CSEP 544: Lecture 04

Query Execution

Announcements

Homework 2: due on Friday

Homework 3:

- We use AWS
- You need to get an access code: https://aws.amazon.com/education/ awseducate/members/

Where We Are

- We have seen:
- Disk organization = set of blocks(pages)
- The buffer pool
- How records are organized in pages
- Indexes, in particular B+ -trees
- Today: query execution, optimization

Steps of the Query Processor

SQL query
Parse \& Rewrite SQL Query

Steps in Query Evaluation

- Step 0: Admission control
- User connects to the db with username, password
- User sends query in text format
- Step 1: Query parsing
- Parses query into an internal format
- Performs various checks using catalog
- Correctness, authorization, integrity constraints
- Step 2: Query rewrite
- View rewriting, flattening, etc.

Steps in Query Evaluation

- Step 3: Query optimization
- Find an efficient query plan for executing the query
- Step 4: Query execution
- Each operator has several implementation algorithms

SQL Query

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name FROM Product x, Purchase y, Customer z WHERE x.pid $=y . p i d$ and y.cid $=y . c i d$ and x.price > 100 and z.city = 'Seattle'

Logical Plan

Product(pid, name, price) Purchase(pid, cid, store) Customer(cid, name, city)

Logical v.s. Physical Plan

- Physical plan = Logical plan plus annotations
- Access path selection for each relation
- Use a file scan or use an index
- Implementation choice for each operator
- Scheduling decisions for operators

Logical Query Plan

Physical Query Plan

(On the fly)
(On the fly)
(Nested loop)
$\Pi_{\text {name,price }}$
σ name=‘Gizmo’ ^store =‘GizmoMart'

Product
(File scan)

(File scan)

Outline of the Lecture

- Physical operators: join, group-by
- Query execution: pipeline, iterator model
- Database statistics

Extended Algebra Operators

- Union \cup, difference -
- Selection σ
- Projection Π
- Join \bowtie-- also: semi-join, anti-semi-join
- Rename ρ
- Duplicate elimination δ
- Grouping and aggregation γ
- Sorting τ

Sets v.s. Bags

- Sets: $\{a, b, c\},\{a, d, e, f\},\{ \}, \ldots$
- Bags: $\{a, a, b, c\},\{b, b, b, b, b\}, \ldots$

Relational Algebra has two semantics:

- Set semantics (paper "Three languages...")
- Bag semantics

Physical Operators

Each of the logical operators may have one or more implementations = physical operators

Will discuss several basic physical operators, with a focus on join

Main Memory Algorithms

Logical operator:
Product(pid, name, price) $\bowtie_{\text {pid=pid }}$ Purchase(pid, cid, store) Propose three physical operators for the join, assuming the tables are in main memory:
1.
2.
3.

Main Memory Algorithms

Logical operator:
Product(pid, name, price) $\bowtie_{\text {pid=pid }}$ Purchase(pid, cid, store) Propose three physical operators for the join, assuming the tables are in main memory:

1. Nested Loop Join
2. Merge join
3. Hash join

O(??)
O(??)
O(??)

Main Memory Algorithms

Logical operator:
Product(pid, name, price) $\bowtie_{\text {pid=pid }}$ Purchase(pid, cid, store) Propose three physical operators for the join, assuming the tables are in main memory:

1. Nested Loop Join
2. Merge join
3. Hash join

$\mathrm{O}\left(\mathrm{n}^{2}\right)$
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$
$O(n) \ldots O\left(n^{2}\right)$

BRIEF Review of Hash Tables

 Separate chaining:A (naïve) hash function:
$h(x)=x \bmod 10$

Operations:
find(103) $=$?? insert(488) $=$??

BRIEF Review of Hash Tables

- insert(k, v) = inserts a key k with value v
- Many values for one key
- Hence, duplicate k's are OK
- find $(\mathrm{k})=$ returns the list of all values v associated to the key k

External Memory Algorithms

The cost of an operation = total number of I/Os
Cost parameters (used both in the book and by Shapiro):

- $B(R)=$ number of blocks for relation R (Shapiro: $|R|$)
- $T(R)=$ number of tuples in relation R
- $V(R, a)=$ number of distinct values of attribute a
- M = size of main memory buffer pool, in blocks

Facts: (1) $B(R) \ll T(R)$:

(2) When a is a key, $V(R, a)=T(R)$ When a is not a key, $V(R, a) \ll T(R)$

Cost of an Operator

Assumption: runtime dominated by \# of disk I/O's; will ignore the main memory part of the runtime

- If R (and S) fit in main memory, then we use a main-memory algorithm
- If R (or S) does not fit in main memory, then we use an external memory algorithm

Ad-hoc Convention

- The operator reads the data from disk - Note: different from Shapiro
- The operator does not write the data back to disk (e.g.: pipelining)
- Thus:

Any main memory join algorithms for $R \bowtie S$: Cost $=B(R)+B(S)$
Any main memory grouping $\gamma(\mathrm{R})$: Cost $=\mathrm{B}(\mathrm{R})$

Nested Loop Joins

- Tuple-based nested loop $R \bowtie$ S
for each tuple r in R do for each tuple s in S do
$\mathrm{R}=$ outer relation $\mathrm{S}=$ inner relation if r and s join then output (r, s)
- Cost: $\mathrm{T}(\mathrm{R}) \mathrm{B}(\mathrm{S})$

Examples

$M=4$

- Example 1:
$-B(R)=1000, T(R)=10000$
$-B(S)=2, T(S)=20$
- Cost = ?

Can you do better with nested loops?

- Example 2:
$-B(R)=1000, T(R)=10000$
$-B(S)=4, T(S)=40$
- Cost = ?

Block-Based Nested-loop Join

for each (M-2) blocks bs of \mathbf{S} do for each block br of \mathbf{R} do for each tuple sin bs for each tuple \mathbf{r} in $\mathbf{b r}$ do if " \mathbf{r} and \mathbf{s} join" then output(\mathbf{r}, \mathbf{s})

Terminology alert: sometimes S is called S the inner relation

Block-Based Nested-loop Join

Why not M ?

for each (M-2) blocks bs of \mathbf{S} do for each block br of \mathbf{R} do
for each tuple sin bs
for each tuple \mathbf{r} in $\mathbf{b r}$ do if " \mathbf{r} and \mathbf{s} join" then output(\mathbf{r}, \mathbf{s})

Terminology alert: sometimes S is called S the inner relation

Block-Based Nested-loop Join

Why not M ?

for each (M-2) blocks bs of \mathbf{S} do for each block br of \mathbf{R} do
for each tuple s in bs for each tuple \mathbf{r} in $\mathbf{b r}$ do if " r and \mathbf{s} join" then output(\mathbf{r}, \mathbf{s})

Terminology alert: sometimes S is called S the inner relation

Block Nested-loop Join

Examples

$M=4$

- Example 1:
$-B(R)=1000, T(R)=10000$
$-B(S)=2, T(S)=20$
- Cost $=B(S)+B(R)=1002$
- Example 2:
$-B(R)=1000, T(R)=10000$
$-B(S)=4, T(S)=40$
- Cost $=B(S)+2 B(R)=2004$

Note: $T(R)$ and $T(S)$ are irrelevant here.

Cost of Block Nested-loop Join

- Read S once: cost B(S)
- Outer loop runs $B(S) /(M-2)$ times, and each time need to read R : costs $B(S) B(R) /(M-2)$

$$
\text { Cost }=\mathrm{B}(\mathrm{~S})+\mathrm{B}(\mathrm{~S}) \mathrm{B}(\mathrm{R}) /(\mathrm{M}-2)
$$

Index Based Selection

Recall IMDB; assume indexes on Movie.id, Movie.year

SELET *
FROM Movie
WHERE id = '12345'

SELET *
FROM Movie
WHERE year = '1995'
$B($ Movie $)=10 k$
$T($ Movie $)=1 \mathrm{M}$
What is your estimate of the I/O cost?

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- Clustered index on a: cost?
- Unclustered index : cost ?

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- Clustered index on a : cost $B(R) / V(R, a)$
- Unclustered index : cost $T(R) / V(R, a)$

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- Clustered index on a : cost $B(R) / V(R, a)$
- Unclustered index : cost $T(R) / V(R, a)$

Note: we assume that the cost of reading the index $=0$ Why?

Index Based Selection

- Example:

$$
\begin{aligned}
& B(R)=10 k \\
& T(R)=1 M \\
& V(R, a)=100
\end{aligned}
$$

- Table scan:
- B(R) = 10k I/Os
- Index based selection:
- If index is clustered: $B(R) / V(R, a)=1001 / O s$
- If index is unclustered: $T(R) / V(R, a)=10000$ I/Os

Rule of thumb: don't build unclustered indexes when $\mathrm{V}(\mathrm{R}, \mathrm{a})$ is small !

Index Based Join

- $R \bowtie S$
- Assume S has an index on the join attribute
for each tuple r in R do lookup the tuple(s) s in S using the index output (r,s)

Index Based Join

Cost:

- If index is clustered:
- If unclustered:

Index Based Join

Cost:

- If index is clustered: $B(R)+T(R) B(S) / V(S, a)$
- If unclustered: $\quad B(R)+T(R) T(S) / V(S, a)$

Operations on Very Large Tables

- Compute $R \bowtie S$ when each is larger than main memory
- Two methods:
- Partitioned hash join (many variants)
- Merge-join
- Similar for grouping

External Sorting

- Problem:
- Sort a file of size B with memory M
- Where we need this:
- ORDER BY in SQL queries
- Several physical operators
- Bulk loading of B+-tree indexes.
- Will discuss only 2-pass sorting, when $\mathrm{B}<\mathrm{M}^{2}$

Basic Terminology

- A run in a sequence is an increasing subsequence
- What are the runs?
$2,4,99,103,88,77,3,79,100,2,50$

External Merge-Sort: Step 1

- Phase one: load M bytes in memory, sort

Runs of length M bytes

Basic Terminology

- Merging multiple runs to produce a longer run:
0, 14, 33, 88, 92, 192, 322
2, 4, 7, 43, 78, 103, 523
1, 6, 9, 12, 33, 52, 88, 320

Output:
$0,1,2,4,6,7$, ?

External Merge-Sort: Step 2

- Merge $\mathrm{M}-1$ runs into a new run
- Result: runs of length $M(M-1) \approx M^{2}$

If $B<=M^{2}$ then we are done

Cost of External Merge Sort

- Read+write+read $=3 B(R)$
- Assumption: $\mathrm{B}(\mathrm{R})<=\mathrm{M}^{2}$

External Merge-Sort

Can increase to length 2M using "replacement selection"

Group-by

Group-by: $\gamma_{a, \operatorname{sum}(b)}(R)$

- Idea: do a two step merge sort, but change one of the steps
- Question in class: which step needs to be changed and how?

Cost $=3 B(R)$

Assumption: $\mathrm{B}(\delta(\mathrm{R}))<=\mathrm{M}^{2}$

Merge-Join

Join $R \bowtie S$

- How?

Merge-Join

Join $R \bowtie S$

- Step 1a: initial runs for R
- Step 1b: initial runs for S
- Step 2: merge and join

Merge-Join

Partitioned Hash Algorithms

Idea:

- If $B(R)>M$, then partition it into smaller files: R1, R2, R3, ..., Rk
- Assuming $B(R 1)=B(R 2)=\ldots=B(R k)$, we have $B(R i)=B(R) / k$
- Goal: each Ri should fit in main memory: $B(R i) \leq M$

How big can k be ?

Partitioned Hash Algorithms

- Idea: partition a relation R into $M-1$ buckets, on disk
- Each bucket has size approx. $B(R) /(M-1) \approx B(R) / M$

$$
\text { Assumption: } B(R) / M \leq M \text {, i.e. } B(R) \leq M^{2}
$$

Grouping

- $\gamma(\mathrm{R})=$ grouping and aggregation
- Step 1. Partition R into buckets
- Step 2. Apply γ to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption: $B(R) \leq M^{2}$

Grace-Join

$R \bowtie S$

Grace-Join

$R \bowtie S$

- Step 1:
- Hash S into M buckets
- send all buckets to disk
- Step 2
- Hash R into M buckets
- Send all buckets to disk
- Step 3
- Join every pair of buckets

Grace-Join

- Partition both relations using hash fn h : R tuples in partition i will only match S tuples in partition i.

Grace-Join

- Partition both relations using hash fn h : R tuples in partition i will only match S tuples in partition i.

Partitions

Grace Join

- Cost: 3B(R) $+3 \mathrm{~B}(\mathrm{~S})$
- Assumption: $\min (B(R), B(S))<=M^{2}$

Hybrid Hash Join Algorithm

- Partition S into k buckets t buckets S_{1}, \ldots, S_{t} stay in memory k-t buckets S_{t+1}, \ldots, S_{k} to disk
- Partition R into k buckets
- First t buckets join immediately with S
- Rest k-t buckets go to disk
- Finally, join k-t pairs of buckets:
$\left(R_{t+1}, S_{t+1}\right),\left(R_{t+2}, S_{t+2}\right), \ldots,\left(R_{k}, S_{k}\right)$

Hybrid Hash Join Algorithm

- Partition S into k buckets t buckets S_{1}, \ldots, S_{t} stay in memory $k-t$ buckets S_{t+1}, \ldots, S_{k} to disk Shapirios notation:
- Partition R into k buckets
- First t buckets join immediately with S
- Rest k-t buckets go to disk
- Finally, join k-t pairs of buckets:
$\left(R_{t+1}, S_{t+1}\right),\left(R_{t+2}, S_{t+2}\right), \ldots,\left(R_{k}, S_{k}\right)$

Hybrid Hash Join Algorithm

Hybrid Join Algorithm

- How to choose k and t?
- Choose k large but s.t.

$$
k<=M
$$
t / k * $B(S)<=M$
t / k * $B(S)+k-t<=M$

- Choose t/k large but s.t.
- Moreover:
- Assuming t / k * $B(S) \gg k-t: \quad t / k=M / B(S)$

Hybrid Join Algorithm

Cost of Hybrid Join:

- Grace join: 3B(R) + 3B(S)
- Hybrid join:
- Saves 2 I/Os for t / k fraction of buckets
- Saves 2t/k(B(R) + B(S)) I/Os
- Cost: $(3-2 t / k)(B(R)+B(S))=(3-2 M / B(S))(B(R)+B(S))$

Hybrid Join Algorithm

- Question in class: what is the advantage of the hybrid algorithm ?

Summary of External Join Algorithms

- Block Nested Loop: B(S) + B(R)*B(S)/M
- Index Join: $B(R)+T(R) B(S) / V(S, a)$
- Partitioned Hash: 3B(R)+3B(S);
$-\min (B(R), B(S))<=M^{2}$
- Merge Join: $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})$
$-B(R)+B(S)<=M^{2}$

Outline of the Lecture

- Physical operators: join, group-by
- Query execution: pipeline, iterator model
- Database statistics

Iterator Interface

Each operator implements this interface

- open()
- Initializes operator state
- Sets parameters such as selection condition
- get_next()
- Operator invokes get_next() recursively on its inputs
- Performs processing and produces an output tuple
- close(): cleans-up state

1. Nested Loop Join

for x in Product do \{ for y in Purchase do \{ if (x. pid $==$ y.pid) output(x, y); \} \}

Product = outer relation
Purhcase = inner relation
Note: sometimes
terminology is switched

When is it more efficient
to iterate first over Purchase, then over Product?

It's more complicated...

- Each operator implements this interface
- open()
- get_next()
- close()

Main Memory Nested Loop Join

```
open ( ) {
    Product.open( );
    Purchase.open( );
    x = Product.get_next( );
}
close () {
    Product.close ();
    Purchase.close ( );
}
```

```
get_next( ) {
    repeat {
    y = Purchase.get_next( );
    if (y == NULL)
        { Purchase.close();
        Purchase.open( );
        x = Product.get_next( );
        if (x== NULL) return NULL;
        y = Purchase.get_next( );
        }
    until (x.pid == y.pid);
    return (x,y)
}
```

ALL operators need to be implemented this way !

2. Hash Join (main memory)

Build phase

for x in Product do insert(x.pid, x);
for y in Purchase do \{ ys = find(y.pid);

Probe phase for y in ys do $\{\operatorname{output}(x, y) ;\}$
\}

Product=outer
 Purchase=inner

Recall: need to rewrite as open, get_next, close

3. Merge Join (main memory)

$\begin{array}{ll}\text { Product1 } & =\operatorname{sort}(\text { Product, pid); } \\ \text { Purchase1 } & =\operatorname{sort}(\text { Purchase, pid); }\end{array}$
x=Product1.get_next();
$\mathrm{y}=$ Purchase1.get_next();
While (x!=NULL and y!=NULL) \{

case:

x.pid < y.pid: $\quad x=$ Product1.get_next();
x.pid > y.pid: y = Purchase1.get_next();
x.pid $==$ y.pid $\{$ output(x, y);

Physical Query Plan

(On the fly)
(On the fly)
(Nested loop)
$\Pi_{\text {name,price }}$
σ name=‘Gizmo’ ^store =‘GizmoMart'

Product
(File scan)

(File scan)

Pipelined Execution

- Applies parent operator to tuples directly as they are produced by child operators
- Benefits
- No operator synchronization issues
- Saves cost of writing intermediate data to disk
- Saves cost of reading intermediate data from disk
- Good resource utilizations on single processor
- This approach is used whenever possible

Physical Query Plan

(On the fly)
$\Pi_{\text {name,price }}$

$$
\sigma \text { name=‘Gizmo’ ^store =‘GizmoMart' }
$$

(Materialize to T1)

(Sort-merge join)

Product
(File scan)

(File scan)

Intermediate Tuple Materialization

- Writes the results of an operator to an intermediate table on disk
- No direct benefit but
- Necessary data is larger than main memory
- Necessary when operator needs to examine the same tuples multiple times

Outline of the Lecture

- Physical operators: join, group-by
- Query execution: pipeline, iterator model
- Database statistics
- Partially based on Graphical Models paper

Database Statistics

- Collect statistical summaries of stored data
- Estimate size (=cardinality), bottom-up
- Estimate cost by using the estimated size

Database Statistics

- Number of tuples = cardinality
- Indexes: number of keys in the index
- Number of physical pages, clustering info
- Statistical information on attributes
- Min value, max value, number distinct values
- Histograms
- Correlations between columns

Size Estimation Problem

$\mathrm{S}=\mathrm{SELECT}$ list FROM R1, ..., Rn WHERE cond ${ }_{1}$ AND cond ${ }_{2}$ AND . . . AND cond ${ }_{k}$

Given $\mathrm{T}(\mathrm{R} 1), \mathrm{T}(\mathrm{R} 2), \ldots, \mathrm{T}(\mathrm{Rn})$
Estimate T(S)
How can we do this? Note: doesn't have to be exact.

Size Estimation Problem

S = SELECT list FROM R1, ..., Rn WHERE cond ${ }_{1}$ AND cond ${ }_{2}$ AND . . . AND cond ${ }_{k}$

Remark: $\mathrm{T}(\mathrm{S}) \leq \mathrm{T}(\mathrm{R} 1) \times \mathrm{T}(\mathrm{R} 2) \times \ldots \times \mathrm{T}(\mathrm{Rn})$

Selectivity Factor

- Each condition cond reduces the size by some factor called selectivity factor
- Assuming independence, multiply the selectivity factors

Example

R(A,B)
$S(B, C)$
T(C,D)

SELECT *

FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A <40
$T(R)=30 k, T(S)=200 k, T(T)=10 k$
Selectivity of R.B $=S . B$ is $1 / 3$
Selectivity of S.C $=$ T.C is $1 / 10$ Selectivity of R.A <40 is $1 / 2$

What is the estimated size of the query output ?

Example

R(A,B)
$S(B, C)$
T(C,D)

SELECT *

FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A <40
$T(R)=30 k, T(S)=200 k, T(T)=10 k$
Selectivity of R.B $=S . B$ is $1 / 3$
Selectivity of S.C $=$ T.C is $1 / 10$ Selectivity of R.A <40 is $1 / 2$

What is the estimated size of the query output ?

Discussion: Paper

What is the probability space?

$$
\begin{aligned}
& S= \\
& \quad \text { SELECT list } \\
& \\
& \quad \text { WHEM } R_{1} \text { as } x_{1}, \ldots, R_{k} \text { as } x_{k} \\
& \hline
\end{aligned}
$$

Discussion: Paper

What is the probability space?

S = SELECT list FROM R_{1} as x_{1}, \ldots, R_{k} as x_{k} WHERE Cond -- a conjunction of predicates

$\left(x_{1}, x_{2}, \ldots, x_{k}\right)$, drawn randomly, independently from R_{1}, \ldots, R_{k}
$\operatorname{Pr}\left(R_{1} \cdot A=40\right)=$ prob. that random tuple in R_{1} has $A=40$
Descriptive attribute Join indicator (in class...)
$\operatorname{Pr}\left(R_{1} \cdot A=40\right.$ and $J_{R 1 \cdot B}=R 2 . C$ and $\left.R_{2} \cdot D=90\right)=$ prob. that \ldots

E[|SELECT ... WHERE Cond|] = Pr(Cond) * $T\left(R_{1}\right)$ * $T\left(R_{2}\right)$ * ... * $T\left(R_{k}\right)$

Discussion: Paper

What is the probability space?

```
S = SELECT list
    FROM R R as }\mp@subsup{x}{1}{},\ldots,\mp@subsup{R}{k}{}\mathrm{ as }\mp@subsup{x}{k}{
    WHERE Cond -- a conjunction of predicates
```

What are the three simplifying assumptions?

Discussion: Paper

What is the probability space?

```
S = SELECT list
    FROM R R1 as }\mp@subsup{x}{1}{},\ldots,\mp@subsup{R}{k}{}\mathrm{ as }\mp@subsup{x}{k}{
    WHERE Cond -- a conjunction of predicates
```

What are the three simplifying assumptions?

$$
\text { Uniform: } \quad \operatorname{Pr}\left(R_{1} \cdot A=' a '\right)=1 / V\left(R_{1}, A\right)
$$

Attribute Indep.: $\operatorname{Pr}\left(R_{1} \cdot A=\right.$ ' a^{\prime} and $\left.R_{1} \cdot B=' b \prime\right)=\operatorname{Pr}\left(R_{1} \cdot A=\right.$ ' a ' $) \operatorname{Pr}\left(R_{1} \cdot B=' b{ }^{\prime}\right)$
Join Indep.:

$$
\operatorname{Pr}\left(R_{1} \cdot A=' a ' \text { and } J_{R 1 . B}=R 2 . C\right)=\operatorname{Pr}\left(R_{1} \cdot A=' a '\right) \operatorname{Pr}\left(J_{R 1 . B}=R 2 . C\right)
$$

Rule of Thumb

- If selectivities are unknown, then: selectivity factor = 1/10 [System R, 1979]

Using Data Statistics

- Condition is $A=c \quad / *$ value selection on R */
- Selectivity $=1 / V(R, A)$
- Condition is $A<c \quad / *$ range selection on R */ - Selectivity $=(c-\operatorname{Low}(R, A)) /(\operatorname{High}(R, A)-\operatorname{Low}(R, A)) T(R)$
- Condition is $A=B$

$$
/ * R \bowtie_{A=B} S * /
$$

- Selectivity = $1 / \max (\mathrm{V}(\mathrm{R}, \mathrm{A}), \mathrm{V}(\mathrm{S}, \mathrm{A}))$
- (will explain next)

Selectivity of Join Predicates

Assumptions:

- Containment of values: if $\mathrm{V}(\mathrm{R}, \mathrm{A})<=\mathrm{V}(\mathrm{S}, \mathrm{B})$, then the set of A values of R is included in the set of B values of S
- Note: this indeed holds when A is a foreign key in R, and B is a key in S
- Preservation of values: for any other attribute C , $\mathrm{V}\left(\mathrm{R} \bowtie_{\mathrm{A}=\mathrm{B}} \mathrm{S}, \mathrm{C}\right)=\mathrm{V}(\mathrm{R}, \mathrm{C}) \quad(\operatorname{or} \mathrm{V}(\mathrm{S}, \mathrm{C}))$

Selectivity of Join Predicates

Assume $\mathrm{V}(\mathrm{R}, \mathrm{A})<=\mathrm{V}(\mathrm{S}, \mathrm{B})$

- Each tuple t in R joins with $T(S) / V(S, B)$ tuple(s) in S
- Hence $T\left(R \bowtie_{A=B} S\right)=T(R) T(S) / V(S, B)$

In general: $T\left(R \bowtie_{A=B} S\right)=T(R) T(S) / \max (V(R, A), V(S, B))$

Selectivity of Join Predicates

Example:

- $T(R)=10000, T(S)=20000$
- $V(R, A)=100, V(S, B)=200$
- How large is $R \bowtie_{A=B} S$?

Histograms

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

Histograms

Employee(ssn, name, age)

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$ $\min ($ age $)=19, \max ($ age $)=68$

$$
\sigma_{\text {age }=48}(\text { Empolyee })=? \quad \sigma_{\text {age }>28 \text { and age }<35}(\text { Empolyee })=?
$$

Histograms

Employee(ssn, name, age)

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$ $\min ($ age $)=19, \max ($ age $)=68$

$$
\sigma_{\mathrm{age}=48}(\text { Empolyee })=? \quad \sigma_{\text {age }>28 \text { and age }<35}(\text { Empolyee })=?
$$

Age:	0.20	20.29	$30-39$	$40-49$	$50-59$	>60
Tuples	200	800	5000	12000	6500	500

Histograms

Employee(ssn, name, age)

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$ $\min ($ age $)=19, \max ($ age $)=68$

$$
\sigma_{\text {age }=48}(\text { Empolyee })=? \quad \sigma_{\text {age }>28 \text { and age }<35}(\text { Empolyee })=?
$$

Age:	$0 . .20$	$20 . .29$	$30-39$	$40-49$	$50-59$	>60
Tuples	200	800	5000	12000	6500	500
Estimate $=1 * 80+5^{*} 500=2580$						

Types of Histograms

- How should we determine the bucket boundaries in a histogram ?

Types of Histograms

- How should we determine the bucket boundaries in a histogram?
- Eq-Width
- Eq-Depth
- Compressed
- V-Optimal histograms

Employee(ssn, name, age)

Histograms

Eq-width:

Age:	$0 . .20$	$20 . .29$	$30-39$	$40-49$	$50-59$	>60
Tuples	200	800	5000	12000	6500	500

Eq-depth:

Age:	$0 . .20$	$20 . .29$	$30-39$	$40-49$	$50-59$	>60
Tuples	1800	2000	2100	2200	1900	1800

Compressed: store separately highly frequent values: $(48,1900)$

V-Optimal Histograms

- Defines bucket boundaries in an optimal way, to minimize the error over all point queries
- Computed rather expensively, using dynamic programming
- Modern databases systems use Voptimal histograms or some variations

Difficult Questions on Histograms

- Small number of buckets
- Hundreds, or thousands, but not more
- WHY ?
- Not updated during database update, but recomputed periodically
- WHY ?

Multidimensional Histograms

Classical example:
SQL query:

SELECT ... FROM ...
 WHERE Person.city = 'Seattle’ ...

User "optimizes" it to:

$$
\begin{aligned}
& \text { SELECT } \ldots \text { FROM } \ldots \\
& \text { WHERE Person.city = 'Seattle' } \\
& \text { and Person.state = 'WA' }
\end{aligned}
$$

Big problem! (Why?)

Multidimensional Histograms

- Store distributions on two or more attributes
- Curse of dimensionality: space grows exponentially with dimension
- Paper: discusses using only two dimensional histograms

Paper: Bayesian Networks

$P_{B N}(A, B, C, D, E)=P(E \mid D) P(D \mid B) P(C \mid A, B) P(A) P(B)$.

Paper: Bayesian Networks

$P_{B N}(A, B, C, D, E)=P(E \mid D) P(D \mid B) P(C \mid A, B) P(A) P(B)$.

(a)

(c)

a	b	c	$P(a, b, c)$
a_{1}	b_{1}	c_{1}	0.25
a_{1}	b_{1}	c_{2}	0.32
a_{1}	b_{2}	c_{1}	0.01
a_{1}	b_{2}	c_{2}	0.12
a_{2}	b_{1}	c_{1}	0.08
a_{2}	b_{1}	c_{2}	0.04
a_{2}	b_{2}	c_{1}	0.1
a_{2}	b_{2}	c_{2}	0.08

(d)

Fig. 1 A small graphical model of five binary random variables A, B, C, D, E a Bayesian network. b Moral graph. c Junction tree. d Clique potentials

Paper: Bayesian Networks

$P_{B N}(A, B, C, D, E)=P(E \mid D) P(D \mid B) P(C \mid A, B) P(A) P(B)$.

(b)
(a)

(c)

a	b	c	$P(a, b, c)$
a_{1}	b_{1}	c_{1}	0.25
a_{1}	b_{1}	c_{2}	0.32
a_{1}	b_{2}	c_{1}	0.01
a_{1}	b_{2}	c_{2}	0.12
a_{2}	b_{1}	c_{1}	0.08
a_{2}	b_{1}	c_{2}	0.04
a_{2}	b_{2}	c_{1}	0.1
a_{2}	b_{2}	c_{2}	0.08

(d)

Fig. 1 A small graphical model of five binary random variables A, B, C, D, E a Bayesian network. b Moral graph. c Junction tree. d Clique potentials

$$
P(A, D)=\sum_{B, C} \frac{P(A, B, C) P(B, D)}{P(B)} .
$$

Paper Highlights

- Universal table (what is it?)
- Acyclic v.s. Cyclic Schemas
- Within a table: tree-BN only
- Join indicator: two parents only
- Hence: acyclic schema \rightarrow 2Dhistograms only in the junction tree
- Simplifies construction, estimation

Next Lecture

Plan:

- Revisit Grace join after you read the paper
- Query optimization
- Latest results in optimal query processing
- Start Parallel DBs

