CSEP 544: Lecture 02

Relational Query Languages and Database Design

Homework 1

- Due next Tuesday, October 20, 11pm
- Please note update using SQL Azure

 Use shared account (login in your email)
 Database is already there, just run queries
- Create your own SQL Azure instance
 - Extra credit in HW1
 - Required for HW4

Homework 3

I know it's far into the future, but...

• We will use Amazon Web Service

 You need to get a \$100 student's pass <u>http://aws.amazon.com/grants</u>

- Use your uw.edu email address

Brief Review of 1st Lecture

- Database = collection of related files
- Physical data independence
- SQL:
 - Select-from-where
 - Nested loop semantics
 - Group by (you read the slides, right?)
 - Advanced stuff: nested queries, outerjoins

What is it?

What is it?

- Gartner report*
 - High Volume
 - High Variety
 - High Velocity

* <u>http://www.gartner.com/newsroom/id/1731916</u>

What is it? Stonebraker:

- Big volumes, small analytics
- Big analytics, on big volumes
- Big velocity
- Big variety

- "Small analytics" = select/join/aggregate/groupby
 - Discuss: column-oriented databases, shared-nothing, Hive/ Hadoop
- "Big analytics" = linear algebra (R, ScalaPack)
 - Discuss: Sparse matrix multiplication = join/groupby
- High velocity = streaming data
 - Discuss: Streaming SQL engines, e.g. Microsoft's Trill
- High variety = heterogeneous data models (XML, documents)
 - Discuss: ETL ("Extract Transform Load")

Outline

Relational Query Languages

- Relational algebra

- Recursion-free datalog with negation
- Relational calculus
- Database Design
- Functional Dependencies and BCNF

 Suggested reading: *Three Query Language Formalisms* <u>https://courses.cs.washington.edu/</u> <u>courses/cse344/12au/lectures/query-</u> <u>language-primer.pdf</u>

1. Relational Algebra

 Used internally by the database engine to execute queries

• Book: chapter 4.2

• We will return to RA when we discuss query execution

1. Relational Algebra

The Basic Five operators:

- Union: ∪
- Difference: -
- Selection: o
- Projection: Π
- Join: 🖂

Running Example

Find all actors who acted both in 1910 and in 1940:

Q: SELECT DISTINCT a.fname, a.lname FROM Actor a, Casts c1, Movie m1, Casts c2, Movie m2 WHERE a.id = c1.pid AND c1.mid = m1.id AND a.id = c2.pid AND c2.mid = m2.id AND m1.year = 1910 AND m2.year = 1940;

Two Perspectives

- Named Perspective: Actor(id, fname, Iname) Casts(pid,mid) Movie(id,name,year)
- Unnamed Perspective:

Actor = arity 3 Casts = arity 2 Movie = arity 3

Named perspective needs renaming operator: p

1. Relational Algebra (Details)

- Selection: returns tuples that satisfy condition
 - Named perspective:
 - Unamed perspective:

 $\sigma_{year = '1910'}$ (Movie) $\sigma_{3 = '1910'}$ (Movie)

1. Relational Algebra (Details)

- Selection: returns tuples that satisfy condition
 - Named perspective:
 - Unamed perspective:

 $\sigma_{year = '1910'}$ (Movie) $\sigma_{3 = '1910'}$ (Movie)

- Projection: returns only some attributes
 - Named perspective:
 - Unnamed perspective:

 $\Pi_{\text{fname,Iname}}(\text{Actor})$ $\Pi_{2,3}(\text{Actor})$

1. Relational Algebra (Details)

- Selection: returns tuples that satisfy condition
 - Named perspective:
 - Unamed perspective:

 $\sigma_{year = '1910'}$ (Movie) $\sigma_{3 = '1910'}$ (Movie)

- Projection: returns only some attributes
 - Named perspective: $\Pi_{\text{fname,lname}}(\text{Actor})$
 - Unnamed perspective:
- $\Pi_{\text{fname,Iname}}(\text{Actor})$ $\Pi_{2.3}(\text{Actor})$
- Join: joins two tables on a condition
 - Named perspective:
 - Unnamed perspectivie:

Casts $\bowtie_{mid=id}$ Movie Casts $\bowtie_{2=1}$ Movie

1. Relational Algebra Example

1. Relational Algebra Example

Actor(id, fname, Iname) Casts(pid,mid) Movie(id,name,year)

Joins and Cartesian Product

• Each tuple in R1 with each tuple in R2

Rare in practice; mainly used to express joins

Cartesian Product (aka Cross Product)

NameSSNJohn999999999Tony777777777

EmpSSN	DepName
9999999999	Emily
77777777	Joe

Employee × **Dependent**

Name	SSN	EmpSSN	DepName
John	999999999	999999999	Emily
John	999999999	77777777	Joe
Tony	77777777	999999999	Emily
Tony	77777777	77777777	Joe

Natural Join

- Meaning: $R1 \bowtie R2 = \Pi_A(\sigma(R1 \times R2))$
- Where:
 - Selection σ checks equality of all common attributes
 - Projection eliminates duplicate common attributes

Natural Join Example

S

Α	В
Х	Y
Х	Z
Y	Z
Z	V

 B
 C

 Z
 U

 V
 W

 Z
 V

	Α	В	С
R ⋈ S =	Х	Z	U
$\Pi_{ABC}(\sigma_{R.B=S.B}(R\timesS))$	Х	Z	V
	Y	Z	U
	Y	Z	V
	Z	V	W

Natural Join Example 2

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

Voters V

name	age	zip
p1	54	98125
p2	20	98120

 $\mathsf{P} \bowtie \mathsf{V}$

age	zip	disease	name
54	98125	heart	p1
20	98120	flu	p2

Natural Join

 Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈ S ?

• Given R(A, B, C), S(D, E), what is $R \bowtie S$?

• Given R(A, B), S(A, B), what is $R \bowtie S$?

Theta Join

• A join that involves a predicate

$$R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 \times R2)$$

- Here θ can be any condition
- For our voters/disease example:

 $P \bowtie P.zip = V.zip$ and P.age < V.age + 5 and P.age > V.age - 5 V

Equijoin

• A theta join where θ is an equality

$$R1 \bowtie_{A=B} R2 = \sigma_{A=B} (R1 \times R2)$$

• This is by far the most used variant of join in practice

Equijoin Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

Voters V

name	age	zip
p1	54	98125
p2	20	98120

P.age	P.zip	disease	name	V.age	V.zip
54	98125	heart	p1	54	98125
20	98120	flu	p2	20	98120

Note:

Optional, drop the redundant **age**

Join Summary

• Theta-join: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$

– Join of R and S with a join condition $\boldsymbol{\theta}$

– Cross-product followed by selection $\boldsymbol{\theta}$

- Equijoin: $R_{\bowtie_{\theta}}S = \pi_{A}(\sigma_{\theta}(R \times S))$
 - Join condition $\boldsymbol{\theta}$ consists only of equalities
 - Projection π_A drops all redundant attributes
- Natural join: $R \bowtie S = \pi_A (\sigma_{\theta}(R \times S))$
 - Equijoin
 - Equality on **all** fields with same name in R and in S

So Which Join Is It?

 When we write R ⋈ S we usually mean an equijoin, but we often omit the equality predicate when it is clear from the context

More Joins

Outer join

- Include tuples with no matches in the output
- Use NULL values for missing attributes
- Variants
 - Left outer join
 - Right outer join
 - Full outer join

Outer Join Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu
33	98120	lung

P K_V

AnnonJob J

job	age	zip
lawyer	54	98125
cashier	20	98120

age	zip	disease	job
54	98125	heart	lawyer
20	98120	flu	cashier
33	98120	lung	null

Some Examples

```
Supplier(sno,sname,scity,sstate)
```

Part(pno,pname,psize,pcolor)

Supply(sno,pno,qty,price)

Q2: Name of supplier of parts with size greater than 10 π_{sname} (Supplier \bowtie Supply $\bowtie(\sigma_{psize>10}$ (Part))

Q3: Name of supplier of red parts or parts with size greater than 10 $\pi_{sname}(Supplier \Join Supply \Join (\sigma_{psize>10} (Part) \cup \sigma_{pcolor='red'} (Part)))$

Outline

- Relational Query Languages
 - Relational algebra
 - Recursion-free datalog with negation
 - Relational calculus
- Database Design
- Functional Dependencies and BCNF

2. Datalog

- Very friendly notation for queries
- Designed in the 80's for <u>recursive</u> queries
- Confined to academia, until the Big Data explosion. Commercial systems today: LogicBlox, Yedalog (google)
- This lecture: <u>recursion-free</u> datalog with negation. Later lecture: recursion

2. Datalog

How to try out datalog quickly:

- Download DLV from <u>http://www.dbai.tuwien.ac.at/proj/dlv/</u>
- Run DLV on this file:

parent(william, john). parent(john, james). parent(james, bill). parent(sue, bill). parent(james, carol). parent(sue, carol). male(john). male(james). female(sue). male(bill). female(carol). grandparent(X, Y) :- parent(X, Z), parent(Z, Y). father(X, Y) :- parent(X, Y), male(X). mother(X, Y) :- parent(X, Y), female(X). brother(X, Y) :- parent(P, X), parent(P, Y), male(X), X != Y. sister(X, Y) :- parent(P, X), parent(P, Y), female(X), X != Y.
2. Datalog: Facts and Rules

Facts

Actor(344759, 'Douglas', 'Fowley'). Casts(344759, 29851). Casts(355713, 29000). Movie(7909, 'A Night in Armour', 1910). Movie(29000, 'Arizona', 1940). Movie(29445, 'Ave Maria', 1940). Rules

Q1(y) :- Movie(x,y,z), z='1940'.

Q2(f, l) :- Actor(z,f,l), Casts(z,x), Movie(x,y,'1940').

Q3(f,I) :- Actor(z,f,I), Casts(z,x1), Movie(x1,y1,1910), Casts(z,x2), Movie(x2,y2,1940)

Facts = tuples in the database Rules = queries Extensional Database Predicates = EDB Intensional Database Predicates = IDB

2. Datalog: Terminology

2. Datalog program

Find all actors with Bacon number ≤ 2

B0(x) := Actor(x, 'Kevin', 'Bacon') B1(x) := Actor(x, f, I), Casts(x, z), Casts(y, z), B0(y) B2(x) := Actor(x, f, I), Casts(x, z), Casts(y, z), B1(y) Q4(x) := B1(x)Q4(x) := B2(x)

Note: Q4 is the *union* of B1 and B2

2. Datalog with negation

Find all actors with Bacon number ≥ 2

B0(x) := Actor(x, 'Kevin', 'Bacon')B1(x) := Actor(x,f,I), Casts(x,z), Casts(y,z), B0(y) Q6(x) := Actor(x,f,I), not B1(x), not B0(x)

2. Safe Datalog Rules

Here are <u>unsafe</u> datalog rules. What's "unsafe" about them ?

U1(x,y) :- Movie(x,z,1994), y>1910

U2(x) :- Movie(x,z,1994), not Casts(u,x)

A datalog rule is <u>safe</u> if every variable appears in some positive relational atom

2. Datalog v.s. SQL

 Non-recursive datalog with negation is very close to SQL; with some practice, you should be able to translate between them back and forth without difficulty; see example in the paper

Outline

- Relational Query Languages
 - Relational algebra
 - Recursion-free datalog with negation

– Relational calculus

- Database Design
- Functional Dependencies and BCNF

3. Relational Calculus

- Also known as <u>predicate calculus</u>, or <u>first</u> <u>order logic</u>
- The most expressive formalism for queries: easy to write complex queries

- TRC = Tuple RC = named perspective
- DRC = Domain RC = unnamed perspective

3. Relational Calculus

Predicate P:

$$P ::= atom | P \land P | P \lor P | P \Rightarrow P | not(P) | \forall x.P | \exists x.P$$

Query Q:

$$Q(x_1, ..., x_k) = P$$

Example: find the first/last names of actors who acted in 1940

 $Q(f,I) = \exists x. \exists y. \exists z. (Actor(z,f,I) \land Casts(z,x) \land Movie(x,y,1940))$

What does this query return ?

 $Q(f,I) = \exists z. (Actor(z,f,I) \land \forall x.(Casts(z,x) \Rightarrow \exists y.Movie(x,y,1940)))$

3. Relational Calculus: Ker, beer) (drinker, beer)

Likes(drinker, beer) Frequents(drinker, bar) Serves(bar, beer)

Find drinkers that frequent <u>some</u> bar that serves <u>some</u> beer they like.

 $Q(x) = \exists y. \exists z. Frequents(x, y) \land Serves(y,z) \land Likes(x,z)$

3. Relational Calculus: Ker, beer) (drinker, beer)

Likes(drinker, beer) Frequents(drinker, bar) Serves(bar, beer)

Find drinkers that frequent <u>some</u> bar that serves <u>some</u> beer they like.

 $Q(x) = \exists y. \exists z. Frequents(x, y) \land Serves(y,z) \land Likes(x,z)$

Find drinkers that frequent only bars that serves some beer they like.

3. Relational Calculus: Likes(drinker, beer) Frequents(drinker, bar)

Find drinkers that frequent some bar that serves some beer they like.

Serves(bar, beer)

 $Q(x) = \exists y. \exists z. Frequents(x, y) \land Serves(y,z) \land Likes(x,z)$

Find drinkers that frequent only bars that serves some beer they like.

 $Q(x) = \forall y. Frequents(x, y) \Rightarrow (\exists z. Serves(y,z) \land Likes(x,z))$

Find drinkers that frequent some bar that serves only beers they like.

3. Relational Calculus: Likes(drinker, beer) Frequents(drinker, bar)

Find drinkers that frequent some bar that serves some beer they like.

Serves(bar, beer)

 $Q(x) = \exists y. \exists z. Frequents(x, y) \land Serves(y,z) \land Likes(x,z)$

Find drinkers that frequent only bars that serves some beer they like.

 $Q(x) = \forall y. Frequents(x, y) \Rightarrow (\exists z. Serves(y,z) \land Likes(x,z))$

Find drinkers that frequent some bar that serves only beers they like.

 $Q(x) = \exists y. Frequents(x, y) \land \forall z.(Serves(y,z) \Rightarrow Likes(x,z))$

Find drinkers that frequent <u>only</u> bars that serves <u>only</u> beer they like.

3. Relational Calculus: Likes(drinker, beer) Frequents(drinker, bar)

Find drinkers that frequent <u>some</u> bar that serves <u>some</u> beer they like.

Serves(bar, beer)

 $Q(x) = \exists y. \exists z. Frequents(x, y) \land Serves(y,z) \land Likes(x,z)$

Find drinkers that frequent only bars that serves some beer they like.

 $Q(x) = \forall y. Frequents(x, y) \Rightarrow (\exists z. Serves(y,z) \land Likes(x,z))$

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = ∃y. Frequents(x, y) $\land \forall z.(Serves(y,z) \Rightarrow Likes(x,z))$

Find drinkers that frequent only bars that serves only beer they like.

 $Q(x) = \forall y. Frequents(x, y) \Rightarrow \forall z.(Serves(y,z) \Rightarrow Likes(x,z))$

3. Domain Independent Relational Calculus

- As in datalog, one can write "unsafe" RC queries; they are also called <u>domain</u> <u>dependent</u>
- See examples in the *Three Query Languages* paper
- Moral: make sure your RC queries are always domain independent

3. Relational Calculus

Take home message:

- Need to write a complex SQL query:
- First, write it in RC
- Next, translate it to datalog (see next)
- Finally, write it in SQL

As you gain experience, take shortcuts

Query: Find drinkers that like some beer so much that they frequent all bars that serve it

 $Q(x) = \exists y. Likes(x, y) \land \forall z.(Serves(z, y) \Rightarrow Frequents(x, z))$

Query: Find drinkers that like some beer so much that they frequent all bars that serve it

 $Q(x) = \exists y. Likes(x, y) \land \forall z. (Serves(z, y) \Rightarrow Frequents(x, z))$

Step 1: Replace ∀ with ∃ using de Morgan's Laws

Q(x) = $\exists y$. Likes(x, y) $\land \neg \exists z$.(Serves(z,y) $\land \neg$ Frequents(x,z))

Query: Find drinkers that like some beer so much that they frequent all bars that serve it

 $Q(x) = \exists y. Likes(x, y) \land \forall z. (Serves(z, y) \Rightarrow Frequents(x, z))$

Step 1: Replace ∀ with ∃ using de Morgan's Laws

 $Q(x) = \exists y. Likes(x, y) \land \neg \exists z.(Serves(z,y) \land \neg Frequents(x,z))$

Step 2: Make all subqueries domain independent

 $Q(x) = \exists y. Likes(x, y) \land \neg \exists z.(Likes(x, y) \land Serves(z, y) \land \neg Frequents(x, z))$

Step 3: Create a datalog rule for each subexpression; (shortcut: only for subexpressions under ¬)

H(x,y) :- Likes(x,y),Serves(y,z), not Frequents(x,z) Q(x) :- Likes(x,y), not H(x,y)

```
H(x,y) :- Likes(x,y),Serves(y,z), not Frequents(x,z)
```

Q(x) :- Likes(x,y), not H(x,y)

Step 4: Write it in SQL

```
SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists
(SELECT * FROM Likes L2, Serves S
WHERE L2.drinker=L.drinker and L2.beer=L.beer
and L2.beer=S.beer
and not exists (SELECT * FROM Frequents F
WHERE F.drinker=L2.drinker
and F.bar=S.bar))
```

H(x,y) :- Likes(x,y), Serves(y,z), not Frequents(x,z)

Q(x) :- Likes(x,y), not H(x,y)

Improve the SQL query by using an unsafe datalog rule

SELECT DISTINCT L.drinker FROM Likes L WHERE not exists (SELECT * FROM Serves S WHERE L.beer=S.beer and not exists (SELECT * FROM Frequents F WHERE F.drinker=L.drinker and F.bar=S.bar))

Summary of Translation

- RC → recursion-free datalog w/ negation
 Subtle: as we saw; more details in the paper
- Recursion-free datalog w/ negation → RA
 Easy: see paper
- $RA \rightarrow RC$
 - Easy: see paper

Summary

- All three have same expressive power:
 RA
 - Non-recursive datalog w/ neg. (= "core" SQL)
 RC

• Write complex queries in RC first, then translate to SQL

Outline

- Relational Query Languages
- Database Design:
 - On your own: slides and/or Chapters 2, 3
 - In class: What goes around
- Functional Dependencies and BCNF

Database Design

Database Design Process

Entity / Relationship Diagrams

- Entity set = a class
 An entity = an object
- Attribute

Relationship

Company

Product

Keys in E/R Diagrams

• Every entity set must have a key

What is a Relation ?

 A mathematical definition: - if A, B are sets, then a relation R is a subset of A \times B • A={1,2,3}, B={a,b,c,d}, а $A \times B = \{(1,a), (1,b), \ldots, (3,d)\}$ $R = \{(1,a), (1,c), (3,b)\}$ 2 A= 3 makes is a subset of **Product** × **Company**: d makes Company Product CSFP544 - Fall 2015 69

Multiplicity of E/R Relations

Multi-way Relationships

How do we model a purchase relationship between buyers, products and stores?

Can still model as a mathematical set (Q. how ?)

A. As a set of triples \subseteq Person × Product × Store

Arrows in Multiway Relationships

Q: What does the arrow mean ?

A: A given person buys a given product from at most one store

[Arrow pointing to E means that if we select one entity from each of the other entity sets in the relationship, those entities are related to at most one entity in E]

Arrows in Multiway Relationships

Q: What does the arrow mean ?

A: A given person buys a given product from at most one store AND every store sells to every person at most one product

Arrows in Multiway Relationships

Q: How do we say that every person shops at at most one store ?

A: Cannot. This is the best approximation. (Why only approximation ?)

CSEP544 - Fall 2015

Design Principles What's wrong?

Moral: be faithful to the specifications of the app!

Design Principles: What's Wrong?

From E/R Diagrams to Relational Schema

- Entity set \rightarrow relation
- Relationship \rightarrow relation

Entity Set to Relation

Product(prod-ID, category, price)

prod-ID	category	price
Gizmo55	Camera	99.99
Pokemn19	Тоу	29.99

Create Table (SQL)

CREATE TABLE Product (prod-ID CHAR(30) PRIMARY KEY, category VARCHAR(20), price double)

N-N Relationships to Relations

N-N Relationships to Relations

Create Table (SQL)

CREATE TABLE Shipment(name CHAR(30) **REFERENCES** Shipping-Co, prod-ID CHAR(30), cust-ID VARCHAR(20), date DATETIME. **PRIMARY KEY** (name, prod-ID, cust-ID), FOREIGN KEY (prod-ID, cust-ID) **REFERENCES** Orders

N-1 Relationships to Relations

N-1 Relationships to Relations

Shipping-Co(name, address)

Remember: no separate relations for many-one relationship

Modeling Subclasses

So --- we define subclasses in E/R

Understanding Subclasses

Think in terms of records:

SoftwareProduct

EducationalProduct

Modeling Union Types With Subclasses

FurniturePiece

Say: each piece of furniture is owned either by a person or by a company

Modeling Union Types With Subclasses

Say: each piece of furniture is owned either by a person or by a company

Solution 1. Acceptable but imperfect (What's wrong ?)

Modeling Union Types With Subclasses

Solution 2: better, more laborious

Weak Entity Sets

Entity sets are weak when their key comes from other classes to which they are related.

Team(sport, <u>number, universityName</u>) University(<u>name</u>)

Constraints in E/R Diagrams

Finding constraints is part of the modeling process.Commonly used constraints:

- Keys: social security number uniquely identifies a person.
- Single-value constraints: a person can have only one father.
- Referential integrity constraints: if you work for a company, it
 must exist in the database.
- Other constraints: peoples' ages are between 0 and 150.

Single Value Constraints

V. S.

Other Constraints

Q: What does this mean ?A: A Company entity cannot be connectedby relationship to more than 99 Product entities

Note: For "at least one", you can use "≥ 1" in a many-many relationship

Database Design Summary

- Conceptual modeling = design the database schema
 - Usually done with Entity-Relationship diagrams
 - It is a form of documentation the database schema; it is not executable code
 - Straightforward conversion to SQL tables
 - Big problem in the real world: the SQL tables are updated, the E/R documentation is not maintained
- Schema refinement using normal forms

 Functional dependencies, normalization

Outline

- Relational Query Languages
- Database Design:

- On your own: slides and/or Chapters 2, 3

– In class: What goes around

Functional Dependencies and BCNF

Data Models

 M. Stonebraker and J. Hellerstein. What Goes Around Comes Around. In "Readings in Database Systems" (aka the Red Book). 4th ed.

"Data Model"

- Apps need to model real-world data
 - Typically includes entities and relationships between them
 - Entities: e.g. students, courses, products, clients
 - Relationships: e.g. course registrations, product purchases

 Data model enables a user to define the data using high-level constructs without worrying about many low-level details of how data will be stored on disk
Levels of Abstraction

What goes around...

Structured data

- What is this? Examples?

Semistructured data

- What is this ?
- Examples ?

Unstructured data

– What is this ? Examples ?

What goes around...

Structured data

- All data conforms to a schema. Ex: business data

Semistructured data

- Some structure in the data but implicit and irregular
- Ex: resume, ads

Unstructured data

- No structure in data. Ex: text, sound, video, images
- In our class: structured data & relational DBMSs

Early Proposal 1: IMS

• What is it ?

Early Proposal 1: IMS

- Hierarchical data model
- Record
 - **Type**: collection of named fields with data types (+)
 - **Instance**: must match type definition (+)
 - Each instance must have a key (+)
 - Record types must be arranged in a tree (-)
- **IMS database** is collection of instances of record types organized in a tree

IMS Example

Two Hierarchical Organizations Figure 2

DL/1

• How does a programmer retrieve data in IMS ?

DL/1

- Each record has a hierarchical sequence key (HSK)
 Records are totally ordered: depth-first and left-to-right
- HSK defines semantics of commands:
 - get_next
 - get_next_within_parent
- DL/1 is a record-at-a-time language
 - Programmer constructs an algorithm for solving the query
 - Programmer must worry about query optimization

Data storage

 How is the data physically stored in IMS ?

Data storage

- Root records
 - Stored sequentially (sorted on key)
 - Indexed in a B-tree using the key of the record
 - Hashed using the key of the record
- Dependent records
 - Physically sequential
 - Various forms of pointers
- Selected organizations restrict DL/1 commands
 - No updates allowed with sequential organization
 - No "get-next" for hashed organization

Data Independence

• What is it ?

Data Independence

- Physical data independence: Applications are insulated from changes in physical storage details
- Logical data independence: Applications are insulated from changes to logical structure of the data

IMS Limitations

- Tree-structured data model
 - Redundant data
 - Existence depends on parent
- Record-at-a-time user interface
- Very limited physical independence
 - Phys. organization limits possible operations
 - Application programs break if organization changes
- Provides some logical independence
 - DL/1 program runs on logical database
 - Difficult to achieve good logical data independence with a tree model

Early Proposal 2: CODASYL

• What is it ?

Early Proposal 2: CODASYL

- Networked data model
- Record types with keys (+)
- Organized in a **network**
 - More flexible than hierarchy (+)
 - A record can have multiple parents (-)
 - Arcs between records are named
 - At least one entry point to the network
- Record-at-a-time DML (-)

CODASYL Example

A CODASYL Network Figure 5

CODASYL Limitations

- No physical data independence
- No logical data independence
- Very complex:
 - Programs must "navigate the hyperspace"
 - Load and recover as one gigantic object

Relational Model Overview

Proposed by Ted Codd in 1970

 Motivation: better logical and physical data independence

Relational Model Overview

• Defines logical data model

- No physical data model
- Set-at-a-time query language

Great Debate

• Pro relational

– What where the arguments ?

• Against relational

– What where the arguments ?

• How was it settled ?

Great Debate

• Pro relational

- CODASYL is too complex
- CODASYL does not provide sufficient data independence
- Record-at-a-time languages are too hard to optimize
- Trees/networks not flexible enough for common cases
- Against relational
 - COBOL programmers cannot understand relational languages
 - Impossible to represent the relational model efficiently
 - CODASYL can represent tables
- Ultimately settled by the market place

Other Data Models

- Entity-Relationship: 1970's
 - Successful in logical database design (this lecture + hw2)
- Extended Relational: 1980's
- Semantic: late 1970's and 1980's
- Object-oriented: late 1980's and early 1990's
 - Impedance mismatch: relational dbs ← → OO languages
 - Interesting but ultimately failed (several reasons, see paper)
- Object-relational: late 1980's and early 1990's
 - User-defined types, ops, functions, and access methods
- Semi-structured: late 1990's to the present
 - XML, JSon, Protobuf

Outline

- Relational Query Languages
- Database Design:
 - On your own: slides and/or Chapters 2, 3
 - In class: What goes around

Functional Dependencies and BCNF

Relational Schema Design

Name	<u>SSN</u>	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

One person may have multiple phones, but lives in only one city

Primary key is thus (SSN, Phone Number)

What is the problem with this schema?

Relational Schema Design

Name	<u>SSN</u>	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

Anomalies:

Redundancy = repeat data

Update anomalies = what if Fred moves to "Bellevue"?

Deletion anomalies = what if Joe deletes his phone number?

Relation Decomposition

Break the relation into two:

	Name	SSN	PhoneNumber	City
	Fred	123-45-6789	206-555-1234	Seattle
	Fred	123-45-6789	206-555-6543	Seattle
	Joe	987-65-4321	908-555-2121	Westfield
•				

Name	<u>SSN</u>	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

<u>SSN</u>	PhoneNumber
123-45-6789	206-555-1234
123-45-6789	206-555-6543
987-65-4321	908-555-2121

Anomalies have gone:

- No more repeated data
- Easy to move Fred to "Bellevue" (how ?)
- Easy to delete all Joe's phone numbers (how ?)

Relational Schema Design (or Logical Design)

How do we do this systematically?

Start with some relational schema

Find out its *functional dependencies* (FDs)

Use FDs to *normalize* the relational schema

Functional Dependencies (FDs)

Functional Dependencies (FDs)

Example

An FD holds, or does not hold on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

EmpID → Name, Phone, Position

Position → Phone

but not Phone \rightarrow Position

Example

EmpID	Name	Phone	Position	
E0045	Smith	1234	Clerk	
E3542	Mike	9876 ←	Salesrep	
E1111	Smith	9876 ←	Salesrep	
E9999	Mary	1234	Lawyer	

Position \rightarrow Phone

Example

EmpID	Name	Phone	Position
E0045	Smith	1234 →	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234 →	Lawyer

But not Phone \rightarrow Position

Example name \rightarrow color category \rightarrow department color, category \rightarrow price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Green	Toys	99

Do all the FDs hold on this instance?

Example name \rightarrow color category \rightarrow department color, category \rightarrow price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Black	Toys	99
Gizmo	Stationary	Green	Office-supp.	59

Terminology

FD holds or does not hold on an instance

If we can be sure that *every instance of R* will be one in which a given FD is true, then we say that **R satisfies the FD**

If we say that R satisfies an FD F, we are stating a constraint on R

An Interesting Observation

If all these FDs are true:

name \rightarrow color category \rightarrow department color, category \rightarrow price

Then this FD also holds:

name, category \rightarrow price

If we find out from application domain that a relation satisfies some FDs, it doesn't mean that we found all the FDs that it satisfies! There could be more FDs implied by the ones we have.
Closure of a set of Attributes

Given a set of attributes A₁, ..., A_n The **closure**, $\{A_1, ..., A_n\}^+$ = the set of attributes B s.t. $A_1, \ldots, A_n \rightarrow B$ 1. name \rightarrow color Example: 2. category \rightarrow department 3. color, category \rightarrow price **Closures:** name⁺ = {name, color} {name, category}⁺ = {name, category, color, department, price} $color^+ = \{color\}$ CSFP544 - Fall 2015 145

Closure Algorithm

X={A1, ..., An}.

Repeat until X doesn't change do: **if** $B_1, ..., B_n \rightarrow C$ is a FD **and** $B_1, ..., B_n$ are all in X **then** add C to X. Example:

1. name \rightarrow color

}

2. category \rightarrow department

3. color, category \rightarrow price

```
{name, category}<sup>+</sup> = {
```

Closure Algorithm

X={A1, ..., An}.

Repeat until X doesn't change do: **if** $B_1, ..., B_n \rightarrow C$ is a FD **and** $B_1, ..., B_n$ are all in X **then** add C to X. Example:

1. name \rightarrow color

2. category \rightarrow department

3. color, category \rightarrow price

{name, category}* =
{ name, category, color, department, price }

Closure Algorithm

X={A1, ..., An}.

Repeat until X doesn't change do: **if** $B_1, ..., B_n \rightarrow C$ is a FD **and** $B_1, ..., B_n$ are all in X **then** add C to X. Example:

1. name \rightarrow color

2. category \rightarrow department

3. color, category \rightarrow price

{name, category}* =
{ name, category, color, department, price }

Hence:

name, category \rightarrow color, department, price

CSEP544 - Fall 2015

In class:

R(A,B,C,D,E,F)

$$\begin{array}{ccc} A, B \rightarrow C \\ A, D \rightarrow E \\ B \rightarrow D \\ A, F \rightarrow B \end{array}$$

Compute $\{A,B\}^+$ X = $\{A, B, B\}^+$

Compute $\{A, F\}^+$ X = $\{A, F, F\}^+$

}

}

In class:

R(A,B,C,D,E,F)

$$\begin{array}{ccc} A, B \rightarrow C \\ A, D \rightarrow E \\ B \rightarrow D \\ A, F \rightarrow B \end{array}$$

Compute $\{A,B\}^+$ X = $\{A, B, C, D, E\}$

Compute $\{A, F\}^+$ X = $\{A, F, F\}^+$

}

In class:

R(A,B,C,D,E,F)

$$\begin{array}{ccc} A, B \rightarrow C \\ A, D \rightarrow E \\ B \rightarrow D \\ A, F \rightarrow B \end{array}$$

Compute $\{A,B\}^+$ X = $\{A, B, C, D, E\}$

Compute {A, F}⁺ X = {A, F, B, C, D, E }

In class:

R(A,B,C,D,E,F)

$$\begin{array}{ccc} A, B \rightarrow C \\ A, D \rightarrow E \\ B \rightarrow D \\ A, F \rightarrow B \end{array}$$

Compute $\{A,B\}^+$ X = $\{A, B, C, D, E\}$

Compute {A, F}⁺ X = {A, F, B, C, D, E }

CSEP544 - Fall 2015

What is the key of R?

Find all FD's implied by:

$$\begin{array}{ccc} A, B \rightarrow C \\ A, D \rightarrow B \\ B \rightarrow D \end{array}$$

Find all FD's implied by:

$$\begin{array}{ccc} A, B \rightarrow C \\ A, D \rightarrow B \\ B \rightarrow D \end{array}$$

Step 1: Compute X⁺, for every X: A+ = A, B+ = BD, C+ = C, D+ = D AB+ = ABCD, AC+=AC, AD+=ABCD, BC+=BCD, BD+=BD, CD+=CD $ABC+ = ABD+ = ACD^+ = ABCD$ (no need to compute– why ?) $BCD^+ = BCD, ABCD+ = ABCD$

Find all FD's implied by:

 $\begin{array}{ccc} A, B \rightarrow C \\ A, D \rightarrow B \\ B \rightarrow D \end{array}$

Step 1: Compute X⁺, for every X: A+ = A, B+ = BD, C+ = C, D+ = D AB+ =ABCD, AC+=AC, AD+=ABCD, BC+=BCD, BD+=BD, CD+=CD ABC+ = ABD+ = ACD⁺ = ABCD (no need to compute– why ?) BCD⁺ = BCD, ABCD+ = ABCD Step 2: Enumerate all FD's X → Y, s.t. Y \subseteq X⁺ and X∩Y = Ø: AB → CD, AD→BC, ABC → D, ABD → C, ACD → B

Keys

- A superkey is a set of attributes A₁, ..., A_n s.t. for any other attribute B, we have A₁, ..., A_n → B
- A key is a minimal superkey
 - A superkey and for which no subset is a superkey

Computing (Super)Keys

• For all sets X, compute X⁺

 If X⁺ = [all attributes], then X is a superkey

• Try only the minimal X's to get the keys

Product(name, price, category, color)

name, category \rightarrow price category \rightarrow color

What is the key?

Product(name, price, category, color)

name, category
$$\rightarrow$$
 price category \rightarrow color

What is the key?

(name, category) + = { name, category, price, color }

Hence (name, category) is a key

Key or Keys ?

Can we have more than one key?

Given R(A,B,C) define FD's s.t. there are two or more keys

Key or Keys ?

Can we have more than one key?

Given R(A,B,C) define FD's s.t. there are two or more keys

CSEP544 - Fall 2015

Eliminating Anomalies

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield

What is the key?

Suggest a rule for decomposing the table to eliminate anomalies

Eliminating Anomalies

Main idea:

• $X \rightarrow A$ is OK if X is a (super)key

X → A is not OK otherwise
Need to decompose the table, but how?

Boyce-Codd Normal Form

There are no "bad" FDs:

Definition. A relation R is in BCNF if:

Whenever $X \rightarrow B$ is a non-trivial dependency, then X is a superkey.

Equivalently: D

Definition. A relation R is in BCNF if:

 \forall X, either X⁺ = X or X⁺ = [all attributes]

BCNF Decomposition Algorithm

Normalize(R) find X s.t.: $X \neq X^+ \neq$ [all attributes] <u>if</u> (not found) <u>then</u> "R is in BCNF" <u>let</u> Y = X⁺ - X; Z = [all attributes] - X⁺ decompose R into R1(X \cup Y) and R2(X \cup Z) Normalize(R1); Normalize(R2);

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield

$SSN \rightarrow Name, City$

The only key is: {SSN, PhoneNumber} Hence SSN \rightarrow Name, City is a "bad" dependency

In other words: SSN+ = Name, City and is neither SSN nor All Attributes

166

Example BCNF Decomposition

Name	<u>SSN</u>	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

 $SSN \rightarrow Name$, City

<u>SSN</u>	PhoneNumber	
123-45-6789	206-555-1234	
123-45-6789	206-555-6543	
987-65-4321	908-555-2121	
987-65-4321	908-555-1234	

Let's check anomalies:

Redundancy? Update? Delete?

CSEP544 - Fall 2015

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN \rightarrow name, age

age \rightarrow hairColor

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN \rightarrow name, age

age \rightarrow hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor Decompose into: P(SSN, name, age, hairColor) Phone(SSN, phoneNumber)

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN \rightarrow name, age

age \rightarrow hairColor

What are the keys ?

Iteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor) Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor Decompose: People(SSN, name, age)

Hair(age, hairColor) Phone(SSN, phoneNumber)

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN \rightarrow name, age

age \rightarrow hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor Decompose into: P(<u>SSN</u>, name, age, hairColor) Phone(<u>SSN</u>, phoneNumber)

Iteration 2: P: age+ = age, hairColor Decompose: People(<u>SSN</u>, name, age) Hair(<u>age</u>, hairColor) Phone(<u>SSN</u>, phoneNumber)

Schema Refinements = Normal Forms

- 1st Normal Form = all tables are flat
- 2nd Normal Form = obsolete
- Boyce Codd Normal Form = today
- 3rd Normal Form = see book