
CSEP 544: Lecture 04 
 

Query Execution 
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Announcements 

Homework 2: due on Friday 

Homework 3: 
•  We use AWS 
•  You need to get an access code: 

https://aws.amazon.com/education/
awseducate/members/  



Where We Are 

•  We have seen: 
– Disk organization = set of blocks(pages) 
– The buffer pool 
– How records are organized in pages 
–  Indexes, in particular B+ -trees 

•  Today: query execution, optimization 
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Steps of the Query Processor 

Parse & Rewrite SQL Query 

Select Logical Plan 

Select Physical Plan 

Query Execution 

Disk 

SQL query 

Query 
optimization 

Logical 
plan 

Physical 
plan 



Steps in Query Evaluation 
•  Step 0: Admission control 

–  User connects to the db with username, password 
–  User sends query in text format 

•  Step 1: Query parsing 
–  Parses query into an internal format 
–  Performs various checks using catalog 

•  Correctness, authorization, integrity constraints 

•  Step 2: Query rewrite 
–  View rewriting, flattening, etc. 
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Steps in Query Evaluation 

•  Step 3: Query optimization 
–  Find an efficient query plan for executing the query 

•  Step 4: Query execution 
–  Each operator has several implementation algorithms 
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SQL Query 

SELECT DISTINCT x.name, z.name 
FROM Product x, Purchase y, Customer z 
WHERE x.pid = y.pid and y.cid = y.cid and 
                x.price > 100 and z.city = ‘Seattle’ 

Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 



Logical Plan 

Product Purchase 

pid=pid 

price>100 and city=‘Seattle’ 

x.name,z.name 

δ

cid=cid 

Customer 

Π

σ

T1(pid,name,price,pid,cid,store) 

T2( . . . .) 

T4(name,name) 

Final answer 

T3(. . . ) 

Temporary tables 
T1, T2, . . . 

Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 



Logical v.s. Physical Plan 

•  Physical plan = Logical plan plus annotations 

•  Access path selection for each relation 
–  Use a file scan or use an index 

•  Implementation choice for each operator 

•  Scheduling decisions for operators 
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Logical Query Plan 

Product Purchase 

pid = pid 

σ name=‘Gizmo’ ∧store =‘GizmoMart’ 

Π name,price 

Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 



Physical Query Plan 

Product Purchase 

pid = pid 

σ name=‘Gizmo’ ∧store =‘GizmoMart’ 

Π name,price 

Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 

(File scan) (File scan) 

(Nested loop) 

(On the fly) 

(On the fly) 



Outline of the Lecture 

•  Physical operators: join, group-by 

•  Query execution: pipeline, iterator model 

•  Database statistics 
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Extended Algebra Operators 

•  Union ∪, difference -  
•  Selection  σ
•  Projection Π
•  Join ⨝ -- also: semi-join, anti-semi-join  
•  Rename ρ
•  Duplicate elimination δ
•  Grouping and aggregation γ
•  Sorting τ
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Basic RA 

ExtendedRA 



Sets v.s. Bags 

•  Sets: {a,b,c}, {a,d,e,f}, { }, . . . 
•  Bags: {a, a, b, c}, {b, b, b, b, b}, . . . 

Relational Algebra has two semantics: 
•  Set semantics (paper “Three languages…”) 
•  Bag semantics 
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Physical Operators 

Each of the logical operators may have one or 
more implementations = physical operators 

 
Will discuss several basic physical operators, 

with a focus on join 
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Main Memory Algorithms 
Logical operator: 
    Product(pid, name, price) ⨝pid=pid Purchase(pid, cid, store) 
Propose three physical operators for the join, assuming the 

tables are in main memory: 
1.    
2.    
3.    
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Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 



Main Memory Algorithms 
Logical operator: 
    Product(pid, name, price) ⨝pid=pid Purchase(pid, cid, store) 
Propose three physical operators for the join, assuming the 

tables are in main memory: 
1.  Nested Loop Join   O( ?? ) 
2.  Merge join    O( ?? ) 
3.  Hash join    O( ?? ) 
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Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 



Main Memory Algorithms 
Logical operator: 
    Product(pid, name, price) ⨝pid=pid Purchase(pid, cid, store) 
Propose three physical operators for the join, assuming the 

tables are in main memory: 
1.  Nested Loop Join   O(n2) 
2.  Merge join    O(n log n) 
3.  Hash join    O(n) … O(n2) 
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Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 



BRIEF Review of Hash Tables 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Separate chaining: 

h(x) = x mod 10 

A (naïve) hash function: 

503 103 

76 666 

48 

503 

Duplicates OK 
WHY ?? 

Operations: 

find(103) = ?? 
insert(488) = ?? 



BRIEF Review of Hash Tables 

•  insert(k, v) = inserts a key k with value v 

•  Many values for one key 
– Hence, duplicate k’s are OK 

•  find(k) = returns the list of all values v 
associated to the key k 

CSEP544 - Fall 2015 20 



External Memory Algorithms 
The cost of an operation = total number of I/Os 
Cost parameters (used both in the book and by Shapiro): 

•  B(R) = number of blocks for relation R  (Shapiro: |R|) 
•  T(R) = number of tuples in relation R 
•  V(R, a) = number of distinct values of attribute a 
•  M = size of main memory buffer pool, in blocks 

Facts: (1) B(R) << T(R): 
 (2) When a is a key, V(R,a) = T(R) 
      When a is not a key, V(R,a) << T(R) 



Cost of an Operator 

Assumption: runtime dominated by # of disk 
I/O’s;  will ignore the main memory part of 
the runtime 
•  If R (and S) fit in main memory, then we 

use a main-memory algorithm 
•  If R (or S) does not fit in main memory, 

then we use an external memory algorithm 



Ad-hoc Convention 

•  The operator reads the data from disk 
– Note: different from Shapiro 

•  The operator does not write the data 
back to disk (e.g.: pipelining) 

•  Thus: 

Any main memory join algorithms for R ⋈ S: Cost = B(R)+B(S)  

Any main memory grouping γ(R): Cost = B(R)  



Nested Loop Joins 
•  Tuple-based nested loop R ⋈ S 

 

•  Cost: T(R) B(S) 

for each tuple r in R do 
   for each tuple s in S do 
       if r and s join then output (r,s) 

R=outer relation 
S=inner relation 
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Examples 
M = 4 
•  Example 1: 

–  B(R) = 1000, T(R) = 10000 
–  B(S) = 2, T(S) = 20 
–  Cost = ? 

•  Example 2: 
–  B(R) = 1000, T(R) = 10000 
–  B(S) = 4, T(S) = 40 
–  Cost = ? 

Can you do better with nested loops? 

CSEP544 - Fall 2015 25 



Block-Based Nested-loop Join 

for each (M-2) blocks bs of S do 
   for each block br of R do 
         for each tuple s in bs 
              for each tuple r in br do 
                   if “r and s join” then output(r,s) 

Terminology alert: sometimes S is called S the inner relation 
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Block-Based Nested-loop Join 

for each (M-2) blocks bs of S do 
   for each block br of R do 
         for each tuple s in bs 
              for each tuple r in br do 
                   if “r and s join” then output(r,s) 

Terminology alert: sometimes S is called S the inner relation 

Why not M ? 
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Block-Based Nested-loop Join 

for each (M-2) blocks bs of S do 
   for each block br of R do 
         for each tuple s in bs 
              for each tuple r in br do 
                   if “r and s join” then output(r,s) 

Terminology alert: sometimes S is called S the inner relation 

Why not M ? 
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Better: main 
memory 
hash join 



Block Nested-loop Join 

. . . 
. . . 

R & S 
Hash table for block of S 

(M-2 pages) 

Input buffer for R Output buffer 

. . . 

Join Result 
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Examples 
M = 4 
•  Example 1: 

–  B(R) = 1000, T(R) = 10000 
–  B(S) = 2, T(S) = 20 
–  Cost = B(S) + B(R) = 1002 

•  Example 2: 
–  B(R) = 1000, T(R) = 10000 
–  B(S) = 4, T(S) = 40 
–  Cost = B(S) + 2B(R) = 2004 

Note: T(R) and 
T(S) are irrelevant 
here. 
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Cost of Block Nested-loop Join 

•  Read S once: cost B(S) 
•  Outer loop runs B(S)/(M-2) times, and 

each time need to read R: costs 
B(S)B(R)/(M-2) 

Cost = B(S)  +  B(S)B(R)/(M-2) 
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Index Based Selection 

SELET * 
FROM Movie 
WHERE id = ‘12345’ 

Recall IMDB; assume indexes on Movie.id, Movie.year 

SELET * 
FROM Movie 
WHERE year = ‘1995’ 

B(Movie) = 10k 
T(Movie) = 1M 

What is your estimate 
of the I/O cost ? 
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Index Based Selection 

Selection on equality: σa=v(R) 

•  Clustered index on a:  cost ? 

•  Unclustered index : cost ? 
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Index Based Selection 

Selection on equality: σa=v(R) 

•  Clustered index on a:  cost B(R)/V(R,a) 

•  Unclustered index : cost T(R)/V(R,a) 
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Index Based Selection 

Selection on equality: σa=v(R) 

•  Clustered index on a:  cost B(R)/V(R,a) 

•  Unclustered index : cost T(R)/V(R,a) 
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Note: we assume that the cost of reading the index = 0 
Why? 



Index Based Selection 
•  Example: 

•  Table scan: 
–  B(R) = 10k I/Os 

•  Index based selection: 
–  If index is clustered: B(R)/V(R,a) = 100 I/Os 
–  If index is unclustered: T(R)/V(R,a) = 10000 I/Os 

B(R) = 10k 
T(R) = 1M 
V(R, a) = 100 

cost of σa=v(R) = ? 

Rule of thumb:  
don’t build unclustered indexes when V(R,a) is small ! 



Index Based Join 

•  R  ⨝  S 
•  Assume S has an index on the join 

attribute 
for each tuple r in R do 
   lookup the tuple(s) s in S using the index 

output (r,s) 
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Index Based Join 

Cost: 

•  If index is clustered: 
•  If unclustered: 
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Index Based Join 

Cost: 

•  If index is clustered: B(R) + T(R)B(S)/V(S,a) 
•  If unclustered:          B(R) + T(R)T(S)/V(S,a) 
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Operations on Very Large 
Tables 

•  Compute R ⋈ S when each is larger 
than main memory 

•  Two methods: 
– Partitioned hash join (many variants) 
– Merge-join 

•  Similar for grouping 



External Sorting 

•  Problem: 
•  Sort a file of size B with memory M 
•  Where we need this:  

– ORDER BY in SQL queries 
– Several physical operators 
– Bulk loading of B+-tree indexes.  

•  Will discuss only 2-pass sorting, when B < M2 
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Basic Terminology 

•  A run in a sequence is an increasing 
subsequence 

•  What are the runs? 
 
2, 4, 99, 103, 88, 77, 3, 79, 100, 2, 50 
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External Merge-Sort: Step 1 

•  Phase one: load M bytes in memory, sort 

Disk Disk 

. . 

. 
. . . 

 
M 

Main memory 

Runs of length M bytes 



Basic Terminology 

•  Merging multiple runs to produce a 
longer run: 
0, 14, 33, 88, 92, 192, 322 
2, 4, 7, 43, 78, 103, 523 
1, 6, 9, 12, 33, 52, 88, 320 
 
Output: 
0, 1, 2, 4, 6, 7, ? 
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External Merge-Sort: Step 2 

•  Merge M – 1 runs into a new run 
•  Result: runs of length M (M – 1)≈ M2 
 

Disk Disk 

. . 

. 
. . . 

Input M 

Input 1 

Input 2 
. . . . 

Output 

Main memory 

If B <= M2  then we are done 



Cost of External Merge Sort 

• Read+write+read = 3B(R) 

• Assumption: B(R) <= M2 
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External Merge-Sort 
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Can increase to length 2M using “replacement selection” 



Group-by 

Group-by: γa, sum(b) (R) 
•  Idea: do a two step merge sort, but 

change one of the steps 

•  Question in class: which step needs to 
be changed and how ? 

Cost = 3B(R) 
Assumption: B(δ(R)) <= M2 



Merge-Join 

Join R ⨝ S 
•  How?.... 
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Merge-Join 

Join R ⨝ S 
•  Step 1a: initial runs for R 
•  Step 1b: initial runs for S 
•  Step 2: merge and join 
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Merge-Join 

 

Main memory 
Disk Disk 

. . 

. 
. . . 

Input M 

Input 1 

Input 2 
. . . . 

Output 

M1  = B(R)/M runs for R 
M2  = B(S)/M runs for S 
Merge-join M1  + M2  runs;  
need M1  + M2 <= M 



Partitioned Hash Algorithms 

Idea: 
•  If B(R) > M, then partition it into smaller files: 

 R1, R2, R3, …, Rk 

•  Assuming B(R1)=B(R2)=…= B(Rk), we have 
 B(Ri) = B(R)/k 

•  Goal:  each Ri should fit in main memory:  
 B(Ri) ≤ M 

How big can k be ? 



Partitioned Hash Algorithms 
•  Idea: partition a relation R into M-1 buckets, on disk 
•  Each bucket has size approx. B(R)/(M-1) ≈ B(R)/M 

M main memory buffers Disk Disk 

Relation R 
OUTPUT 

2 INPUT 

1 

hash function 
h M-1 

Partitions 

1 

2 

M-1 
. . . 

1 

2 

B(R) 

Assumption:     B(R)/M ≤ M,   i.e. B(R) ≤ M2 



Grouping

•  γ(R) = grouping and aggregation 
•  Step 1. Partition R into buckets 
•  Step 2. Apply γ to each bucket (may 

read in main memory) 

•  Cost: 3B(R) 
•  Assumption: B(R) ≤ M2 

CSEP544 - Fall 2015 54 



Grace-Join 

R ⨝ S 
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Note: grace-join is 
also called 

partitioned hash-join 



Grace-Join 

R ⨝ S 
•  Step 1: 

–  Hash S into M buckets 
–  send all buckets to disk 

•  Step 2 
–  Hash R into M buckets 
–  Send all buckets to disk 

•  Step 3 
–  Join every pair of buckets 
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Note: grace-join is 
also called 

partitioned hash-join 



Grace-Join 
•  Partition both relations 

using hash fn h:  R tuples 
in partition i will only 
match S tuples in partition 
i. 

B main memory buffers Disk Disk 

Original  
Relation OUTPUT 

2 INPUT 

1 

hash function 
h M-1 

Partitions 

1 

2 

M-1 
. . . 



Grace-Join 
•  Partition both relations 

using hash fn h:  R tuples 
in partition i will only 
match S tuples in partition 
i. 

❖  Read in a partition 
of R, hash it using 
h2 (<> h!). Scan 
matching partition of 
S, search for 
matches. 

Partitions 
of R & S 

Input buffer 
for Ri 

Hash table for partition 
Si ( < M-1 pages) 

B main memory buffers Disk 

Output  
 buffer 

Disk 

Join Result 

hash 
fn 
h2 

h2 

B main memory buffers Disk Disk 

Original  
Relation OUTPUT 

2 INPUT 

1 

hash function 
h M-1 

Partitions 

1 

2 

M-1 
. . . 



Grace Join 

•  Cost: 3B(R) + 3B(S) 
•  Assumption: min(B(R), B(S)) <= M2 
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Hybrid Hash Join Algorithm 

•  Partition S into k buckets 
t buckets S1 , …, St stay in memory 
k-t buckets St+1, …, Sk to disk 

•  Partition R into k buckets 
– First t buckets join immediately with S  
– Rest k-t buckets go to disk 

•  Finally, join k-t pairs of buckets: 
(Rt+1,St+1), (Rt+2,St+2), …, (Rk,Sk) 



Hybrid Hash Join Algorithm 

•  Partition S into k buckets 
t buckets S1 , …, St stay in memory 
k-t buckets St+1, …, Sk to disk 

•  Partition R into k buckets 
– First t buckets join immediately with S  
– Rest k-t buckets go to disk 

•  Finally, join k-t pairs of buckets: 
(Rt+1,St+1), (Rt+2,St+2), …, (Rk,Sk) 

Shapiro’s notation: 
1/(B+1) = t/k in main memory 
B/(B+1) = (k-t)/k go to disk 



Hybrid Hash Join Algorithm 

B main memory buffers Disk Disk 

Original  
Relation 

2 

INPUT 

1 

h 

k 

Partitions 

t+1 

k 

. . . 
t 

t+1 



Hybrid Join Algorithm 

•  How to choose k and t ? 
–  Choose k large but s.t.            k <= M 
–  Choose t/k large but s.t.        t/k * B(S) <= M 
–  Moreover:                           t/k * B(S) + k-t <= M 

•  Assuming t/k * B(S) >> k-t:     t/k = M/B(S) 



Hybrid Join Algorithm 

Cost of Hybrid Join: 
•  Grace join: 3B(R) + 3B(S) 
•  Hybrid join: 

–  Saves 2 I/Os for t/k fraction of buckets 
–  Saves   2t/k(B(R) + B(S))   I/Os 
–  Cost:  

(3-2t/k)(B(R) + B(S)) =     (3-2M/B(S))(B(R) + B(S))  



Hybrid Join Algorithm 

•  Question in class: what is the 
advantage of the hybrid algorithm ? 



Summary of External Join 
Algorithms 

•  Block Nested Loop: B(S) + B(R)*B(S)/M 

•  Index Join: B(R) + T(R)B(S)/V(S,a) 

•  Partitioned Hash: 3B(R)+3B(S); 
– min(B(R),B(S)) <= M2 

•  Merge Join: 3B(R)+3B(S) 
– B(R)+B(S) <= M2 



Outline of the Lecture 

•  Physical operators: join, group-by 

•  Query execution: pipeline, iterator model 

•  Database statistics 
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Iterator Interface 
Each operator implements this interface 

•  open() 
–  Initializes operator state 
–  Sets parameters such as selection condition 

•  get_next() 
–  Operator invokes get_next() recursively on its inputs 
–  Performs processing and produces an output tuple 

•  close(): cleans-up state 



1. Nested Loop Join 

for x in Product do { 
   for  y in Purchase do { 
        if (x.pid == y.pid) output(x,y); 
   } 
}  

Product = outer relation 
Purhcase = inner relation 
Note: sometimes  
terminology is switched 

When is it more efficient 
to iterate first over Purchase, 
then over Product? 

Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 



It’s more complicated… 
•  Each operator implements this interface 
•  open() 
•  get_next() 
•  close() 
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Main Memory Nested Loop Join 
open ( ) { 
   Product.open( ); 
   Purchase.open( );  
   x = Product.get_next( );  
} 

get_next( ) { 
   repeat {  
      y = Purchase.get_next( ); 
      if (y == NULL)  
         { Purchase.close(); 

       Purchase.open( ); 
           x = Product.get_next( ); 
            if (x== NULL) return NULL; 
            y = Purchase.get_next( ); 
          } 
   until (x.pid == y.pid); 
   return (x,y) 
} 

close ( ) { 
   Product.close ( ); 
   Purchase.close ( );   
} 

ALL operators need to be implemented this way ! 

Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 



2.  Hash Join (main memory) 
for x in Product do  insert(x.pid, x); 
 
for y in Purchase do { 
   ys = find(y.pid); 
   for y in ys do { output(x,y); } 
} 

Recall: need to rewrite as open, get_next, close 

Build 
phase 

Probe 
phase 

Product=outer  
Purchase=inner 

Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 



3.  Merge Join (main memory) 
Product1  = sort(Product, pid); 
Purchase1  = sort(Purchase, pid); 
 
x=Product1.get_next();  
y=Purchase1.get_next(); 
 
While (x!=NULL and y!=NULL) { 
    case: 
       x.pid < y.pid:    x = Product1.get_next( ); 
       x.pid > y.pid:    y = Purchase1.get_next(); 
       x.pid == y.pid { output(x,y); 
                                   y = Purchase1.get_next(); 
                                  } 
} 

Why ??? 

Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 



Physical Query Plan 

Product Purchase 

pid = pid 

σ name=‘Gizmo’ ∧store =‘GizmoMart’ 

Π name,price 

Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 

(File scan) (File scan) 

(Nested loop) 

(On the fly) 

(On the fly) 



Pipelined Execution 

•  Applies parent operator to tuples directly as 
they are produced by child operators 

•  Benefits 
–  No operator synchronization issues 
–  Saves cost of writing intermediate data to disk 
–  Saves cost of reading intermediate data from disk 
–  Good resource utilizations on single processor 

•  This approach is used whenever possible 
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Physical Query Plan 

Product Purchase 

pid = pid 

σ name=‘Gizmo’ ∧store =‘GizmoMart’ 

Π name,price 

Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 

(File scan) (File scan) 

(Sort-merge join) 

(On the fly) 

(Materialize to T1) 



Intermediate Tuple 
Materialization 

•  Writes the results of an operator to an 
intermediate table on disk 

•  No direct benefit but 
•  Necessary data is larger than main memory 
•  Necessary when operator needs to examine 

the same tuples multiple times 
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Outline of the Lecture 

•  Physical operators: join, group-by 

•  Query execution: pipeline, iterator model 

•  Database statistics 
– Partially based on Graphical Models paper 
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Database Statistics 

•  Collect statistical summaries of stored data 

•  Estimate size (=cardinality), bottom-up 

•  Estimate cost by using the estimated size 
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Database Statistics 

•  Number of tuples = cardinality 
•  Indexes: number of keys in the index 
•  Number of physical pages, clustering info 
•  Statistical information on attributes 

–  Min value, max value, number distinct values 
–  Histograms 

•  Correlations between columns 

Collection approach: periodic, using sampling 



Size Estimation Problem 
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S = SELECT list 
       FROM    R1, …, Rn  
       WHERE cond1 AND cond2 AND . . . AND condk 

Given T(R1), T(R2), …, T(Rn) 
Estimate T(S) 

How can we do this ?  Note: doesn’t have to be exact. 



Size Estimation Problem 
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Remark: T(S) ≤  T(R1) × T(R2) × … × T(Rn) 

S = SELECT list 
       FROM    R1, …, Rn  
       WHERE cond1 AND cond2 AND . . . AND condk 



Selectivity Factor 

•  Each condition cond reduces the size 
by some factor called selectivity factor 

•  Assuming independence, multiply the 
selectivity factors 
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Example 
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SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 

R(A,B) 
S(B,C) 
T(C,D) 

T(R) = 30k,  T(S) = 200k, T(T) = 10k 
 
Selectivity of R.B = S.B  is 1/3 
Selectivity of S.C = T.C is 1/10 
Selectivity of R.A < 40 is ½ 
 
What is the estimated size of the query output ? 



Example 
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SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 

R(A,B) 
S(B,C) 
T(C,D) 

T(R) = 30k,  T(S) = 200k, T(T) = 10k 
 
Selectivity of R.B = S.B  is 1/3 
Selectivity of S.C = T.C is 1/10 
Selectivity of R.A < 40 is ½ 
 
What is the estimated size of the query output ? 

30k * 200k * 10k * 1/3 * 1/10 * ½  
= 1TB 



Discussion: Paper 

S = SELECT list 
       FROM    R1 as x1, …, Rk as xk 
       WHERE Cond  -- a conjunction of predicates 

What is the probability space? 



Discussion: Paper 

(x1, x2, …, xk), drawn randomly, independently from R1, ..., Rk 

Pr(R1.A = 40)  = prob. that random tuple in R1 has A=40  
 
 
Pr(R1.A = 40 and JR1.B = R2.C and R2.D = 90) = prob. that … 
 
 
E[ |SELECT ... WHERE Cond| ] = Pr(Cond) * T(R1) * T(R2) * ... * T(Rk) 

What is the probability space? 

S = SELECT list 
       FROM    R1 as x1, …, Rk as xk 
       WHERE Cond  -- a conjunction of predicates 

Join indicator (in class…) Descriptive attribute 



Discussion: Paper 
What is the probability space? 

What are the three simplifying assumptions? 

S = SELECT list 
       FROM    R1 as x1, …, Rk as xk 
       WHERE Cond  -- a conjunction of predicates 



Discussion: Paper 
What is the probability space? 

What are the three simplifying assumptions? 

Uniform:  Pr(R1.A = ‘a’) = 1/V(R1, A) 
 
Attribute Indep.: Pr(R1.A = ‘a’ and R1.B = ‘b’ ) = Pr(R1.A = ‘a’) Pr(R1.B = ‘b’ ) 
 
Join Indep.:  Pr(R1.A = ‘a’ and JR1.B = R2.C) = Pr(R1.A = ‘a’) Pr(JR1.B = R2.C)  

S = SELECT list 
       FROM    R1 as x1, …, Rk as xk 
       WHERE Cond  -- a conjunction of predicates 



Rule of Thumb 

•  If selectivities are unknown, then: 
selectivity factor = 1/10   
[System R, 1979] 
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Using Data Statistics 

•  Condition is A = c     /* value selection on R */ 
–  Selectivity  = 1/V(R,A) 

•  Condition is A < c      /* range selection on R */ 
–  Selectivity = (c - Low(R, A))/(High(R,A) - Low(R,A))T(R) 

•  Condition is A = B                         /* R ⨝A=B S */ 
–  Selectivity = 1 / max(V(R,A),V(S,A)) 
–  (will explain next) 
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Selectivity of Join Predicates 

Assumptions: 
•  Containment of values: if V(R,A) <= V(S,B), then 

the set of A values of R is included in the set of 
B values of S 
–  Note: this indeed holds when A is a foreign key in R, 

and B is a key in S 

•  Preservation of values: for any other attribute C,  
V(R ⨝A=B S, C) = V(R, C)   (or V(S, C)) 
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Selectivity of Join Predicates 
Assume V(R,A) <= V(S,B) 

•  Each tuple t in R joins with T(S)/V(S,B) tuple(s) in S 

•  Hence T(R ⨝A=B S) = T(R) T(S) / V(S,B) 

In general: T(R ⨝A=B S) = T(R) T(S) / max(V(R,A),V(S,B)) 
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Selectivity of Join Predicates 

Example: 
•  T(R) = 10000,  T(S) = 20000 
•  V(R,A) = 100,  V(S,B) = 200 
•  How large is R ⨝A=B S  ? 
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Histograms 

•  Statistics on data maintained by the 
RDBMS 

•  Makes size estimation much more 
accurate (hence, cost estimations are 
more accurate) 
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Histograms 
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Employee(ssn, name, age) 

T(Employee) = 25000,  V(Empolyee, age) = 50 
min(age) = 19,  max(age) = 68 

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ? 



Histograms 
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Age: 0..20 20..29 30-39 40-49 50-59 > 60 

Tuples 200 800 5000 12000 6500 500 

Employee(ssn, name, age) 

T(Employee) = 25000,  V(Empolyee, age) = 50 
min(age) = 19,  max(age) = 68 

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ? 



Histograms 
Employee(ssn, name, age) 

T(Employee) = 25000,  V(Empolyee, age) = 50 
min(age) = 19,  max(age) = 68 

Estimate = 1200 Estimate = 1*80 + 5*500 = 2580 

Age: 0..20 20..29 30-39 40-49 50-59 > 60 

Tuples 200 800 5000 12000 6500 500 

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ? 



Types of Histograms 

•  How should we determine the bucket 
boundaries in a histogram ? 
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Types of Histograms 

•  How should we determine the bucket 
boundaries in a histogram ? 

•  Eq-Width 
•  Eq-Depth 
•  Compressed 
•  V-Optimal histograms 
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Histograms 

Age: 0..20 20..29 30-39 40-49 50-59 > 60 

Tuples 200 800 5000 12000 6500 500 

Employee(ssn, name, age) 

Age: 0..20 20..29 30-39 40-49 50-59 > 60 

Tuples 1800 2000 2100 2200 1900 1800 

Eq-width: 

Eq-depth: 

Compressed: store separately highly frequent values: (48,1900) 



V-Optimal Histograms 

•  Defines bucket boundaries in an optimal 
way, to minimize the error over all point 
queries 

•  Computed rather expensively, using 
dynamic programming 

•  Modern databases systems use V-
optimal histograms or some variations 
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Difficult Questions on Histograms 

•  Small number of buckets 
– Hundreds, or thousands, but not more 
– WHY ? 

•  Not updated during database update, 
but recomputed periodically 
– WHY ?  
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Multidimensional Histograms 
Classical example: 

SQL query:  SELECT …  FROM    … 
WHERE  Person.city = ‘Seattle’ … 

User “optimizes” it to:  

SELECT …  FROM    … 
WHERE  Person.city = ‘Seattle’ 
        and Person.state = ‘WA’ 

Big problem!  (Why?) 



Multidimensional Histograms 

•  Store distributions on two or more 
attributes 

•  Curse of dimensionality: space grows 
exponentially with dimension 

•  Paper: discusses using only two 
dimensional histograms 
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Paper: Bayesian Networks 
PBN(A, B, C, D, E) = P(E|D)P(D|B)P(C|A, B) P(A)P(B). 



Paper: Bayesian Networks 
PBN(A, B, C, D, E) = P(E|D)P(D|B)P(C|A, B) P(A)P(B). 



Paper: Bayesian Networks 
PBN(A, B, C, D, E) = P(E|D)P(D|B)P(C|A, B) P(A)P(B). 



Paper Highlights 

•  Universal table (what is it?) 
•  Acyclic v.s. Cyclic Schemas 
•  Within a table: tree-BN only 
•  Join indicator: two parents only 
•  Hence: acyclic schema à 2D-

histograms only in the junction tree 
•  Simplifies construction, estimation 
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Next Lecture 

Plan:  
•  Revisit Grace join after you read the paper 

•  Query optimization 

•  Latest results in optimal query processing 

•  Start Parallel DBs 


