CSEP 544: Lecture 05

Query Optimization,
Parallel Databases,
MapReduce

Homework 3

- PigLatin (MapReduce) on AWS
- Go to http://aws.amazon.com/grants/ click on AWS Educate, get code for $\$ 100$ credit for AWS
- Remember to turn off your instances!

Overview of Today's Lecture

- Query Execution/Optimization
- Review two papers
- Parallel databases
- Map/Reduce
- Next week: MR paper review
- Not in class: PigLatin
- Read for HW3

Query Execution/Optimization

- Execution: logical/physical operators
- Started last lecture, reviewed today
- Optimization: Query plans + rewrite rules - Today
- Size estimation: statistics + assumptions - Today

Will discuss in this order: $3,1,2$

Database Statistics

- Collect statistical summaries of stored data
- Estimate size (=cardinality), bottom-up
- Estimate cost by using the estimated size

Database Statistics

- Number of tuples = cardinality
- Indexes: number of keys in the index
- Number of physical pages, clustering info
- Statistical information on attributes
- Min value, max value, number distinct values
- Histograms
- Correlations between columns

Collection approach: periodic, using sampling

Size Estimation Problem

$$
\begin{aligned}
& \mathrm{S}=\mathrm{SELECT} \text { list } \\
& \text { FROM R1, ..., Rn } \\
& \text { WHERE cond }{ }_{1} \text { AND cond }{ }_{2} \text { AND . . . AND cond }{ }_{k}
\end{aligned}
$$

Given $\mathrm{T}(\mathrm{R} 1), \mathrm{T}(\mathrm{R} 2), \ldots, \mathrm{T}(\mathrm{Rn})$
Estimate T(S)
How can we do this? Note: doesn't have to be exact.

Size Estimation Problem

S = SELECT list FROM R1, ..., Rn WHERE cond ${ }_{1}$ AND cond ${ }_{2}$ AND . . . AND cond ${ }_{k}$

Remark: $\mathrm{T}(\mathrm{S}) \leq \mathrm{T}(\mathrm{R} 1) \times \mathrm{T}(\mathrm{R} 2) \times \ldots \times \mathrm{T}(\mathrm{Rn})$

Selectivity Factor

- Each condition cond reduces the size by some factor called selectivity factor
- Assuming independence, multiply the selectivity factors

Example

R(A,B)
$S(B, C)$
T(C,D)

SELECT *

FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A <40
$T(R)=30 k, T(S)=200 k, T(T)=10 k$
Selectivity of R.B $=S . B$ is $1 / 3$
Selectivity of S.C $=$ T.C is $1 / 10$ Selectivity of R.A <40 is $1 / 2$

What is the estimated size of the query output?

Example

R(A,B)
$S(B, C)$
T(C,D)

SELECT *

FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A <40
$T(R)=30 k, T(S)=200 k, T(T)=10 k$
Selectivity of R.B $=S . B$ is $1 / 3$
Selectivity of S.C $=$ T.C is $1 / 10$ Selectivity of R.A <40 is $1 / 2$

What is the estimated size of the query output?

```
30k * 200k * 10k * 1/3 * 1/10 * 1/2
```


Discussion: Paper

What is the probability space?

$$
\begin{aligned}
S= & \text { SELECT list } \\
& \text { FROM } R_{1} \text { as } x_{1}, \ldots, R_{k} \text { as } x_{k} \\
& \text { WHERE Cond }-- \text { a conjunction of predicates }
\end{aligned}
$$

Discussion: Paper

What is the probability space?

S = SELECT list FROM R_{1} as x_{1}, \ldots, R_{k} as x_{k} WHERE Cond -- a conjunction of predicates

$\left(x_{1}, x_{2}, \ldots, x_{k}\right)$, drawn randomly, independently from R_{1}, \ldots, R_{k}
$\operatorname{Pr}\left(R_{1} \cdot A=40\right)=$ prob. that random tuple in R_{1} has $A=40$
Descriptive attribute Join indicator (in class...)
$\operatorname{Pr}\left(R_{1} \cdot A=40\right.$ and $J_{R 1 \cdot B}=R 2 . C$ and $\left.R_{2} \cdot D=90\right)=$ prob. that \ldots

E[|SELECT ... WHERE Cond|] = Pr(Cond) * $T\left(R_{1}\right)$ * $T\left(R_{2}\right)$ * ... * $T\left(R_{k}\right)$

Discussion: Paper

What is the probability space?

$$
\begin{aligned}
S= & \text { SELECT list } \\
& \text { FROM } R_{1} \text { as } x_{1}, \ldots, R_{k} \text { as } x_{k} \\
& \text { WHERE Cond }- \text { a conjunction of predicates }
\end{aligned}
$$

What are the three simplifying assumptions?

Discussion: Paper

What is the probability space?

```
S = SELECT list
    FROM R R1 as }\mp@subsup{x}{1}{},\ldots,\mp@subsup{R}{k}{}\mathrm{ as }\mp@subsup{x}{k}{
    WHERE Cond -- a conjunction of predicates
```

What are the three simplifying assumptions?
Uniform: $\quad \operatorname{Pr}\left(R_{1} \cdot A=' a '\right)=1 / V\left(R_{1}, A\right)$
Attribute Indep.: $\operatorname{Pr}\left(R_{1} \cdot A=\right.$ ' a ' and $\left.R_{1} \cdot B=' b \prime\right)=\operatorname{Pr}\left(R_{1} \cdot A=\right.$ ' a ' $) \operatorname{Pr}\left(R_{1} \cdot B=\right.$ 'b' $)$
Join Indep.:

$$
\operatorname{Pr}\left(R_{1} \cdot A=' a \prime \text { and } J_{R 1 . B}=R 2 . C\right)=\operatorname{Pr}\left(R_{1} \cdot A=' a \prime\right) \operatorname{Pr}\left(J_{R 1 . B}=R 2 . C\right)
$$

Rule of Thumb

- If selectivities are unknown, then: selectivity factor $=1 / 10$ [System R, 1979]

Using Data Statistics

- Condition is $A=c \quad / *$ value selection on R */
- Selectivity $=1 / V(R, A)$
- Condition is $A<c \quad / *$ range selection on R */
- Selectivity $=(c-\operatorname{Low}(R, A)) /(\operatorname{High}(R, A)-\operatorname{Low}(R, A)) T(R)$
- Condition is $\mathrm{A}=\mathrm{B}$

$$
/^{*} R \bowtie_{A=B} S * /
$$

- Selectivity = $1 / \max (\mathrm{V}(\mathrm{R}, \mathrm{A}), \mathrm{V}(\mathrm{S}, \mathrm{A}))$
- (will explain next)

Selectivity of Join Predicates

Assumptions:

- Containment of values: if $V(R, A)<=V(S, B)$, then the set of A values of R is included in the set of B values of S
- Note: this indeed holds when A is a foreign key in R, and B is a key in S
- Preservation of values: for any other attribute C , $\mathrm{V}\left(\mathrm{R} \bowtie_{\mathrm{A}=\mathrm{B}} \mathrm{S}, \mathrm{C}\right)=\mathrm{V}(\mathrm{R}, \mathrm{C}) \quad(\operatorname{or} \mathrm{V}(\mathrm{S}, \mathrm{C}))$

Selectivity of Join Predicates

Assume $\mathrm{V}(\mathrm{R}, \mathrm{A})<=\mathrm{V}(\mathrm{S}, \mathrm{B})$

- Each tuple t in R joins with $T(S) / V(S, B)$ tuple(s) in S
- Hence $T\left(R \bowtie_{A=B} S\right)=T(R) T(S) / V(S, B)$

In general: $T\left(R \bowtie_{A=B} S\right)=T(R) T(S) / \max (V(R, A), V(S, B))$

Selectivity of Join Predicates

Example:

- $T(R)=10000, T(S)=20000$
- $V(R, A)=100, V(S, B)=200$
- How large is $R \bowtie_{A=B} S$?

Histograms

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

Histograms

Employee(ssn, name, age)

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$ $\min ($ age $)=19, \max ($ age $)=68$

$$
\sigma_{\text {age }=48}(\text { Empolyee })=? \quad \sigma_{\text {age }>28 \text { and age }<35}(\text { Empolyee })=?
$$

Histograms

Employee(ssn, name, age)

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$ $\min ($ age $)=19, \max ($ age $)=68$

$$
\sigma_{\mathrm{age}=48}(\text { Empolyee })=? \quad \sigma_{\text {age }>28 \text { and age }<35}(\text { Empolyee })=?
$$

Age:	0.20	20.29	$30-39$	$40-49$	$50-59$	>60
Tuples	200	800	5000	12000	6500	500

Histograms

Employee(ssn, name, age)

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$ $\min ($ age $)=19, \max ($ age $)=68$

$$
\sigma_{\mathrm{age}=48}(\text { Empolyee })=? \quad \sigma_{\mathrm{age}>28 \text { and age }<35}(\text { Empolyee })=?
$$

\square	\square	\square				
Age:	$0 . .20$	$20 . .29$	$30-39$	$40-49$	$50-59$	>60
Tuples	200	800	5000	12000	6500	500
Estimate $=1 * 80+5 * 500=2580$						

Types of Histograms

- How should we determine the bucket boundaries in a histogram?

Types of Histograms

- How should we determine the bucket boundaries in a histogram?
- Eq-Width
- Eq-Depth
- Compressed
- V-Optimal histograms

Employee(ssn, name, age) Histograms

Eq-width:

Age:	$0 . .20$	$20 . .29$	$30-39$	$40-49$	$50-59$	>60
Tuples	200	800	5000	12000	6500	500

Eq-depth:

Age:	$0 . .20$	$20 . .29$	$30-39$	$40-49$	$50-59$	>60
Tuples	1800	2000	2100	2200	1900	1800

Compressed: store separately highly frequent values: $(48,1900)$

V-Optimal Histograms

- Defines bucket boundaries in an optimal way, to minimize the error over all point queries
- Computed rather expensively, using dynamic programming
- Modern databases systems use V-optimal histograms or some variations

Difficult Questions on Histograms

- Small number of buckets
- Hundreds, or thousands, but not more - WHY ?
- Not updated during database update, but recomputed periodically
- WHY?

Multidimensional Histograms

Classical example:
SQL query:

SELECT ... FROM ... WHERE Person.city = 'Seattle’ ...

User "optimizes" it to:

$$
\begin{aligned}
& \text { SELECT } \ldots \text { FROM ... } \\
& \text { WHERE Person.city = 'Seattle' } \\
& \text { and Person.state = 'WA' }
\end{aligned}
$$

Big problem! (Why?)

Multidimensional Histograms

- Store distributions on two or more attributes
- Curse of dimensionality: space grows exponentially with dimension
- Paper: discusses using only two dimensional histograms

Paper: Bayesian Networks

$P_{B N}(A, B, C, D, E)=P(E \mid D) P(D \mid B) P(C \mid A, B) P(A) P(B)$.

Paper: Bayesian Networks

$P_{B N}(A, B, C, D, E)=P(E \mid D) P(D \mid B) P(C \mid A, B) P(A) P(B)$.

(a)

(c)

a	b	c	$P(a, b, c)$
a_{1}	b_{1}	c_{1}	0.25
a_{1}	b_{1}	c_{2}	0.32
a_{1}	b_{2}	c_{1}	0.01
a_{1}	b_{2}	c_{2}	0.12
a_{2}	b_{1}	c_{1}	0.08
a_{2}	b_{1}	c_{2}	0.04
a_{2}	b_{2}	c_{1}	0.1
a_{2}	b_{2}	c_{2}	0.08

(d)

Fig. 1 A small graphical model of five binary random variables A, B, C, D, E a Bayesian network. b Moral graph. c Junction tree. d Clique potentials

Paper: Bayesian Networks

$P_{B N}(A, B, C, D, E)=P(E \mid D) P(D \mid B) P(C \mid A, B) P(A) P(B)$.

(b)
(a)

(c)

a	b	c	$P(a, b, c)$
a_{1}	b_{1}	c_{1}	0.25
a_{1}	b_{1}	c_{2}	0.32
a_{1}	b_{2}	c_{1}	0.01
a_{1}	b_{2}	c_{2}	0.12
a_{2}	b_{1}	c_{1}	0.08
a_{2}	b_{1}	c_{2}	0.04
a_{2}	b_{2}	c_{1}	0.1
a_{2}	b_{2}	c_{2}	0.08

(d)

Fig. 1 A small graphical model of five binary random variables A, B, C, D, E a Bayesian network. b Moral graph. c Junction tree. d Clique potentials

$$
P(A, D)=\sum_{B, C} \frac{P(A, B, C) P(B, D)}{P(B)} .
$$

Paper Highlights

- Universal table (what is it?)
- Acyclic v.s. Cyclic Schemas
- Within a table: tree-BN only
- Join indicator: two parents only
- Hence: acyclic schema \rightarrow 2D-histograms only in the junction tree
- Simplifies construction, estimation

Summary of Size Estimation

- Critical, yet very difficult piece of a query optimizer
- Selectivity estimation: simple probability space (outcome = 1 tuple) to estimate a selection (includes joins)
- More complex estimations: much more difficult (e.g. estimate the size of DISTINCT)

Query Execution

- Logical operators:
- Select/project/join/union/difference
- Group-by/sort
- Physical operators:
- Main memory ("in core")
e.g. hash-join, merge-join
- External memory ("out of core")
index-join, partitioned hash join, merge join

Discussion: Shapiro's paper

- Describe the merge-join algorithm. How long are the initial runs?
- What is classic hashing?
- What is simple hash-join?
- What is Grace-join?
- What is Hybrid hash-join?

Advanced Stuff

- Semi-joins
- Anti-semi-joins

Semijoin

$R \ltimes_{C} S=\Pi_{A 1, \ldots ., A n}\left(R \bowtie_{C} S\right)$

Where A_{1}, \ldots, A_{n} are the attributes in R

Formally, $\mathrm{R} \ltimes \mathrm{C}$ S means this: retain from R only those tuples that have some matching tuple in S
Duplicates in R are preserved
Duplicates in S don't matter
Applications: distributed query execution, standard query execution for complex queries

Semijoins in Distributed Databases

$\sigma_{\text {name like 'м\%' }}($ Employee $) \bowtie_{\text {SSN }}=$ EmpsSN $\left(\sigma_{\text {age>71 }}\right.$ (Dependent) $)$

Assumptions

- Very few employees start with M
- Very few dependents have age > 71.
- "Stuff" is big.

Semijoins in Distributed Databases

Dependent

Employee

SSN	Name	Stuff
\ldots	\ldots	\ldots.

(Dependent))

$$
\mathrm{T}=\Pi_{\text {EmpsSN }} \sigma_{\text {age>71 }} \text { (Dependents) }
$$

Semijoins in Distributed Databases

$\sigma_{\text {name like 'M\%' }}($ Employee $) \bowtie_{S S N=E m p S S N}\left(\sigma_{\text {age>71 }}\right.$ (Dependent))

$$
\mathrm{R}=\sigma_{\text {name like 'M\%', }}(\text { Employee }) \bowtie_{\mathrm{SSN}=\mathrm{EmpSSN}} \mathrm{~T}
$$

Semijoins in Distributed Databases

Employee

SSN	Name	Stuff
\ldots	\ldots	\ldots.

$\sigma_{\text {name like 'M\%' }}($ Employee $) \bowtie_{\text {SSN }}=$ EmpsSN $\left(\sigma_{\text {age>71 }}\right.$ (Dependent) $)$

$$
\mathrm{R}=\sigma_{\text {name like 'M\%', }} \text { (Employee) } \bowtie_{S S N=E m p S S N} T
$$

Answer $=\mathrm{R} \bowtie_{\text {SSN }=\text { EmpSSN }} \sigma_{\text {age>71 }}$ Dependents`

Anti-Semi-Join

- Notation: $\mathrm{R} \triangleright \mathrm{S}$
- Warning: not a standard notation
- Meaning: all tuples in R that do NOT have a matching tuple in S

R(A,B) $\mathrm{S}(\mathrm{B})$

Set Difference v.s. Anti-semijoin

SELECT DISTINCT R.B FROM R
WHERE not exists (SELECT *
FROM S
WHERE R.B=S.B)

```
SELECT DISTINCT *
```

SELECT DISTINCT *
FROM R
FROM R
WHERE not exists (SELECT *
WHERE not exists (SELECT *
FROM S
FROM S
WHERE R.B=S.B)

```
    WHERE R.B=S.B)
```


$R(A, B)$ S(B)
 Set Difference v.s. Anti-semijoin

SELECT DISTINCT R.B FROM R
WHERE not exists (SELECT *
FROM S
WHERE R.B=S.B)

Plan $=\underset{\substack{\left.\right|_{B} \\ R(A, B)}}{\substack{\prod_{B}(B)}}$

```
SELECT DISTINCT *
FROM R
WHERE not exists (SELECT *
FROM S
    WHERE R.B=S.B)
```


$R(A, B)$ S(B)
 Set Difference v.s. Anti-semijoin

SELECT DISTINCT R.B
FROM R
WHERE not exists (SELECT *
FROM S S
WHERE R.B=S.B)

Plan $=\underset{R}{\prod_{B}^{\prime}}$

Plan=

```
SELECT DISTINCT *
FROM R
WHERE not exists (SELECT *
    FROM S
    WHERE R.B=S.B)
```


$R(A, B)$ S(B)
 Set Difference v.s. Anti-semijoin

SELECT DISTINCT R.B	
FROM R	
WHERE not exists	(SELECT *
	FROM S
	WHERE R.B=S.B)

Plan $=\overbrace{R(A, B)}^{\prod_{B}^{\prime}}$
Plan $=\Pi_{B}$
SELECT DISTINCT *
FROM R
WHERE not exists (SELECT *
FROM S
WHERE R.B=S.B)

$$
R(A, B) \quad R(A, B) \quad S(B)
$$

R(A,B) S(B)
 Set Difference v.s. Anti-semijoin

SELECT DISTINCT R.B	
FROM R	
WHERE not exists	(SELECT *
	FROM S
	WHERE R.B=S.B)

Plan=

SELECT DISTINCT * FROM R
WHERE not exists (SELECT *
FROM S
WHERE R.B=S.B)

```
SELECT DISTINCT *
SELECT DISTINCT *
FROM R
FROM R
WHERE not exists (SELECT *
WHERE not exists (SELECT *
FROM S
FROM S
    WHERE R.B=S.B)
    WHERE R.B=S.B)

\section*{}
\(R(A, B)\)
Plan=

\section*{Operators on Bags}
- Duplicate elimination \(\delta\) \(\delta(R)=\) SELECT DISTINCT * FROM R
- Grouping \(\gamma\)
\[
\begin{aligned}
& \gamma_{A, \text { sum(B) }}(R)= \\
& \text { SELECT A,sum(B) } \quad \text { FROM R GROUP BY A }
\end{aligned}
\]
- Sorting \(\tau\)

\section*{Query Optimization}
- Search space = set of all physical query plans considered
- Search algorithm = a heuristics-based algorithm for searching the space and selecting an optimal plan

\section*{Relational Algebra Laws: Joins}
```

Commutativity: R\bowtieS = S\bowtieR
Associativity:
Distributivity:
R\bowtie(S\bowtieT) = (R\bowtieS)\bowtie T
R\bowtie(S\cupT) = (R\bowtieS)\cup(R\bowtieT)

```

Outer joins get more complicated

\section*{Relational Algebra Laws: Selections}
\(R(A, B, C, D), S(E, F, G)\)
\[
\begin{align*}
& \sigma_{F=3}\left(R \bowtie_{D=E} S\right)= \\
& \sigma_{A=5 A N D G=9}\left(R \bowtie_{D=E} S\right)=
\end{align*}
\]

\section*{Relational Algebra Laws: Selections}
\(R(A, B, C, D), S(E, F, G)\)
\[
\begin{aligned}
& \sigma_{F=3}\left(R \bowtie_{D=E} S\right)=R \bowtie_{D=E}\left(\sigma_{F=3}(S)\right) \\
& \sigma_{A=5 A N D G=9}\left(R \bowtie_{D=E} S\right)=\sigma_{A=5}(R) \bowtie_{D=E} \sigma_{G=9}(S)
\end{aligned}
\]

\section*{Group-by and Join}
\(R(A, B), S(C, D)\)
\(\gamma_{A, \operatorname{sum}(D)}\left(R(A, B) \bowtie_{B=C} S(C, D)\right)=\quad ?\)

\section*{Group-by and Join}
\(R(A, B), S(C, D)\)
\[
\begin{aligned}
& \gamma_{A, \operatorname{sum}(D)}\left(R(A, B) \bowtie_{B=C} S(C, D)\right)= \\
& \quad \gamma_{A, \operatorname{sum}(D)}\left(R(A, B) \bowtie_{B=C}\left(\gamma_{C, \operatorname{sum}(D)} S(C, D)\right)\right)
\end{aligned}
\]

These are very powerful laws.
They were introduced only in the 90's.

\section*{Laws Involving Constraints}

\section*{Foreign key}

Product(pid, pname, price, cid)
Company(cid, cname, city, state)
\(\Pi_{\text {pid, price }}\left(\right.\) Product \(\bowtie_{\text {cid=cid }}\) Company \()=\) ?

\section*{Laws Involving Constraints}

\section*{Foreign key}

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

\section*{\(\Pi_{\text {pid, price }}\left(\right.\) Product \(\bowtie_{\text {cid=cid }}\) Company) \(=\Pi_{\text {pid, price }}(\) Product \()\)}

Need a second constraint for this law to hold. Which?

\section*{Why such queries occur}

\section*{Foreign key}

Product(pid, pname, price, cid)
Company(cid, cname, city, state)
CREATE VIEW CheapProductCompany SELECT *
FROM Product \(x\), Company y
WHERE x.cid = y.cid and x. price \(<100\)

SELECT pname, price
FROM CheapProductCompany

SELECT pname, price FROM Product WHERE price < 100

\section*{Law of Semijoins}
- Input: R(A1,...An), S(B1,...,Bm)
- Output: T(A1,...,An)
- Semjoin is: \(R \ltimes S=\Pi_{A 1, \ldots, A n}(R \bowtie S)\)
- The law of semijoins is:
\[
R \bowtie S=(R \ltimes S) \bowtie S
\]

\section*{Laws with Semijoins}
- Used in parallel/distributed databases
- Often combined with Bloom Filters
- Read pp. 747 in the textbook

\section*{The Iterator Model}

Each operator implements this interface
- open()
- get_next()
- close()

See details on the slides of the previous lecture

\section*{Classic Hash Join}

\section*{What do these operators do for the classic Hash Join?}
- open()
- get_next()
- close()


\section*{Main Memory Hash Join}
open( ) \{
\(\quad\) Customer.open( );
while (c = Customer.get_next( ))
\(\quad\) hashTable.insert(c.cid, c);
Customer.close();
Purchase.open( );
\(\}\)
```

get_next() {
repeat {
p = Purchase.get_next();
if (p == NULL)
{ c = hashTable.find(p.cid); }
until (p == NULL or c != NULL);
return (p,c)
}

```
```

close() {
Purchase.close();
}

```

\section*{Main Memory Hash Join}
```

open() {
Customer.open();
while (c = Customer.get_next())
hashTable.insert(c.cid, c);
Customer.close();
Purchase.open();
}

```
```

get_next() {
repeat {
p = Purchase.get_next();
if (}p==\mathrm{ NULL)
{c = hashTable.find(p.cid); }
until (p == NULL or c != NULL);
return (p,c)
}

```
```

close() {
Purchase.close();
}

```

What changes if we don't join on a key-foreign key?

\section*{Discussion in class}


\section*{Discussion in class}


\section*{Discussion in class}


\section*{Discussion in class}


\section*{Left-Deep Plans and Bushy Plans}


System R considered only left deep plans, and so do some optimizers today

\section*{Search Algorithms}

Goal: start with any query plan, find an equivalent plan with lowest estimated cost
- Dynamic programming
- Pioneered by System R for computing optimal join order
- Search space pruning
- Drop unpromising partial plans; bottom-up v.s. top-down plans
- Access path selection
- Refers to the plan for accessing a single table

\section*{Complete Plans}

\title{
\(R(A, B)\) \\ \(S(B, C)\) \\ T(C,D)
}
```

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

```


If the algorithm enumerates complete plans, then it is difficult to prune out unpromising sets of plans.

\section*{Bottom-up Partial Plans}

R(A,B) S(B,C) T(C,D)

\section*{SELECT *}

FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A \(<40\)
\begin{tabular}{l} 
If the algorithm enumerates \\
partial bottom-up plans, \\
then pruning can be done \\
more efficiently \\
\hline
\end{tabular}


R


R

\(\sigma_{\mathrm{A}<40} \mathrm{~S}\)

\section*{Top-down Partial Plans}

R(A,B) S(B,C)
T(C,D)

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A \(<40\)

\section*{Same here.}


\section*{Access Path Selection}

Supplier(sid,sname,scategory,scity,sstate)
\(\sigma_{\text {scategory }}=\) 'organic' \(\wedge\) scity='Seattle' \((\) Supplier \()\)
Clustered index on scity
\(B(\) Supplier \()=10 k\)
T (Supplier) \(=1 \mathrm{M}\)
V(Supplier,city) \(=1000\)
V(Supplier,scategory)=100

Unclustered index on (scategory,scity)

Access plan options:
- Table scan:
- Index scan on scity:
- Index scan on scategory,scity: cost = ?

\section*{Access Path Selection}

Supplier(sid,sname,scategory,scity,sstate)
\(\sigma_{\text {scategory }}=\) 'organic' \(\wedge\) scity='Seattle' (Supplier)
Clustered index on scity
\(B(\) Supplier \()=10 \mathrm{k}\)
\(\mathrm{T}(\) Supplier \()=1 \mathrm{M}\)
V(Supplier,city) \(=1000\)
V(Supplier,scategory)=100
Unclustered index on (scategory,scity)

Access plan options:
- Table scan:
- Index scan on scity:
- Index scan on scategory,scity:
\[
\begin{array}{ll}
\text { cost }=10 \mathrm{k} & =10 \mathrm{k} \\
\operatorname{cost}=10 \mathrm{k} / 1000 & =10 \\
\operatorname{cost}= & 1 \mathrm{M} / 1000^{* 100}
\end{array}=10
\]

\section*{Summary of Query Optimization}
- Three parts:
- search space, algorithms, size/cost estimation
- Ideal goal: find optimal plan. But
- Impossible to estimate accurately
- Impossible to search the entire space
- Goal of today's optimizers:
- Avoid very bad plans

\section*{Overview of Today's Lecture}
- Query Execution/Optimization
- Parallel databases
- Book: Ch. 22.1-22.10
- Map/Reduce
- Next week: MR paper review
- Not in class: PigLatin
- Read for HW3

\section*{Parallel Databases}

\section*{Parallel Computation Today}

Two Major Forces Pushing towards Parallel Computing:
- Change in Moore's law
- Cloud computing

\section*{Parallel Computation Today}
1. Change in Moore's law* (exponential growth in transistors per chip density) no longer results in increased clock speeds
- Increased hw performance available only through parallelism
- Think multicore: 4 cores today, perhaps 64 in a few years

\footnotetext{
* Moore's law says that the number of transistors that can be placed inexpensively on an integrated circuit doubles approximately every two years [Intel co-founder Gordon E. Moore described the trend in his 1965 paper and predicted that it will last for at least 10 years]
}

\section*{Parallel Computation Today}
2. Cloud computing commoditizes access to large clusters
- Ten years ago, only Google could afford 1000 servers;
- Today you can rent this from Amazon Web Services (AWS)

\section*{Jeff Dean, SOCC'2010:}


\section*{Jeff Dean, SOCC'2010:}


\section*{Jeff Dean, SOCC'2010:}


\section*{Jeff Dean, SOCC'2010:}

\section*{Numbers Everyone Should Know}
```

L1 cache reference
Branch mispredict
L2 cache reference
Mutex lock/unlock
Main memory reference
Compress 1K w/cheap compression algorithm 3,000 ns
Send 2K bytes over 1 Gbps network
Read 1 MB sequentially from memory
Round trip within same datacenter
Disk seek
10,000,000 ns
Read 1 MB sequentially from disk
20,000,000 ns
Send packet CA->Netherlands->CA
150,000,000 ns

```

Memory access
uld Know

\section*{Jeff Dean, SOCC'2010:}


\section*{Parallel DBMSs}
- Goal
- Improve performance by executing multiple operations in parallel
- Key benefit
- Cheaper to scale than relying on a single increasingly more powerful processor
- Key challenge
- Ensure overhead and contention do not kill performance

\section*{Performance Metrics for Parallel DBMSs}
- Speedup
- More processors \(\rightarrow\) higher speed
- Individual queries should run faster
- Should do more transactions per second (TPS)
- Scaleup
- More processors \(\rightarrow\) can process more data
- Batch scaleup
- Same query on larger input data should take the same time
- Transaction scaleup
- N-times as many TPS on N-times larger database
- But each transaction typically remains small

\section*{Linear v.s. Non-linear Speedup}

Speedup
\# processors (=P)

\section*{Linear v.s. Non-linear Scaleup}


\section*{Challenges to Linear Speedup and Scaleup}
- Startup cost
- Cost of starting an operation on many processors
- Interference
- Contention for resources between processors
- Skew
- Slowest processor becomes the bottleneck

\section*{Architectures for Parallel Databases}
- Shared memory
- Shared disk
- Shared nothing

\section*{Architectures for Parallel Databases}

Figure 1 - Types of database architecture


Shared-Nothing (e.g. Greenplum)


From: Greenplum Database Whitepaper

\section*{Shared Memory}
- Nodes share both RAM and disk
- Dozens to hundreds of processors

Example: SQL Server runs on a single machine and can leverage many threads to get a query to run faster (see query plans)
- Easy to use and program
- But very expensive to scale: last remaining cash cows in the hardware industry

\section*{Shared Disk}
- All nodes access the same disks
- Found in the largest "single-box" (noncluster) multiprocessors

Oracle dominates this class of systems.
Characteristics:
- Also hard to scale past a certain point: existing deployments typically have fewer than 10 machines

\section*{Shared Nothing}
- Cluster of machines on high-speed network
- Called "clusters" or "blade servers"
- Each machine has its own memory and disk: lowest contention.

NOTE: Because all machines today have many cores and many disks, then shared-nothing systems typically run many "nodes" on a single physical machine.

Characteristics:
- Today, this is the most scalable architecture.
- Most difficult to administer and tune.

We discuss only Shared Nothing in class

\section*{Taxonomy for} Parallel Query Evaluation
- Inter-query parallelism
- Each query runs on one processor

-
-

\section*{Taxonomy for} Parallel Query Evaluation
- Inter-query parallelism
- Each query runs on one processor

- Inter-operator parallelism
- A query runs on multiple processors
- An operator runs on one processor


\section*{Taxonomy for}

\section*{Parallel Query Evaluation}
- Inter-query parallelism
- Each query runs on one processor

- Inter-operator parallelism
- A query runs on multiple processors
- An operator runs on one processor
- Intra-operator parallelism
- An operator runs on multiple processors


\section*{Taxonomy for}

\section*{Parallel Query Evaluation}
- Inter-query parallelism
- Each query runs on one processor

- Inter-operator parallelism
- A query runs on multiple processors
- An operator runs on one processor
- Intra-operator parallelism
- An operator runs on multiple processors


Product Purchase

We study only intra-operator parallelism: most scalable

\section*{Parallel Query Processing}

How do we compute these operations on a shared-nothing parallel db?
- Selection: \(\sigma_{\mathrm{A}=123}(\mathrm{R})\) (that's easy, won't discuss...)
- Group-by: \(\mathrm{Y}_{\mathrm{A}, \mathrm{sum}(\mathrm{B})}(\mathrm{R})\)
- Join: \(\mathrm{R}^{\bowtie} \mathrm{S}\)

Before we answer that: how do we store R (and S ) on a shared-nothing parallel db?

\section*{Horizontal Data Partitioning}

Data:
\begin{tabular}{|c|c|c|}
\hline\(\underline{K}\) & \(A\) & \(B\) \\
\hline\(\ldots\) & \(\ldots\) & \\
\hline & & \\
\hline
\end{tabular}

Servers:


\section*{Horizontal Data Partitioning}

Data: Servers:
\begin{tabular}{|l|l|l}
\hline\(\underline{K}\) & \(A\) & \(B\) \\
\hline\(\cdots\) & \(\cdots\) & \\
\hline & & \\
\hline
\end{tabular}


\section*{Horizontal Data Partitioning}

Data:
\begin{tabular}{|c|c|c|}
\hline\(\underline{K}\) & \(A\) & \(B\) \\
\hline\(\ldots\) & \(\ldots\) & \\
\hline & & \\
\hline
\end{tabular}

Servers:


\section*{Horizontal Data Partitioning}
- Block Partition:
- Partition tuples arbitrarily s.t. size \(\left(R_{1}\right) \approx \ldots \approx \operatorname{size}\left(R_{P}\right)\)
- Hash partitioned on attribute A:
- Tuple t goes to chunk i , where \(\mathrm{i}=\mathrm{h}(\mathrm{t} . \mathrm{A}) \bmod \mathrm{P}+1\)
- Range partitioned on attribute A:
- Partition the range of \(A\) into \(-\infty=v_{0}<v_{1}<\ldots<v_{P}=\infty\)
- Tuple \(t\) goes to chunk \(i\), if \(v_{i-1}<t . A<v_{i}\)

\section*{Basic Parallel GroupBy}

Data: \(R(\underline{K}, A, B, C)\)
Query: \(\mathrm{V}_{\mathrm{A}, \mathrm{sum}(\mathrm{C})}(\mathrm{R})\)
Discuss in class how to compute in each case:
- R is hash-partitioned on A
- R is block-partitioned
- R is hash-partitioned on K

\section*{Basic Parallel GroupBy}

Data: \(\mathrm{R}(\mathrm{K}, \mathrm{A}, \mathrm{B}, \mathrm{C})\)
Query: \(\gamma_{A, \text { sum }(C)}(R)\)
- R is block-partitioned or hash-partitioned on K


\section*{Basic Parallel Join}
- Data: R(K1,A, B), S(K2, B, C)
- Query: \(\mathrm{R}(\underline{K} 1, \mathrm{~A}, \mathrm{~B}) \bowtie \mathrm{S}(\underline{\mathrm{K} 2}, \mathrm{~B}, \mathrm{C})\)

Initially, both R and S are horizontally partitioned on K1 and K2
\begin{tabular}{ll}
\(\mathrm{R}_{1}, \mathrm{~S}_{1} \quad \mathrm{R}_{2}, \mathrm{~S}_{2}\) & \(\mathrm{R}_{\mathrm{P}}, \mathrm{S}_{\mathrm{P}}\) \\
\hline
\end{tabular}

\section*{Basic Parallel Join}
- Data: R(K1,A, B), S(K2, B, C)
- Query: \(\mathrm{R}\left(\underline{\mathrm{K} 1, \mathrm{~A}, \mathrm{~B})}{ }^{\bowtie} \mathrm{S}(\underline{\mathrm{K} 2, B, C})\right.\)

Initially, both R and S are horizontally partitioned on K1 and K2


\section*{Speedup and Scaleup}
- Consider:
- Query: \(\gamma_{A, s u m(C)}(R)\)
- Runtime: dominated by reading chunks from disk
- If we double the number of nodes P, what is the new running time?
- If we double both \(P\) and the size of \(R\), what is the new running time?

\section*{Speedup and Scaleup}
- Consider:
- Query: \(\mathrm{V}_{\mathrm{A}, \text { sum(C) }}(\mathrm{R})\)
- Runtime: dominated by reading chunks from disk
- If we double the number of nodes \(P\), what is the new running time?
- Half (each server holds \(1 / 2\) as many chunks)
- If we double both \(P\) and the size of \(R\), what is the new running time?
- Same (each server holds the same \# of chunks)

\section*{Uniform Data v.s. Skewed Data}
- Let \(R(\underline{K}, A, B, C)\); which of the following partition methods may result in skewed partitions?
- Block partition
- Hash-partition
- On the key K
- On the attribute A

\section*{Uniform Data v.s. Skewed Data}
- Let \(\mathrm{R}(\underline{\mathrm{K}}, \mathrm{A}, \mathrm{B}, \mathrm{C})\); which of the following partition methods may result in skewed partitions?
- Block partition

Assuming good hash function
- Hash-partition
- On the key K Uniform
- On the attribute \(A \longrightarrow\) May be skewed

\section*{Parallel DBMS}
- Parallel query plan: tree of parallel operators Intra-operator parallelism
- Data streams from one operator to the next
- Typically all cluster nodes process all operators
- Can run multiple queries at the same time Inter-query parallelism
- Queries will share the nodes in the cluster
- Notice that user does not need to know how his/her SQL query was processed

\section*{Example: Teradata - Loading}


AMP = "Access Module Processor" = unit of parallelism

\section*{Example: Teradata - Query Execution}

Find all orders from today, along with the items ordered
```

SELECT *
FROM Order o, Line i
WHERE O.item = i.item
AND o.date = today()

```


\section*{Query Execution}


\section*{Query Execution}


\section*{Query Execution}


\section*{Overview of Today's Lecture}
- Query Execution/Optimization
- Parallel databases
- Map/Reduce
- Next week: MR paper review
- Not in class: PigLatin
- Read for HW3

\section*{Cluster Computing}

\section*{Cluster Computing}
- Large number of commodity servers, connected by high speed, commodity network
- Rack: holds a small number of servers
- Data center: holds many racks

\section*{Cluster Computing}
- Massive parallelism:
- 100s, or 1000s, or 10000s servers
- Many hours
- Failure:
- If medium-time-between-failure is 1 year
- Then 10000 servers have one failure / hour

\section*{Distributed File System (DFS)}
- For very large files: TBs, PBs
- Each file is partitioned into chunks, typically 64MB
- Each chunk is replicated several times \((\geq 3)\), on different racks, for fault tolerance
- Implementations:
- Google's DFS: GFS, proprietary
- Hadoop's DFS: HDFS, open source

\section*{Map Reduce}
- Google: paper published 2004
- Free variant: Hadoop
- Map-reduce = high-level programming model and implementation for large-scale parallel data processing

\section*{Data Model}

\section*{Files !}

A file = a bag of (key, value) pairs

A MapReduce program:
- Input: a bag of (inputkey, value) pairs
- Output: a bag of (outputkey, value) pairs

\section*{Step 1: the MAP Phase}

User provides the MAP-function:
- Input: (input key, value)
- Ouput: bag of (intermediate key, value)

System applies the map function in parallel to all (input key, value) pairs in the input file

\section*{Step 2: the REDUCE Phase}

User provides the REDUCE function:
- Input:
(intermediate key, bag of values)
- Output: bag of output (values)

System groups all pairs with the same intermediate key, and passes the bag of values to the REDUCE function

\section*{Example}
- Counting the number of occurrences of each word in a large collection of documents
- Each Document
- The key = document id (did)
- The value = set of words (word)
map(String key, String value):
// key: document name
// value: document contents for each word \(w\) in value:

EmitIntermediate(w, "1");
reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each \(v\) in values:
result += Parselnt(v);
Emit(AsString(result));

\section*{MAP}

REDUCE


\section*{Jobs v.s. Tasks}
- A MapReduce Job
- One single "query", e.g. count the words in all docs
- More complex queries may consists of multiple jobs
- A Map Task, or a Reduce Task
- A group of instantiations of the map-, or reducefunction, which are scheduled on a single worker

\section*{Workers}
- A worker is a process that executes one task at a time
- Typically there is one worker per processor, hence 4 or 8 per node

\section*{MapReduce Job}

\section*{MAP Tasks}

REDUCE Tasks


\section*{MapReduce Execution Details}


\section*{MR Phases}
- Each Map and Reduce task has multiple phases:

> Map Task Reduce Task


\section*{Implementation}
- There is one master node
- Master partitions input file into M splits, by key
- Master assigns workers (=servers) to the M map tasks, keeps track of their progress
- Workers write their output to local disk, partition into \(R\) regions
- Master assigns workers to the \(R\) reduce tasks
- Reduce workers read regions from the map workers' local disks

\section*{Interesting Implementation Details}

Worker failure:
- Master pings workers periodically,
- If down then reassigns the task to another worker

\section*{Interesting Implementation Details}

Backup tasks:
- Straggler = a machine that takes unusually long time to complete one of the last tasks. Eg:
- Bad disk forces frequent correctable errors (30MB/s \(\rightarrow 1 \mathrm{MB} / \mathrm{s}\) )
- The cluster scheduler has scheduled other tasks on that machine
- Stragglers are a main reason for slowdown
- Solution: pre-emptive backup execution of the last few remaining in-progress tasks

\section*{MapReduce Summary}
- Hides scheduling and parallelization details
- However, very limited queries - Difficult to write more complex queries
- Need multiple MapReduce jobs
- Solution: declarative query language

\section*{Declarative Languages on MR}
- PIG Latin (Yahoo!)
- New language, like Relational Algebra
- Open source
- HiveQL (Facebook)
- SQL-like language
- Open source
- SQL / Dremmel / Tenzing (Google)
- BigQuery - SQL in the cloud

\section*{Overview of Today's Lecture}
- Query Execution/Optimization
- Parallel databases
- Map/Reduce
- Next week: MR paper review
- Not in class: PigLatin
- Read for HW3

\title{
Pig Latin - Reference only (will not discuss in class)
}

\section*{What is Pig?}
- An engine for executing programs on top of Hadoop
- It provides a language, Pig Latin, to specify these programs
- An Apache open source project http://hadoop.apache.org/pig/


\section*{Map Reduce Illustrated}


\section*{Map Reduce Illustrated}

Romeo, Romeo, wherefore art thou Romeo?
What, art thou hurt?


\section*{Map Reduce Illustrated}

Romeo, Romeo, wherefore art thou Romeo?
What, art thou hurt?

Romeo, 1 Romeo, 1 wherefore, 1 art, 1
thou, 1
Romeo, 1


What, 1 art, 1 thou, 1 hurt, 1

\section*{Map Reduce Illustrated}

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?


\section*{Map Reduce Illustrated}

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?


\section*{Why use Pig?}

\author{
Suppose you have user data in one \\ file, website data in another, and you need to find the top \\ 5 most visited sites by users aged 18 25.
}


Filter by age


\section*{In Map-Reduce}
```

Mamol
im,
lol
lol
lol
public class mRExample
M,
public void map(LongWritable (, k, Text val,
\# Reporter reporter) throws
*)
Strit outkey = new Text(key);
lol
lol

```

```

 public void map(LOngWritable k, Text val,
 M,
 String line =valtostring();
 Mint age = Integer.parseInt(value)
    ```

```

 String key =1ine. subtring(0, revirinstcomma);
 lol
 M,
 M,
 public \begin{array}{c}{\mathrm{ void reduce(Text key,}}\\{\mathrm{ Iterator<cext> iter,}}\\{\mathrm{ Outputcollector<Text,}}\end{array}}
    ```

```

 \/ accordingly,
 M,
 *)
 *)
 first.add(value.substring(1));

```
```

 reporter.setStatus("ОК");
 \/ Do the crosss product and (flol
 *)
 + s2
    ```

```

 public
    ```

```

 \
 public void reduce,
 M,
 values we see
 Mongsum=0;
 c.collect(key, new Longwritable(sum)),
 # _
    ```
\(\qquad\)
```

 public void map (c
 Writablecomparable key,
 Writable val't,or<LongWritable, Text> oc,
 *)
 & fublic static class LimitClicks extends MapReducesase
 int count = o; %
 \,
 \/()
 # (ablic static void main(String() args) throws, TOException {
 1p.setJobName ("Load Pages"); (%)
    ```




















18 to \(\begin{gathered}\text { 25"). } \\ \text { jc.addJob (10adpages) } \\ \text { jc. adduob (1oadusers) ; }\end{gathered}\)




\section*{170 lines of code, 4 hours to write}

\section*{In Pig Latin}
```

Users = load 'users' as (name, age);
Fltrd = filter Users by
age >= 18 and age <= 25;
Pages = load 'pages' as (user, url);
Jnd = join Fltrd by name, Pages by user;
Grpd = group Jnd by url;
Smmd = foreach Grpd generate group,
COUNT(Jnd) as clicks;
Srtd = order Smmd by clicks desc;
Top5 = limit Srtd 5;
store Top5 into 'top5sites';

```

9 lines of code, 15 minutes to write

\section*{Background: Pig system}


\section*{But can it fly?}

\section*{Pig Performance vs Map-Reduce}


Sep 1108 Nov 11 Jan 20 09Feb 23 09Apr 20 09Jun 2809 Aug 28 Oct 1809 08
```

09

```

\section*{Essence of Pig}
- Map-Reduce is too low a level to program, SQL too high
- Pig Latin, a language intended to sit between the two:
- Imperative
- Provides standard relational transforms (join, sort, etc.)
- Schemas are optional, used when available, can be defined at runtime
- User Defined Functions are first class citizens
- Opportunities for advanced optimizer but optimizations by programmer also possible

\section*{How It Works}


\section*{Tenzing}
- Google's implementation of SQL
- Supports full SQL92
- On top of google's Map/Reduce
- Uses traditional query optimizer, plus optimizations to MR
- Widely adopted inside Google, especially by the non-engineering community

\section*{Join Algorithms on Map/Reduce}
- Broadcast join
- Hash-join
- Skew join
- Merge join

\section*{Fragment Replicate Join}


\section*{Fragment Replicate Join}
```

Users = load 'users' as (name, age);
Pages = load 'pages' as (user, url);
Jnd = join Pages by user, Users by name using "replicated";

```

Pages Users

\section*{Fragment Replicate Join}

\section*{Aka "Broakdcast Join"}
```

Users = load 'users' as (name, age);
Pages = load 'pages' as (user, url);
Jnd = join Pages by user, Users by name using "replicated";

```

\section*{Pages}

\section*{Users}

\section*{Fragment Replicate Join}

\section*{Aka}
```

 Users = load 'users' as (name, age);
 Pages = load 'pages' as (user, url);
 Jnd = join Pages by user, Users by name using "replicated";
    ```
Map 1

\section*{Pages}

\section*{Users}

\section*{Map 2}

\section*{Fragment Replicate Join}

\section*{Aka}
```

Users = load 'users' as (name, age);
Pages = load 'pages' as (user, url);
Jnd = join Pages by user, Users by name using "replicated";

```
Map 1

Pages
Users block 1

\section*{Map 2}

Pages Users block 2

\section*{Hash Join}


\section*{Hash Join}
```

Users = load 'users' as (name, age);
Pages = load 'pages' as (user, url);
Jnd = join Users by name, Pages by user;

```

\section*{Pages}

\section*{Users}

\section*{Hash Join}
```

Users = load 'users' as (name, age);
Pages = load 'pages' as (user, url);
Jnd = join Users by name, Pages by user;

```

\section*{Pages \\ Users}

\section*{Hash Join}


\section*{Hash Join}


\section*{Hash Join}
```

 Users = load 'users' as (name, age);
 Pages = load 'pages' as (user, url);
 Jnd = join Users by name, Pages by user;
    ```


\section*{Skew Join}
Pages Users

\section*{Skew Join}
```

Users = load 'users' as (name, age);
Pages = load 'pages' as (user, url);
Jnd = join Pages by user, Users by name using "skewed";

```

\section*{Pages}

\section*{Users}

\section*{Skew Join}
```

Users = load 'users' as (name, age);
Pages = load 'pages' as (user, url);
Jnd = join Pages by user, Users by name using "skewed";

```

\section*{Pages \\ Users}

\section*{Skew Join}
```

 Users = load 'users' as (name, age);
    ```
    Users = load 'users' as (name, age);
    Pages = load 'pages' as (user, url);
    Pages = load 'pages' as (user, url);
    Jnd = join Pages by user, Users by name using "skewed";
    Jnd = join Pages by user, Users by name using "skewed";
    Map 1
        Pages
        block n
```


Map 2

```
Users block \(m\)

\section*{Skew Join}


\section*{Skew Join}


\section*{Skew Join}
```

 Users = load 'users' as (name, age);
 Pages = load 'pages' as (user, url);
 Jnd = join Pages by user, Users by name using "skewed";
    ```


\section*{Merge Join}
\begin{tabular}{|c|c|}
\hline Pages \\
aaron \\
\(\cdot\) & \begin{tabular}{c} 
Users \\
aaron
\end{tabular} \\
\(\cdot\) & \(\cdot\) \\
zach & \\
\hline
\end{tabular}

\section*{Merge Join}
```

Users = load 'users' as (name, age);
Pages = load 'pages' as (user, url);
Jnd = join Pages by user, Users by name using "merge";

```
Pages
    aaron
    zach
    Users
    aaron
    zach

\section*{Merge Join}
```

Users = load 'users' as (name, age);
Pages = load 'pages' as (user, url);
Jnd = join Pages by user, Users by name using "merge";

```


\section*{Merge Join}
```

Users = load 'users' as (name, age);
Pages = load 'pages' as (user, url);
Jnd = join Pages by user, Users by name using "merge";

```


\section*{Map 2}
\begin{tabular}{l|l}
\begin{tabular}{ll} 
Pages & Users \\
amy... & amy \\
barb & \(\ldots\) \\
\hline
\end{tabular} &
\end{tabular}
- 181 -

17!

\section*{Multi-store script}
```

A = load 'users' as (name, age, gender, city, state);
B = filter A by name is not null;
C1 = group B by age, gender;
D1 $=$ foreach C1 generate group, COUNT(B); store D into 'bydemo';
C2= group B by state;
D2 = foreach C2 generate group, COUNT(B); store D2 into 'bystate';

```


\section*{Multi-Store Map-Reduce Plan}


\section*{Other Optimizations in Tenzing}
- Keep processes running: process pool
- Remove reducer-side sort for hash-based algorithms
- Note: the data must fit in main memory, otherwise the task fails
- Pipelining
- Indexes

\section*{Final Thoughts}

Challenging problems in MR jobs:
- Skew
- Fault tolerance

\section*{Skew}


Fig. 1. A timing chart of a MapReduce job running the PageRank algorithm from Cloud 9 [5]. Exec represents the actual map and reduce operations. The slowest map task (first one from the top) takes more than twice as long to complete as the second slowest map task, which is still five times slower than the average. If all tasks took approximately the same amount of time, the job would have completed in less than half the time.

\section*{Balazinska, A study of Skew}

\section*{Skew}


Fig. 2. The distribution of task runtimes for PageRank with 128 map and 128 reduce tasks. A graph node with a large number of edges is much more expensive to process than many graph nodes with few edges. Skew arises in both the map and reduce phases, but the overall job is dominated by the map phase.

\section*{Balazinska, A study of Skew}

\section*{Skew}

(a) CloudBurst - Map

(b) CloudBurst - Reduce

Fig. 3. Distribution of task runtime for CloudBurst. Total 162 map tasks, and 128 reduce tasks. The map phase exhibits a bimodal distribution. Each mode corresponds to map tasks processing a different input dataset. The reduce is computationally expensive and has a smooth runtime distribution, but there is a factor of five difference in runtime between the fastest and the slowest reduce tasks.

\section*{Fault Tolerance}
- Fundamental tension:
- Materialize after each Map and each Reduce
- This is what MR does
- Ideal for fault tolerance
- Very poor performance
- Pipeline between steps
- This is what Parallel DBs usually do
- Ideal for performance
- Very poor fault tolerance

\title{
Pig Latin Mini-Tutorial
}
(will skip in class; please read in order to do homework 6)

\section*{Outline}

Based entirely on Pig Latin: A not-so-foreign language for data processing, by Olston, Reed, Srivastava, Kumar, and Tomkins, 2008

Quiz section tomorrow: in CSE 403 (this is CSE, don't go to EE1)

\section*{Pig-Latin Overview}
- Data model = loosely typed nested relations
- Query model = a sql-like, dataflow language
- Execution model:
- Option 1: run locally on your machine
- Option 2: compile into sequence of map/reduce, run on a cluster supporting Hadoop
- Main idea: use Opt1 to debug, Opt2 to execute

\section*{Example}
- Input: a table of urls:
(url, category, pagerank)
- Compute the average pagerank of all sufficiently high pageranks, for each category
- Return the answers only for categories with sufficiently many such pages

\section*{First in SQL...}

\section*{SELECT category, AVG(pagerank) FROM urls \\ WHERE pagerank > 0.2 \\ GROUP By category HAVING COUNT(*) > \(10^{6}\)}

\section*{...then in Pig-Latin}
good_urls = FILTER urls BY pagerank > 0.2 groups = GROUP good_urls BY category
big_groups = FILTER groups
BY COUNT(good_urls) > \(10^{6}\)
output = FOREACH big_groups GENERATE category, AVG(good_urls.pagerank)

\section*{Types in Pig-Latin}
- Atomic: string or number, e.g. 'Alice’ or 55
- Tuple: (‘Alice’, 55, ‘salesperson’)
- Bag: \{('Alice’, 55, ‘salesperson’), ('Betty',44, 'manager'), ...\}
- Maps: we will try not to use these

\section*{Types in Pig-Latin}

Bags can be nested!
- \(\left\{\left({ }^{\prime} a^{\prime},\{1,4,3\}\right),(' c ’,\{ \}),(' d ’,\{2,2,5,3,2\})\right\}\)

Tuple components can be referenced by number
- \$0, \$1, \$2, ...
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\[
\mathrm{t}=\left(\text { 'alice', }\left\{\begin{array}{c}
(\text { 'lakers', 1) } \\
(\text { 'iPod', 2) }
\end{array}\right\},[\text { 'age' } \rightarrow 20]\right)
\]} \\
\hline Expression Type & Example & Value for t \\
\hline Constant & 'bob' & Independent of t \\
\hline Field by position & \$0 & 'alice' \\
\hline Field by name & f3 & 'age' \(\rightarrow 20\) \\
\hline Projection & f2. \$0 & \[
\left\{\begin{array}{c}
\text { ('lakers') } \\
\text { ('iPod') }
\end{array}\right.
\] \\
\hline Map Lookup & f3\#'age' & 20 \\
\hline Function Evaluation & SUM(f2.\$1) & \(1+2=3\) \\
\hline Conditional Expression & \[
\begin{aligned}
& \text { f3\#'age' }>18 \text { ? } \\
& \text { 'adult': 'minor' }
\end{aligned}
\] & 'adult' \\
\hline Flattening & FLATTEN(f2) & \[
\begin{aligned}
& \text { 'lakers', } \\
& \text { 'iPod', } 2
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Loading data}
- Input data = FILES !
- Heard that before?
- The LOAD command parses an input file into a bag of records
- Both parser (="deserializer") and output type are provided by user

\section*{Loading data}

\section*{queries = LOAD ‘query_log.txt' USING myLoad( ) AS (userID, queryString, timeStamp)}

\section*{Loading data}
- USING userfuction( ) -- is optional
- Default deserializer expects tab-delimited file
- AS type - is optional
- Default is a record with unnamed fields; refer to them as \(\$ 0, \$ 1, \ldots\)
- The return value of LOAD is just a handle to a bag
- The actual reading is done in pull mode, or parallelized

\section*{FOREACH}

\section*{expanded_queries = \\ FOREACH queries \\ GENERATE userld, expandQuery(queryString)}
expandQuery() is a UDF that produces likely expansions Note: it returns a bag, hence expanded_queries is a nested bag

\section*{FOREACH}

\section*{expanded_queries = \\ FOREACH queries \\ GENERATE userld, \\ flatten(expandQuery(queryString))}

Now we get a flat collection

(alice, lakers rumors) (alice, lakers news)
(bob, iPod nano) (bob, iPod shuffle)

\section*{FLATTEN}

Note that it is NOT a first class function! (that's one thing I don't like about Pig-latin)
- First class FLATTEN:
- FLATTEN(\{\{2,3\},\{5\},\{\},\{4,5,6\}\}) \(=\{2,3,5,4,5,6\}\)
- Type: \(\{\{T\}\} \rightarrow\{T\}\)
- Pig-latin FLATTEN
\(-\operatorname{FLATTEN}(\{4,5,6\})=4,5,6\)
- Type: \(\{T\} \rightarrow\) T, T, T, ..., T ?????

\section*{FILTER}

Remove all queries from Web bots:
real_queries = FILTER queries BY userld neq 'bot'

Better: use a complex UDF to detect Web bots:
\[
\begin{aligned}
\text { real_queries }= & \text { FILTER queries } \\
& \text { BY NOT isBot(userld) }
\end{aligned}
\]

\section*{JOIN}
results: \(\quad\{(q u e r y S t r i n g, ~ u r l, ~ p o s i t i o n)\} ~\) revenue: \(\quad\{(q u e r y S t r i n g, ~ a d S l o t, ~ a m o u n t)\}\)

\section*{join_result = JOIN results BY queryString revenue BY queryString}
join_result : \{(queryString, url, position, adSlot, amount)\}

\section*{results:} (queryString, url, rank)
```

(lakers, nba.com, 1)

```
(lakers, espn.com, 2)
(kings, nhl.com, 1)
(kings, nba.com, 2)
revenue:
(queryString, adSlot, amount)
(lakers, top, 50) -
(lakers, side, 20)
(kings, top, 30)
(kings, side, 10)
(lakers, nba.com, 1, top , 50)
(lakers, nba.com, 1, side, 20)
(lakers, espn.com, 2, top, 50)
(lakers, espn.com, 2, side, 20)

\section*{GROUP BY}
revenue: \(\quad\{(q u e r y S t r i n g, ~ a d S l o t, ~ a m o u n t)\} ~\)
grouped_revenue = GROUP revenue BY queryString query_revenues =

FOREACH grouped_revenue
GENERATE queryString, SUM(revenue.amount) AS totalRevenue
grouped_revenue: \(\{(\) queryString, \(\{(\) adSlot, amount \()\})\}\) query_revenues: \{(queryString, totalRevenue)\}

\section*{Simple Map-Reduce}
input : \{(field1, field2, field3, . . . ) \} map_result = FOREACH input GENERATE FLATTEN(map(*))
key_groups = GROUP map_result BY \$0 output = FOREACH key_groups GENERATE reduce(\$1)
map_result : \{(a1, a2, a3, . . ) \}
key_groups : \(\{(\mathrm{a} 1,\{(\mathrm{a} 2, \mathrm{a} 3, \ldots)\})\}\)

\section*{Co-Group}
results: \{(queryString, url, position)\}
revenue: \{(queryString, adSlot, amount)\}

\section*{grouped_data = COGROUP results BY queryString, revenue BY queryString;}
grouped_data: \{(queryString, results:\{(url, position)\}, revenue:\{(adSlot, amount) \(\})\}\)

What is the output type in general?

\section*{Co-Group}


Is this an inner join, or an outer join?

\section*{Co-Group}
grouped_data: \{(queryString, results:\{(url, position)\}, revenue:\{(adSlot, amount)\})\}
```

url_revenues = FOREACH grouped_data
GENERATE
FLATTEN(distributeRevenue(results, revenue));

```
distributeRevenue is a UDF that accepts search results and revenue information for a query string at a time, and outputs a bag of urls and the revenue attributed to them.

\section*{Co-Group v.s. Join}
grouped_data: \{(queryString, results:\{(url, position)\}, revenue:\{(adSlot, amount) \(\})\}\)
grouped_data \(=\) COGROUP results BY queryString, revenue \(B Y\) queryString;
join_result = FOREACH grouped_data GENERATE FLATTEN(results), FLATTEN(revenue);

Result is the same as JOIN

\section*{Asking for Output: STORE}

\section*{STORE query_revenues INTO `myoutput' USING myStore();}

Meaning: write query_revenues to the file 'myoutput'

\section*{Implementation}
- Over Hadoop!
- Parse query:
- Everything between LOAD and STORE \(\rightarrow\) one logical plan
- Logical plan \(\rightarrow\) sequence of Map/Reduce ops
- All statements between two (CO)GROUPs
\(\rightarrow\) one Map/Reduce op

\section*{Implementation}
```

