is a UDF that accepts search re-
sults and revenue information for a query string at a time,
and outputs a bag of urls and the revenue attributed to them.

Co-Group v.s. Join

214

grouped_data = COGROUP results BY queryString,
 revenue BY queryString;
join_result = FOREACH grouped_data
 GENERATE FLATTEN(results),
 FLATTEN(revenue);

grouped_data: {(queryString, results:{(url, position)},
 revenue:{(adSlot, amount)})}

Result is the same as JOIN

Asking for Output: STORE

215

STORE query_revenues INTO `myoutput'
 USING myStore();

Meaning: write query_revenues to the file ‘myoutput’

Implementation

•  Over Hadoop !
•  Parse query:

– Everything between LOAD and STORE à
one logical plan

•  Logical plan à sequence of Map/Reduce
ops

•  All statements between two (CO)GROUPs
à one Map/Reduce op

216

Implementation

217

