
CSEP 544: Lecture 05 

Query Optimization, 
Parallel Databases, 

MapReduce 
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Homework 3 

•  PigLatin (MapReduce) on AWS 

•  Go to http://aws.amazon.com/grants/ click 
on AWS Educate, get code for $100 credit 
for AWS 

•  Remember to turn off your instances! 
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Overview of Today’s Lecture 
•  Query Execution/Optimization 

– Review two papers 

•  Parallel databases 

•  Map/Reduce 
– Next week: MR paper review 

•  Not in class: PigLatin 
– Read for HW3 
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Query Execution/Optimization 

•  Execution:  logical/physical operators 
– Started last lecture, reviewed today 

•  Optimization: Query plans + rewrite rules 
– Today 

•  Size estimation: statistics + assumptions 
– Today 

Will discuss in this order: 3, 1, 2 



Database Statistics 

•  Collect statistical summaries of stored data 

•  Estimate size (=cardinality), bottom-up 

•  Estimate cost by using the estimated size 
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Database Statistics 

•  Number of tuples = cardinality 
•  Indexes: number of keys in the index 
•  Number of physical pages, clustering info 
•  Statistical information on attributes 

–  Min value, max value, number distinct values 
–  Histograms 

•  Correlations between columns 
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Size Estimation Problem 
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S = SELECT list 
       FROM    R1, …, Rn  
       WHERE cond1 AND cond2 AND . . . AND condk 

Given T(R1), T(R2), …, T(Rn) 
Estimate T(S) 

How can we do this ?  Note: doesn’t have to be exact. 



Size Estimation Problem 
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Remark: T(S) ≤  T(R1) × T(R2) × … × T(Rn) 

S = SELECT list 
       FROM    R1, …, Rn  
       WHERE cond1 AND cond2 AND . . . AND condk 



Selectivity Factor 

•  Each condition cond reduces the size by 
some factor called selectivity factor 

•  Assuming independence, multiply the 
selectivity factors 
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Example 
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SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 

R(A,B) 
S(B,C) 
T(C,D) 

T(R) = 30k,  T(S) = 200k, T(T) = 10k 
 
Selectivity of R.B = S.B  is 1/3 
Selectivity of S.C = T.C is 1/10 
Selectivity of R.A < 40 is ½ 
 
What is the estimated size of the query output ? 



Example 

CSEP544 - Fall 2015        11 

SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 

R(A,B) 
S(B,C) 
T(C,D) 

T(R) = 30k,  T(S) = 200k, T(T) = 10k 
 
Selectivity of R.B = S.B  is 1/3 
Selectivity of S.C = T.C is 1/10 
Selectivity of R.A < 40 is ½ 
 
What is the estimated size of the query output ? 

30k * 200k * 10k * 1/3 * 1/10 * ½  
= 1TB 



Discussion: Paper 

S = SELECT list 
       FROM    R1 as x1, …, Rk as xk 
       WHERE Cond  -- a conjunction of predicates 

What is the probability space? 



Discussion: Paper 

(x1, x2, …, xk), drawn randomly, independently from R1, ..., Rk 

Pr(R1.A = 40)  = prob. that random tuple in R1 has A=40  
 
 
Pr(R1.A = 40 and JR1.B = R2.C and R2.D = 90) = prob. that … 
 
 
E[ |SELECT ... WHERE Cond| ] = Pr(Cond) * T(R1) * T(R2) * ... * T(Rk) 

What is the probability space? 

S = SELECT list 
       FROM    R1 as x1, …, Rk as xk 
       WHERE Cond  -- a conjunction of predicates 

Join indicator (in class…) Descriptive attribute 



Discussion: Paper 

What is the probability space? 

What are the three simplifying assumptions? 

S = SELECT list 
       FROM    R1 as x1, …, Rk as xk 
       WHERE Cond  -- a conjunction of predicates 



Discussion: Paper 

What is the probability space? 

What are the three simplifying assumptions? 

Uniform:  Pr(R1.A = ‘a’) = 1/V(R1, A) 
 
Attribute Indep.: Pr(R1.A = ‘a’ and R1.B = ‘b’ ) = Pr(R1.A = ‘a’) Pr(R1.B = ‘b’ ) 
 
Join Indep.:  Pr(R1.A = ‘a’ and JR1.B = R2.C) = Pr(R1.A = ‘a’) Pr(JR1.B = R2.C)  

S = SELECT list 
       FROM    R1 as x1, …, Rk as xk 
       WHERE Cond  -- a conjunction of predicates 



Rule of Thumb 

•  If selectivities are unknown, then: 
selectivity factor = 1/10   
[System R, 1979] 
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Using Data Statistics 

•  Condition is A = c     /* value selection on R */ 
–  Selectivity  = 1/V(R,A) 

•  Condition is A < c      /* range selection on R */ 
–  Selectivity = (c - Low(R, A))/(High(R,A) - Low(R,A))T(R) 

•  Condition is A = B                         /* R ⨝A=B S */ 
–  Selectivity = 1 / max(V(R,A),V(S,A)) 
–  (will explain next) 
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Selectivity of Join Predicates 

Assumptions: 
•  Containment of values: if V(R,A) <= V(S,B), then 

the set of A values of R is included in the set of B 
values of S 
–  Note: this indeed holds when A is a foreign key in R, 

and B is a key in S 

•  Preservation of values: for any other attribute C,  
V(R ⨝A=B S, C) = V(R, C)   (or V(S, C)) 
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Selectivity of Join Predicates 

Assume V(R,A) <= V(S,B) 

•  Each tuple t in R joins with T(S)/V(S,B) tuple(s) in S 

•  Hence T(R ⨝A=B S) = T(R) T(S) / V(S,B) 

In general: T(R ⨝A=B S) = T(R) T(S) / max(V(R,A),V(S,B)) 
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Selectivity of Join Predicates 

Example: 
•  T(R) = 10000,  T(S) = 20000 
•  V(R,A) = 100,  V(S,B) = 200 
•  How large is R ⨝A=B S  ? 
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Histograms 

•  Statistics on data maintained by the 
RDBMS 

•  Makes size estimation much more 
accurate (hence, cost estimations are 
more accurate) 
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Histograms 
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Employee(ssn, name, age) 

T(Employee) = 25000,  V(Empolyee, age) = 50 
min(age) = 19,  max(age) = 68 

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ? 



Histograms 
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Age: 0..20 20..29 30-39 40-49 50-59 > 60 

Tuples 200 800 5000 12000 6500 500 

Employee(ssn, name, age) 

T(Employee) = 25000,  V(Empolyee, age) = 50 
min(age) = 19,  max(age) = 68 

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ? 



Histograms 

Employee(ssn, name, age) 

T(Employee) = 25000,  V(Empolyee, age) = 50 
min(age) = 19,  max(age) = 68 

Estimate = 1200 Estimate = 1*80 + 5*500 = 2580 

Age: 0..20 20..29 30-39 40-49 50-59 > 60 

Tuples 200 800 5000 12000 6500 500 

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ? 



Types of Histograms 

•  How should we determine the bucket 
boundaries in a histogram ? 
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Types of Histograms 

•  How should we determine the bucket 
boundaries in a histogram ? 

•  Eq-Width 
•  Eq-Depth 
•  Compressed 
•  V-Optimal histograms 
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Histograms 

Age: 0..20 20..29 30-39 40-49 50-59 > 60 

Tuples 200 800 5000 12000 6500 500 

Employee(ssn, name, age) 

Age: 0..20 20..29 30-39 40-49 50-59 > 60 

Tuples 1800 2000 2100 2200 1900 1800 

Eq-width: 

Eq-depth: 

Compressed: store separately highly frequent values: (48,1900) 



V-Optimal Histograms 

•  Defines bucket boundaries in an optimal 
way, to minimize the error over all point 
queries 

•  Computed rather expensively, using 
dynamic programming 

•  Modern databases systems use V-optimal 
histograms or some variations 
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Difficult Questions on Histograms 
•  Small number of buckets 

– Hundreds, or thousands, but not more 
– WHY ? 

•  Not updated during database update, but 
recomputed periodically 
– WHY ?  
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Multidimensional Histograms 

Classical example: 

SQL query:  SELECT …  FROM    … 
WHERE  Person.city = ‘Seattle’ … 

User “optimizes” it to:  

SELECT …  FROM    … 
WHERE  Person.city = ‘Seattle’ 
        and Person.state = ‘WA’ 

Big problem!  (Why?) 



Multidimensional Histograms 

•  Store distributions on two or more 
attributes 

•  Curse of dimensionality: space grows 
exponentially with dimension 

•  Paper: discusses using only two 
dimensional histograms 
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Paper: Bayesian Networks 

PBN(A, B, C, D, E) = P(E|D)P(D|B)P(C|A, B) P(A)P(B). 



Paper: Bayesian Networks 

PBN(A, B, C, D, E) = P(E|D)P(D|B)P(C|A, B) P(A)P(B). 



Paper: Bayesian Networks 

PBN(A, B, C, D, E) = P(E|D)P(D|B)P(C|A, B) P(A)P(B). 



Paper Highlights 

•  Universal table (what is it?) 
•  Acyclic v.s. Cyclic Schemas 
•  Within a table: tree-BN only 
•  Join indicator: two parents only 
•  Hence: acyclic schema à 2D-histograms 

only in the junction tree 
•  Simplifies construction, estimation 
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Summary of Size Estimation 

•  Critical, yet very difficult piece of a query 
optimizer 

•  Selectivity estimation: simple probability 
space (outcome = 1 tuple) to estimate a 
selection (includes joins) 

•  More complex estimations: much more 
difficult (e.g. estimate the size of 
DISTINCT) 
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Query Execution 

•  Logical operators: 
– Select/project/join/union/difference 
– Group-by/sort 

•  Physical operators: 
– Main memory (“in core”) 

e.g. hash-join, merge-join 
– External memory (“out of core”) 

index-join, partitioned hash join, merge join 
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Discussion: Shapiro’s paper 

•  Describe the merge-join algorithm.  How 
long are the initial runs? 

•  What is classic hashing? 
•  What is simple hash-join? 
•  What is Grace-join? 
•  What is Hybrid hash-join? 
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Advanced Stuff 

•  Semi-joins 
•  Anti-semi-joins 
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Semijoin 

R ⋉C S  = Π A1,…,An (R ⨝C S) 

Formally, R ⋉C S means this: retain from R only those 
tuples that have some matching tuple in S 
 Duplicates in R are preserved 
 Duplicates in S don’t matter 

Where A1, …, An are the attributes in R 

Applications: distributed query execution, 
standard query execution for complex queries 



Semijoins in Distributed Databases 

SSN Name Stuff 
. . . . . . . . . . 

EmpSSN DepName Age Stuff 
. . . . . . . . . . . . . 

Employee 
Dependent 

network 

Assumptions 
•  Very few employees start with M 
•  Very few dependents have age > 71. 
•  “Stuff” is big. 

σname like ‘M%’(Employee) ⨝SSN=EmpSSN (σ age>71 (Dependent)) 



Semijoins in Distributed Databases 
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SSN Name Stuff 
. . . . . . . . . . 

EmpSSN DepName Age Stuff 
. . . . . . . . . . . . . 

Employee 
Dependent 

network 

σname like ‘M%’(Employee) ⨝SSN=EmpSSN (σ age>71 (Dependent)) 

T = Π EmpSSN σ age>71 (Dependents) 



Semijoins in Distributed Databases 

R = σname like ‘M%’(Employee)  ⨝SSN=EmpSSN  T 

SSN Name Stuff 
. . . . . . . . . . 

EmpSSN DepName Age Stuff 
. . . . . . . . . . . . . 

Employee 
Dependent 

network 

σname like ‘M%’(Employee) ⨝SSN=EmpSSN (σ age>71 (Dependent)) 

T = Π EmpSSN σ age>71 (Dependents) 



Semijoins in Distributed Databases 

Answer = R ⨝SSN=EmpSSN σ age>71 Dependents` 

SSN Name Stuff 
. . . . . . . . . . 

EmpSSN DepName Age Stuff 
. . . . . . . . . . . . . 

Employee 
Dependent 

network 

σname like ‘M%’(Employee) ⨝SSN=EmpSSN (σ age>71 (Dependent)) 

R = σname like ‘M%’(Employee)  ⨝SSN=EmpSSN  T 

T = Π EmpSSN σ age>71 (Dependents) 



Anti-Semi-Join 

•  Notation: R ⊳ S 
– Warning: not a standard notation 

•  Meaning: all tuples in R that do NOT have 
a matching tuple in S 
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Set Difference v.s. 
Anti-semijoin 

SELECT DISTINCT R.B  
FROM R 
WHERE not exists  (SELECT * 

  FROM S 
  WHERE R.B=S.B) 

R(A,B) 
S(B) 

Plan= 

SELECT DISTINCT *  
FROM R 
WHERE not exists  (SELECT * 

  FROM S 
  WHERE R.B=S.B) 



Set Difference v.s. 
Anti-semijoin 

SELECT DISTINCT R.B  
FROM R 
WHERE not exists  (SELECT * 

  FROM S 
  WHERE R.B=S.B) 

R(A,B) 
S(B) 

Plan= 
− 

ΠB 

R(A,B) S(B) 

SELECT DISTINCT *  
FROM R 
WHERE not exists  (SELECT * 

  FROM S 
  WHERE R.B=S.B) 



Set Difference v.s. 
Anti-semijoin 

SELECT DISTINCT R.B  
FROM R 
WHERE not exists  (SELECT * 

  FROM S 
  WHERE R.B=S.B) 

R(A,B) 
S(B) 

Plan= 
− 

ΠB 

R(A,B) S(B) 

SELECT DISTINCT *  
FROM R 
WHERE not exists  (SELECT * 

  FROM S 
  WHERE R.B=S.B) 

Plan= 



Set Difference v.s. 
Anti-semijoin 

SELECT DISTINCT R.B  
FROM R 
WHERE not exists  (SELECT * 

  FROM S 
  WHERE R.B=S.B) 

R(A,B) 
S(B) 

Plan= 
− 

ΠB 

R(A,B) S(B) 

SELECT DISTINCT *  
FROM R 
WHERE not exists  (SELECT * 

  FROM S 
  WHERE R.B=S.B) 

Plan= 

− 

ΠB 

R(A,B) S(B) R(A,B) 

⋉ 

Semi-join 



Set Difference v.s. 
Anti-semijoin 

SELECT DISTINCT R.B  
FROM R 
WHERE not exists  (SELECT * 

  FROM S 
  WHERE R.B=S.B) 

R(A,B) 
S(B) 

Plan= 
− 

ΠB 

R(A,B) S(B) 

SELECT DISTINCT *  
FROM R 
WHERE not exists  (SELECT * 

  FROM S 
  WHERE R.B=S.B) 

Plan= 

R(A,B) S(B) 

⊳ 
Anti-semi-join 

− 

ΠB 

R(A,B) S(B) R(A,B) 

⋉ 

Semi-join 



Operators on Bags 

•  Duplicate elimination δ
δ(R) = SELECT DISTINCT * FROM R 

•  Grouping γ
γA,sum(B) (R) =  

     SELECT  A,sum(B)   FROM R  GROUP BY A 

•  Sorting τ



Query Optimization 

•  Search space = set of all physical query 
plans considered 

•  Search algorithm = a heuristics-based 
algorithm for searching the space and 
selecting an optimal plan 
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Relational Algebra Laws: Joins 
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Commutativity :  R ⋈ S = S ⋈ R  
Associativity:  R ⋈ (S ⋈ T) = (R ⋈ S) ⋈ T  
Distributivity:  R ⨝ (S ∪ T)  =  (R ⨝ S) ∪ (R ⨝ T) 

Outer joins get more complicated 



Relational Algebra Laws: 
Selections 
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R(A, B, C, D), S(E, F, G) 

σ F=3 (R ⨝ D=E S) =                                     ? 
σ A=5 AND G=9 (R ⨝ D=E S) =                         ? 



Relational Algebra Laws: 
Selections 
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R(A, B, C, D), S(E, F, G) 

σ F=3 (R ⨝ D=E S) =  R ⨝ D=E (σ F=3 (S)) 
σ A=5 AND G=9 (R ⨝ D=E S) =σA=5(R) ⨝D=E σG=9(S) 



Group-by and Join 
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γA, sum(D)(R(A,B) ⨝ B=C S(C,D)) =        ? 
      

R(A, B),  S(C,D) 



Group-by and Join 
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γA, sum(D)(R(A,B) ⨝ B=C S(C,D)) =   
     γA, sum(D)(R(A,B) ⨝ B=C (γC, sum(D)S(C,D))) 

These are very powerful laws. 
They were introduced only in the 90’s. 

R(A, B),  S(C,D) 



Laws Involving Constraints 
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Foreign key 

Πpid, price(Product ⨝cid=cid Company) =     ? 

Product(pid, pname, price, cid) 
Company(cid, cname, city, state) 



Laws Involving Constraints 
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Need a second constraint for this law to hold. Which ? 

Πpid, price(Product ⨝cid=cid Company) = Πpid, price(Product) 

Product(pid, pname, price, cid) 
Company(cid, cname, city, state) 

Foreign key 



Why such queries occur 
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CREATE VIEW CheapProductCompany 
     SELECT * 
     FROM Product x, Company y 
     WHERE x.cid = y.cid and x.price < 100 

SELECT pname, price 
FROM CheapProductCompany 

SELECT pname, price 
FROM Product 
WHERE price < 100 

Product(pid, pname, price, cid) 
Company(cid, cname, city, state) 

Foreign key 



61 

Law of Semijoins 

•  Input: R(A1,…An),  S(B1,…,Bm) 
•  Output: T(A1,…,An) 
•  Semjoin is: R ⋉ S  = Π A1,…,An (R  ⨝  S) 

•  The law of semijoins is: 
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R  ⨝  S = (R ⋉ S)  ⨝  S 



Laws with Semijoins 

•  Used in parallel/distributed databases 

•  Often combined with Bloom Filters 

•  Read pp. 747 in the textbook 
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The Iterator Model 

Each operator implements this interface 

•  open() 

•  get_next() 

•  close() 

See details on the slides of the previous lecture 



Classic Hash Join 

What do these operators do for the classic Hash 
Join? 

•  open() 

•  get_next() 

•  close() 
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⨝cid=cid  

Purchase Customer 

Purchase(pid,cid,store) ⨝cid=cid Customer(cid, name, city) Purchase(pid, cid, store) 
Customer(cid, name, city) 



Main Memory Hash Join 
open( ) { 
   Customer.open( ); 
   while (c = Customer.get_next( )) 
       hashTable.insert(c.cid, c); 
   Customer.close(); 
   Purchase.open( ); 
} 

get_next( ) { 
   repeat {  
      p = Purchase.get_next( ); 
      if (p == NULL)  
         { c = hashTable.find(p.cid); } 
   until (p == NULL or c != NULL); 
   return (p,c) 
} 

close( ) { 
   Purchase.close( ); 
} 

Purchase(pid,cid,store) ⨝cid=cid Customer(cid, name, city) Purchase(pid, cid, store) 
Customer(cid, name, city) 



Main Memory Hash Join 
open( ) { 
   Customer.open( ); 
   while (c = Customer.get_next( )) 
       hashTable.insert(c.cid, c); 
   Customer.close(); 
   Purchase.open( ); 
} 

get_next( ) { 
   repeat {  
      p = Purchase.get_next( ); 
      if (p == NULL)  
         { c = hashTable.find(p.cid); } 
   until (p == NULL or c != NULL); 
   return (p,c) 
} 

close( ) { 
   Purchase.close( ); 
} 

Purchase(pid,cid,store) ⨝cid=cid Customer(cid, name, city) Purchase(pid, cid, store) 
Customer(cid, name, city) 

What changes if we don’t 
join on a key-foreign key? 
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Discussion in class 

⋈ 

⋈ T(C,D) 

R(A,B) S(B,C) 
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Every operator is a hash-join 
and implements the iterator model 

What happens: 
•  When we call open() at the top? 
•  When we call get_next() at the top? 



Discussion in class 

⋈ 

⋈ 

⋈ T 

R S 

U 

HashTable1 ß S 
HashTable2 ß T 
HashTable3 ß U 
repeat  read(R, x) 

 y ß join(HashTable1, x)  
 z ß join(HashTable2, y) 
 u ß join(HashTable3, z) 
 write(Answer, u) 

What is the total cost? 
What is the requirement on M? 



Discussion in class 

⋈ 

⋈ 

⋈ T 

R S 

U 

HashTable ß S 
repeat  read(R, x) 

 y ß join(HashTable, x) 
 write(V1, y) 

 
HashTable ß T 
repeat  read(V1, y) 

 z ß join(HashTable, y) 
 write(V2, z) 

 
HashTable ß U 
repeat  read(V2, z) 

 u ß join(HashTable, z) 
 write(Answer, u) 

V1 

V2 

What is the total cost? 
What is the requirement on M? 
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Discussion in class 

⋈ 

⋈ 

⋈ 

X R S 

⋈ 

⋈ 
Z

Y 

⋈ 

V 

T 

⋈ 

I 
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Left-Deep Plans and 
Bushy Plans 
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R3 R1 R2 R4 R3 R1 

R4 

R2 

Left-deep plan Bushy plan 

System R considered only left deep plans,  
and so do some optimizers today 



Search Algorithms 

Goal: start with any query plan, find an equivalent plan 
with lowest estimated cost 
•  Dynamic programming 

–  Pioneered by System R for computing optimal join order 

•  Search space pruning 
–  Drop unpromising partial plans; bottom-up v.s. top-down plans 

•  Access path selection 
–  Refers to the plan for accessing a single table 

CSEP544 - Fall 2015        72 



Complete Plans 
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SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 

⨝ 

S σA<40 

R 

⨝ 

T 

⨝ 

S 

σA<40 

R 

⨝ 

T 

If the algorithm 
enumerates 
complete plans, 
then it is difficult 
to prune out 
unpromising 
sets of plans. 

R(A,B) 
S(B,C) 
T(C,D) 



Bottom-up Partial Plans 
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R(A,B) 
S(B,C) 
T(C,D) 

⨝ σA<40 

R S T 

⨝ 

S σA<40 

R 

⨝ 

R S 

⨝ 

S σA<40 

R 

⨝ 

T 

….. 

If the algorithm enumerates 
partial bottom-up plans, 
then pruning can be done 
more efficiently 

SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 



Top-down Partial Plans 
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R(A,B) 
S(B,C) 
T(C,D) 

⨝ σA<40 

T ⨝ 

S 

⨝ 

T 

….. 

SELECT R.A, T.D 
FROM R, S, T 
WHERE R.B=S.B 
        and S.C=T.C 

SELECT * 
FROM R, S 
WHERE R.B=S.B 
        and R.A < 40 SELECT * 

FROM R 
WHERE R.A < 40 

Same here. 

SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 



Access Path Selection 
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Supplier(sid,sname,scategory,scity,sstate) 

V(Supplier,city) = 1000 
V(Supplier,scategory)=100 Clustered index on scity 

Unclustered index on (scategory,scity) 

B(Supplier) = 10k 
T(Supplier) = 1M 

Access plan options: 
•  Table scan:     cost =    ? 
•  Index scan on scity:    cost =    ? 
•  Index scan on scategory,scity:  cost =    ? 

σscategory = ‘organic’ ∧ scity=‘Seattle’ (Supplier)  



Access Path Selection 
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V(Supplier,city) = 1000 
V(Supplier,scategory)=100 Clustered index on scity 

Unclustered index on (scategory,scity) 

B(Supplier) = 10k 
T(Supplier) = 1M 

Access plan options: 
•  Table scan:     cost =    10k   = 10k 
•  Index scan on scity:    cost =    10k/1000  = 10 
•  Index scan on scategory,scity:  cost =    1M/1000*100  = 10 

Supplier(sid,sname,scategory,scity,sstate) 

σscategory = ‘organic’ ∧ scity=‘Seattle’ (Supplier)  



Summary of Query Optimization 

•  Three parts: 
– search space, algorithms, size/cost estimation 

•  Ideal goal: find optimal plan.  But 
–  Impossible to estimate accurately 
–  Impossible to search the entire space 

•  Goal of today’s optimizers: 
– Avoid very bad plans 

CSEP544 - Fall 2015        78 



Overview of Today’s Lecture 
•  Query Execution/Optimization 
 
•  Parallel databases 

– Book: Ch. 22.1 – 22.10 

•  Map/Reduce 
– Next week: MR paper review 

•  Not in class: PigLatin 
– Read for HW3 
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Parallel Databases 
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Parallel Computation Today 

Two Major Forces Pushing towards Parallel 
Computing: 

•  Change in Moore’s law 

•  Cloud computing 
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Parallel Computation Today 

1.  Change in Moore's law* (exponential growth in 
transistors per chip density) no longer results in 
increased clock speeds   

–  Increased hw performance available only through 
parallelism  

–  Think multicore: 4 cores today, perhaps 64 in a few 
years 

* Moore's law says that the number of transistors that can be 
placed inexpensively on an integrated circuit doubles approximately  
every two years [Intel co-founder Gordon E. Moore described the  
trend in his 1965 paper and predicted that it will last for at least 10 years] 
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Parallel Computation Today 

2.  Cloud computing commoditizes access to 
large clusters 

–  Ten years ago, only Google could afford 1000 
servers; 

–  Today you can rent this from Amazon Web 
Services (AWS) 
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Jeff Dean, SOCC’2010: 
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Jeff Dean, SOCC’2010: 

Dan Suciu - U. of Washington 88 

Memory 
access 

Communication 

Local access is 
significantly faster 
than communication 



Parallel DBMSs 
•  Goal 

–  Improve performance by executing multiple 
operations in parallel 

 
•  Key benefit 

– Cheaper to scale than relying on a single 
increasingly more powerful processor 

•  Key challenge 
– Ensure overhead and contention do not kill 

performance 
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Performance Metrics  
for Parallel DBMSs 

•  Speedup 
–  More processors è higher speed 
–  Individual queries should run faster 
–  Should do more transactions per second (TPS) 

•  Scaleup 
–  More processors è can process more data 
–  Batch scaleup 

•  Same query on larger input data should take the same time 
–  Transaction scaleup 

•  N-times as many TPS on N-times larger database 
•  But each transaction typically remains small 
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Linear v.s. Non-linear Speedup 
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# processors (=P) 

Speedup 
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Linear v.s. Non-linear Scaleup 

# processors (=P) AND data size  

Batch 
Scaleup 

×1 ×5 ×10 ×15 
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Challenges to  
Linear Speedup and Scaleup 

•  Startup cost  
– Cost of starting an operation on many 

processors 

•  Interference 
– Contention for resources between processors 

•  Skew 
– Slowest processor becomes the bottleneck 

CSEP544 - Fall 2015         93 



Architectures for Parallel 
Databases 

•  Shared memory 

•  Shared disk 

•  Shared nothing 
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Architectures for Parallel 
Databases 

95 

From: Greenplum Database Whitepaper  



Shared Memory 
•  Nodes share both RAM and disk 
•  Dozens to hundreds of processors 

Example: SQL Server runs on a single machine 
and can leverage many threads to get a query 
to run faster (see query plans) 

•  Easy to use and program 
•  But very expensive to scale: last remaining 

cash cows in the hardware industry 
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Shared Disk 
•  All nodes access the same disks 
•  Found in the largest "single-box" (non-

cluster) multiprocessors 

Oracle dominates this class of systems. 

Characteristics: 
•  Also hard to scale past a certain point: 

existing deployments typically have fewer 
than 10 machines 
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Shared Nothing 
•  Cluster of machines on high-speed network 
•  Called "clusters" or "blade servers” 
•  Each machine has its own memory and disk: lowest 

contention. 
 
NOTE: Because all machines today have many cores 
and many disks, then shared-nothing systems typically 
run many "nodes” on a single physical machine. 

Characteristics: 
•  Today, this is the most scalable architecture. 
•  Most difficult to administer and tune. 

We discuss only Shared Nothing in class 
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Purchase 

pid=pid 

cid=cid 

Customer 

Product 
Purchase 

pid=pid 

cid=cid 

Customer 

Product 

Taxonomy for 
Parallel Query Evaluation 

•  Inter-query parallelism 
– Each query runs on one processor 

•    
–    
–    

•     
–    
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Purchase 

pid=pid 

cid=cid 

Customer 

Product 
Purchase 

pid=pid 

cid=cid 

Customer 

Product 

Taxonomy for 
Parallel Query Evaluation 

•  Inter-query parallelism 
– Each query runs on one processor 

•  Inter-operator parallelism 
– A query runs on multiple processors 
– An operator runs on one processor 

•     
–    
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Purchase 

pid=pid 

cid=cid 

Customer 

Product 
Purchase 

pid=pid 

cid=cid 

Customer 

Product 

Taxonomy for 
Parallel Query Evaluation 

•  Inter-query parallelism 
– Each query runs on one processor 

•  Inter-operator parallelism 
– A query runs on multiple processors 
– An operator runs on one processor 

•  Intra-operator parallelism 
– An operator runs on multiple processors 
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Purchase 

pid=pid 

cid=cid 

Customer 

Product 
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pid=pid 

cid=cid 
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Product 

Taxonomy for 
Parallel Query Evaluation 

•  Inter-query parallelism 
– Each query runs on one processor 

•  Inter-operator parallelism 
– A query runs on multiple processors 
– An operator runs on one processor 

•  Intra-operator parallelism 
– An operator runs on multiple processors 

We study only intra-operator parallelism: most scalable 

Purchase 

pid=pid 

cid=cid 

Customer 

Product 

Purchase 

pid=pid 

cid=cid 

Customer 

Product 

Purchase 

pid=pid 

cid=cid 

Customer 

Product 



Parallel Query Processing 
How do we compute these operations on a shared-nothing parallel db? 

•  Selection:  σA=123(R)    (that’s easy, won’t discuss…) 

•  Group-by:  γA,sum(B)(R) 

•  Join:  R ⋈ S 

Before we answer that: how do we store R (and S) on a shared-nothing 
parallel db? 
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Horizontal Data Partitioning 
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1  2  P  .  .  . 

Data: Servers: 

K A B 
… … 



Horizontal Data Partitioning 
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K A B 
… … 

1  2  P  .  .  . 

Data: Servers: 

K A B

… …

K A B

… …

K A B

… …



Horizontal Data Partitioning 

CSEP544 - Fall 2015   106 

K A B 
… … 

1  2  P  .  .  . 

Data: Servers: 

K A B

… …

K A B

… …

K A B

… …

Which tuples 
go to what server? 



Horizontal Data Partitioning 
•  Block Partition:  

–  Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)  

•  Hash partitioned on attribute A: 
–  Tuple t goes to chunk i, where i = h(t.A) mod P + 1 

•  Range partitioned on attribute A: 
–  Partition the range of A into  -∞ = v0 < v1 < … < vP = ∞ 
–  Tuple t goes to chunk i, if vi-1 < t.A < vi 
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Basic Parallel GroupBy 
Data: R(K,A,B,C) 
Query: γA,sum(C)(R) 
Discuss in class how to compute in each case: 

•  R is hash-partitioned on A 

•  R is block-partitioned 

•  R is hash-partitioned on K 

108 CSEP544 - Fall 2015  



Basic Parallel GroupBy 

Data: R(K,A,B,C) 
Query: γA,sum(C)(R) 
•  R is block-partitioned or hash-partitioned 

on K 

109 

R1  R2  RP  .  .  . 

R1’  R2’  RP’  

.  .  . 

Reshuffle R 
on attribute A 
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Basic Parallel Join 

•  Data: R(K1,A, B), S(K2, B, C) 
•  Query: R(K1,A,B) ⋈ S(K2,B,C) 
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Initially, both R and S are horizontally partitioned on K1 and K2 

R1, S1  R2, S2  RP, SP  



Basic Parallel Join 

•  Data: R(K1,A, B), S(K2, B, C) 
•  Query: R(K1,A,B) ⋈ S(K2,B,C) 

111 

R1, S1  R2, S2  RP, SP  .  .  . 

R’1, S’1  R’2, S’2  R’P, S’P  .  .  . 

Reshuffle R on R.B 
and S on S.B 

Each server computes 
the join locally 
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Speedup and Scaleup 

•  Consider: 
– Query: γA,sum(C)(R) 
– Runtime: dominated by reading chunks from 

disk 
•  If we double the number of nodes P, what 

is the new running time? 

•  If we double both P and the size of R, 
what is the new running time? 
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Speedup and Scaleup 

•  Consider: 
– Query: γA,sum(C)(R) 
– Runtime: dominated by reading chunks from disk 

•  If we double the number of nodes P, what is 
the new running time? 
– Half (each server holds ½ as many chunks) 

•  If we double both P and the size of R, what is 
the new running time? 
– Same (each server holds the same # of chunks) 
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Uniform Data v.s. Skewed Data 

•  Let R(K,A,B,C); which of the following 
partition methods may result in skewed 
partitions? 

•  Block partition 

•  Hash-partition 
– On the key K 
– On the attribute A 
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Uniform Data v.s. Skewed Data 

•  Let R(K,A,B,C); which of the following 
partition methods may result in skewed 
partitions? 

•  Block partition 

•  Hash-partition 
– On the key K 
– On the attribute A 

Uniform 

Uniform 

May be skewed 

Assuming good 
hash function 

E.g. when all records 
have the same value 
of the attribute A, then 
all records end up in the 
same partition 
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Parallel DBMS 

•  Parallel query plan: tree of parallel operators 
Intra-operator parallelism 
– Data streams from one operator to the next 
– Typically all cluster nodes process all operators 

•  Can run multiple queries at the same time 
Inter-query parallelism 
– Queries will share the nodes in the cluster 

•  Notice that user does not need to know how 
his/her SQL query was processed 
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Example: Teradata – Loading 

AMP = “Access Module Processor” = unit of parallelism 
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Example: Teradata – Query Execution 

SELECT *  
  FROM Order o, Line i 
 WHERE o.item = i.item 
   AND o.date = today() 

join 

select 

scan scan 

date = today() 

o.item = i.item 

Order o Item i 

Find all orders from today, along with the items 
ordered 
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Order(oid, item, date), Line(item, …) 



Query Execution 
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AMP 1 AMP 2 AMP 3 

select 
date=today() 

select 
date=today() 

select 
date=today() 

scan 
Order o 

scan 
Order o 

scan 
Order o 

hash 
h(o.item) 

hash 
h(o.item) 

hash 
h(o.item) 

AMP 1 AMP 2 AMP 3 

join 

select 

scan 

date = today() 

o.item = i.item 

Order o 

Order(oid, item, date), Line(item, …) 



Query Execution 
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AMP 1 AMP 2 AMP 3 

scan 
Item i 

AMP 1 AMP 2 AMP 3 

hash 
h(i.item) 

scan 
Item i 

hash 
h(i.item) 

scan 
Item i 

hash 
h(i.item) 

join 

scan 
date = today() 

o.item = i.item 

Order o 
Item i 

Order(oid, item, date), Line(item, …) 



Query Execution 
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AMP 1 AMP 2 AMP 3 

join join join 
o.item = i.item o.item = i.item o.item = i.item 

contains all orders and all 
lines where hash(item) = 1 

contains all orders and all 
lines where hash(item) = 2 

contains all orders and all 
lines where hash(item) = 3 

Order(oid, item, date), Line(item, …) 



Overview of Today’s Lecture 
•  Query Execution/Optimization 
 
•  Parallel databases 

•  Map/Reduce 
– Next week: MR paper review 

•  Not in class: PigLatin 
– Read for HW3 
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Cluster Computing 
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Cluster Computing 

•  Large number of commodity servers, 
connected by high speed, commodity 
network 

•  Rack: holds a small number of servers 
•  Data center: holds many racks 
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Cluster Computing 

•  Massive parallelism:  
– 100s, or 1000s, or 10000s servers 
– Many hours 

•  Failure: 
–  If medium-time-between-failure is 1 year 
– Then 10000 servers have one failure / hour 
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Distributed File System (DFS) 

•  For very large files: TBs, PBs 
•  Each file is partitioned into chunks, 

typically 64MB 
•  Each chunk is replicated several times 

(≥3), on different racks, for fault tolerance 
•  Implementations: 

– Google’s DFS:  GFS, proprietary 
– Hadoop’s DFS:  HDFS, open source 
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Map Reduce 

•  Google: paper published 2004 
•  Free variant: Hadoop 

•  Map-reduce = high-level programming 
model and implementation for large-scale 
parallel data processing 
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Data Model 

Files ! 

A file = a bag of (key, value) pairs 

A MapReduce program: 
•  Input: a bag of (inputkey, value)pairs 
•  Output: a bag of (outputkey, value)pairs 
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Step 1: the MAP Phase 

User provides the MAP-function: 
•  Input: (input key, value) 
•  Ouput:  

bag of (intermediate key, value) 

System applies the map function in parallel 
to all (input key, value) pairs in 
the input file 
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Step 2: the REDUCE Phase 

User provides the REDUCE function: 
•  Input:  
(intermediate key, bag of values) 

•  Output: bag of output (values) 
 
System groups all pairs with the same 

intermediate key, and passes the bag of 
values to the REDUCE function 
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Example 

•  Counting the number of occurrences of each 
word in a large collection of documents 

•  Each Document 
–  The key = document id (did) 
–  The value = set of words (word) 

map(String key, String value): 
// key: document name 
// value: document contents 
for each word w in value: 

 EmitIntermediate(w, “1”); 

reduce(String key, Iterator values): 
// key: a word 
// values: a list of counts 
int result = 0; 
for each v in values: 

 result += ParseInt(v); 
Emit(AsString(result)); 



MAP REDUCE 

(Bob,1) 

(the,1) 

(Bob,1) 

… 

(of,1) 

(to,1) 

… 

(did1,v1) 

(did2,v2) 

(did3,v3) 

. . . . 

(of, (1,1,1,…,1)) 

(the, (1,1,…)) 

(Bob,(1…)) 

… 

… 

… 

… 

(of, 25) 

(the, 77) 

(Bob, 12) 

… 

… 

… 

… 

Shuffle 
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Jobs v.s. Tasks 

•  A MapReduce Job 
– One single “query”, e.g. count the words in all 

docs 
– More complex queries may consists of multiple 

jobs 

•  A Map Task, or a Reduce Task 
– A group of instantiations of the map-, or reduce-

function, which are scheduled on a single worker 
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Workers 

•  A worker is a process that executes one 
task at a time 

•  Typically there is one worker per 
processor, hence 4 or 8 per node 
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MAP Tasks REDUCE Tasks 

(Bob,1) 

(the,1) 

(Bob,1) 

… 

(of,1) 

(to,1) 

… 

(Bob,1) 

(did1,v1) 

(did2,v2) 

(did3,v3) 

. . . . 

(of, (1,1,1,…,1)) 

(the, (1,1,…)) 

(Bob,(1…)) 

… 

… 

… 

… 

(of, 25) 

(the, 77) 

(Bob, 12) 

… 

… 

… 

… 

Shuffle 

MapReduce Job 



MapReduce Execution Details 
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Map 

(Shuffle) 

Reduce 

Data	not	
necessarily	local	

Intermediate	data	
goes	to	local		disk	

Output	to	disk,	
replicated	in	cluster	

File	system:	GFS	
or	HDFS	

Task 

Task 



Local	storage	`	

MR Phases 

•  Each Map and Reduce task has multiple phases: 
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Implementation 

•  There is one master node 
•  Master partitions input file into M splits, by key 
•  Master assigns workers (=servers) to the M 

map tasks, keeps track of their progress 
•  Workers write their output to local disk, 

partition into R regions 
•  Master assigns workers to the R reduce tasks 
•  Reduce workers read regions from the map 

workers’ local disks  
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Interesting Implementation Details 

Worker failure: 

•  Master pings workers periodically, 

•  If down then reassigns the task to another 
worker 
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Interesting Implementation Details 
Backup tasks: 
•   Straggler = a machine that takes unusually 

long time to complete one of the last tasks. 
Eg: 
– Bad disk forces frequent correctable errors 

(30MB/s à 1MB/s) 
– The cluster scheduler has scheduled other tasks 

on that machine 
•  Stragglers are a main reason for slowdown 
•  Solution: pre-emptive backup execution of 

the last few remaining in-progress tasks 
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MapReduce Summary 

•  Hides scheduling and parallelization 
details 

•  However, very limited queries 
– Difficult to write more complex queries 
– Need multiple MapReduce jobs 

•  Solution: declarative query language 

141 CSEP544 - Fall 2015   



Declarative Languages on MR 

•  PIG Latin (Yahoo!) 
– New language, like Relational Algebra 
– Open source 

•  HiveQL (Facebook) 
– SQL-like language 
– Open source 

•  SQL / Dremmel / Tenzing (Google) 
– BigQuery – SQL in the cloud 
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Overview of Today’s Lecture 
•  Query Execution/Optimization 
 
•  Parallel databases 

•  Map/Reduce 
– Next week: MR paper review 

•  Not in class: PigLatin 
– Read for HW3 
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Pig Latin – Reference only 
(will not discuss in class) 
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What is Pig? 

•  An engine for executing programs on top of Hadoop 
•  It provides a language, Pig Latin, to specify these programs  
•  An Apache open source project 

http://hadoop.apache.org/pig/ 

Credit: Alan Gates, Yahoo! 
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Map Reduce Illustrated 

map 

reduce 

map 

reduce 

Credit: Alan Gates, Yahoo! 
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Map Reduce Illustrated 

map 

reduce 

map 

reduce 

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt? 

Credit: Alan Gates, Yahoo! 
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Map Reduce Illustrated 

map 

reduce 

map 

reduce 

Romeo, Romeo, wherefore art thou Romeo? 

Romeo, 1 
Romeo, 1 
wherefore, 1 
art, 1 
thou, 1 
Romeo, 1 

What, art thou hurt? 

What, 1 
art, 1 
thou, 1 
hurt, 1 

Credit: Alan Gates, Yahoo! 
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Map Reduce Illustrated 

map 

reduce 

map 

reduce 

Romeo, Romeo, wherefore art thou Romeo? 

Romeo, 1 
Romeo, 1 
wherefore, 1 
art, 1 
thou, 1 
Romeo, 1 

art, (1, 1) 
hurt (1), 
thou (1, 1) 

What, art thou hurt? 

What, 1 
art, 1 
thou, 1 
hurt, 1 

Romeo, (1, 1, 1) 
wherefore, (1) 
what, (1) 

Credit: Alan Gates, Yahoo! 
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Map Reduce Illustrated 

map 

reduce 

map 

reduce 

Romeo, Romeo, wherefore art thou Romeo? 

Romeo, 1 
Romeo, 1 
wherefore, 1 
art, 1 
thou, 1 
Romeo, 1 

art, (1, 1) 
hurt (1), 
thou (1, 1) 

art, 2 
hurt, 1 
thou, 2 

What, art thou hurt? 

What, 1 
art, 1 
thou, 1 
hurt, 1 

Romeo, (1, 1, 1) 
wherefore, (1) 
what, (1) 

Romeo, 3 
wherefore, 1 
what, 1 

Credit: Alan Gates, Yahoo! 
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Why use Pig? 

   Suppose you have 
user data in one 
file, website data in 
another, and you 
need to find the top 
5 most visited sites 
by users aged 18 - 
25. 

Load Users Load Pages 

Filter by age 

Join on name 

Group on url 

Count clicks 

Order by clicks 

Take top 5 

Credit: Alan Gates, Yahoo! 
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In Map-Reduce 
import java.io.IOException; 
import java.util.ArrayList; 
import java.util.Iterator; 
import java.util.List; 
 
import org.apache.hadoop.fs.Path; 
import org.apache.hadoop.io.LongWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.io.Writable; 
import org.apache.hadoop.io.WritableComparable; 
import org.apache.hadoop.mapred.FileInputFormat; 
import org.apache.hadoop.mapred.FileOutputFormat; 
import org.apache.hadoop.mapred.JobConf; 
import org.apache.hadoop.mapred.KeyValueTextInputFormat; 
import org.apache.hadoop.mapred.Mapper; 
import org.apache.hadoop.mapred.MapReduceBase; 
import org.apache.hadoop.mapred.OutputCollector; 
import org.apache.hadoop.mapred.RecordReader; 
import org.apache.hadoop.mapred.Reducer; 
import org.apache.hadoop.mapred.Reporter; 
import org.apache.hadoop.mapred.SequenceFileInputFormat; 
import org.apache.hadoop.mapred.SequenceFileOutputFormat; 
import org.apache.hadoop.mapred.TextInputFormat; 
import org.apache.hadoop.mapred.jobcontrol.Job; 
import org.apache.hadoop.mapred.jobcontrol.JobControl; 
import org.apache.hadoop.mapred.lib.IdentityMapper; 
 
public class MRExample { 
    public static class LoadPages extends MapReduceBase 
        implements Mapper<LongWritable, Text, Text, Text> { 
 
        public void map(LongWritable k, Text val, 
                OutputCollector<Text, Text> oc, 
                Reporter reporter) throws IOException { 
            // Pull the key out 
            String line = val.toString(); 
            int firstComma = line.indexOf(','); 
            String key = line.substring(0, firstComma); 
            String value = line.substring(firstComma + 1); 
            Text outKey = new Text(key); 
            // Prepend an index to the value so we know which file 
            // it came from. 
            Text outVal = new Text("1" + value); 
            oc.collect(outKey, outVal); 
        } 
    } 
    public static class LoadAndFilterUsers extends MapReduceBase 
        implements Mapper<LongWritable, Text, Text, Text> { 
 
        public void map(LongWritable k, Text val, 
                OutputCollector<Text, Text> oc, 
                Reporter reporter) throws IOException { 
            // Pull the key out 
            String line = val.toString(); 
            int firstComma = line.indexOf(','); 
            String value = line.substring(firstComma + 1); 
            int age = Integer.parseInt(value); 
            if (age < 18 || age > 25) return; 
            String key = line.substring(0, firstComma); 
            Text outKey = new Text(key); 
            // Prepend an index to the value so we know which file 
            // it came from. 
            Text outVal = new Text("2" + value); 
            oc.collect(outKey, outVal); 
        } 
    } 
    public static class Join extends MapReduceBase 
        implements Reducer<Text, Text, Text, Text> { 
 
        public void reduce(Text key, 
                Iterator<Text> iter,  
                OutputCollector<Text, Text> oc, 
                Reporter reporter) throws IOException { 
            // For each value, figure out which file it's from and 
store it 
            // accordingly. 
            List<String> first = new ArrayList<String>(); 
            List<String> second = new ArrayList<String>(); 
 
            while (iter.hasNext()) { 
                Text t = iter.next(); 
                String value = t.toString(); 
                if (value.charAt(0) == '1') 
first.add(value.substring(1)); 
                else second.add(value.substring(1)); 

                reporter.setStatus("OK"); 
            } 
 
            // Do the cross product and collect the values 
            for (String s1 : first) { 
                for (String s2 : second) { 
                    String outval = key + "," + s1 + "," + s2; 
                    oc.collect(null, new Text(outval)); 
                    reporter.setStatus("OK"); 
                } 
            } 
        } 
    } 
    public static class LoadJoined extends MapReduceBase 
        implements Mapper<Text, Text, Text, LongWritable> { 
 
        public void map( 
                Text k, 
                Text val, 
                OutputCollector<Text, LongWritable> oc, 
                Reporter reporter) throws IOException { 
            // Find the url 
            String line = val.toString(); 
            int firstComma = line.indexOf(','); 
            int secondComma = line.indexOf(',', firstComma); 
            String key = line.substring(firstComma, secondComma); 
            // drop the rest of the record, I don't need it anymore, 
            // just pass a 1 for the combiner/reducer to sum instead. 
            Text outKey = new Text(key); 
            oc.collect(outKey, new LongWritable(1L)); 
        } 
    } 
    public static class ReduceUrls extends MapReduceBase 
        implements Reducer<Text, LongWritable, WritableComparable, 
Writable> { 
 
        public void reduce( 
                Text key, 
                Iterator<LongWritable> iter,  
                OutputCollector<WritableComparable, Writable> oc, 
                Reporter reporter) throws IOException { 
            // Add up all the values we see 
 
            long sum = 0; 
            while (iter.hasNext()) { 
                sum += iter.next().get(); 
                reporter.setStatus("OK"); 
            } 
 
            oc.collect(key, new LongWritable(sum)); 
        } 
    } 
    public static class LoadClicks extends MapReduceBase 
        implements Mapper<WritableComparable, Writable, LongWritable, 
Text> { 
 
        public void map( 
                WritableComparable key, 
                Writable val, 
                OutputCollector<LongWritable, Text> oc, 
                Reporter reporter) throws IOException { 
            oc.collect((LongWritable)val, (Text)key); 
        } 
    } 
    public static class LimitClicks extends MapReduceBase 
        implements Reducer<LongWritable, Text, LongWritable, Text> { 
 
        int count = 0; 
        public void reduce( 
            LongWritable key, 
            Iterator<Text> iter, 
            OutputCollector<LongWritable, Text> oc, 
            Reporter reporter) throws IOException { 
 
            // Only output the first 100 records 
            while (count < 100 && iter.hasNext()) { 
                oc.collect(key, iter.next()); 
                count++; 
            } 
        } 
    } 
    public static void main(String[] args) throws IOException { 
        JobConf lp = new JobConf(MRExample.class); 
        lp.setJobName("Load Pages"); 
        lp.setInputFormat(TextInputFormat.class); 

        lp.setOutputKeyClass(Text.class); 
        lp.setOutputValueClass(Text.class); 
        lp.setMapperClass(LoadPages.class); 
        FileInputFormat.addInputPath(lp, new 
Path("/user/gates/pages")); 
        FileOutputFormat.setOutputPath(lp, 
            new Path("/user/gates/tmp/indexed_pages")); 
        lp.setNumReduceTasks(0); 
        Job loadPages = new Job(lp); 
 
        JobConf lfu = new JobConf(MRExample.class); 
        lfu.setJobName("Load and Filter Users"); 
        lfu.setInputFormat(TextInputFormat.class); 
        lfu.setOutputKeyClass(Text.class); 
        lfu.setOutputValueClass(Text.class); 
        lfu.setMapperClass(LoadAndFilterUsers.class); 
        FileInputFormat.addInputPath(lfu, new 
Path("/user/gates/users")); 
        FileOutputFormat.setOutputPath(lfu, 
            new Path("/user/gates/tmp/filtered_users")); 
        lfu.setNumReduceTasks(0); 
        Job loadUsers = new Job(lfu); 
 
        JobConf join = new JobConf(MRExample.class); 
        join.setJobName("Join Users and Pages"); 
        join.setInputFormat(KeyValueTextInputFormat.class); 
        join.setOutputKeyClass(Text.class); 
        join.setOutputValueClass(Text.class); 
        join.setMapperClass(IdentityMapper.class); 
        join.setReducerClass(Join.class); 
        FileInputFormat.addInputPath(join, new 
Path("/user/gates/tmp/indexed_pages")); 
        FileInputFormat.addInputPath(join, new 
Path("/user/gates/tmp/filtered_users")); 
        FileOutputFormat.setOutputPath(join, new 
Path("/user/gates/tmp/joined")); 
        join.setNumReduceTasks(50); 
        Job joinJob = new Job(join); 
        joinJob.addDependingJob(loadPages); 
        joinJob.addDependingJob(loadUsers); 
 
        JobConf group = new JobConf(MRExample.class); 
        group.setJobName("Group URLs"); 
        group.setInputFormat(KeyValueTextInputFormat.class); 
        group.setOutputKeyClass(Text.class); 
        group.setOutputValueClass(LongWritable.class); 
        group.setOutputFormat(SequenceFileOutputFormat.class); 
        group.setMapperClass(LoadJoined.class); 
        group.setCombinerClass(ReduceUrls.class); 
        group.setReducerClass(ReduceUrls.class); 
        FileInputFormat.addInputPath(group, new 
Path("/user/gates/tmp/joined")); 
        FileOutputFormat.setOutputPath(group, new 
Path("/user/gates/tmp/grouped")); 
        group.setNumReduceTasks(50); 
        Job groupJob = new Job(group); 
        groupJob.addDependingJob(joinJob); 
 
        JobConf top100 = new JobConf(MRExample.class); 
        top100.setJobName("Top 100 sites"); 
        top100.setInputFormat(SequenceFileInputFormat.class); 
        top100.setOutputKeyClass(LongWritable.class); 
        top100.setOutputValueClass(Text.class); 
        top100.setOutputFormat(SequenceFileOutputFormat.class); 
        top100.setMapperClass(LoadClicks.class); 
        top100.setCombinerClass(LimitClicks.class); 
        top100.setReducerClass(LimitClicks.class); 
        FileInputFormat.addInputPath(top100, new 
Path("/user/gates/tmp/grouped")); 
        FileOutputFormat.setOutputPath(top100, new 
Path("/user/gates/top100sitesforusers18to25")); 
        top100.setNumReduceTasks(1); 
        Job limit = new Job(top100); 
        limit.addDependingJob(groupJob); 
 
        JobControl jc = new JobControl("Find top 100 sites for users 
18 to 25"); 
        jc.addJob(loadPages); 
        jc.addJob(loadUsers); 
        jc.addJob(joinJob); 
        jc.addJob(groupJob); 
        jc.addJob(limit); 
        jc.run(); 
    } 
} 

170 lines of code, 4 hours to write 
Credit: Alan Gates, Yahoo! 
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In Pig Latin 

Users = load ‘users’ as (name, age); 
Fltrd = filter Users by  
        age >= 18 and age <= 25;  
Pages = load ‘pages’ as (user, url); 
Jnd = join Fltrd by name, Pages by user; 
Grpd = group Jnd by url; 
Smmd = foreach Grpd generate group, 
       COUNT(Jnd) as clicks; 
Srtd = order Smmd by clicks desc; 
Top5 = limit Srtd 5; 
store Top5 into ‘top5sites’; 

9 lines of code, 15 minutes to write 

Credit: Alan Gates, Yahoo! 



Background: Pig system 

154 

Pig Latin  
program 

A = LOAD 'file1' AS (sid,pid,mass,px:double);  
B = LOAD 'file2' AS (sid,pid,mass,px:double);  
C = FILTER A BY px < 1.0; 
D = JOIN C BY sid,  
         B BY sid; 
      STORE g INTO 'output.txt'; 

Ensemble of 
MapReduce jobs 
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But can it fly? 

Credit: Alan Gates, Yahoo! 
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Essence of Pig 

•  Map-Reduce is too low a level to program, SQL too high 
•  Pig Latin, a language intended to sit between the two: 

–  Imperative 
–  Provides standard relational transforms (join, sort, etc.) 
–  Schemas are optional, used when available, can be defined at 

runtime 
–  User Defined Functions are first class citizens 
–  Opportunities for advanced optimizer but optimizations by 

programmer also possible 

Credit: Alan Gates, Yahoo! 
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How It Works 

Parser 

Script 
A = load 
B = filter 
C = group 
D = foreach 

Logical Plan 
Semantic 
Checks 

Logical Plan 
Logical 
Optimizer 

Logical Plan 

Logical to 
Physical 
Translator Physical Plan 

Physical 
To MR 
Translator 

MapReduce 
Launcher 

Jar to 
hadoop 

Map-Reduce Plan 

Logical Plan ≈ 
relational algebra 

Plan standard 
optimizations 

Physical Plan = 
physical operators 
to be executed 

Map-Reduce Plan =  
physical operators 
broken into Map, 
Combine, and 
Reduce stages 

Credit: Alan Gates, Yahoo! 



Tenzing 

•  Google’s implementation of SQL 
•  Supports full SQL92 
•  On top of google’s Map/Reduce 
•  Uses traditional query optimizer, plus 

optimizations to MR 
•  Widely adopted inside Google, especially 

by the non-engineering community 
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Join Algorithms on Map/Reduce 

•  Broadcast join 

•  Hash-join 

•  Skew join 

•  Merge join 
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Fragment Replicate Join 

Pages Users 

Aka 
“Broakdcast Join” 

Credit: Alan Gates, Yahoo! 
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Fragment Replicate Join 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “replicated”; 

Pages Users 

Aka 
“Broakdcast Join” 

Credit: Alan Gates, Yahoo! 
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Fragment Replicate Join 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “replicated”; 

Pages Users 

Aka 
“Broakdcast Join” 

Credit: Alan Gates, Yahoo! 
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Fragment Replicate Join 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “replicated”; 

Pages Users 

Map 1 

Map 2 

Aka 
“Broakdcast Join” 

Credit: Alan Gates, Yahoo! 
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Fragment Replicate Join 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “replicated”; 

Pages Users 

Map 1 

Map 2 

Users 

Users 

Pages 
block 1 

Pages 
block 2 

Aka 
“Broakdcast Join” 

Credit: Alan Gates, Yahoo! 
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Hash Join 

Pages Users 

Credit: Alan Gates, Yahoo! 
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Hash Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Users by name, Pages by user; 

Credit: Alan Gates, Yahoo! 



- 167 - 

Hash Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Users by name, Pages by user; 

Credit: Alan Gates, Yahoo! 
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Hash Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Users by name, Pages by user; 

Map 1 

User 
block n 

Map 2 

Page 
block m 

Credit: Alan Gates, Yahoo! 
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Hash Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Users by name, Pages by user; 

Map 1 

User 
block n 

Map 2 

Page 
block m 

(1, user) 

(2, name) 

Credit: Alan Gates, Yahoo! 

Means: it comes 
from relation #1 

Means: it comes 
from relation #2 
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Hash Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Users by name, Pages by user; 

Map 1 

User 
block n 

Map 2 

Page 
block m 

Reducer 1 

Reducer 2 

(1, user) 

(2, name) 

(1, fred) 
(2, fred) 
(2, fred) 

(1, jane) 
(2, jane) 
(2, jane) 

Credit: Alan Gates, Yahoo! 
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Skew Join 

Pages Users 

Credit: Alan Gates, Yahoo! 
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Skew Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “skewed”; 

Credit: Alan Gates, Yahoo! 



- 173 - 

Skew Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “skewed”; 

Credit: Alan Gates, Yahoo! 
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Skew Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “skewed”; 

Map 1 

Pages 
block n 

Map 2 

Users 
block m 

Credit: Alan Gates, Yahoo! 
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Skew Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “skewed”; 

Map 1 

Pages 
block n 

Map 2 

Users 
block m 

S
P 

S
P 

Credit: Alan Gates, Yahoo! 
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Skew Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “skewed”; 

Map 1 

Pages 
block n 

Map 2 

Users 
block m 

(1, user) 

(2, name) 

S
P 

S
P 

Credit: Alan Gates, Yahoo! 
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Skew Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “skewed”; 

Map 1 

Pages 
block n 

Map 2 

Users 
block m 

Reducer 1 

Reducer 2 

(1, user) 

(2, name) 

(1, fred, p1) 
(1, fred, p2) 
(2, fred) 

(1, fred, p3) 
(1, fred, p4) 
(2, fred) 

S
P 

S
P 

Credit: Alan Gates, Yahoo! 
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Merge Join 

Pages Users 
aaron 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
zach 

aaron 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
zach 

Credit: Alan Gates, Yahoo! 
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Merge Join 

Pages Users 
aaron 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
zach 

aaron 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
zach 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “merge”; 

Credit: Alan Gates, Yahoo! 
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Merge Join 

Pages Users 
aaron 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
zach 

aaron 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
zach 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “merge”; 

Credit: Alan Gates, Yahoo! 
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Merge Join 

Pages Users 
aaron 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
zach 

aaron 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
zach 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “merge”; 

Map 1 

Map 2 

Users 

Users 

Pages 

Pages 

aaron… 
amr 

aaron 
… 

amy… 
barb 

amy 
… 

Credit: Alan Gates, Yahoo! 
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Multi-store script 

A = load ‘users’ as (name, age, gender,  
      city, state); 
B = filter A by name is not null; 
C1 = group B by age, gender; 
D1 = foreach C1 generate group, COUNT(B); 
store D into ‘bydemo’; 
C2= group B by state; 
D2 = foreach C2 generate group, COUNT(B); 
store D2 into ‘bystate’; 

load users filter nulls 

group by state 

group by age, 
gender 

apply UDFs 

apply UDFs 

store into 
‘bystate’ 

store into 
‘bydemo’ 

Credit: Alan Gates, Yahoo! 
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Multi-Store Map-Reduce Plan 

map filter 

local rearrange 
split 

local rearrange 

reduce 

demux package package 

foreach foreach 

Credit: Alan Gates, Yahoo! 



Other Optimizations in Tenzing 

•  Keep processes running: process pool 
•  Remove reducer-side sort for hash-based 

algorithms 
– Note: the data must fit in main memory, 

otherwise the task fails 
•  Pipelining 
•  Indexes 
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Final Thoughts 

Challenging problems in MR jobs: 

•  Skew 

•  Fault tolerance 
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Skew 
Balazinska, A study of Skew 



Skew 
Balazinska, A study of Skew 



Skew 
Balazinska, A study of Skew 



Fault Tolerance 

•  Fundamental tension: 
•  Materialize after each Map and each Reduce 

– This is what MR does 
–  Ideal for fault tolerance 
– Very poor performance 

•  Pipeline between steps 
– This is what Parallel DBs usually do 
–  Ideal for performance 
– Very poor fault tolerance 
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Pig Latin Mini-Tutorial 

(will skip in class; please read in 
order to do homework 6) 

190 



Outline 

Based entirely on Pig Latin: A not-so-foreign 
language for data processing, by Olston, 
Reed, Srivastava, Kumar, and Tomkins, 
2008 

 
 
Quiz section tomorrow: in CSE 403 

(this is CSE, don’t go to EE1) 

191 



Pig-Latin Overview 

•  Data model = loosely typed nested relations 
•  Query model = a sql-like, dataflow language 

•  Execution model: 
–  Option 1: run locally on your machine 
–  Option 2: compile into sequence of map/reduce, run on 

a cluster supporting Hadoop 

•  Main idea: use Opt1 to debug, Opt2 to execute 
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Example 

•  Input: a table of urls:  
 (url, category, pagerank) 

•  Compute the average pagerank of all 
sufficiently high pageranks, for each 
category 

•  Return the answers only for categories 
with sufficiently many such pages 

193 



First in SQL… 

194 

SELECT category, AVG(pagerank) 
FROM urls 
WHERE pagerank > 0.2 
GROUP By category 
HAVING COUNT(*) > 106 



…then in Pig-Latin 

195 

good_urls = FILTER urls BY pagerank > 0.2 
groups = GROUP good_urls BY category 
big_groups = FILTER groups  

      BY COUNT(good_urls) > 106 

output = FOREACH big_groups GENERATE 
    category, AVG(good_urls.pagerank) 



Types in Pig-Latin 

•  Atomic: string or number, e.g. ‘Alice’ or 55 

•  Tuple: (‘Alice’, 55, ‘salesperson’) 

•  Bag: {(‘Alice’, 55, ‘salesperson’), 
           (‘Betty’,44, ‘manager’), …} 

•  Maps: we will try not to use these 
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Types in Pig-Latin 

Bags can be nested ! 

•  {(‘a’, {1,4,3}), (‘c’,{ }), (‘d’, {2,2,5,3,2})} 

Tuple components can be referenced by 
number 

•  $0, $1, $2, … 

197 
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Loading data 

•  Input data = FILES ! 
– Heard that before ? 

•  The LOAD command parses an input file 
into a bag of records 

•  Both parser  (=“deserializer”) and output 
type are provided by user 
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Loading data 

200 

queries = LOAD ‘query_log.txt’ 
         USING myLoad( ) 
             AS (userID, queryString, timeStamp) 



Loading data 

•  USING userfuction( )  -- is optional 
–  Default deserializer expects tab-delimited file 

•  AS type – is optional 
–  Default is a record with unnamed fields; refer to them 

as $0, $1, … 
•  The return value of LOAD is just a handle to a 

bag 
–  The actual reading is done in pull mode, or 

parallelized 
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FOREACH 

202 

expanded_queries =  
 FOREACH queries 
 GENERATE userId, expandQuery(queryString) 

expandQuery( ) is  a UDF that produces likely expansions 
Note: it returns a bag, hence expanded_queries is a  nested bag 



FOREACH 
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expanded_queries =  
 FOREACH queries 
 GENERATE userId,  
                     flatten(expandQuery(queryString)) 

Now we get a flat collection 
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FLATTEN 

Note that it is NOT a first class function ! 
(that’s one thing I don’t like about Pig-latin) 

•  First class FLATTEN: 
– FLATTEN({{2,3},{5},{},{4,5,6}}) = {2,3,5,4,5,6} 
– Type: {{T}} à {T} 

•  Pig-latin FLATTEN 
– FLATTEN({4,5,6}) = 4, 5, 6 
– Type: {T} à T, T, T, …, T       ????? 

205 



FILTER 

206 

real_queries =  FILTER queries BY userId neq ‘bot’ 

Remove all queries from Web bots: 

real_queries =  FILTER queries  
                      BY NOT isBot(userId) 

Better: use a complex UDF to detect Web bots: 



JOIN 

207 

join_result = JOIN results BY queryString 
                            revenue BY queryString 

results:       {(queryString, url, position)} 
revenue:     {(queryString, adSlot, amount)} 

join_result : {(queryString, url, position, adSlot, amount)} 
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GROUP BY 

209 

grouped_revenue = GROUP revenue BY queryString 
query_revenues = 
       FOREACH grouped_revenue 
       GENERATE queryString, 
                     SUM(revenue.amount) AS totalRevenue 

revenue:     {(queryString, adSlot, amount)} 

grouped_revenue: {(queryString, {(adSlot, amount)})} 
query_revenues: {(queryString, totalRevenue)} 



Simple Map-Reduce 

210 

map_result = FOREACH input  
                      GENERATE FLATTEN(map(*)) 
key_groups = GROUP map_result BY $0 
output = FOREACH key_groups  

           GENERATE reduce($1) 

input  : {(field1, field2, field3, . . . .)} 

map_result :  {(a1, a2, a3, . . .)} 
key_groups : {(a1, {(a2, a3, . . .)})} 



Co-Group 
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grouped_data =  
        COGROUP results BY queryString, 
                            revenue BY queryString; 

results: {(queryString, url, position)} 
revenue: {(queryString, adSlot, amount)} 

grouped_data: {(queryString, results:{(url, position)},  
                                                revenue:{(adSlot, amount)})} 

What is the output type in general ? 



Co-Group 
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Is this an inner join, or an outer join ? 



Co-Group 
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url_revenues = FOREACH grouped_data  
        GENERATE 
                 FLATTEN(distributeRevenue(results, revenue)); 

grouped_data: {(queryString, results:{(url, position)},  
                                                revenue:{(adSlot, amount)})} 

distributeRevenue is a UDF that accepts search re- 
sults and revenue information for a query string at a time, 
and outputs a bag of urls and the revenue attributed to them. 



Co-Group v.s. Join 

214 

grouped_data = COGROUP results BY queryString, 
                                        revenue BY queryString; 
join_result = FOREACH grouped_data 
                     GENERATE FLATTEN(results),  
                                           FLATTEN(revenue); 

grouped_data: {(queryString, results:{(url, position)},  
                                                revenue:{(adSlot, amount)})} 

Result is the same as JOIN 



Asking for Output: STORE 

215 

STORE query_revenues INTO `myoutput' 
                  USING myStore(); 

Meaning: write query_revenues to the file ‘myoutput’ 



Implementation 

•  Over Hadoop ! 
•  Parse query: 

– Everything between LOAD and STORE à 
one logical plan 

•  Logical plan à sequence of Map/Reduce 
ops 

•  All statements between two (CO)GROUPs 
à one Map/Reduce op 
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Implementation 
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