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CSEP 544: Lecture 02 

Relational Query Languages 
and Database Design 

CSEP544 - Fall 2015 



Homework 1 

•  Due next Tuesday, October 20, 11pm 
•  Please note update using SQL Azure 

– Use shared account (login in your email) 
– Database is already there, just run queries 

•  Create your own SQL Azure instance 
– Extra credit in HW1 
– Required for HW4 
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Homework 3 

I know it’s far into the future, but… 

•  We will use Amazon Web Service 

•  You need to get a $100 student’s pass 
http://aws.amazon.com/grants  
– Use your uw.edu email address 



Brief Review of 1st Lecture 

•  Database = collection of related files 
•  Physical data independence 
•  SQL: 

– Select-from-where 
– Nested loop semantics 
– Group by (you read the slides, right?) 
– Advanced stuff: nested queries, outerjoins 
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Big Data 

What is it? 
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Big Data 

What is it? 
•  Gartner report* 

– High Volume 
– High Variety 
– High Velocity 
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* http://www.gartner.com/newsroom/id/1731916 



Big Data 
What is it? Stonebraker: 
•  Big volumes, small analytics 
•  Big analytics, on big volumes 
•  Big velocity 
•  Big variety 
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Big Data 
•  “Small analytics” = select/join/aggregate/groupby 

–  Discuss: column-oriented databases, shared-nothing, Hive/
Hadoop 

•  “Big analytics” = linear algebra (R, ScalaPack) 
–  Discuss: Sparse matrix multiplication = join/groupby 

•  High velocity = streaming data 
–  Discuss: Streaming SQL engines, e.g. Microsoft’s Trill 

•  High variety = heterogeneous data models (XML, 
documents) 
–  Discuss: ETL (“Extract Transform Load”)  

CSEP544 - Fall 2015 8 



Outline 

•  Relational Query Languages 
– Relational algebra 
– Recursion-free datalog with negation 
– Relational calculus 

•  Database Design 
•  Functional Dependencies and BCNF 
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•  Suggested reading: 
Three Query Language Formalisms 
https://courses.cs.washington.edu/
courses/cse344/12au/lectures/query-
language-primer.pdf  
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1. Relational Algebra 

•  Used internally by the database engine 
to execute queries 

•  Book: chapter 4.2 

•  We will return to RA when we discuss 
query execution 
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1. Relational Algebra 
The Basic Five operators: 
•  Union: ∪ 
•  Difference: - 
•  Selection: σ 
•  Projection: Π  
•  Join: ⨝ 



Running Example 

CSEP544 - Fall 2015 13 

Q: SELECT DISTINCT a.fname, a.lname 
     FROM   Actor a, Casts c1, Movie m1, Casts c2, Movie m2 
     WHERE  a.id = c1.pid  AND c1.mid = m1.id 
           AND  a.id = c2.pid  AND c2.mid = m2.id 
           AND  m1.year = 1910  AND m2.year = 1940; 

Find all actors who acted both in 1910 and in 1940: 



Two Perspectives 

•  Named Perspective: 
 Actor(id, fname, lname) 
 Casts(pid,mid) 
 Movie(id,name,year) 

•  Unnamed Perspective: 
 Actor = arity 3 
 Casts = arity 2 
 Movie = arity 3 
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Named perspective 
needs renaming 
operator: ρ  



1. Relational Algebra (Details) 
•  Selection: returns tuples that satisfy condition 

–  Named perspective:   σyear = ‘1910’(Movie) 
–  Unamed perspective:  σ3 = ‘1910’ (Movie) 



1. Relational Algebra (Details) 
•  Selection: returns tuples that satisfy condition 

–  Named perspective:   σyear = ‘1910’(Movie) 
–  Unamed perspective:  σ3 = ‘1910’ (Movie) 

•  Projection: returns only some attributes 
–  Named perspective:   Π fname,lname(Actor) 
–  Unnamed perspective:  Π 2,3(Actor) 



1. Relational Algebra (Details) 
•  Selection: returns tuples that satisfy condition 

–  Named perspective:   σyear = ‘1910’(Movie) 
–  Unamed perspective:  σ3 = ‘1910’ (Movie) 

•  Projection: returns only some attributes 
–  Named perspective:   Π fname,lname(Actor) 
–  Unnamed perspective:  Π 2,3(Actor) 

•  Join: joins two tables on a condition 
–  Named perspective:   Casts ⨝ mid=id Movie 
–  Unnamed perspectivie:  Casts ⨝ 2=1 Movie 



1. Relational Algebra Example 
Q: SELECT DISTINCT a.fname, a.lname 
     FROM   Actor a, Casts c1, Movie m1, Casts c2, Movie m2 
     WHERE  a.id = c1.pid  AND c1.mid = m1.id 
           AND  a.id = c2.pid  AND c2.mid = m2.id 
           AND  m1.year = 1910  AND m2.year = 1940; 

⨝ mid=id  

σyear1=‘1910’ and year2=‘1940’  

⨝ id=pid  

⨝ mid=id  

Casts Movie Casts Movie Actor 

⨝ id=pid  

Πfname,lname 

ρ year2=year ρ year1=year 

Note how we 
renamed year 
to year1, year2 

Named perspective 

Actor(id, fname, lname) 
Casts(pid,mid) 
Movie(id,name,year) 



1. Relational Algebra Example 
Q: SELECT DISTINCT a.fname, a.lname 
     FROM   Actor a, Casts c1, Movie m1, Casts c2, Movie m2 
     WHERE  a.id = c1.pid  AND c1.mid = m1.id 
           AND  a.id = c2.pid  AND c2.mid = m2.id 
           AND  m1.year = 1910  AND m2.year = 1940; 

⨝ 2=1 

σ8 =‘1910’ and 13=‘1940’  

⨝ 1=1  

⨝ 2=1  

Casts Movie Casts Movie Actor 

⨝ 1=1 

Π2,3 

Actor(id, fname, lname) 
Casts(pid,mid) 
Movie(id,name,year) 

Unnamed perspective 



Joins and Cartesian Product 

•  Each tuple in R1 with each tuple in R2 

•  Rare in practice; mainly used to express 
joins 

R1 × R2 
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Name SSN 
John 999999999 
Tony 777777777 

Employee 
EmpSSN DepName 
999999999 Emily 
777777777 Joe 

Dependent 

Employee ✕ Dependent 
Name SSN EmpSSN DepName 
John 999999999 999999999 Emily 
John 999999999 777777777 Joe 
Tony 777777777 999999999 Emily 
Tony 777777777 777777777 Joe 

Cartesian Product 
(aka Cross Product) 
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Natural Join 

•  Meaning:  R1⨝ R2 = ΠA(σ(R1 × R2))  

•  Where: 
– Selection σ checks equality of all common 

attributes 
– Projection eliminates duplicate common 

attributes 
CSEP544 - Fall 2015 22 

R1 ⨝ R2 



Natural Join Example 
A B 
X Y 
X Z 
Y Z 
Z V 

B C 
Z U 
V W 
Z V 

A B C 
X Z U 
X Z V 
Y Z U 
Y Z V 
Z V W 

R S 

R ⨝ S = 
ΠABC(σR.B=S.B(R × S))  
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Natural Join Example 2 

age zip disease 
54 98125 heart 
20 98120 flu 

AnonPatient P Voters V 

P     V 

name age zip 
p1 54 98125 
p2 20 98120 

age zip disease name 

54 98125 heart p1 

20 98120 flu p2 
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Natural Join 

•  Given schemas R(A, B, C, D), S(A, C, E), 
what is the schema of R ⨝ S ? 

•  Given R(A, B, C),  S(D, E), what is R ⨝  S  ? 

•  Given R(A, B),  S(A, B),  what is  R ⨝ S  ? 
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Theta Join 

•  A join that involves a predicate 

•  Here θ can be any condition 
•  For our voters/disease example:  

R1 ⨝θ R2   =  σ θ (R1 × R2) 

P ⨝ P.zip = V.zip and P.age < V.age + 5 and P.age > V.age - 5  V 



Equijoin 

•  A theta join where θ is an equality 

•  This is by far the most used variant of 
join in practice 

R1 ⨝A=B R2   =  σA=B (R1 × R2) 
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Equijoin Example 

age zip disease 
54 98125 heart 
20 98120 flu 

AnonPatient P Voters V 

P    P.age=V.age    V 

name age zip 
p1 54 98125 
p2 20 98120 

P.age P.zip disease name V.age V.zip 

54 98125 heart p1 54 98125 

20 98120 flu p2 20 98120 

28 

Note: 
Optional, drop 
the redundant age 
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Join Summary 
•  Theta-join: R    θ S = σθ(R x S) 

–  Join of R and S with a join condition θ 
–  Cross-product followed by selection θ 

•  Equijoin: R    θ S = πA (σθ(R x S)) 
–  Join condition θ consists only of equalities 
–  Projection πA drops all redundant attributes 

•  Natural join: R    S = πA (σθ(R x S)) 
–  Equijoin 
–  Equality on all fields with same name in R and in S 
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So Which Join Is It ? 

•  When we write R ⨝ S we usually mean 
an equijoin, but we often omit the 
equality predicate when it is clear from 
the context 
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More Joins 

•  Outer join 
–  Include tuples with no matches in the output 
–  Use NULL values for missing attributes 

•  Variants 
–  Left outer join 
–  Right outer join 
–  Full outer join 

31 
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Outer Join Example 

age zip disease 
54 98125 heart 
20 98120 flu 
33 98120 lung 

AnonPatient P 

P  ⋉  V 

age zip disease job 

54 98125 heart lawyer 

20 98120 flu cashier 

33 98120 lung null 

32 

AnnonJob J 
job age zip 
lawyer 54 98125 
cashier 20 98120 
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Some Examples 

Q2: Name of supplier of parts with size greater than 10 
πsname(Supplier     Supply     (σpsize>10 (Part)) 
 
Q3: Name of supplier of red parts or parts with size greater than 10 
πsname(Supplier     Supply     (σpsize>10 (Part) ∪ σpcolor=‘red’ (Part) ) ) 

33 

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)



Outline 

•  Relational Query Languages 
– Relational algebra 
– Recursion-free datalog with negation 
– Relational calculus 

•  Database Design 
•  Functional Dependencies and BCNF 
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2. Datalog 

•  Very friendly notation for queries 
•  Designed in the 80’s for recursive 

queries 
•  Confined to academia, until the Big 

Data explosion.  Commercial systems 
today: LogicBlox, Yedalog (google) 

•  This lecture: recursion-free datalog with 
negation. Later lecture: recursion 
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2. Datalog 

How to try out datalog quickly: 
•  Download DLV from 

http://www.dbai.tuwien.ac.at/proj/dlv/ 
•  Run DLV on this file: parent(william, john). 

parent(john, james). 
parent(james, bill). 
parent(sue, bill). 
parent(james, carol). 
parent(sue, carol). 
 
male(john). 
male(james). 
female(sue). 
male(bill). 
female(carol). 
 
grandparent(X, Y) :- parent(X, Z), parent(Z, Y). 
father(X, Y) :- parent(X, Y), male(X). 
mother(X, Y) :- parent(X, Y), female(X). 
brother(X, Y) :- parent(P, X), parent(P, Y), male(X), X != Y. 
sister(X, Y)  :- parent(P, X), parent(P, Y), female(X), X != Y. 



2. Datalog: Facts and Rules 

Actor(344759,‘Douglas’, ‘Fowley’). 
Casts(344759, 29851). 
Casts(355713, 29000). 
Movie(7909, ‘A Night in Armour’, 1910). 
Movie(29000, ‘Arizona’, 1940). 
Movie(29445, ‘Ave Maria’, 1940). 

Facts Rules 

Q1(y) :-  Movie(x,y,z), z=‘1940’. 

Q2(f, l) :-  Actor(z,f,l), Casts(z,x),  
                 Movie(x,y,’1940’). 

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910), 
                                 Casts(z,x2), Movie(x2,y2,1940) 

Facts = tuples in the database 
Rules = queries 

Extensional Database Predicates = EDB 
Intensional Database Predicates = IDB 



2. Datalog: Terminology 
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Q2(f, l) :-  Actor(z,f,l), Casts(z,x), Movie(x,y,’1940’). 

body head 

atom atom atom 

f, l  = head variables 
x,y,z  = existential variables 



2. Datalog program 
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 B0(x) :- Actor(x,'Kevin', 'Bacon') 
 B1(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B0(y) 
 B2(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B1(y) 
 Q4(x) :- B1(x) 
 Q4(x) :- B2(x) 

Find all actors with Bacon number ≤ 2 

Note: Q4 is the union of B1 and B2 



2. Datalog with negation 
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 B0(x) :- Actor(x,'Kevin', 'Bacon') 
 B1(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B0(y) 
 Q6(x) :- Actor(x,f,l), not B1(x), not B0(x) 

Find all actors with Bacon number ≥ 2 



2. Safe Datalog Rules 
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U1(x,y) :- Movie(x,z,1994), y>1910 

Here are unsafe datalog rules.  What’s “unsafe” about them ? 

U2(x)   :- Movie(x,z,1994), not Casts(u,x) 

A datalog rule is safe if every variable appears 
in some positive relational atom 



2. Datalog v.s. SQL 

•  Non-recursive datalog with negation is 
very close to SQL; with some practice, 
you should be able to translate between 
them back and forth without difficulty; 
see example in the paper 
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Outline 

•  Relational Query Languages 
– Relational algebra 
– Recursion-free datalog with negation 
– Relational calculus 

•  Database Design 
•  Functional Dependencies and BCNF 
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3. Relational Calculus 

•  Also known as predicate calculus, or first 
order logic 

•  The most expressive formalism for queries: 
easy to write complex queries 

•  TRC = Tuple RC    = named perspective 
•  DRC = Domain RC = unnamed perspective 
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3. Relational Calculus 

P ::= atom | P ∧ P | P ∨ P | P⇒P | not(P) | ∀x.P  |  ∃x.P 

Predicate P: 

Q(x1, …, xk) = P 

Query Q: 

Q(f,l) = ∃x. ∃y. ∃z. (Actor(z,f,l) ∧Casts(z,x)∧Movie(x,y,1940)) 

Example: find the first/last names of actors who acted in 1940 

Q(f,l) = ∃z. (Actor(z,f,l) ∧∀x.(Casts(z,x) ⇒ ∃y.Movie(x,y,1940))) 

What does this query return ? 



3. Relational Calculus: 
Example 

Find drinkers that frequent some bar that serves some beer they like. 

Likes(drinker, beer) 
Frequents(drinker, bar) 
Serves(bar, beer) 

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z) 



3. Relational Calculus: 
Example 

Find drinkers that frequent some bar that serves some beer they like. 

Find drinkers that frequent only bars that serves some beer they like. 

Likes(drinker, beer) 
Frequents(drinker, bar) 
Serves(bar, beer) 

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z) 



3. Relational Calculus: 
Example 

Find drinkers that frequent some bar that serves some beer they like. 

Find drinkers that frequent only bars that serves some beer they like. 

Find drinkers that frequent some bar that serves only beers they like. 

Likes(drinker, beer) 
Frequents(drinker, bar) 
Serves(bar, beer) 

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z) 

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z)) 



3. Relational Calculus: 
Example 

Find drinkers that frequent some bar that serves some beer they like. 

Find drinkers that frequent only bars that serves some beer they like. 

Find drinkers that frequent only bars that serves only beer they like. 

Find drinkers that frequent some bar that serves only beers they like. 

Likes(drinker, beer) 
Frequents(drinker, bar) 
Serves(bar, beer) 

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z) 

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z)) 

Q(x) = ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z)) 
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3. Relational Calculus: 
Example 

Find drinkers that frequent some bar that serves some beer they like. 

Find drinkers that frequent only bars that serves some beer they like. 

Find drinkers that frequent only bars that serves only beer they like. 

Find drinkers that frequent some bar that serves only beers they like. 

Dan Suciu -- p544 Fall 2011 

Likes(drinker, beer) 
Frequents(drinker, bar) 
Serves(bar, beer) 

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z) 

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z)) 

Q(x) = ∀y. Frequents(x, y)⇒ ∀z.(Serves(y,z) ⇒ Likes(x,z)) 

Q(x) = ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z)) 



3. Domain Independent 
Relational Calculus 

•  As in datalog, one can write “unsafe” 
RC queries; they are also called domain 
dependent 

•  See examples in the Three Query 
Languages paper 

•  Moral: make sure your RC queries are 
always domain independent 
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3. Relational Calculus 

Take home message: 
•  Need to write a complex SQL query: 
•  First, write it in RC 
•  Next, translate it to datalog (see next) 
•  Finally, write it in SQL 
 
As you gain experience, take shortcuts 
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3. From RC to Non-recursive 
Datalog w/ negation 

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z)) 

Query: Find drinkers that like some beer so much that  
  they frequent all bars that serve it 



3. From RC to Non-recursive 
Datalog w/ negation 

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z)) 

Query: Find drinkers that like some beer so much that  
  they frequent all bars that serve it 

Step 1: Replace ∀ with ∃ using de Morgan’s Laws 

Q(x) = ∃y. Likes(x, y)∧ ¬∃z.(Serves(z,y) ∧	¬Frequents(x,z)) 



3. From RC to Non-recursive 
Datalog w/ negation 

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z)) 

Query: Find drinkers that like some beer so much that  
  they frequent all bars that serve it 

Step 1: Replace ∀ with ∃ using de Morgan’s Laws 

Q(x) = ∃y. Likes(x, y)∧ ¬∃z.(Serves(z,y) ∧	¬Frequents(x,z)) 

Step 2: Make all subqueries domain independent 

Q(x) = ∃y. Likes(x, y)	∧ ¬∃z.(Likes(x,y)∧Serves(z,y)∧¬Frequents(x,z)) 



3. From RC to Non-recursive 
Datalog w/ negation 

Step 3: Create a datalog rule for each subexpression; 
              (shortcut: only for subexpressions under ¬) 

Q(x) = ∃y. Likes(x, y)	∧¬ ∃z.(Likes(x,y)∧Serves(z,y)∧¬Frequents(x,z)) 

H(x,y)  :- Likes(x,y),Serves(y,z), not Frequents(x,z) 
Q(x)  :- Likes(x,y), not H(x,y) 

H(x,y) 



3. From RC to Non-recursive 
Datalog w/ negation 

Step 4: Write it in SQL 

SELECT DISTINCT L.drinker FROM Likes L 
WHERE not exists 
   (SELECT * FROM Likes L2, Serves S 
    WHERE L2.drinker=L.drinker and L2.beer=L.beer 
            and L2.beer=S.beer 
            and not exists (SELECT * FROM Frequents F 
                                     WHERE F.drinker=L2.drinker 
                                          and F.bar=S.bar)) 

H(x,y)  :- Likes(x,y),Serves(y,z), not Frequents(x,z) 
Q(x)  :- Likes(x,y), not H(x,y) 



3. From RC to Non-recursive 
Datalog w/ negation 

Improve the SQL query by using an unsafe datalog rule 

SELECT DISTINCT L.drinker FROM Likes L 
WHERE not exists 
   (SELECT * FROM Serves S 
    WHERE L.beer=S.beer 
            and not exists (SELECT * FROM Frequents F 
                                     WHERE F.drinker=L.drinker 
                                             and F.bar=S.bar)) 

H(x,y)  :- Likes(x,y),Serves(y,z), not Frequents(x,z) 
Q(x)  :- Likes(x,y), not H(x,y) Unsafe rule 



Summary of Translation 

•  RC à recursion-free datalog w/ negation 
– Subtle: as we saw; more details in the paper 

•  Recursion-free datalog w/ negation à RA 
– Easy: see paper 

•  RA à RC 
– Easy: see paper 

CSEP544 - Fall 2015 59 



Summary 

•  All three have same expressive power: 
– RA 
– Non-recursive datalog w/ neg. (= “core” SQL) 
– RC 

•  Write complex queries in RC first, then 
translate to SQL 
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Outline 

•  Relational Query Languages 
•  Database Design:  

– On your own: slides and/or Chapters 2, 3  
–  In class: What goes around 

•  Functional Dependencies and BCNF 
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Database Design 
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Database Design Process 
company makes product 

name 

price name address 

Conceptual Model: 

Relational Model: 
Tables + constraints 
And also functional dep. 
Normalization: 
Eliminates anomalies 

Conceptual Schema 

Physical Schema 
Physical storage details 



Entity / Relationship Diagrams 

•  Entity set = a class 
– An entity = an object 

•  Attribute 

•  Relationship 
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Product 

city 

makes 
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Person 

Company 
Product 
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Person 

Company 
Product 

name CEO 

price 

address name ssn 

address 

name 
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Person 

Company 
Product 

buys 

makes 

employs 

name CEO 

price 

address name ssn 

address 

name 



Keys in E/R Diagrams 

•  Every entity set must have a key 

Product 

name 

price 
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What is a Relation ? 
•  A mathematical definition: 

–  if A, B are sets, then a relation R is a subset of A × B 
•  A={1,2,3},   B={a,b,c,d}, 

A × B = {(1,a),(1,b), . . ., (3,d)}  
R = {(1,a), (1,c), (3,b)} 
 

 
•  makes is a subset of Product × Company: 

1 

2 

3 

a 

b 

c 

d 

A= 

B= 

makes Company 
Product 
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Multiplicity of E/R Relations 

•  one-one: 

•  many-one 

•  many-many 

1 
2 
3 

a 
b 
c 
d 

1 
2 
3 

a 
b 
c 
d 

1 
2 
3 

a 
b 
c 
d 
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Person 

Company 
Product 

buys 

makes 

employs 

name CEO 

price 

address name ssn 

address 

name 

What does 
this say ? 



Notation in Class v.s. the 
Book 

72 

makes Company Product 

makes Company Product 

In class: 

In the book: 



Multi-way Relationships 
How do we model a purchase relationship between buyers, 
products and stores? 

Purchase 

Product 

Person 

Store 

Can still model as a mathematical set (Q. how ?) 

73 A. As a set of triples  ⊆ Person × Product  × Store   



Q: What does the arrow mean ? 

Arrows in Multiway 
Relationships 

A: A given person buys a given product from at most one store 

Purchase 

Product 

Person 

Store 

74 

[Arrow pointing to E means that if we select one entity from each of the  
other entity sets in the relationship, those entities are related to  
at most one entity in E] 



Q: What does the arrow mean ? 

Arrows in Multiway 
Relationships 

A: A given person buys a given product from at most one store 
AND every store sells to every person at most one product  

Purchase 

Product 

Person 

Store 
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Q: How do we say that every person shops at at most one store ? 

Arrows in Multiway 
Relationships 

A: Cannot.  This is the best approximation. 
(Why only approximation ?) 

Purchase 

Product 

Person 

Store 
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Converting Multi-way 
Relationships to Binary 

Purchase 

Person 

Store 

Product 

StoreOf 

ProductOf 

BuyerOf 

date 

Arrows go in which direction? 77 



Converting Multi-way 
Relationships to Binary 

Purchase 

Person 

Store 

Product 

StoreOf 

ProductOf 

BuyerOf 

date 

Make sure you understand why! 78 



Design Principles 

Purchase Product Person 

What’s wrong? 

President Person Country 

Moral:   be faithful to the specifications of the app! 
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Design Principles: 
What’s Wrong? 

Purchase 

Product 

Store 

date 

personName personAddr 

Moral: pick the right 
   kind of entities. 
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Design Principles: 
What’s Wrong? 

Purchase 

Product 

Person 

Store 

date Dates 

Moral: don’t  
   complicate life more 
   than it already is. 
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From E/R Diagrams 
to Relational Schema 

•  Entity set à relation 
•  Relationship à relation 
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Entity Set to Relation 

Product 

prod-ID category 

price 

Product(prod-ID, category, price) 

prod-ID category price 
Gizmo55 Camera 99.99 
Pokemn19 Toy 29.99 83 



Create Table (SQL) 

CREATE TABLE Product ( 
 prod-ID CHAR(30) PRIMARY KEY, 
 category VARCHAR(20), 

         price double) 
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N-N Relationships to Relations 

Orders 

prod-ID cust-ID 

date 

Shipment Shipping-Co 

address 

name 
date 

Represent that in relations! 
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N-N Relationships to Relations 

Orders 

prod-ID cust-ID 

date 

Shipment Shipping-Co 

address 

name 

Orders(prod-ID,cust-ID, date) 
Shipment(prod-ID,cust-ID, name, date) 
Shipping-Co(name, address) 

date 

prod-ID cust-ID name date 

Gizmo55 Joe12 UPS 4/10/2011 

Gizmo55 Joe12 FEDEX 4/9/2011 



Create Table (SQL) 
CREATE TABLE Shipment( 

 name CHAR(30) 
  REFERENCES Shipping-Co, 

         prod-ID CHAR(30), 
         cust-ID VARCHAR(20), 
     date DATETIME, 
PRIMARY KEY (name, prod-ID, cust-ID), 
FOREIGN KEY (prod-ID, cust-ID)  
            REFERENCES  Orders 
) 



N-1 Relationships to Relations 

Orders 

prod-ID cust-ID 

date 

Shipment Shipping-Co 

address 

name 
date 

Represent this in relations! 
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N-1 Relationships to Relations 

Orders 

prod-ID cust-ID 

date 

Shipment Shipping-Co 

address 

name 

Orders(prod-ID,cust-ID, date1, name, date2)  
Shipping-Co(name, address) 

date 

Remember: no separate relations for many-one relationship 



Multi-way Relationships to 
Relations 

Purchase 

Product 

Person 

Store prod-ID price 

ssn name 

name address 

90 
Purchase(prod-ID, cust-ssn, store-name)  



Modeling Subclasses 
 
Some objects in a class may be special 

 define a new class 
 better: define a subclass 

Products 

Software  
products 

Educational  
products 

So --- we define subclasses in E/R 
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Product 

name category 

price 

isa isa 

Educational Product Software Product 

Age Group platforms 

Subclasses 
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Understanding Subclasses 

Think in terms of records: 
Product 
 
SoftwareProduct 
 
EducationalProduct 

field1 
field2 

field1 
field2 

field1 
field2 

field3 

field4 
field5 
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Subclasses to 

Relations 
 

Product 

name category 

price 

isa isa 

Educational Product Software Product 

Age Group platforms 

Name Price Category 

Gizmo 99 gadget 

Camera 49 photo 

Toy 39 gadget 

Name platforms 

Gizmo unix 

Name Age 
Group 

Gizmo toddler 

Toy retired 

Product 

Sw.Product 

Ed.Product 

Other ways to convert are possible 



Modeling Union Types With 
Subclasses 

FurniturePiece 

Person Company 

Say: each piece of furniture is owned 
either by a person or by a company 
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Modeling Union Types With 
Subclasses 

Say: each piece of furniture is owned either by a 
person or by a company 
Solution 1. Acceptable but imperfect (What’s wrong ?) 

FurniturePiece Person Company 

ownedByPerson ownedByComp. 
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Modeling Union Types With 
Subclasses 

Solution 2: better, more laborious 

isa 

FurniturePiece 

Person Company 
ownedBy 

Owner 

isa 
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Weak Entity Sets 
Entity sets are weak when their key comes from other 
classes to which they are related. 

University Team affiliation 

number sport name 

Team(sport, number, universityName) 
University(name) 
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What Are the Keys of R ? 

R 

A 

B 

S 

T 

V 

Q 

U W 

V 

Z 

C 

D 
E G 

K 

H 

F L 



Constraints in E/R Diagrams 
• Finding constraints is part of the modeling process.  
• Commonly used constraints: 

•    Keys: social security number uniquely identifies a person. 

•    Single-value constraints:  a person can have only one father. 

•    Referential integrity constraints: if you work for a company, it 
•                                                         must exist in the database. 

•    Other constraints:  peoples’ ages are between 0 and 150. 
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 Keys in E/R Diagrams 

address name ssn 

Person 

Product 

name category 

price 

No formal way  
   to specify multiple 
   keys in E/R diagrams 

Underline: 



Single Value Constraints 

makes 

makes 

v. s. 
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Referential Integrity 
Constraints 

Company Product makes 

Company Product makes 

Each product made by at most one company. 
Some products made by no company 

Each product made by exactly one company. 
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Note: For weak entity sets           should be replaced by 
(sec 4.4.2)   



Other Constraints 

Company Product makes 
<100 

Q: What does this mean ? 
A: A Company entity cannot be connected 
by relationship to more than 99 Product entities 
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Note: For “at least one”, you can use  “≥ 1” in a many-many relationship 
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Database Design Summary 

•  Conceptual modeling = design the database 
schema 
–  Usually done with Entity-Relationship diagrams 
–  It is a form of documentation the database 

schema; it is not executable code 
–  Straightforward conversion to SQL tables 
–  Big problem in the real world: the SQL tables are 

updated, the E/R documentation is not maintained 

•  Schema refinement using normal forms 
– Functional dependencies, normalization 

CSEP544 - Fall 2015 



Outline 

•  Relational Query Languages 
•  Database Design:  

– On your own: slides and/or Chapters 2, 3  
–  In class: What goes around 

•  Functional Dependencies and BCNF 
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Data Models 

•  M. Stonebraker and J. Hellerstein. What 
Goes Around Comes Around. In 
"Readings in Database Systems" (aka 
the Red Book). 4th ed. 
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“Data Model” 
•  Apps need to model real-world data 

–  Typically includes entities and relationships between 
them 

–  Entities: e.g. students, courses, products, clients 
–  Relationships: e.g. course registrations, product 

purchases 

•  Data model enables a user to define the data using 
high-level constructs without worrying about many 
low-level details of how data will be stored on disk 

CSEP544 - Fall 2015 
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Levels of Abstraction 

Disk 

Physical Schema 

Conceptual Schema 

External Schema External Schema External Schema 

logical 

includes storage details 
file organization 
indexes 

logical 

109 

Classical picture. 
Remember it ! 
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What goes around… 
•  Structured data 

– What is this ?  Examples ? 
•  Semistructured data 

– What is this ?  
– Examples ? 

•  Unstructured data 
– What is this ? Examples ? 

110 
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What goes around… 
•  Structured data 

–  All data conforms to a schema. Ex: business data 
•  Semistructured data 

–  Some structure in the data but implicit and irregular 
–  Ex: resume, ads 

•  Unstructured data 
–  No structure in data. Ex: text, sound, video, images 

•  In our class: structured data & relational DBMSs 
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Early Proposal 1: IMS 
•  What is it ? 

112 
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Early Proposal 1: IMS 
•  Hierarchical data model 

•  Record 
–  Type: collection of named fields with data types (+) 
–  Instance: must match type definition (+) 
–  Each instance must have a key (+) 
–  Record types must be arranged in a tree (-) 

•  IMS database is collection of instances of record 
types organized in a tree 

113 



 IMS Example 
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DL/1 
•  How does a programmer retrieve data in IMS ? 

115 
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DL/1 
•  Each record has a hierarchical sequence key (HSK) 

–  Records are totally ordered: depth-first and left-to-right 

•  HSK defines semantics of commands: 
–  get_next 
–  get_next_within_parent 

•  DL/1 is a record-at-a-time language 
–  Programmer constructs an algorithm for solving the query 
–  Programmer must worry about query optimization 

116 
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Data storage 

•  How is the data physically stored in 
IMS ? 

117 
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Data storage 
•  Root records 

–  Stored sequentially (sorted on key) 
–  Indexed in a B-tree using the key of the record 
–  Hashed using the key of the record 

•  Dependent records 
–  Physically sequential  
–  Various forms of pointers 

•  Selected organizations restrict DL/1 commands 
–  No updates allowed with sequential organization 
–  No “get-next” for hashed organization 

118 
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Data Independence 

•  What is it ? 

119 
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Data Independence 
•  Physical data independence: Applications are 

insulated from changes in physical storage details 

•  Logical data independence: Applications are 
insulated from changes to logical structure of the 
data 
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IMS Limitations 
•  Tree-structured data model 

–  Redundant data 
–  Existence depends on parent 

•  Record-at-a-time user interface 

•  Very limited physical independence 
–  Phys. organization limits possible operations 
–  Application programs break if organization changes 

•  Provides some logical independence 
–  DL/1 program runs on logical database  
–  Difficult to achieve good logical data independence with a tree model 
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Early Proposal 2: CODASYL 
• What is it ? 
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Early Proposal 2: CODASYL 
•  Networked data model 

•  Record types with keys (+) 

•  Organized in a network  
–  More flexible than hierarchy (+) 
–  A record can have multiple parents (-) 
–  Arcs between records are named 
–  At least one entry point to the network 

•  Record-at-a-time DML (-) 
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CODASYL Example 
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CODASYL Limitations 
•  No physical data independence 

•  No logical data independence 

•  Very complex: 
–  Programs must “navigate the hyperspace” 
–  Load and recover as one gigantic object 
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Relational Model Overview 
•  Proposed by Ted Codd in 1970 

•  Motivation: better logical and physical 
data independence 

126 



Relational Model Overview 

•  Defines logical data model 

•  No physical data model 

•  Set-at-a-time query language 
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Great Debate 
•  Pro relational 

–  What where the arguments ? 

•  Against relational 
–  What where the arguments ? 

•  How was it settled ? 
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Great Debate 
•  Pro relational 

–  CODASYL is too complex 
–  CODASYL does not provide sufficient data independence 
–  Record-at-a-time languages are too hard to optimize 
–  Trees/networks not flexible enough for common cases 

•  Against relational 
–  COBOL programmers cannot understand relational 

languages 
–  Impossible to represent the relational model efficiently 
–  CODASYL can represent tables 

•  Ultimately settled by the market place 



Other Data Models 
•  Entity-Relationship: 1970’s 

–  Successful in logical database design (this lecture + hw2) 
•  Extended Relational: 1980’s   
•  Semantic: late 1970’s and 1980’s 

•  Object-oriented: late 1980’s and early 1990’s 
–  Impedance mismatch: relational dbs çè OO languages 
–  Interesting but ultimately failed (several reasons, see paper) 

•  Object-relational: late 1980’s and early 1990’s 
–  User-defined types, ops, functions, and access methods 

•  Semi-structured: late 1990’s to the present 
–  XML, JSon, Protobuf 

CSEP544 - Fall 2015 
130 



Outline 

•  Relational Query Languages 
•  Database Design:  

– On your own: slides and/or Chapters 2, 3  
–  In class: What goes around 

•  Functional Dependencies and BCNF 
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Relational Schema Design 

Name SSN PhoneNumber City 
Fred 123-45-6789 206-555-1234 Seattle 
Fred 123-45-6789 206-555-6543 Seattle 
Joe 987-65-4321 908-555-2121 Westfield 

One person may have multiple phones, but lives in only one city 
 
Primary key is thus (SSN,PhoneNumber) 
 
What is the problem with this schema? 
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Relational Schema Design 

Anomalies: 
 Redundancy  = repeat data 
 Update anomalies   = what if Fred moves to “Bellevue”? 
 Deletion anomalies = what if Joe deletes his phone number? 

Name SSN PhoneNumber City 
Fred 123-45-6789 206-555-1234 Seattle 
Fred 123-45-6789 206-555-6543 Seattle 
Joe 987-65-4321 908-555-2121 Westfield 
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Relation Decomposition 
Break the relation into two: 

Name SSN City 
Fred 123-45-6789 Seattle 
Joe 987-65-4321 Westfield 

SSN PhoneNumber 
123-45-6789 206-555-1234 
123-45-6789 206-555-6543 
987-65-4321 908-555-2121 Anomalies have gone: 

 No more repeated data 
 Easy to move Fred to “Bellevue” (how ?) 
 Easy to delete all Joe’s phone numbers (how ?) 

Name SSN PhoneNumber City 
Fred 123-45-6789 206-555-1234 Seattle 
Fred 123-45-6789 206-555-6543 Seattle 
Joe 987-65-4321 908-555-2121 Westfield 
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Relational Schema Design 
(or Logical Design) 

How do we do this systematically? 
 
Start with some relational schema  
 
Find out its functional dependencies (FDs) 
 
Use FDs to normalize the relational schema 
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Functional Dependencies 
(FDs) 

Definition 
 

               If two tuples agree on the attributes  

 then they must also agree on the attributes 

Formally:   

A1, A2, …, An à B1, B2, …, Bm 

A1, A2, …, An 

B1, B2, …, Bm 
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Functional Dependencies 
(FDs) 

Definition    A1, ..., Am à B1, ..., Bn holds in R if: 
 ∀t, t’ ∈ R,  
 (t.A1 = t’.A1  ∧ ... ∧ t.Am = t’.Am  ⇒  t.B1 = t’.B1 ∧ ... ∧ t.Bn = 

t’.Bn ) 
 A1 ... Am B1 ... Bn 

 
 

if t, t’ agree here 

 
 

then t, t’ agree here 

t 

t’ 

R 
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Example 

EmpID  à   Name, Phone, Position 
Position  à   Phone 
but  not   Phone  à    Position 

An FD holds, or does not hold on an instance: 

EmpID Name Phone Position 
E0045 Smith 1234 Clerk 
E3542 Mike 9876 Salesrep 
E1111 Smith 9876 Salesrep 
E9999 Mary 1234 Lawyer 
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Example 

Position  à   Phone 

EmpID Name Phone Position 
E0045 Smith 1234 Clerk 
E3542 Mike 9876    ← Salesrep 
E1111 Smith 9876    ← Salesrep 
E9999 Mary 1234 Lawyer 
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Example 

 But not Phone  à    Position 

EmpID Name Phone Position 
E0045 Smith 1234    → Clerk 
E3542 Mike 9876 Salesrep 
E1111 Smith 9876 Salesrep 
E9999 Mary 1234    → Lawyer 
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Example 

Do all the FDs hold on this instance? 

name à color 
category à department 
color, category à price 

name category color department price 

Gizmo Gadget Green Toys 49 

Tweaker Gadget Green Toys 99 
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Example 

name category color department price 

Gizmo Gadget Green Toys 49 

Tweaker Gadget Black Toys 99 

Gizmo Stationary Green Office-supp. 59 

What about this one ? 

name à color 
category à department 
color, category à price 



Terminology 

FD holds or does not hold on an instance 
 
If we can be sure that every instance of R will 
be one in which a given FD is true, then we say 
that R satisfies the FD 
 
If we say that R satisfies an FD F, we are 
stating a constraint on R 
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An Interesting Observation 

If all these FDs are true: 
name à color 
category à department 
color, category à price 

Then this FD also holds: name, category à price 

CSEP544 - Fall 2015    

If we find out from application domain that a relation satisfies some FDs,  
it doesn’t mean that we found all the FDs that it satisfies!  
There could be more FDs implied by the ones we have. 



145 

Closure of a set of Attributes 
Given a set of attributes  A1, …, An  
 
The closure, {A1, …, An}+  = the set of attributes B 
                                                 s.t. A1, …, An  à B 
Example: 

Closures: 
       name+  =  {name, color} 
       {name, category}+ = {name, category, color, department, price} 
       color+ = {color} 

1. name à color 
2. category à department 
3. color, category à price 
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Closure Algorithm 
X={A1, …, An}. 
 
Repeat until X doesn’t change  do: 
    if      B1, …, Bn à C   is a FD and 
             B1, …, Bn  are all in X 
    then  add C to X. 

{name, category}+ =  
      {                                                                    } 

Example: 

1. name à color 
2. category à department 
3. color, category à price 
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Closure Algorithm 
X={A1, …, An}. 
 
Repeat until X doesn’t change  do: 
    if      B1, …, Bn à C   is a FD and 
             B1, …, Bn  are all in X 
    then  add C to X. 

{name, category}+ =  
      {                                                                    } 

Example: 

name, category, color, department, price 

1. name à color 
2. category à department 
3. color, category à price 
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Closure Algorithm 
X={A1, …, An}. 
 
Repeat until X doesn’t change  do: 
    if      B1, …, Bn à C   is a FD and 
             B1, …, Bn  are all in X 
    then  add C to X. 

{name, category}+ =  
      {                                                                    } 

Example: 

name, category, color, department, price 

Hence:  name, category à color, department, price 

1. name à color 
2. category à department 
3. color, category à price 
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Example 

Compute {A,B}+     X = {A, B,                             } 
 
Compute {A, F}+    X = {A, F,                             } 

R(A,B,C,D,E,F) 

In class: 
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Example 

Compute {A,B}+     X = {A, B, C, D, E } 
 
Compute {A, F}+    X = {A, F,                             } 

R(A,B,C,D,E,F) 

In class: 
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Example 

Compute {A,B}+     X = {A, B, C, D, E } 
 
Compute {A, F}+    X = {A, F, B, C, D, E } 

R(A,B,C,D,E,F) 

In class: 
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A, B  à  C 
A, D  à  E 
B       à  D 
A,  F  à  B 
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Example 

Compute {A,B}+     X = {A, B, C, D, E } 
 
Compute {A, F}+    X = {A, F, B, C, D, E } 

R(A,B,C,D,E,F) 

In class: 
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A, B  à  C 
A, D  à  E 
B       à  D 
A,  F  à  B 

What is the key of R? 



Practice at Home 
A, B  à  C 
A, D  à  B 
B       à  D 

Find all FD’s implied by: 
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Practice at Home 
A, B  à  C 
A, D  à  B 
B       à  D 

Step 1: Compute X+, for every X: 
A+ = A,   B+ = BD,   C+ = C,   D+ = D 
AB+ =ABCD, AC+=AC, AD+=ABCD, 
                     BC+=BCD,  BD+=BD,  CD+=CD 
ABC+ = ABD+ = ACD+ = ABCD (no need to compute– why ?) 
BCD+ = BCD,    ABCD+ = ABCD 

Find all FD’s implied by: 
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Practice at Home 
A, B  à  C 
A, D  à  B 
B       à  D 

Step 1: Compute X+, for every X: 
A+ = A,   B+ = BD,   C+ = C,   D+ = D 
AB+ =ABCD, AC+=AC, AD+=ABCD, 
                     BC+=BCD,  BD+=BD,  CD+=CD 
ABC+ = ABD+ = ACD+ = ABCD (no need to compute– why ?) 
BCD+ = BCD,    ABCD+ = ABCD 

Step 2: Enumerate all FD’s X à Y, s.t. Y ⊆ X+ and X∩Y = ∅: 
AB à CD, ADàBC,  ABC à D, ABD à C, ACD à B 

Find all FD’s implied by: 
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Keys 
•  A superkey is a set of attributes A1, ..., An s.t. for 

any other attribute B, we have A1, ..., An à B 

•  A key is a minimal superkey 
–  A superkey and for which no subset is a superkey 
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Computing (Super)Keys 

•  For all sets X, compute X+ 

•  If X+ = [all attributes], then X is a 
superkey 

•  Try only the minimal X’s to get the keys 
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Example 

Product(name, price, category, color) 

name, category à price 
category à color 

What is the key ? 
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Example 

Product(name, price, category, color) 

What is the key ? 

(name, category) +  = { name, category, price, color } 

Hence (name, category) is a key 
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name, category à price 
category à color 
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Key or Keys ? 
Can we have more than one key ? 
 
Given R(A,B,C) define FD’s s.t. there are two or more keys 
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Key or Keys ? 
Can we have more than one key ? 
 
Given R(A,B,C) define FD’s s.t. there are two or more keys 

ABàC 
BCàA 

AàBC 
BàAC or 

what are the keys here ? 

A à B 
B à C 
C à A 

or 
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Eliminating Anomalies 
Name SSN PhoneNumber City 
Fred 123-45-6789 206-555-1234 Seattle 
Fred 123-45-6789 206-555-6543 Seattle 
Joe 987-65-4321 908-555-2121 Westfield 
Joe 987-65-4321 908-555-1234 Westfield 

SSN à  Name, City 
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Suggest a rule for decomposing the table to eliminate anomalies 
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Eliminating Anomalies 

Main idea: 

•  X à A is OK if X is a (super)key 

•  X à A is not OK otherwise 
– Need to decompose the table, but how? 
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Boyce-Codd Normal Form 

There are no 
“bad” FDs: 

Definition. A relation R is in BCNF if: 

   Whenever Xà B is a non-trivial dependency, 
   then X is a superkey. 

Equivalently:  Definition. A relation R is in BCNF if: 
   ∀ X, either   X+ = X    or   X+ = [all attributes] 
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BCNF Decomposition Algorithm 
Normalize(R) 
   find X s.t.: X  ≠  X+  ≠   [all attributes] 
   if  (not found)  then “R is in BCNF” 
   let Y = X+ - X;      Z = [all attributes] - X+  
   decompose R into R1(X ∪ Y) and R2(X ∪ Z) 
   Normalize(R1);  Normalize(R2); 

Y X Z 

X+ CSEP544 - Fall 2015    
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Example 

The only key is: {SSN, PhoneNumber} 
Hence SSN à  Name, City is a “bad” dependency 

SSN à  Name, City 

In other words:   
SSN+ = Name, City and is neither SSN nor All Attributes 

Name SSN PhoneNumber City 
Fred 123-45-6789 206-555-1234 Seattle 
Fred 123-45-6789 206-555-6543 Seattle 
Joe 987-65-4321 908-555-2121 Westfield 
Joe 987-65-4321 908-555-1234 Westfield 

Name, 
City 

SSN 
Phone- 
Number 

SSN+ 
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Example BCNF 
Decomposition 

Name SSN City 
Fred 123-45-6789 Seattle 
Joe 987-65-4321 Westfield 

SSN PhoneNumber 
123-45-6789 206-555-1234 
123-45-6789 206-555-6543 
987-65-4321 908-555-2121 
987-65-4321 908-555-1234 

SSN à  Name, City 

Let’s check anomalies: 
 Redundancy ? 
 Update ? 
 Delete ? 

Name, 
City 

SSN 
Phone- 
Number 

SSN+ 
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Example BCNF Decomposition 
Person(name, SSN, age, hairColor, phoneNumber) 

 SSN à name, age 
 age à hairColor 

Find X s.t.: X ≠X+ ≠ [all attributes] 
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Example BCNF Decomposition 
Person(name, SSN, age, hairColor, phoneNumber) 

 SSN à name, age 
 age à hairColor 

Find X s.t.: X ≠X+ ≠ [all attributes] 

Iteration 1: Person:   SSN+ = SSN, name, age, hairColor 
Decompose into: P(SSN, name, age, hairColor) 
                            Phone(SSN, phoneNumber) 

SSN name, 
age, 
hairColor 

phoneNumber 
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Example BCNF Decomposition 
Person(name, SSN, age, hairColor, phoneNumber) 

 SSN à name, age 
 age à hairColor 

Find X s.t.: X ≠X+ ≠ [all attributes] 

Iteration 1: Person:   SSN+ = SSN, name, age, hairColor 
Decompose into: P(SSN, name, age, hairColor) 
                            Phone(SSN, phoneNumber) 
 
Iteration 2:  P:    age+ = age, hairColor 
Decompose: People(SSN, name, age) 
                     Hair(age, hairColor) 
                     Phone(SSN, phoneNumber) 

What are 
the keys ? 
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Example BCNF Decomposition 
Person(name, SSN, age, hairColor, phoneNumber) 

 SSN à name, age 
 age à hairColor 

Find X s.t.: X ≠X+ ≠ [all attributes] 

Iteration 1: Person:   SSN+ = SSN, name, age, hairColor 
Decompose into: P(SSN, name, age, hairColor) 
                            Phone(SSN, phoneNumber) 
 
Iteration 2:  P:    age+ = age, hairColor 
Decompose: People(SSN, name, age) 
                     Hair(age, hairColor) 
                     Phone(SSN, phoneNumber) 

Note the keys! 
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Practice at Home 
A  à  B 
B à C 

R(A,B,C,D) 
 A+ = ABC ≠ ABCD 

R(A,B,C,D) 
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Practice at Home 

What are 
the keys ? 

A  à  B 
B à C 

R(A,B,C,D) 
 A+ = ABC ≠ ABCD 

R(A,B,C,D) 

What happens if in R we first pick B+  ?  Or AB+  ? 

R1(A,B,C) 
 B+ = BC ≠ ABC 

R2(A,D) 

R11(B,C) R12(A,B) 
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Schema Refinements  
= Normal Forms 

•  1st Normal Form = all tables are flat 
•  2nd Normal Form = obsolete 
•  Boyce Codd Normal Form = today 
•  3rd Normal Form = see book 
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