CSEP 544: Lecture 04

Query Execution

CSEP544 - Fall 2015

Announcements

Homework 2: due on Friday

Homework 3:
e We use AWS

* You need to get an access code:
https://aws.amazon.com/education/
awseducate/members/

Where We Are

* \We have seen:
— Disk organization = set of blocks(pages)
— The buffer pool
— How records are organized in pages
— Indexes, in particular B+ -trees

* Today: query execution, optimization

CSEP544 - Fall 2015

Steps of the Query Processor

SQL query
}
[Parse & Rewrite SQL Query}

/_ ' .
[Select Logical Plan} Logical
Query olan
optimization< v
[Select Physical PIan}
- Physical
| w
[Query Execution}

Steps in Query Evaluation

« Step 0: Admission control
— User connects to the db with username, password
— User sends query in text format

« Step 1: Query parsing
— Parses query into an internal format

— Performs various checks using catalog
« Correctness, authorization, integrity constraints

« Step 2: Query rewrite

— View rewriting, flattening, etc.

CSEP544 - Fall 2015

Steps in Query Evaluation

» Step 3: Query optimization
— Find an efficient query plan for executing the query

« Step 4: Query execution

— Each operator has several implementation algorithms

CSEP544 - Fall 2015 6

SQL Query

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name

FROM Product x, Purchase y, Customer z

WHERE x.pid = y.pid and y.cid = y.cid and
x.price > 100 and z.city = ‘Seattle’

Logical Plan

| Final answer

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

e T4(name,name)

0

IT

X.name,z.name
—————

T2(...) S
\. price>100 and city=‘Seattle’

T1(pid,name,price,pid,cid,store) ><] id=cid
Temporary tables < i \
11,12, ... / \ Customer

Product Purchase

Logical v.s. Physical Plan

Physical plan = Logical plan plus annotations

Access path selection for each relation
— Use a file scan or use an index

Implementation choice for each operator

Scheduling decisions for operators

CSEP544 - Fall 2015

Product(pid, name, price)
Purchase(pid, cid, store)

Logical Query Plan

IT

name,price

O name=‘Gizmo’ astore =‘GizmoMart’

(>

pid = pid

N

Product Purchase

Product(pid, name, price)
Purchase(pid, cid, store)

Physical Query Plan

(On the fly) IT hame price
(On the fly) O name='Gizmo’ astore =‘GizmoMart
(Nested loop) pid>=pid<
TN
Product Purchase

(File scan) (File scan)

Outline of the Lecture

* Physical operators: join, group-by

* Query execution: pipeline, iterator model

 Database statistics

CSEP544 - Fall 2015 12

Extended Algebra Operators

_ _ ™)
Union U, difference -

Selection o Basig RA
Projection [
Join X -- also: semi-join, anti-semi-joig

Rename p ExtendedRA
Duplicate elimination 6 >
Grouping and aggregation vy

Sorting t

CSEP544 - Fall 2015 13

Sets v.s. Bags

« Sets: {a,b,c}, {a,d,e,f},{}, ...
« Bags:{a, a,b,c}, {b,b,b,b, b}, ...

Relational Algebra has two semantics:
« Set semantics (paper “Three languages...”)
* Bag semantics

CSEP544 - Fall 2015

14

Physical Operators

Each of the logical operators may have one or
more implementations = physical operators

WIll discuss several basic physical operators,
with a focus on join

CSEP544 - Fall 2015 15

Product(pid, name, price)
Purchase(pid, cid, store)

Main Memory Algorithms

Logical operator:
Product(pid, name, price) X;4-,q Purchase(pid, cid, store)

Propose three physical operators for the join, assuming the
tables are in main memory:

1.
2.
3.

CSEP544 - Fall 2015 16

Product(pid, name, price)
Purchase(pid, cid, store)

Main Memory Algorithms

Logical operator:
Product(pid, name, price) X;4-,q Purchase(pid, cid, store)

Propose three physical operators for the join, assuming the
tables are in main memory:

1. Nested Loop Join O(??)
2. Merge join O(?7?)
3. Hashjoin O(??)

CSEP544 - Fall 2015 17

Product(pid, name, price)
Purchase(pid, cid, store)

Main Memory Algorithms

Logical operator:
Product(pid, name, price) X;4-,q Purchase(pid, cid, store)

Propose three physical operators for the join, assuming the
tables are in main memory:

1. Nested Loop Join O(n?)
2. Merge join O(n log n)
3. Hash join O(n) ... O(n?)

CSEP544 - Fall 2015 18

BRIEF Review of Hash Tables

Separate chaining:

A (naive) hash function: 0 Duplicates OK
1 WHY 2?2
h(x) = x mod 10 2 -
3 5503 | 1103 | [—1503
4
0 fions: 5
perations: 6 76 T ees
find(103) = 27 7
8 ——>(48
9

insert(488) = ?7?

BRIEF Review of Hash Tables

* insert(k, v) = inserts a key k with value v

* Many values for one key
— Hence, duplicate k's are OK

 find(k) = returns the list of all values v
associated to the key k

CSEP544 - Fall 2015 20

External Memory Algorithms

The cost of an operation = total number of I/Os
Cost parameters (used both in the book and by Shapiro):

* B(R) = number of blocks for relation R (Shapiro: |R|)
T(R) = number of tuples in relation R

* V(R, a) = number of distinct values of attribute a

* M = size of main memory buffer pool, in blocks

Facts: (1) B(R) << T(R):
(2) When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) << T(R)

Cost of an Operator

Assumption: runtime dominated by # of disk
1/O’s; will ignore the main memory part of
the runtime

 If R (and S) fit in main memory, then we
use a main-memory algorithm

* If R (or S) does not fit in main memory,
then we use an external memory algorithm

Ad-hoc Convention

* The operator reads the data from disk
— Note: different from Shapiro

* The operator does not write the data
back to disk (e.g.: pipelining)

* Thus:

Any main memory join algorithms for R =~ S: Cost = B(R)+B(S)

Any main memory grouping y(R): Cost = B(R)

Nested Loop Joins
* Tuple-based nested loop R X' S

for each tuple rin R do

R=outer relation

fgr each tup esinsS @ S=inner relation
if rand s join then output (r,s)

. Cost: T(R) B(S)

CSEP544 - Fall 2015 24

Examples

M=4

 Example 1:
— B(R) = 1000, T(R) = 10000
— B(S)=2, T(S) =20
— Cost =7

Can you do better with nested loops?

 Example 2:
— B(R) = 1000, T(R) = 10000
— B(S) = 4, T(S) = 40
— Cost="7?

CSEP544 - Fall 2015 25

Block-Based Nested-loop Join

for each (M-2) blocks bs of S do
for each block br of R do
for each tuple s in bs
for each tuple r in br do
if “r and s join” then output(r,s)

Terminology alert: sometimes S is called S the inner relation

CSEP544 - Fall 2015 26

Block-Based Nested-loop Join

Why not M ?

—

for each (M-2) blocks bs of S do
for each block br of R do
for each tuple s in bs
for each tuple r in br do
if “r and s join” then output(r,s)

Terminology alert: sometimes S is called S the inner relation

CSEP544 - Fall 2015 27

Block-Based Nested-loop Join

Why not M ?

— |

for each (M-2) blocks bs of S do St e
for each block br of R do s o
for each tuple s in bs
for each tuple r in br do

if “r and s join” then output(r,s)

Terminology alert: sometimes S is called S the inner relation

CSEP544 - Fall 2015 28

Block Nested-loop Join

Join Result
Hash table for block of S -

(M-2 pages)

Y

o

7

Input buffer for R Output buffen

.
>

CSEP544 - Fall 2015

Examples

M =4
 Example 1:

— B(R) = 1000, T(R) = 10000

- B(S)=2, T(S) =20

— Cost = B(S) + B(R) = 1002

Note: T(R) and

« Example 2: T(S) are irrelevant

— B(R) = 1000, T(R) = 10000 here.

— B(S) =4, T(S) =40

— Cost = B(S) + 2B(R) = 2004

CSEP544 - Fall 2015 30

Cost of Block Nested-loop Join

 Read S once: cost B(S)

» Quter loop runs B(S)/(M-2) times, and
each time need to read R: costs
B(S)B(R)/(M-2)

Cost = B(S) + B(S)B(R)/(M-2)

CSEP544 - Fall 2015

31

Index Based Selection

Recall IMDB; assume indexes on Movie.id, Movie.year

SELET *
FROM Movie B(Movie) = 10k
WHERE id = '1234%’ T(Movie) = 1M

What is your estimate
of the 1/O cost ?

SELET *
FROM Movie
WHERE year = ‘1995

CSEP544 - Fall 2015 32

Index Based Selection

Selection on equality: o, (R)
e Clustered index on a: cost ?

 Unclustered index : cost ?

CSEP544 - Fall 2015

33

Index Based Selection

Selection on equality: o, (R)
» Clustered index on a: cost B(R)/V(R,a)

* Unclustered index : cost T(R)/V(R,a)

CSEP544 - Fall 2015

34

Index Based Selection

Selection on equality: o, (R)
» Clustered index on a: cost B(R)/V(R,a)

* Unclustered index : cost T(R)/V(R,a)

Note: we assume that the cost of reading the index = 0
Why?

Index Based Selection

B(R) = 10k
* Example: | T(R)=1M cost of 0. (R) =7
V(R, a) =100

« Table scan:
— B(R) = 10k I/Os
 |Index based selection:

— If index is clustered: B(R)/V(R,a) = 100 1/Os
— If index is unclustered: T(R)/V(R,a) = 10000 I/Os

Rule of thumb:
don’t build unclustered indexes when V(R,a) is small !

Index Based Join

* R X S

 Assume S has an index on the join
attribute

for each tuple rin R do

lookup the tuple(s) s in S using the index
output (r,s)

CSEP544 - Fall 2015 37

Index Based Join

Cost:

* |f index is clustered:
* |f unclustered:

CSEP544 - Fall 2015

38

Index Based Join

Cost:

 If index is clustered: B(R) + T(R)B(S)/V(S,a)
* If unclustered: B(R) + T(R)T(S)/V(S,a)

CSEP544 - Fall 2015 39

Operations on Very Large
Tables

« Compute R < S when each is larger
than main memory

* Two methods:
— Partitioned hash join (many variants)
— Merge-join

» Similar for grouping

External Sorting

Problem:
Sort a file of size B with memory M

Where we need this:

— ORDER BY in SQL queries

— Several physical operators

— Bulk loading of B+-tree indexes.

Will discuss only 2-pass sorting, when B < M?

CSEP544 - Fall 2015 41

Basic Terminology

 Arun in a sequence is an increasing
subsequence

 \What are the runs?

2,4,99,103, 88, 77, 3, 79, 100, 2, 50

CSEP544 - Fall 2015

42

External Merge-Sort: Step 1

 Phase one: load M bytes in memory, sort

> >
M~ @ @
—— =
| |
| | | |
\—/ \._/
Disk Main memory Disk

Runs of length M bytes

Basic Terminology

* Merging multiple runs to produce a
longer run:
, 14, 33, 88, 92, 192, 322
, 43, 78, 103, 523
, 9,12, 33, 52, 88, 320

Output:
0,1,2,4,6,7,7

CSEP544 - Fall 2015

44

External Merge-Sort: Step 2

 Merge M — 1 runs into a new run
« Result: runs of length M (M — 1)= M?

ﬁZ:::::?////»Input1 S
| |
| ! “|nput2 2/ Qutput H—' '
|] - e e / | I
[7|InputM —
Disk Main memory Disk

If B <= M? then we are done

Cost of External Merge Sort

* Read+write+read = 3B(R)

« Assumption: B(R) <= M?

CSEP544 - Fall 2015

46

External Merge-Sort

[Can increase to length 2M using “replacement selection”l

I‘allmg snow

llllllilllllll

e Total length of the road >

Group-by

Group-by: v, sump) (R)
* |ldea: do a two step merge sort, but
change one of the steps

« Question in class: which step needs to
be changed and how ?

Cost = 3B(R)
Assumption: B(6(R)) <= M?

JOINR X S
e How?....

Merge-Join

CSEP544 - Fall 2015

49

Merge-Join

JoIn R X S

» Step 1a: initial runs for R
« Step 1b: initial runs for S
» Step 2: merge and join

CSEP544 - Fall 2015

50

Merge-Join

| Input 1

\

"I Input 2

Input M

Main memory

Output

-

M, = B(R)/M runs for R
M, = B(S)/M runs for S

Merge-join M, + M, runs;

need M, + M, <=M

Partitioned Hash Algorithms

|dea:

* If B(R) > M, then partition it into smaller files:
R1, R2,R3, ..., Rk

« Assuming B(R1)=B(R2)=...= B(Rk), we have
B(Ri) = B(R)/k

* Goal: each Ri should fit in main memory:
B(Ri) <M

How big can k be ?

Partitioned Hash Algorithms

 l|dea: partition a relation R into M-1 buckets, on disk
« Each bucket has size approx. B(R)/(M-1) = B(R)/M

B(R)

Relation

S

R

INPUT

~
Disk

> fup\ac%%n

OUTPUT
1

Partitions
e

2

00 ¢

h M-1

[

M main memory buffers

—
Disk

M-1

Assumption:

B(RYM <M, ie.B(R)<M?

Grouping

* v(R) = grouping and aggregation

Step 1. Partition R into buckets

Step 2. Apply y to each bucket (may
read in main memory)

Cost: 3B(R)
Assumption: B(R) < M?

CSEP544 - Fall 2015

94

Grace-Join

Note: grace-join is
also called
partitioned hash-join I

RNXS

CSEP544 - Fall 2015 95

Grace-Join

Note: grace-join is
also called
partitioned hash-join I

RNXS

o Step 1:
— Hash S into M buckets
— send all buckets to disk

¢ Step 2
— Hash R into M buckets
— Send all buckets to disk

¢ Step 3

— Join every pair of buckets

CSEP544 - Fall 2015 56

Grace-Join

Partition both relations
using hash fn h: R tuples
in partition i will only
match S tuples in partition
.

Original

Relation

INPUT

.
>

hash
function

h

OUTPUT
1

Partitions
e

2

00§

M-1

Disk B main memory buffers

M-1

Grace-Join

Partition both relations
using hash fn h: R tuples
in partition i will only
match S tuples in partition
.

Read in a partition
of R, hash it using
h2 (<> h!). Scan
matching partition of
S, search for
matches.

Original

Partitions
e

Join Result

Y

Relation OUTPUT
1
INPUT 2
hash
> function
00 ¢
| | | | |] h M_1
~
Disk B main memory buffers
Partitions
of R&S .
—— Hash table for partition
hash Si (< M-1 pages)
fn
h2 N o 0 0
— .
Input buffer Output
for Ri buffer
N~

B main memory buffers Disk

Grace Join

» Cost: 3B(R) + 3B(S)
« Assumption: min(B(R), B(S)) <= M?

CSEP544 - Fall 2015

59

Hybrid Hash Join Algorithm

 Partition S into k buckets

t buckets S, , ..., S; stay in memory
k-t buckets S, 4, ..., S, to disk

* Partition R into k buckets

— First t buckets join immediately with S
— Rest k-t buckets go to disk

* Finally, join k-t pairs of buckets:
(Re+1:5¢41)s (Ris2:Su2),) (RiS¢)

Hybrid Hash Join Algorithm

 Partition S into k buckets

t buckets S, , ..., S; stay in memory
k-t buckets S, 4, ..., S, to disk

* Partition R into k buckets

— First t buckets join immediately with
— Rest k-t buckets go to disk

* Finally, join k-t pairs of buckets:
(Re+1:5¢41)s (Ris2:Su2),) (RiS¢)

Shapiro’s notation:
1/(B+1) = t/k in main memory
B/(B+1) = (k-t)/k go to disk

Hybrid Hash Join Algorithm

Original
Relation

———

~
Disk

1
Partitions
2 e
t o ¢ 9
INPUT
h
> t+1
//'
Ilo o 0
v

B main memory buffers

Disk

t+1

Hybrid Join Algorithm

e How to choose k and t ?

— Choose k large but s.t. k<=M
— Choose t/k large but s.t. t’/k * B(S) <=M
— Moreover: t’/k * B(S) + k-t<=M

« Assuming t/k * B(S) >> k-t: t’/k = M/B(S)

Hybrid Join Algorithm

Cost of Hybrid Join:

« Grace join: 3B(R) + 3B(S)

* Hybrid join:
— Saves 2 I/Os for t/k fraction of buckets
— Saves 2t/k(B(R) + B(S)) 1/Os

— Cost:
(3-2t/k)(B(R) + B(S)) = (3-2M/B(S))(B(R) + B(S))

Hybrid Join Algorithm

« Question in class: what is the
advantage of the hybrid algorithm ?

Summary of External Join

Algorithms
» Block Nested Loop: B(S) + B(R)*B(S)/M

* Index Join: B(R) + T(R)B(S)/V(S,a)

» Partitioned Hash: 3B(R)+3B(S);
— min(B(R),B(S)) <= M2

* Merge Join: 3B(R)+3B(S)
— B(R)+B(S) <= M?

Outline of the Lecture

* Physical operators: join, group-by

« Query execution: pipeline, iterator model

 Database statistics

CSEP544 - Fall 2015 67

lterator Interface

Each operator implements this interface

« open()
— Initializes operator state
— Sets parameters such as selection condition

« get _next()
— Operator invokes get_next() recursively on its inputs
— Performs processing and produces an output tuple

« close(): cleans-up state

Product(pid, name, price)
Purchase(pid, cid, store)

1. Nested Loop Join

for x in Product do {
for y in Purchase do {
if (x.pid == y.pid) output(x,y);

J

Product = outer relation When is it more efficient
Purhcase = {'nner relation to iterate first over Purchase,
Note: sometimes then over Product?

terminology is switched

It's more complicated...

« Each operator implements this interface

« open()
« get _next()

« close()

CSEP544 - Fall 2015

70

Product(pid, name, price)
Purchase(pid, cid, store)

Main Memory Nested Loop Join

open (){ get_next() {
Product.open(); repeat {
Purchase.open(); y = Purchase.get_next();
x = Product.get_next(); if (y == NULL)

) { Purchase.close();

Purchase.open();
X = Product.get_next();
if (x== NULL) return NULL;
y = Purchase.get_next();
}
until (x.pid == y.pid);
return (x,y)

close () {
Product.close ();
Purchase.close ();

}

}

ALL operators need to be implemented this way !

Product(pid, name, price)
Purchase(pid, cid, store)

2. Hash Join (main memory)

Build
@or X in Product do insert(x.pid, x);
for y in Purchase do { Probe
ys = find(y.pid); phase

fory in ys do { output(x,y); }

)

Product=outer
Purchase=inner

M Recall: need to rewrite as open, get next, close

Product(pid, name, price)
Purchase(pid, cid, store)

3. Merae Join (main memory)

= sort(Product, pid);
= sort(Purchase, pid);

Product1
Purchase

x=Product1.get_next();
y=Purchase1.get_next();

While (x!=NULL and y!'=NULL) {

case:
X.pid < y.pid: x = Product1.get next()
X.pid > y.pid: y = Purchase1.get next()
X.pid == y.pid { output(x,y);

y = Purchase1.get_next();

}

Product(pid, name, price)
Purchase(pid, cid, store)

Physical Query Plan

(On the fly) IT hame price
(On the fly) O name='Gizmo’ astore =‘GizmoMart
(Nested loop) pid>=pid<
TN
Product Purchase

(File scan) (File scan)

Pipelined Execution

* Applies parent operator to tuples directly as
they are produced by child operators

» Benefits
— No operator synchronization issues
— Saves cost of writing intermediate data to disk
— Saves cost of reading intermediate data from disk
— Good resource utilizations on single processor

* This approach is used whenever possible

CSEP544 - Fall 2015 75

Product(pid, name, price)
Purchase(pid, cid, store)

Physical Query Plan

IT

name,price

(On the fly)

O

(Materialize to T1)

name='‘Gizmo’ astore =‘GizmoMart’

(Sort-merge join) pidE pidj

N

Product Purchase

(File scan) (File scan)

Intermediate Tuple
Materialization

Writes the results of an operator to an
Intermediate table on disk

No direct benefit but
Necessary data is larger than main memory

Necessary when operator needs to examine
the same tuples multiple times

CSEP544 - Fall 2015 77

Outline of the Lecture

* Physical operators: join, group-by

* Query execution: pipeline, iterator model

» Database statistics
— Partially based on Graphical Models paper

CSEP544 - Fall 2015 78

Database Statistics

* Collect statistical summaries of stored data
« Estimate size (=cardinality), bottom-up

« Estimate cost by using the estimated size

CSEP544 - Fall 2015

79

Database Statistics

Number of tuples = cardinality
Indexes: number of keys in the index

Number of physical pages, clustering info

Statistical information on attributes

— Min value, max value, number distinct values

— Histograms
Correlations between columns

Collection approach: periodic, using sampling

80

Size Estimation Problem

S = SELECT list
FROM R1,...,Rn
WHERE cond,; AND cond, AND . . . AND cond,

Given T(R1), T(R2), ..., T(Rn)
Estimate T(S)

How can we do this ? Note: doesn’t have to be exact.

CSEP544 - Fall 2015 81

Size Estimation Problem

S = SELECT list
FROM R1,...,Rn
WHERE cond,; AND cond, AND . . . AND cond,

Remark: T(S) = T(R1) x T(R2) x ... x T(Rn)

CSEP544 - Fall 2015 82

Selectivity Factor

« Each condition cond reduces the size
by some factor called selectivity factor

* Assuming independence, multiply the
selectivity factors

CSEP544 - Fall 2015 83

Example

R(A,B) SELECT *
S(B,C) FROMR, S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40

T(R) = 30k, T(S) =200k, T(T) = 10k

Selectivity of R.B=S.B is 1/3
Selectivity of S.C=T.Cis 1/10
Selectivity of R A<40is %

What is the estimated size of the query output ?

CSEP544 - Fall 2015 84

Example

R(A,B) SELECT *
S(B,C) FROMR, S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40

T(R) = 30k, T(S) =200k, T(T) =10k
Selectivity of R.B=S.B is 1/3
Selectivity of S.C=T.Cis 1/10
Selectivity of R A<40is %

What is the estimated size of the query output ?

Discussion: Paper

What is the probability space?

S = SELECT list
FROM R, asxq, ..., R as x,
WHERE Cond -- a conjunction of predicates

Discussion: Paper

What is the probability space?

S = SELECT list
FROM R, asxq, ..., R as x,
WHERE Cond -- a conjunction of predicates

(X4, Xp, ..., X,), drawn randomly, independently from Ry, ..., R,
Pr(R,.A =40) = prob. that random tuple in R, has A=40

Descriptive attribute Join indicator (in class...)

Pr(R;.A=40 and Jg45-roc and R,.D = 90) = prob. that ...

E[[SELECT ... WHERE Cond|] = Pr(Cond) * T(R,) * T(R,) * ... * T(R,)

Discussion: Paper

What is the probability space?

S = SELECT list
FROM R, asxq, ..., R as x,
WHERE Cond -- a conjunction of predicates

What are the three simplifying assumptions?

Discussion: Paper

What is the probability space?

S = SELECT list
FROM R, asxq, ..., R as x,
WHERE Cond -- a conjunction of predicates

What are the three simplifying assumptions?

Uniform: Pr(R,,A="a’)=1/V(R,, A)

Attribute Indep.: Pr(R,,A="a’and R;.B="'b") =Pr(R,.A=a’) Pr(R,.B="0")

Join Indep.: Pr(R,,A="a’and Jg1g-roc) = Pr(R{.-A="a") Pr(Jg1g=roc)

Rule of Thumb

* |f selectivities are unknown, then:
selectivity factor = 1/10
[System R, 1979]

CSEP544 - Fall 2015

90

Using Data Statistics

e Conditionis A=c [/*value selectionon R */
— Selectivity = 1/V(R,A)

 Conditionis A<c /*range selectionon R */
— Selectivity = (c - Low(R, A))/(High(R,A) - Low(R,A))T(R)

« Conditionis A =8B "R Xp g S*/
— Selectivity = 1 / max(V(R,A),V(S,A))

— (will explain next)

CSEP544 - Fall 2015 91

Selectivity of Join Predicates

Assumptions:

« Containment of values: if V(R,A) <= V(§,B), then
the set of A values of R is included in the set of
B values of S

— Note: this indeed holds when A is a foreign key in R,
and BisakeyinS

* Preservation of values: for any other attribute C,
V(R M5 S, C) = V(R, C) (or V(S, C))

CSEP544 - Fall 2015 92

Selectivity of Join Predicates
Assume V(R,A) <= V(S,B)
+ Each tuple t in R joins with T(S)/V(S,B) tuple(s) in S
+ Hence T(R X,z S) = T(R) T(S) / V(S,B)

In general: T(R X,_5 S) = T(R) T(S) / max(V(R,A),V(S,B))

CSEP544 - Fall 2015 93

Selectivity of Join Predicates

Example:

« T(R)=10000, T(S)=20000
* V(R,A) =100, V(S,B) =200
* How large is R X,_g S 7

CSEP544 - Fall 2015

94

Histograms

» Statistics on data maintained by the
RDBMS

* Makes size estimation much more
accurate (hence, cost estimations are
more accurate)

CSEP544 - Fall 2015

95

Histograms
Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Gage=48(EmpO|yee) =7 Gage>28 and age<35(EmpO|yee) =7

CSEP544 - Fall 2015 96

Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Gage=48(EmpO|yee) =7 Gage>28 and age<35(EmpO|yee) =7

Age:

0..20

20..29

30-39

40-49

50-59

> 60

Tuples

200

800

5000

12000

6500

500

CSEP544 - Fall 2015

Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Gage=48(EmpO|yee) =7 Gage>28 and age<35(EmpO|yee) =7

Age:

0..20

20..29

30-39

40-49

50-59

> 60

Tuples

200

800

5000

12000

6500

500

Estimate = 1200

Estimate = 1*80 + 5*500 = 2580

Types of Histograms

 How should we determine the bucket
boundaries in a histogram ?

CSEP544 - Fall 2015

99

Types of Histograms

How should we determine the bucket
boundaries in a histogram ?

Eqg-Width

Eqg-Depth
Compressed
V-Optimal histograms

CSEP544 - Fall 2015 100

Employee(ssn, name, age)

Histograms
Eg-width:
Age: 0..20 20..29 30-39 40-49 50-59 > 60
Tuples 200 800 5000 12000 6500 500
Eqg-depth:
Age: 0..20 20..29 30-39 40-49 50-59 > 60
Tuples 1800 2000 2100 2200 1900 1800

Compressed: store separately highly frequent values: (48,1900)

V-Optimal Histograms

» Defines bucket boundaries in an optimal

way, to minimize the error over all point
gueries

« Computed rather expensively, using
dynamic programming

 Modern databases systems use V-
optimal histograms or some variations

CSEP544 - Fall 2015 102

Difficult Questions on Histograms

« Small number of buckets
— Hundreds, or thousands, but not more
— WHY ?

* Not updated during database update,
but recomputed periodically

— WHY ?

CSEP544 - Fall 2015 103

Multidimensional Histograms

Classical example:

SQL query: SELECT ... FROM ...
WHERE Person.city = ‘Seattle’ ...

User “optimizes” it to:

SELECT ... FROM ...
WHERE Person.city = ‘Seattle’
and Person.state = ‘WA

Big problem! (Why?)

Multidimensional Histograms

o Store distributions on two or more
attributes

» Curse of dimensionality: space grows
exponentially with dimension

* Paper: discusses using only two
dimensional histograms

CSEP544 - Fall 2015 105

Paper: Bayesian Networks

Pen(A, B, C, D, E) = P(E|D)P(D|B)P(CJ|A, B) P(A)P(B).

Paper: Bayesian Networks

Pen(A, B, C, D, E) = P(E|D)P(D|B)P(CJ|A, B) P(A)P(B).

P(A) P(B) P(EID)

W B (5 (W8 (& S
' a b ¢ Pla,b,c) by d 0.4

) b; d> 0.3
aj by Cl 0.25 by d, 0.15
aj b (o) 0.32 by d> 0.15
a by ¢ 0.01
P(C|A,B) P(D\B) ag by ¢ 012
a by ¢ 0.08 d e P(d.e)
ap by () 0.04
(a) (b) a b, c 0.1 (1| €] 0.7
an bg () 0.08 dl e 0.1

dy e 0.05
C1 [112=P(B) C [123=P(D) C3 (13 € 0.15

2
Fig. 1 A small graphical model of five binary random variables

= S - S —
¢,=P(A.B.C) 1z @, =P(B.D) z ¢,=P(D.E) A, B,C, D, E a Bayesian network. b Moral graph. ¢ Junction tree.
(C) d Clique potentials

Paper: Bayesian Networks

Pen(A, B, C, D, E) = P(E|D)P(D|B)P(CJ|A, B) P(A)P(B).

P(A) P(B) P(EID)

W B (5 (W8 (& S
' a b ¢ Pla,b,c) by d 0.4

bl (12 0.3

aj by Cy 0.25 by d 0.15
aj b (o) 0.32 by d> 0.15
aj by ¢ 0.01
P(C|A,B) P(D|B) a b 012
a by ¢ 0.08 d e Plde)
a; b () 0.04
(a) (b) a by ¢ 0.1 d €] 0.7
a by 0.08 d e 0.1
d e 0.05
C, u,,=P(B) C, p,,=P(D) C, b e 0.15

Fig. 1 A small graphical model of five binary random variables

= S - S —
¢,=P(A.B.C) 1z @, =P(B.D) z ¢,=P(D.E) A, B,C, D, E a Bayesian network. b Moral graph. ¢ Junction tree.
(C) d Clique potentials

P(A,B,C)P(B, D)

P(A,D) = Z P(B)

B,C

Paper Highlights

Universal table (what is it?)
Acyclic v.s. Cyclic Schemas
Within a table: tree-BN only
Join indicator: two parents only

Hence: acyclic schema - 2D-
histograms only in the junction tree

Simplifies construction, estimation

CSEP544 - Fall 2015 109

Next Lecture

Plan:
* Revisit Grace join after you read the paper

* Query optimization
« Latest results in optimal query processing

o Start Parallel DBs

