
CSEP 544: Lecture 04

Query Execution

CSEP544 - Fall 2015 1

Announcements

Homework 2: due on Friday

Homework 3:
•  We use AWS
•  You need to get an access code:

https://aws.amazon.com/education/
awseducate/members/

Where We Are

•  We have seen:
– Disk organization = set of blocks(pages)
– The buffer pool
– How records are organized in pages
–  Indexes, in particular B+ -trees

•  Today: query execution, optimization

CSEP544 - Fall 2015 3

Steps of the Query Processor

Parse & Rewrite SQL Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan

Physical
plan

Steps in Query Evaluation
•  Step 0: Admission control

–  User connects to the db with username, password
–  User sends query in text format

•  Step 1: Query parsing
–  Parses query into an internal format
–  Performs various checks using catalog

•  Correctness, authorization, integrity constraints

•  Step 2: Query rewrite
–  View rewriting, flattening, etc.

CSEP544 - Fall 2015 5

Steps in Query Evaluation

•  Step 3: Query optimization
–  Find an efficient query plan for executing the query

•  Step 4: Query execution
–  Each operator has several implementation algorithms

CSEP544 - Fall 2015 6

SQL Query

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and
 x.price > 100 and z.city = ‘Seattle’

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Logical Plan

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

T1(pid,name,price,pid,cid,store)

T2(. . . .)

T4(name,name)

Final answer

T3(. . .)

Temporary tables
T1, T2, . . .

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Logical v.s. Physical Plan

•  Physical plan = Logical plan plus annotations

•  Access path selection for each relation
–  Use a file scan or use an index

•  Implementation choice for each operator

•  Scheduling decisions for operators
CSEP544 - Fall 2015 9

Logical Query Plan

Product Purchase

pid = pid

σ name=‘Gizmo’ ∧store =‘GizmoMart’

Π name,price

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Physical Query Plan

Product Purchase

pid = pid

σ name=‘Gizmo’ ∧store =‘GizmoMart’

Π name,price

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

Outline of the Lecture

•  Physical operators: join, group-by

•  Query execution: pipeline, iterator model

•  Database statistics

CSEP544 - Fall 2015 12

Extended Algebra Operators

•  Union ∪, difference -
•  Selection σ
•  Projection Π
•  Join ⨝ -- also: semi-join, anti-semi-join
•  Rename ρ
•  Duplicate elimination δ
•  Grouping and aggregation γ
•  Sorting τ

CSEP544 - Fall 2015 13

Basic RA

ExtendedRA

Sets v.s. Bags

•  Sets: {a,b,c}, {a,d,e,f}, { }, . . .
•  Bags: {a, a, b, c}, {b, b, b, b, b}, . . .

Relational Algebra has two semantics:
•  Set semantics (paper “Three languages…”)
•  Bag semantics

CSEP544 - Fall 2015 14

Physical Operators

Each of the logical operators may have one or
more implementations = physical operators

Will discuss several basic physical operators,

with a focus on join

CSEP544 - Fall 2015 15

Main Memory Algorithms
Logical operator:
 Product(pid, name, price) ⨝pid=pid Purchase(pid, cid, store)
Propose three physical operators for the join, assuming the

tables are in main memory:
1. 
2. 
3. 

CSEP544 - Fall 2015 16

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Main Memory Algorithms
Logical operator:
 Product(pid, name, price) ⨝pid=pid Purchase(pid, cid, store)
Propose three physical operators for the join, assuming the

tables are in main memory:
1.  Nested Loop Join O(??)
2.  Merge join O(??)
3.  Hash join O(??)

CSEP544 - Fall 2015 17

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Main Memory Algorithms
Logical operator:
 Product(pid, name, price) ⨝pid=pid Purchase(pid, cid, store)
Propose three physical operators for the join, assuming the

tables are in main memory:
1.  Nested Loop Join O(n2)
2.  Merge join O(n log n)
3.  Hash join O(n) … O(n2)

CSEP544 - Fall 2015 18

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

BRIEF Review of Hash Tables
0
1
2
3
4
5
6
7
8
9

Separate chaining:

h(x) = x mod 10

A (naïve) hash function:

503 103

76 666

48

503

Duplicates OK
WHY ??

Operations:

find(103) = ??
insert(488) = ??

BRIEF Review of Hash Tables

•  insert(k, v) = inserts a key k with value v

•  Many values for one key
– Hence, duplicate k’s are OK

•  find(k) = returns the list of all values v
associated to the key k

CSEP544 - Fall 2015 20

External Memory Algorithms
The cost of an operation = total number of I/Os
Cost parameters (used both in the book and by Shapiro):

•  B(R) = number of blocks for relation R (Shapiro: |R|)
•  T(R) = number of tuples in relation R
•  V(R, a) = number of distinct values of attribute a
•  M = size of main memory buffer pool, in blocks

Facts: (1) B(R) << T(R):
 (2) When a is a key, V(R,a) = T(R)
 When a is not a key, V(R,a) << T(R)

Cost of an Operator

Assumption: runtime dominated by # of disk
I/O’s; will ignore the main memory part of
the runtime
•  If R (and S) fit in main memory, then we

use a main-memory algorithm
•  If R (or S) does not fit in main memory,

then we use an external memory algorithm

Ad-hoc Convention

•  The operator reads the data from disk
– Note: different from Shapiro

•  The operator does not write the data
back to disk (e.g.: pipelining)

•  Thus:

Any main memory join algorithms for R ⋈ S: Cost = B(R)+B(S)

Any main memory grouping γ(R): Cost = B(R)

Nested Loop Joins
•  Tuple-based nested loop R ⋈ S

•  Cost: T(R) B(S)

for each tuple r in R do
 for each tuple s in S do
 if r and s join then output (r,s)

R=outer relation
S=inner relation

CSEP544 - Fall 2015 24

Examples
M = 4
•  Example 1:

–  B(R) = 1000, T(R) = 10000
–  B(S) = 2, T(S) = 20
–  Cost = ?

•  Example 2:
–  B(R) = 1000, T(R) = 10000
–  B(S) = 4, T(S) = 40
–  Cost = ?

Can you do better with nested loops?

CSEP544 - Fall 2015 25

Block-Based Nested-loop Join

for each (M-2) blocks bs of S do
 for each block br of R do
 for each tuple s in bs
 for each tuple r in br do
 if “r and s join” then output(r,s)

Terminology alert: sometimes S is called S the inner relation
CSEP544 - Fall 2015 26

Block-Based Nested-loop Join

for each (M-2) blocks bs of S do
 for each block br of R do
 for each tuple s in bs
 for each tuple r in br do
 if “r and s join” then output(r,s)

Terminology alert: sometimes S is called S the inner relation

Why not M ?

CSEP544 - Fall 2015 27

Block-Based Nested-loop Join

for each (M-2) blocks bs of S do
 for each block br of R do
 for each tuple s in bs
 for each tuple r in br do
 if “r and s join” then output(r,s)

Terminology alert: sometimes S is called S the inner relation

Why not M ?

CSEP544 - Fall 2015 28

Better: main
memory
hash join

Block Nested-loop Join

. . .
. . .

R & S
Hash table for block of S

(M-2 pages)

Input buffer for R Output buffer

. . .

Join Result

CSEP544 - Fall 2015 29

Examples
M = 4
•  Example 1:

–  B(R) = 1000, T(R) = 10000
–  B(S) = 2, T(S) = 20
–  Cost = B(S) + B(R) = 1002

•  Example 2:
–  B(R) = 1000, T(R) = 10000
–  B(S) = 4, T(S) = 40
–  Cost = B(S) + 2B(R) = 2004

Note: T(R) and
T(S) are irrelevant
here.

CSEP544 - Fall 2015 30

Cost of Block Nested-loop Join

•  Read S once: cost B(S)
•  Outer loop runs B(S)/(M-2) times, and

each time need to read R: costs
B(S)B(R)/(M-2)

Cost = B(S) + B(S)B(R)/(M-2)

CSEP544 - Fall 2015 31

Index Based Selection

SELET *
FROM Movie
WHERE id = ‘12345’

Recall IMDB; assume indexes on Movie.id, Movie.year

SELET *
FROM Movie
WHERE year = ‘1995’

B(Movie) = 10k
T(Movie) = 1M

What is your estimate
of the I/O cost ?

CSEP544 - Fall 2015 32

Index Based Selection

Selection on equality: σa=v(R)

•  Clustered index on a: cost ?

•  Unclustered index : cost ?

CSEP544 - Fall 2015 33

Index Based Selection

Selection on equality: σa=v(R)

•  Clustered index on a: cost B(R)/V(R,a)

•  Unclustered index : cost T(R)/V(R,a)

CSEP544 - Fall 2015 34

Index Based Selection

Selection on equality: σa=v(R)

•  Clustered index on a: cost B(R)/V(R,a)

•  Unclustered index : cost T(R)/V(R,a)

CSEP544 - Fall 2015 35

Note: we assume that the cost of reading the index = 0
Why?

Index Based Selection
•  Example:

•  Table scan:
–  B(R) = 10k I/Os

•  Index based selection:
–  If index is clustered: B(R)/V(R,a) = 100 I/Os
–  If index is unclustered: T(R)/V(R,a) = 10000 I/Os

B(R) = 10k
T(R) = 1M
V(R, a) = 100

cost of σa=v(R) = ?

Rule of thumb:
don’t build unclustered indexes when V(R,a) is small !

Index Based Join

•  R ⨝ S
•  Assume S has an index on the join

attribute
for each tuple r in R do
 lookup the tuple(s) s in S using the index

output (r,s)

CSEP544 - Fall 2015 37

Index Based Join

Cost:

•  If index is clustered:
•  If unclustered:

CSEP544 - Fall 2015 38

Index Based Join

Cost:

•  If index is clustered: B(R) + T(R)B(S)/V(S,a)
•  If unclustered: B(R) + T(R)T(S)/V(S,a)

CSEP544 - Fall 2015 39

Operations on Very Large
Tables

•  Compute R ⋈ S when each is larger
than main memory

•  Two methods:
– Partitioned hash join (many variants)
– Merge-join

•  Similar for grouping

External Sorting

•  Problem:
•  Sort a file of size B with memory M
•  Where we need this:

– ORDER BY in SQL queries
– Several physical operators
– Bulk loading of B+-tree indexes.

•  Will discuss only 2-pass sorting, when B < M2

CSEP544 - Fall 2015 41

Basic Terminology

•  A run in a sequence is an increasing
subsequence

•  What are the runs?

2, 4, 99, 103, 88, 77, 3, 79, 100, 2, 50

CSEP544 - Fall 2015 42

External Merge-Sort: Step 1

•  Phase one: load M bytes in memory, sort

Disk Disk

. .

.
. . .

M

Main memory

Runs of length M bytes

Basic Terminology

•  Merging multiple runs to produce a
longer run:
0, 14, 33, 88, 92, 192, 322
2, 4, 7, 43, 78, 103, 523
1, 6, 9, 12, 33, 52, 88, 320

Output:
0, 1, 2, 4, 6, 7, ?

CSEP544 - Fall 2015 44

External Merge-Sort: Step 2

•  Merge M – 1 runs into a new run
•  Result: runs of length M (M – 1)≈ M2

Disk Disk

. .

.
. . .

Input M

Input 1

Input 2
. . . .

Output

Main memory

If B <= M2 then we are done

Cost of External Merge Sort

• Read+write+read = 3B(R)

• Assumption: B(R) <= M2

CSEP544 - Fall 2015 46

External Merge-Sort

CSEP544 - Fall 2015 47

Can increase to length 2M using “replacement selection”

Group-by

Group-by: γa, sum(b) (R)
•  Idea: do a two step merge sort, but

change one of the steps

•  Question in class: which step needs to
be changed and how ?

Cost = 3B(R)
Assumption: B(δ(R)) <= M2

Merge-Join

Join R ⨝ S
•  How?....

CSEP544 - Fall 2015 49

Merge-Join

Join R ⨝ S
•  Step 1a: initial runs for R
•  Step 1b: initial runs for S
•  Step 2: merge and join

CSEP544 - Fall 2015 50

Merge-Join

Main memory
Disk Disk

. .

.
. . .

Input M

Input 1

Input 2
. . . .

Output

M1 = B(R)/M runs for R
M2 = B(S)/M runs for S
Merge-join M1 + M2 runs;
need M1 + M2 <= M

Partitioned Hash Algorithms

Idea:
•  If B(R) > M, then partition it into smaller files:

 R1, R2, R3, …, Rk

•  Assuming B(R1)=B(R2)=…= B(Rk), we have
 B(Ri) = B(R)/k

•  Goal: each Ri should fit in main memory:
 B(Ri) ≤ M

How big can k be ?

Partitioned Hash Algorithms
•  Idea: partition a relation R into M-1 buckets, on disk
•  Each bucket has size approx. B(R)/(M-1) ≈ B(R)/M

M main memory buffers Disk Disk

Relation R
OUTPUT

2 INPUT

1

hash function
h M-1

Partitions

1

2

M-1
. . .

1

2

B(R)

Assumption: B(R)/M ≤ M, i.e. B(R) ≤ M2

Grouping

•  γ(R) = grouping and aggregation
•  Step 1. Partition R into buckets
•  Step 2. Apply γ to each bucket (may

read in main memory)

•  Cost: 3B(R)
•  Assumption: B(R) ≤ M2

CSEP544 - Fall 2015 54

Grace-Join

R ⨝ S

CSEP544 - Fall 2015 55

Note: grace-join is
also called

partitioned hash-join

Grace-Join

R ⨝ S
•  Step 1:

–  Hash S into M buckets
–  send all buckets to disk

•  Step 2
–  Hash R into M buckets
–  Send all buckets to disk

•  Step 3
–  Join every pair of buckets

CSEP544 - Fall 2015 56

Note: grace-join is
also called

partitioned hash-join

Grace-Join
•  Partition both relations

using hash fn h: R tuples
in partition i will only
match S tuples in partition
i.

B main memory buffers Disk Disk

Original
Relation OUTPUT

2 INPUT

1

hash function
h M-1

Partitions

1

2

M-1
. . .

Grace-Join
•  Partition both relations

using hash fn h: R tuples
in partition i will only
match S tuples in partition
i.

❖  Read in a partition
of R, hash it using
h2 (<> h!). Scan
matching partition of
S, search for
matches.

Partitions
of R & S

Input buffer
for Ri

Hash table for partition
Si (< M-1 pages)

B main memory buffers Disk

Output
 buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers Disk Disk

Original
Relation OUTPUT

2 INPUT

1

hash function
h M-1

Partitions

1

2

M-1
. . .

Grace Join

•  Cost: 3B(R) + 3B(S)
•  Assumption: min(B(R), B(S)) <= M2

CSEP544 - Fall 2015 59

Hybrid Hash Join Algorithm

•  Partition S into k buckets
t buckets S1 , …, St stay in memory
k-t buckets St+1, …, Sk to disk

•  Partition R into k buckets
– First t buckets join immediately with S
– Rest k-t buckets go to disk

•  Finally, join k-t pairs of buckets:
(Rt+1,St+1), (Rt+2,St+2), …, (Rk,Sk)

Hybrid Hash Join Algorithm

•  Partition S into k buckets
t buckets S1 , …, St stay in memory
k-t buckets St+1, …, Sk to disk

•  Partition R into k buckets
– First t buckets join immediately with S
– Rest k-t buckets go to disk

•  Finally, join k-t pairs of buckets:
(Rt+1,St+1), (Rt+2,St+2), …, (Rk,Sk)

Shapiro’s notation:
1/(B+1) = t/k in main memory
B/(B+1) = (k-t)/k go to disk

Hybrid Hash Join Algorithm

B main memory buffers Disk Disk

Original
Relation

2

INPUT

1

h

k

Partitions

t+1

k

. . .
t

t+1

Hybrid Join Algorithm

•  How to choose k and t ?
–  Choose k large but s.t. k <= M
–  Choose t/k large but s.t. t/k * B(S) <= M
–  Moreover: t/k * B(S) + k-t <= M

•  Assuming t/k * B(S) >> k-t: t/k = M/B(S)

Hybrid Join Algorithm

Cost of Hybrid Join:
•  Grace join: 3B(R) + 3B(S)
•  Hybrid join:

–  Saves 2 I/Os for t/k fraction of buckets
–  Saves 2t/k(B(R) + B(S)) I/Os
–  Cost:

(3-2t/k)(B(R) + B(S)) = (3-2M/B(S))(B(R) + B(S))

Hybrid Join Algorithm

•  Question in class: what is the
advantage of the hybrid algorithm ?

Summary of External Join
Algorithms

•  Block Nested Loop: B(S) + B(R)*B(S)/M

•  Index Join: B(R) + T(R)B(S)/V(S,a)

•  Partitioned Hash: 3B(R)+3B(S);
– min(B(R),B(S)) <= M2

•  Merge Join: 3B(R)+3B(S)
– B(R)+B(S) <= M2

Outline of the Lecture

•  Physical operators: join, group-by

•  Query execution: pipeline, iterator model

•  Database statistics

CSEP544 - Fall 2015 67

Iterator Interface
Each operator implements this interface

•  open()
–  Initializes operator state
–  Sets parameters such as selection condition

•  get_next()
–  Operator invokes get_next() recursively on its inputs
–  Performs processing and produces an output tuple

•  close(): cleans-up state

1. Nested Loop Join

for x in Product do {
 for y in Purchase do {
 if (x.pid == y.pid) output(x,y);
 }
}

Product = outer relation
Purhcase = inner relation
Note: sometimes
terminology is switched

When is it more efficient
to iterate first over Purchase,
then over Product?

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

It’s more complicated…
•  Each operator implements this interface
•  open()
•  get_next()
•  close()

CSEP544 - Fall 2015 70

Main Memory Nested Loop Join
open () {
 Product.open();
 Purchase.open();
 x = Product.get_next();
}

get_next() {
 repeat {
 y = Purchase.get_next();
 if (y == NULL)
 { Purchase.close();

 Purchase.open();
 x = Product.get_next();
 if (x== NULL) return NULL;
 y = Purchase.get_next();
 }
 until (x.pid == y.pid);
 return (x,y)
}

close () {
 Product.close ();
 Purchase.close ();
}

ALL operators need to be implemented this way !

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

2. Hash Join (main memory)
for x in Product do insert(x.pid, x);

for y in Purchase do {
 ys = find(y.pid);
 for y in ys do { output(x,y); }
}

Recall: need to rewrite as open, get_next, close

Build
phase

Probe
phase

Product=outer
Purchase=inner

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

3. Merge Join (main memory)
Product1 = sort(Product, pid);
Purchase1 = sort(Purchase, pid);

x=Product1.get_next();
y=Purchase1.get_next();

While (x!=NULL and y!=NULL) {
 case:
 x.pid < y.pid: x = Product1.get_next();
 x.pid > y.pid: y = Purchase1.get_next();
 x.pid == y.pid { output(x,y);
 y = Purchase1.get_next();
 }
}

Why ???

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Physical Query Plan

Product Purchase

pid = pid

σ name=‘Gizmo’ ∧store =‘GizmoMart’

Π name,price

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

Pipelined Execution

•  Applies parent operator to tuples directly as
they are produced by child operators

•  Benefits
–  No operator synchronization issues
–  Saves cost of writing intermediate data to disk
–  Saves cost of reading intermediate data from disk
–  Good resource utilizations on single processor

•  This approach is used whenever possible

CSEP544 - Fall 2015 75

Physical Query Plan

Product Purchase

pid = pid

σ name=‘Gizmo’ ∧store =‘GizmoMart’

Π name,price

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

(File scan) (File scan)

(Sort-merge join)

(On the fly)

(Materialize to T1)

Intermediate Tuple
Materialization

•  Writes the results of an operator to an
intermediate table on disk

•  No direct benefit but
•  Necessary data is larger than main memory
•  Necessary when operator needs to examine

the same tuples multiple times

CSEP544 - Fall 2015 77

Outline of the Lecture

•  Physical operators: join, group-by

•  Query execution: pipeline, iterator model

•  Database statistics
– Partially based on Graphical Models paper

CSEP544 - Fall 2015 78

CSEP544 - Fall 2015 79

Database Statistics

•  Collect statistical summaries of stored data

•  Estimate size (=cardinality), bottom-up

•  Estimate cost by using the estimated size

CSEP544 - Fall 2015 80

Database Statistics

•  Number of tuples = cardinality
•  Indexes: number of keys in the index
•  Number of physical pages, clustering info
•  Statistical information on attributes

–  Min value, max value, number distinct values
–  Histograms

•  Correlations between columns

Collection approach: periodic, using sampling

Size Estimation Problem

CSEP544 - Fall 2015 81

S = SELECT list
 FROM R1, …, Rn
 WHERE cond1 AND cond2 AND . . . AND condk

Given T(R1), T(R2), …, T(Rn)
Estimate T(S)

How can we do this ? Note: doesn’t have to be exact.

Size Estimation Problem

CSEP544 - Fall 2015 82

Remark: T(S) ≤ T(R1) × T(R2) × … × T(Rn)

S = SELECT list
 FROM R1, …, Rn
 WHERE cond1 AND cond2 AND . . . AND condk

Selectivity Factor

•  Each condition cond reduces the size
by some factor called selectivity factor

•  Assuming independence, multiply the
selectivity factors

CSEP544 - Fall 2015 83

Example

CSEP544 - Fall 2015 84

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B is 1/3
Selectivity of S.C = T.C is 1/10
Selectivity of R.A < 40 is ½

What is the estimated size of the query output ?

Example

CSEP544 - Fall 2015 85

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B is 1/3
Selectivity of S.C = T.C is 1/10
Selectivity of R.A < 40 is ½

What is the estimated size of the query output ?

30k * 200k * 10k * 1/3 * 1/10 * ½
= 1TB

Discussion: Paper

S = SELECT list
 FROM R1 as x1, …, Rk as xk
 WHERE Cond -- a conjunction of predicates

What is the probability space?

Discussion: Paper

(x1, x2, …, xk), drawn randomly, independently from R1, ..., Rk

Pr(R1.A = 40) = prob. that random tuple in R1 has A=40

Pr(R1.A = 40 and JR1.B = R2.C and R2.D = 90) = prob. that …

E[|SELECT ... WHERE Cond|] = Pr(Cond) * T(R1) * T(R2) * ... * T(Rk)

What is the probability space?

S = SELECT list
 FROM R1 as x1, …, Rk as xk
 WHERE Cond -- a conjunction of predicates

Join indicator (in class…) Descriptive attribute

Discussion: Paper
What is the probability space?

What are the three simplifying assumptions?

S = SELECT list
 FROM R1 as x1, …, Rk as xk
 WHERE Cond -- a conjunction of predicates

Discussion: Paper
What is the probability space?

What are the three simplifying assumptions?

Uniform: Pr(R1.A = ‘a’) = 1/V(R1, A)

Attribute Indep.: Pr(R1.A = ‘a’ and R1.B = ‘b’) = Pr(R1.A = ‘a’) Pr(R1.B = ‘b’)

Join Indep.: Pr(R1.A = ‘a’ and JR1.B = R2.C) = Pr(R1.A = ‘a’) Pr(JR1.B = R2.C)

S = SELECT list
 FROM R1 as x1, …, Rk as xk
 WHERE Cond -- a conjunction of predicates

Rule of Thumb

•  If selectivities are unknown, then:
selectivity factor = 1/10
[System R, 1979]

CSEP544 - Fall 2015 90

91

Using Data Statistics

•  Condition is A = c /* value selection on R */
–  Selectivity = 1/V(R,A)

•  Condition is A < c /* range selection on R */
–  Selectivity = (c - Low(R, A))/(High(R,A) - Low(R,A))T(R)

•  Condition is A = B /* R ⨝A=B S */
–  Selectivity = 1 / max(V(R,A),V(S,A))
–  (will explain next)

CSEP544 - Fall 2015

92

Selectivity of Join Predicates

Assumptions:
•  Containment of values: if V(R,A) <= V(S,B), then

the set of A values of R is included in the set of
B values of S
–  Note: this indeed holds when A is a foreign key in R,

and B is a key in S

•  Preservation of values: for any other attribute C,
V(R ⨝A=B S, C) = V(R, C) (or V(S, C))

CSEP544 - Fall 2015

93

Selectivity of Join Predicates
Assume V(R,A) <= V(S,B)

•  Each tuple t in R joins with T(S)/V(S,B) tuple(s) in S

•  Hence T(R ⨝A=B S) = T(R) T(S) / V(S,B)

In general: T(R ⨝A=B S) = T(R) T(S) / max(V(R,A),V(S,B))

CSEP544 - Fall 2015

94

Selectivity of Join Predicates

Example:
•  T(R) = 10000, T(S) = 20000
•  V(R,A) = 100, V(S,B) = 200
•  How large is R ⨝A=B S ?

CSEP544 - Fall 2015

95

Histograms

•  Statistics on data maintained by the
RDBMS

•  Makes size estimation much more
accurate (hence, cost estimations are
more accurate)

CSEP544 - Fall 2015

Histograms

CSEP544 - Fall 2015 96

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

Histograms

CSEP544 - Fall 2015

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

Histograms
Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Estimate = 1200 Estimate = 1*80 + 5*500 = 2580

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

Types of Histograms

•  How should we determine the bucket
boundaries in a histogram ?

CSEP544 - Fall 2015 99

Types of Histograms

•  How should we determine the bucket
boundaries in a histogram ?

•  Eq-Width
•  Eq-Depth
•  Compressed
•  V-Optimal histograms

CSEP544 - Fall 2015 100

Histograms

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

Employee(ssn, name, age)

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 1800 2000 2100 2200 1900 1800

Eq-width:

Eq-depth:

Compressed: store separately highly frequent values: (48,1900)

V-Optimal Histograms

•  Defines bucket boundaries in an optimal
way, to minimize the error over all point
queries

•  Computed rather expensively, using
dynamic programming

•  Modern databases systems use V-
optimal histograms or some variations

CSEP544 - Fall 2015 102

Difficult Questions on Histograms

•  Small number of buckets
– Hundreds, or thousands, but not more
– WHY ?

•  Not updated during database update,
but recomputed periodically
– WHY ?

CSEP544 - Fall 2015 103

Multidimensional Histograms
Classical example:

SQL query: SELECT … FROM …
WHERE Person.city = ‘Seattle’ …

User “optimizes” it to:

SELECT … FROM …
WHERE Person.city = ‘Seattle’
 and Person.state = ‘WA’

Big problem! (Why?)

Multidimensional Histograms

•  Store distributions on two or more
attributes

•  Curse of dimensionality: space grows
exponentially with dimension

•  Paper: discusses using only two
dimensional histograms

CSEP544 - Fall 2015 105

Paper: Bayesian Networks
PBN(A, B, C, D, E) = P(E|D)P(D|B)P(C|A, B) P(A)P(B).

Paper: Bayesian Networks
PBN(A, B, C, D, E) = P(E|D)P(D|B)P(C|A, B) P(A)P(B).

Paper: Bayesian Networks
PBN(A, B, C, D, E) = P(E|D)P(D|B)P(C|A, B) P(A)P(B).

Paper Highlights

•  Universal table (what is it?)
•  Acyclic v.s. Cyclic Schemas
•  Within a table: tree-BN only
•  Join indicator: two parents only
•  Hence: acyclic schema à 2D-

histograms only in the junction tree
•  Simplifies construction, estimation

CSEP544 - Fall 2015 109

Next Lecture

Plan:
•  Revisit Grace join after you read the paper

•  Query optimization

•  Latest results in optimal query processing

•  Start Parallel DBs

