CSEP 544: Lecture 02

Relational Query Languages and Database Design

Homework 1

- Due next Tuesday, October 20, 11pm
- Please note update using SQL Azure - Use shared account (login in your email) - Database is already there, just run queries
- Create your own SQL Azure instance
- Extra credit in HW1
- Required for HW4

Homework 3

I know it's far into the future, but...

- We will use Amazon Web Service
- You need to get a $\$ 100$ student's pass http://aws.amazon.com/grants
- Use your uw.edu email address

Brief Review of $1^{\text {st }}$ Lecture

- Database = collection of related files
- Physical data independence
- SQL:
- Select-from-where
- Nested loop semantics
- Group by (you read the slides, right?)
- Advanced stuff: nested queries, outerjoins

Big Data

What is it?

Big Data

What is it?

- Gartner report*
- High Volume
- High Variety
- High Velocity
* http://www.gartner.com/newsroom/id/1731916

Big Data

What is it? Stonebraker:

- Big volumes, small analytics
- Big analytics, on big volumes
- Big velocity
- Big variety

Big Data

- "Small analytics" = select/join/aggregate/groupby
- Discuss: column-oriented databases, shared-nothing, Hive/ Hadoop
- "Big analytics" = linear algebra (R, ScalaPack)
- Discuss: Sparse matrix multiplication = join/groupby
- High velocity = streaming data
- Discuss: Streaming SQL engines, e.g. Microsoft's Trill
- High variety $=$ heterogeneous data models (XML, documents)
- Discuss: ETL ("Extract Transform Load")

Outline

- Relational Query Languages
- Relational algebra
- Recursion-free datalog with negation
- Relational calculus

Database Design

- Functional Dependencies and BCNF
- Suggested reading:

Three Query Language Formalisms https://courses.cs.washington.edu/ courses/cse344/12au/lectures/query-language-primer.pdf

1. Relational Algebra

- Used internally by the database engine to execute queries
- Book: chapter 4.2
- We will return to RA when we discuss query execution

1. Relational Algebra

The Basic Five operators:

- Union: \cup
- Difference: -
- Selection: σ
- Projection: П
- Join: \ltimes

Running Example

Find all actors who acted both in 1910 and in 1940:

Q: SELECT DISTINCT a.fname, a.Iname
FROM Actor a, Casts c1, Movie m1, Casts c2, Movie m2 WHERE a.id = c1. pid AND c1. mid $=\mathrm{m} 1$.id

AND a.id $=$ c2.pid AND c2. $\mathrm{mid}=\mathrm{m} 2$.id
AND m1.year $=1910 \quad$ AND m2.year $=1940$;

Two Perspectives

- Named Perspective:

Actor(id, fname, Iname)
Casts(pid,mid)
Movie(id,name,year)

- Unnamed Perspective:

Actor $=$ arity 3
Casts = arity 2
Movie $=$ arity 3

Named perspective needs renaming operator: ρ

1. Relational Algebra (Details)

- Selection: returns tuples that satisfy condition
- Named perspective:
- Unamed perspective:
$\sigma_{\text {year }}=1910^{\prime}$ (Movie)
$\sigma_{3=}{ }^{\prime} 1910^{\prime}$ (Movie)

1. Relational Algebra (Details)

- Selection: returns tuples that satisfy condition
- Named perspective:
- Unamed perspective:
$\sigma_{\text {year }}=1910^{\prime}$ (Movie)
$\sigma_{3}={ }^{\prime} 1910^{\prime}$ (Movie)
- Projection: returns only some attributes
- Named perspective:
- Unnamed perspective:
$\Pi_{\text {fname, Iname }}$ (Actor)
$\Pi_{2,3}$ (Actor)

1. Relational Algebra (Details)

- Selection: returns tuples that satisfy condition
- Named perspective:
- Unamed perspective:
$\sigma_{\text {year }=1910 \text { (Movie) }}$
$\sigma_{3}={ }^{\prime} 1910^{\prime}$ (Movie)
- Projection: returns only some attributes
- Named perspective:
- Unnamed perspective: $\quad \Pi_{2,3}$ (Actor)
- Join: joins two tables on a condition
- Named perspective:
- Unnamed perspectivie:

Casts $\bowtie_{\text {mid=id }}$ Movie
Casts $\bowtie_{2=1}$ Movie

1. Relational Algebra Example

Q: SELECT DISTINCT a.fname, a.Iname
FROM Actor a, Casts c1, Movie m1, Casts c2, Movie m2
WHERE a.id = c1.pid \quad AND c1. $\mathrm{mid}=\mathrm{m} 1$.id
AND a.id $=\mathrm{c} 2$. pid \quad AND c2. $\mathrm{mid}=\mathrm{m} 2 . \mathrm{id}$
AND m1. year $=1910$ AND m2 .year $=1940$;

Actor(id, fname, Iname) Casts(pid,mid)
Movie(id,name,year)

Named perspective

$\prod_{\text {fname, Iname }}$
$\sigma_{\text {year1 }=\text { '1910' and year2='1940' }}$
Note how we renamed year to year1, year2

Casts

1. Relational Algebra Example

Q: SELECT DISTINCT a.fname, a.Iname
FROM Actor a, Casts c1, Movie m1, Casts c2, Movie m2
WHERE a.id = c1.pid \quad AND c1. $\mathrm{mid}=\mathrm{m} 1$.id
AND a.id $=\mathrm{c} 2$.pid \quad AND c2. $\mathrm{mid}=\mathrm{m} 2 . \mathrm{id}$

Actor(id, fname, Iname) Casts(pid,mid)
Movie(id,name,year)

Unnamed perspective

Joins and Cartesian Product

- Each tuple in R1 with each tuple in R2

$$
R 1 \times R 2
$$

- Rare in practice; mainly used to express joins

Cartesian Product

 (aka Crosşeproduct)| Name | SSN |
| :--- | :--- |
| John | 999999999 |
| Tony | 777777777 |

EmpSSN	DepName
9999999999	Emily
777777777	Joe

Employee \times Dependent

Name	SSN	EmpSSN	DepName
John	999999999	999999999	Emily
John	999999999	777777777	Joe
Tony	777777777	999999999	Emily
Tony	777777777	7777777777	Joe
CSEP544 - Fall 2015			

Natural Join

$\mathrm{R} 1 \bowtie \mathrm{R} 2$

- Meaning: $R 1 \bowtie R 2=\Pi_{A}(\sigma(R 1 \times R 2))$
- Where:
- Selection σ checks equality of all common attributes
- Projection eliminates duplicate common attributes

Natural Join Example

R

A	B
X	Y
X	Z
Y	Z
Z	V

S

B	C
Z	U
V	W
Z	V

$\mathbf{R} \bowtie \mathbf{S}=$
$\Pi_{A B C}\left(\sigma_{R . B=S . B}(R \times S)\right)$

A	B	C
X	Z	U
X	Z	V
Y	Z	U
Y	Z	V
Z	V	W

CSEP544 - Fall 2015

Natural Join Example 2

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

Voters V

name	age	zip
p1	54	98125
p2	20	98120

$P \bowtie V$

age	zip	disease	name
54	98125	heart	$p 1$
20	98120	flu	$p 2$

Natural Join

- Given schemas $R(A, B, C, D), S(A, C, E)$, what is the schema of $R \bowtie S$?
- Given $R(A, B, C), S(D, E)$, what is $R \bowtie S$?
- Given $R(A, B), S(A, B)$, what is $R \bowtie S$?

Theta Join

- A join that involves a predicate

$$
R 1 \bowtie_{\theta} R 2=\sigma_{\theta}(R 1 \times R 2)
$$

- Here θ can be any condition
- For our voters/disease example:
$P \bowtie_{\text {P.zip }}=V$. zip and P.age $<$ V.age +5 and P.age $>$ V.age -5

Equijoin

- A theta join where θ is an equality

$$
R 1 \bowtie_{A=B} R 2=\sigma_{A=B}(R 1 \times R 2)
$$

- This is by far the most used variant of join in practice

Equijoin Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

$P \bowtie_{\text {P.age=}=\text { V.age }} \quad V$

P.age	P.zip	disease	name	V.age	V.zip
54	98125	heart	p 1	54	98125
20	98120	flu	p 2	20	98120

Note:
Optional, drop the redundant age

Join Summary

- Theta-join: $R \bowtie_{\theta} S=\sigma_{\theta}(R \times S)$
- Join of R and S with a join condition θ
- Cross-product followed by selection θ
- Equijoin: $\mathrm{R}_{\bowtie}{ }_{\theta} \mathrm{S}=\pi_{\mathrm{A}}\left(\sigma_{\theta}(\mathrm{R} \times \mathrm{S})\right)$
- Join condition θ consists only of equalities
- Projection π_{A} drops all redundant attributes
- Natural join: $R_{\bowtie} S=\pi_{A}\left(\sigma_{\theta}(R \times S)\right)$
- Equijoin
- Equality on all fields with same name in R and in S

So Which Join Is It?

- When we write $R \bowtie S$ we usually mean an equijoin, but we often omit the equality predicate when it is clear from the context

More Joins

- Outer join
- Include tuples with no matches in the output
- Use NULL values for missing attributes
- Variants
- Left outer join
- Right outer join
- Full outer join

Outer Join Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu
33	98120	lung

AnnonJob J

job	age	zip
lawyer	54	98125
cashier	20	98120

age	zip	disease	job
54	98125	heart	lawyer
20	98120	flu	cashier
33	98120	lung	null

Some Examples

Supplier(sno, sname, scity,sstate) Part(pno, pname, psize, pcolor) Supply(sno, pno,qty,price)

Q2: Name of supplier of parts with size greater than 10
$\pi_{\text {sname }}\left(\right.$ Supplier \bowtie Supply $\bowtie\left(\sigma_{\text {psize>10 }}\right.$ (Part))
Q3: Name of supplier of red parts or parts with size greater than 10
$\pi_{\text {sname }}\left(\right.$ Supplier \bowtie Supply $\bowtie\left(\sigma_{\text {psize>10 }}(\right.$ Part $) \cup \sigma_{\text {pcolor='red' }}($ Part $)$))

Outline

- Relational Query Languages
- Relational algebra
- Recursion-free datalog with negation
- Relational calculus

Database Design

- Functional Dependencies and BCNF

2. Datalog

- Very friendly notation for queries
- Designed in the 80's for recursive queries
- Confined to academia, until the Big Data explosion. Commercial systems today: LogicBlox, Yedalog (google)
- This lecture: recursion-free datalog with negation. Later lecture: recursion

2. Datalog

How to try out datalog quickly:
 - Download DLV from http://www.dbai.tuwien.ac.at/proj/dlv/

- Run DLV on this file:

```
parent(william, john).
parent(john, james).
parent(james, bill).
parent(sue, bill).
parent(james, carol).
parent(sue, carol).
male(john).
male(james).
female(sue).
male(bill).
female(carol).
grandparent(X, Y) :- parent(X, Z), parent(Z, Y).
father(X, Y) :- parent(X, Y), male(X).
mother(X, Y) :- parent(X, Y), female(X).
brother(X, Y) :- parent(P, X), parent(P, Y), male(X), X != Y.
sister(X, Y) :- parent(P, X), parent(P, Y), female(X), X != Y.
```


2. Datalog: Facts and Rules

Facts
Actor(344759, 'Douglas', 'Fowley').
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, 'A Night in Armour', 1910).
Movie(29000, 'Arizona', 1940).
Movie(29445, 'Ave Maria', 1940).

Rules
Q1(y) :- Movie(x, y, z), $z={ }^{\prime} 1940$ '.

Q2(f, I) :- $\operatorname{Actor}(\mathrm{z}, \mathrm{f}, \mathrm{I}), \operatorname{Casts}(\mathrm{z}, \mathrm{x})$, Movie(x,y,'1940').

$$
\begin{aligned}
& \text { Q3(f,I) :- Actor(z,f,I), Casts(z,x1), Movie(x1,y1,1910), } \\
& \text { Casts(z,x2), Movie(x2,y2,1940) }
\end{aligned}
$$

Facts = tuples in the database Rules = queries

Extensional Database Predicates = EDB Intensional Database Predicates $=$ IDB

2. Datalog: Terminology

head
body

f, I = head variables
$x, y, z=$ existential variables

2. Datalog program

Find all actors with Bacon number ≤ 2

```
B0(x) :- Actor(x,'Kevin', 'Bacon')
B1(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B0(y)
B2(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B1(y)
Q4(x) :- B1(x)
Q4(x) :- B2(x)
```

Note: Q4 is the union of B1 and B2

2. Datalog with negation

Find all actors with Bacon number ≥ 2

```
B0(x) :- Actor(x,'Kevin', 'Bacon')
B1(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B0(y)
Q6(x) :- Actor(x,f,I), not B1(x), not B0(x)
```


2. Safe Datalog Rules

Here are unsafe datalog rules. What's "unsafe" about them ?
U1 (x,y) :- Movie(x,z,1994), y>1910
U2(x) :- Movie(x,z,1994), not Casts(u,x)

A datalog rule is safe if every variable appears in some positive relational atom

2. Datalog v.s. SQL

- Non-recursive datalog with negation is very close to SQL; with some practice, you should be able to translate between them back and forth without difficulty; see example in the paper

Outline

- Relational Query Languages
- Relational algebra
- Recursion-free datalog with negation
- Relational calculus

Database Design

- Functional Dependencies and BCNF

3. Relational Calculus

- Also known as predicate calculus, or first order logic
- The most expressive formalism for queries: easy to write complex queries
- TRC = Tuple RC = named perspective
- DRC = Domain RC = unnamed perspective

3. Relational Calculus

Predicate P:

$$
P::=\text { atom }|P \wedge P| P \vee P|P \Rightarrow P| \operatorname{not}(P)|\forall x . P| \exists x . P
$$

Query Q:

$$
Q\left(x_{1}, \ldots, x_{k}\right)=P
$$

Example: find the first/last names of actors who acted in 1940

$$
Q(f, I)=\exists x . \text { ヨy. ヨz. (Actor(z,f,I) } \wedge \operatorname{Casts}(z, x) \wedge \operatorname{Movie}(x, y, 1940))
$$

What does this query return?

$$
Q(f, I)=\exists z .(\operatorname{Actor}(z, f, I) \wedge \forall x .(\operatorname{Casts}(z, x) \Rightarrow \exists y . M o v i e(x, y, 1940)))
$$

3. Relational Calculus:

Likes(drinker, beer)

Example

Frequents(drinker, bar)
Serves(bar, beer)
Find drinkers that frequent some bar that serves some beer they like.

$$
Q(x)=\exists y . \exists z \text {. Frequents }(x, y) \wedge \text { Serves }(y, z) \wedge \text { Likes }(x, z)
$$

3. Relational Calculus:

Likes(drinker, beer)

Example

Frequents(drinker, bar)
Serves(bar, beer)
Find drinkers that frequent some bar that serves some beer they like.

$$
Q(x)=\exists y . \exists z \text {. Frequents }(x, y) \wedge \text { Serves }(y, z) \wedge \text { Likes }(x, z)
$$

Find drinkers that frequent only bars that serves some beer they like.

3. Relational Calculus:

Likes(drinker, beer)

Example

Frequents(drinker, bar)
Serves(bar, beer)
Find drinkers that frequent some bar that serves some beer they like.

$$
Q(x)=\exists y . \exists z . \text { Frequents }(x, y) \wedge \text { Serves }(y, z) \wedge \text { Likes }(x, z)
$$

Find drinkers that frequent only bars that serves some beer they like.

$$
\mathrm{Q}(\mathrm{x})=\forall \mathrm{y} . \text { Frequents }(\mathrm{x}, \mathrm{y}) \Rightarrow(\exists \mathrm{z} \text {. Serves }(\mathrm{y}, \mathrm{z}) \wedge \text { Likes }(\mathrm{x}, \mathrm{z}))
$$

Find drinkers that frequent some bar that serves only beers they like.

3. Relational Calculus:

Likes(drinker, beer) Example
Frequents(drinker, bar)
Serves(bar, beer)
Find drinkers that frequent some bar that serves some beer they like.

$$
Q(x)=\exists y . \exists z \text {. Frequents }(x, y) \wedge \text { Serves }(y, z) \wedge \text { Likes }(x, z)
$$

Find drinkers that frequent only bars that serves some beer they like.

$$
Q(x)=\forall y . \text { Frequents }(x, y) \Rightarrow(\exists z . \operatorname{Serves}(y, z) \wedge \operatorname{Likes}(x, z))
$$

Find drinkers that frequent some bar that serves only beers they like.

$$
Q(x)=\exists y . \text { Frequents }(x, y) \wedge \forall z .(\text { Serves }(y, z) \Rightarrow \text { Likes }(x, z))
$$

Find drinkers that frequent only bars that serves only beer they like.

3. Relational Calculus:

Likes(drinker, beer) Example
Frequents(drinker, bar)
Serves(bar, beer)
Find drinkers that frequent some bar that serves some beer they like.

$$
\mathrm{Q}(\mathrm{x})=\exists \mathrm{y} . \exists \mathrm{z} \text {. Frequents }(\mathrm{x}, \mathrm{y}) \wedge \text { Serves }(\mathrm{y}, \mathrm{z}) \wedge \text { Likes }(\mathrm{x}, \mathrm{z})
$$

Find drinkers that frequent only bars that serves some beer they like.

$$
Q(x)=\forall y . \text { Frequents }(x, y) \Rightarrow(\exists z . \operatorname{Serves}(y, z) \wedge \operatorname{Likes}(x, z))
$$

Find drinkers that frequent some bar that serves only beers they like.

$$
Q(x)=\exists y . \text { Frequents }(x, y) \wedge \forall z .(\operatorname{Serves}(y, z) \Rightarrow \text { Likes }(x, z))
$$

Find drinkers that frequent only bars that serves only beer they like.

$$
\mathrm{Q}(\mathrm{x})=\forall \mathrm{y} \text {. Frequents }(\mathrm{x}, \mathrm{y}) \Rightarrow \forall \mathrm{z} .(\operatorname{Serves}(\mathrm{y}, \mathrm{z}) \Rightarrow \text { Likes }(\mathrm{x}, \mathrm{z}))
$$

3. Domain Independent Relational Calculus

- As in datalog, one can write "unsafe" RC queries; they are also called domain dependent
- See examples in the Three Query Languages paper
- Moral: make sure your RC queries are always domain independent

3. Relational Calculus

Take home message:

- Need to write a complex SQL query:
- First, write it in RC
- Next, translate it to datalog (see next)
- Finally, write it in SQL

As you gain experience, take shortcuts

3. From RC to Non-recursive Datalog w/ negation

Query: Find drinkers that like some beer so much that they frequent all bars that serve it
$Q(x)=\exists y . \operatorname{Likes}(x, y) \wedge \forall z$. $\operatorname{Serves}(z, y) \Rightarrow$ Frequents $(x, z))$

3. From RC to Non-recursive Datalog w/ negation

Query: Find drinkers that like some beer so much that they frequent all bars that serve it
$Q(x)=\exists y . \operatorname{Likes}(x, y) \wedge \forall z .($ Serves $(z, y) \Rightarrow$ Frequents $(x, z))$

Step 1: Replace \forall with \exists using de Morgan's Laws

$$
Q(x)=\exists y . \text { Likes }(x, y) \wedge \neg \exists z .(S e r v e s(z, y) \wedge \neg F r e q u e n t s(x, z))
$$

3. From RC to Non-recursive Datalog w/ negation

Query: Find drinkers that like some beer so much that they frequent all bars that serve it
$Q(x)=\exists y . \operatorname{Likes}(x, y) \wedge \forall z .(\operatorname{Serves}(z, y) \Rightarrow$ Frequents $(x, z))$

Step 1: Replace \forall with \exists using de Morgan’s Laws

$$
\mathrm{Q}(\mathrm{x})=\exists \mathrm{y} \text {. Likes }(\mathrm{x}, \mathrm{y}) \wedge \neg \exists \mathrm{z} \text {.(Serves(} \mathrm{z}, \mathrm{y}) \wedge \neg \text { Frequents }(\mathrm{x}, \mathrm{z}))
$$

Step 2: Make all subqueries domain independent
$\mathrm{Q}(\mathrm{x})=\exists \mathrm{y} . \operatorname{Likes}(\mathrm{x}, \mathrm{y}) \wedge \neg \exists \mathrm{z}$.(Likes(x,y) \wedge Serves(z,y) $\wedge \neg$ Frequents $(\mathrm{x}, \mathrm{z}))$

3. From RC to Non-recursive Datalog w/ negation

$$
\mathrm{Q}(\mathrm{x})=\exists \mathrm{y} . \operatorname{Likes}(\mathrm{x}, \mathrm{y}) \wedge \neg \exists \mathrm{z} .(\operatorname{Likes}(\mathrm{x}, \mathrm{y}) \wedge \text { Serves }(\mathrm{z}, \mathrm{y}) \wedge \neg \text { Frequents }(\mathrm{x}, \mathrm{z}))
$$

$$
H(x, y)
$$

Step 3: Create a datalog rule for each subexpression; (shortcut: only for subexpressions under $ᄀ$)

```
H(x,y) :- Likes(x,y),Serves(y,z), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)
```


3. From RC to Non-recursive Datalog w/ negation

$\begin{array}{ll}H(x, y) & :-\operatorname{Likes}(x, y), \operatorname{Serves}(y, z), \text { not Frequents }(x, z) \\ Q(x) & :-\operatorname{Likes}(x, y), \text { not } H(x, y)\end{array}$
Step 4: Write it in SQL
SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists
(SELECT * FROM Likes L2, Serves S
WHERE L2.drinker=L.drinker and L2.beer=L.beer and L2.beer=S.beer and not exists (SELECT * FROM Frequents F WHERE F.drinker=L2.drinker and F.bar=S.bar))

3. From RC to Non-recursive Datalog w/ negation

$H(x, y) \quad:-$ Likes $(x, y), S e r v e s(y, z)$, not Frequents (x, z)
$\mathrm{Q}(\mathrm{x}) \quad:-$ Likes (x, y), not $\mathrm{H}(\mathrm{x}, \mathrm{y})$

Improve the SQL query by using an unsafe datalog rule
SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists
(SELECT * FROM Serves S
WHERE L.beer=S.beer and not exists (SELECT * FROM Frequents F WHERE F.drinker=L.drinker and F.bar=S.bar))

Summary of Translation

- $\mathrm{RC} \rightarrow$ recursion-free datalog $w /$ negation
- Subtle: as we saw; more details in the paper
- Recursion-free datalog w/ negation \rightarrow RA
- Easy: see paper
- RA \rightarrow RC
- Easy: see paper

Summary

- All three have same expressive power:
- RA
- Non-recursive datalog w/ neg. (= "core" SQL)
-RC
- Write complex queries in RC first, then translate to SQL

Outline

- Relational Query Languages
- Database Design:
- On your own: slides and/or Chapters 2, 3
- In class: What goes around
- Functional Dependencies and BCNF

Database Design

Database Design Process

Conceptual Model:

Relational Model:
Tables + constraints
And also functional dep. Normalization:
Eliminates anomalies Conceptual Schema

Physical storage details
Physical Schema

Entity / Relationship Diagrams

- Entity set = a class
- An entity = an object
- Attribute

Product

city

- Relationship

makes

Product

Company

Person

Keys in E/R Diagrams

- Every entity set must have a key

What is a Relation ?

- A mathematical definition:
- if A, B are sets, then a relation R is a subset of $A \times B$
- $A=\{1,2,3\}, B=\{a, b, c, d\}$,

$$
\begin{aligned}
& A \times B=\{(1, a),(1, b), \ldots,(3, d)\} \\
& R=\{(1, a),(1, c),(3, b)\}
\end{aligned}
$$

- makes is a subset of Product \times Company:

Multiplicity of E/R Relations

- one-one:
- many-one

- many-many

Notation in Class v.s. the Book

In class:

Product makes

Company

In the book:

Product makes

Multi-way Relationships

How do we model a purchase relationship between buyers, products and stores?

Can still model as a mathematical set (Q. how ?)
A. As a set of triples \subseteq Person \times Product \times Store

Arrows in Multiway Relationships

Q: What does the arrow mean?

A: A given person buys a given product from at most one store
[Arrow pointing to E means that if we select one entity from each of the other entity sets in the relationship, those entities are related to at most one entity in E]

Arrows in Multiway Relationships

Q: What does the arrow mean?

A: A given person buys a given product from at most one store AND every store sells to every person at most one product

Arrows in Multiway Relationships

Q: How do we say that every person shops at at most one store?

A: Cannot. This is the best approximation.
(Why only approximation?)

Converting Multi-way Relationships to Binary

Converting Multi-way Relationships to Binary

Design Principles

What's wrong?

Moral: be faithful to the specifications of the app!

Design Principles: What's Wrong?

Moral: pick the right kind of entities.

Design Principles: What's Wrong?

Moral: don't complicate life more than it already is.

From E/R Diagrams to Relational Schema

- Entity set \rightarrow relation
- Relationship \rightarrow relation

Entity Set to Relation

Product(prod-ID, category, price)

prod-ID	category	price
Gizmo55	Camera	99.99
Pokemn19	Toy	29.99

Create Table (SQL)

CREATE TABLE Product (prod-ID CHAR(30) PRIMARY KEY, category VARCHAR(20), price double)

N-N Relationships to Relations

Represent that in relations!

N-N Relationships to Relations

Create Table (SQL)

CREATE TABLE Shipment(name CHAR(30) REFERENCES Shipping-Co,
prod-ID CHAR(30),
cust-ID VARCHAR(20),
date DATETIME,
PRIMARY KEY (name, prod-ID, cust-ID), FOREIGN KEY (prod-ID, cust-ID) REFERENCES Orders

$\mathrm{N}-1$ Relationships to Relations

Represent this in relations!

N-1 Relationships to Relations

Remember: no separate relations for many-one relationship

Multi-way Relationships to Relations

Purchase(prod-ID, cust-ssn, store-name)

Modeling Subclasses

Some objects in a class may be special define a new class better: define a subclass

So --- we define subclasses in E/R

Subclasses

Understanding Subclasses

Think in terms of records:
Product

SoftwareProduct

EducationalProduct
field1
field2
field4
field5

Subclasses to Relations

Other ways to convert are possible

Product

Name	Price	Category
Gizmo	99	gadget
Camera	49	photo
Toy	39	gadget

Sw.Product | Name | platforms |
| :---: | :---: |
| Gizmo | unix |

Ed.Product

Name	Age Group
Gizmo	toddler
Toy	retired

Modeling Union Types With Subclasses

FurniturePiece

Person

Company

Say: each piece of furniture is owned either by a person or by a company

Modeling Union Types With Subclasses

Say: each piece of furniture is owned either by a person or by a company
Solution 1. Acceptable but imperfect (What's wrong ?)

Modeling Union Types With Subclasses

Solution 2: better, more laborious

Weak Entity Sets

Entity sets are weak when their key comes from other classes to which they are related.

Team(sport, number, universityName) University(name)

What Are the Keys of R?

Constraints in E/R Diagrams

-Finding constraints is part of the modeling process.
-Commonly used constraints:

- Keys: social security number uniquely identifies a person.
- Single-value constraints: a person can have only one father.
- Referential integrity constraints: if you work for a company, it - must exist in the database.
- Other constraints: peoples' ages are between 0 and 150.

Keys in E/R Diagrams

Underline:

keys in E/R diagrams

Single Value Constraints

Referential Integrity Constraints

Product makes

Company

Each product made by at most one company. Some products made by no company

Product

makes

Company
Each product made by exactly one company.
Note: For weak entity sets \longrightarrow should be replaced by \longrightarrow (sec 4.4.2)

Other Constraints

Q: What does this mean?
A: A Company entity cannot be connected by relationship to more than 99 Product entities

Note: For "at least one", you can use " ≥ 1 " in a many-many relationship

Database Design Summary

- Conceptual modeling = design the database schema
- Usually done with Entity-Relationship diagrams
- It is a form of documentation the database schema; it is not executable code
- Straightforward conversion to SQL tables
- Big problem in the real world: the SQL tables are updated, the E / R documentation is not maintained
- Schema refinement using normal forms
- Functional dependencies, normalization

Outline

- Relational Query Languages
- Database Design:
- On your own: slides and/or Chapters 2, 3
- In class: What goes around
- Functional Dependencies and BCNF

Data Models

- M. Stonebraker and J. Hellerstein. What Goes Around Comes Around. In "Readings in Database Systems" (aka the Red Book). 4th ed.

"Data Model"

- Apps need to model real-world data
- Typically includes entities and relationships between them
- Entities: e.g. students, courses, products, clients
- Relationships: e.g. course registrations, product purchases
- Data model enables a user to define the data using high-level constructs without worrying about many low-level details of how data will be stored on disk

Levels of Abstraction

What goes around...

- Structured data
- What is this? Examples?
- Semistructured data
- What is this?
- Examples?
- Unstructured data
- What is this? Examples?

What goes around...

- Structured data
- All data conforms to a schema. Ex: business data
- Semistructured data
- Some structure in the data but implicit and irregular
- Ex: resume, ads
- Unstructured data
- No structure in data. Ex: text, sound, video, images
- In our class: structured data \& relational DBMSs

Early Proposal 1: IMS

- What is it ?

Early Proposal 1: IMS

- Hierarchical data model
- Record
- Type: collection of named fields with data types (+)
- Instance: must match type definition (+)
- Each instance must have a key (+)
- Record types must be arranged in a tree (-)
- IMS database is collection of instances of record types organized in a tree

IMS Example

Two Hierarchical Organizations
Figure 2

DL/1

- How does a programmer retrieve data in IMS ?

DL/1

- Each record has a hierarchical sequence key (HSK)
- Records are totally ordered: depth-first and left-to-right
- HSK defines semantics of commands:
- get_next
- get_next_within_parent
- DL/1 is a record-at-a-time language
- Programmer constructs an algorithm for solving the query
- Programmer must worry about query optimization

Data storage

- How is the data physically stored in IMS ?

Data storage

- Root records
- Stored sequentially (sorted on key)
- Indexed in a B-tree using the key of the record
- Hashed using the key of the record
- Dependent records
- Physically sequential
- Various forms of pointers
- Selected organizations restrict DL/1 commands
- No updates allowed with sequential organization
- No "get-next" for hashed organization

Data Independence

- What is it?

Data Independence

- Physical data independence: Applications are insulated from changes in physical storage details
- Logical data independence: Applications are insulated from changes to logical structure of the data

IMS Limitations

- Tree-structured data model
- Redundant data
- Existence depends on parent
- Record-at-a-time user interface
- Very limited physical independence
- Phys. organization limits possible operations
- Application programs break if organization changes
- Provides some logical independence
- DL/1 program runs on logical database
- Difficult to achieve good logical data independence with a tree model

Early Proposal 2: CODASYL - What is it ?

Early Proposal 2: CODASYL

- Networked data model
- Record types with keys (+)
- Organized in a network
- More flexible than hierarchy (+)
- A record can have multiple parents (-)
- Arcs between records are named
- At least one entry point to the network
- Record-at-a-time DML (-)

CODASYL Example

A CODASYL Network
Figure 5

CODASYL Limitations

- No physical data independence
- No logical data independence
- Very complex:
- Programs must "navigate the hyperspace"
- Load and recover as one gigantic object

Relational Model Overview

- Proposed by Ted Codd in 1970
- Motivation: better logical and physical data independence

Relational Model Overview

- Defines logical data model
- No physical data model
- Set-at-a-time query language

Great Debate

- Pro relational
- What where the arguments ?
- Against relational
- What where the arguments ?
- How was it settled?

Great Debate

- Pro relational
- CODASYL is too complex
- CODASYL does not provide sufficient data independence
- Record-at-a-time languages are too hard to optimize
- Trees/networks not flexible enough for common cases
- Against relational
- COBOL programmers cannot understand relational languages
- Impossible to represent the relational model efficiently
- CODASYL can represent tables
- Ultimately settled by the market place

Other Data Models

- Entity-Relationship: 1970's
- Successful in logical database design (this lecture + hw2)
- Extended Relational: 1980's
- Semantic: late 1970's and 1980's
- Object-oriented: late 1980's and early 1990's
- Impedance mismatch: relational dbs \longleftrightarrow OO languages
- Interesting but ultimately failed (several reasons, see paper)
- Object-relational: late 1980's and early 1990's
- User-defined types, ops, functions, and access methods
- Semi-structured: late 1990's to the present
- XML, JSon, Protobuf

Outline

- Relational Query Languages
- Database Design:
- On your own: slides and/or Chapters 2, 3
- In class: What goes around
- Functional Dependencies and BCNF

Relational Schema Design

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield

One person may have multiple phones, but lives in only one city

Primary key is thus (SSN,PhoneNumber)

What is the problem with this schema?

Relational Schema Design

Name	$\underline{\text { SSN }}$	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield

Anomalies:

Redundancy = repeat data
Update anomalies = what if Fred moves to "Bellevue"?
Deletion anomalies = what if Joe deletes his phone number?

Relation Decomposition

Break the relation into two:

	Name	SSN	PhoneNumber	City
	Fred	123-45-6789	206-555-1234	Seattle
	Fred	123-45-6789	206-555-6543	Seattle
	Joe	987-65-4321	908-555-2121	Westfield
Name	SSN	City	SSN	PhoneNumber
Fred	123-45-6789	Seattle	123-45-6789	206-555-1234
Joe	987-65-4321	Westfield	123-45-6789	206-555-6543
Anomalies have gone:			987-65-4321	908-555-2121

No more repeated data
Easy to move Fred to "Bellevue" (how ?)
Easy to delete all Joe's phone numbers (how ?)

Relational Schema Design (or Logical Design)

How do we do this systematically?

Start with some relational schema

Find out its functional dependencies (FDs)

Use FDs to normalize the relational schema

Functional Dependencies (FDs)

Definition

If two tuples agree on the attributes

$$
A_{1}, A_{2}, \ldots, A_{n}
$$

then they must also agree on the attributes

$$
B_{1}, B_{2}, \ldots, B_{m}
$$

Formally:

$A_{1} \ldots A_{n}$ determines $B_{1} . . B_{m}$

$$
A_{1}, A_{2}, \ldots, A_{n} \rightarrow B_{1}, B_{2}, \ldots, B_{m}
$$

Functional Dependencies (FDs)

Definition $A_{1}, \ldots, A_{m} \rightarrow B_{1}, \ldots, B_{n}$ holds in R if: $\forall t, t^{\prime} \in R$,
(t. $A_{1}=t^{\prime} . A_{1} \wedge \ldots \wedge t . A_{m}=t^{\prime} . A_{m} \Rightarrow t . B_{1}=t^{\prime} . B_{1} \wedge \ldots \wedge t . B_{n}=$
$\left.t^{\prime} . B_{n}\right)$

if t, t^{\prime} agree here then t , t^{\prime} agree here

Example

An FD holds, or does not hold on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

EmpID \rightarrow Name, Phone, Position
Position \rightarrow Phone
but not Phone \rightarrow Position

Example

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	$9876 \leftarrow$	Salesrep
E1111	Smith	$9876 \leftarrow$	Salesrep
E9999	Mary	1234	Lawyer

Position \rightarrow Phone

Example

EmpID	Name	Phone	Position
E0045	Smith	$1234 \rightarrow$	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	$1234 \rightarrow$	Lawyer

But not Phone \rightarrow Position

Example name \rightarrow color

 category \rightarrow department color, category \rightarrow price| name | category | color | department | price |
| :---: | :---: | :---: | :---: | :---: |
| Gizmo | Gadget | Green | Toys | 49 |
| Tweaker | Gadget | Green | Toys | 99 |

Do all the FDs hold on this instance?

Example name \rightarrow color

 category \rightarrow department color, category \rightarrow price| name | category | color | department | price |
| :---: | :---: | :---: | :---: | :---: |
| Gizmo | Gadget | Green | Toys | 49 |
| Tweaker | Gadget | Black | Toys | 99 |
| Gizmo | Stationary | Green | Office-supp. | 59 |

Terminology

FD holds or does not hold on an instance

If we can be sure that every instance of R will be one in which a given FD is true, then we say that R satisfies the FD

If we say that R satisfies an FD F, we are stating a constraint on R

An Interesting Observation

name \rightarrow color
category \rightarrow department color, category \rightarrow price

Then this FD also holds: name, category \rightarrow price

If we find out from application domain that a relation satisfies some FDs, it doesn't mean that we found all the FDs that it satisfies!
There could be more FDs implied by the ones we have.

Closure of a set of Attributes

Given a set of attributes A_{1}, \ldots, A_{n}

The closure, $\left\{A_{1}, \ldots, A_{n}\right\}^{+}=$the set of attributes B

$$
\text { s.t. } A_{1}, \ldots, A_{n} \rightarrow B
$$

Example: 1. name \rightarrow color
2. category \rightarrow department
3. color, category \rightarrow price
name ${ }^{+}=$\{name, color\}
\{name, category $\}^{+}=\{$name, category, color, department, price\}
color $^{+}=$\{color $\}$

Closure Algorithm

$$
X=\{A 1, \ldots, A n\} .
$$

Repeat until X doesn't change do: if $B_{1}, \ldots, B_{n} \rightarrow C$ is a FD and B_{1}, \ldots, B_{n} are all in X
then add C to X .

Example:

1. name \rightarrow color
2. category \rightarrow department
3. color, category \rightarrow price
$\{\text { name, category }\}^{+}=$ \{

Closure Algorithm

$X=\{A 1, \ldots, A n\}$.

Repeat until X doesn't change do:
if $B_{1}, \ldots, B_{n} \rightarrow C$ is a FD and B_{1}, \ldots, B_{n} are all in X
then add C to X .

Example:

1. name \rightarrow color
2. category \rightarrow department
3. color, category \rightarrow price
\{name, category ${ }^{+}=$
\{ name, category, color, department, price \}

Closure Algorithm

$X=\{A 1, \ldots, A n\}$.

Repeat until X doesn't change do:
if $B_{1}, \ldots, B_{n} \rightarrow C$ is a FD and B_{1}, \ldots, B_{n} are all in X
then add C to X .

Example:

1. name \rightarrow color
2. category \rightarrow department
3. color, category \rightarrow price
\{name, category $\}^{+}=$
\{ name, category, color, department, price \}
Hence: name, category \rightarrow color, department, price

Example

In class:
R(A,B,C,D,E,F)

$$
\begin{array}{lll}
\mathrm{A}, \mathrm{~B} & \rightarrow \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{E} \\
\mathrm{~B} & \rightarrow & \mathrm{D} \\
\mathrm{~A}, \mathrm{~F} & \rightarrow & \mathrm{~B}
\end{array}
$$

Compute $\{\mathrm{A}, \mathrm{B}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{B}$, \}

Compute $\{\mathrm{A}, \mathrm{F}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{F}$, \}

Example

In class:
R(A,B,C,D,E,F)

$$
\begin{array}{lll}
\mathrm{A}, \mathrm{~B} & \rightarrow \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{E} \\
\mathrm{~B} & \rightarrow & \mathrm{D} \\
\mathrm{~A}, \mathrm{~F} & \rightarrow & \mathrm{~B} \\
\hline
\end{array}
$$

Compute $\{\mathrm{A}, \mathrm{B}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$

Compute $\{A, F\}^{+} \quad X=\{A, F$, \}

Example

In class:
R(A,B,C,D,E,F)

$$
\begin{array}{lll}
\mathrm{A}, \mathrm{~B} & \rightarrow \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{E} \\
\mathrm{~B} & \rightarrow & \mathrm{D} \\
\mathrm{~A}, \mathrm{~F} & \rightarrow & \mathrm{~B} \\
\hline
\end{array}
$$

Compute $\{\mathrm{A}, \mathrm{B}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$

Compute $\{\mathrm{A}, \mathrm{F}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{F}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$

Example

In class:
R(A,B,C,D,E,F)

$$
\begin{array}{lll}
\mathrm{A}, \mathrm{~B} & \rightarrow & \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{E} \\
\mathrm{~B} & \rightarrow & \mathrm{D} \\
\mathrm{~A}, \mathrm{~F} & \rightarrow & \mathrm{~B}
\end{array}
$$

Compute $\{\mathrm{A}, \mathrm{B}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$

Compute $\{\mathrm{A}, \mathrm{F}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{F}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$

Practice at Home

Find all FD's implied by:

$$
\begin{array}{lll}
\mathrm{A}, \mathrm{~B} & \rightarrow & \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{~B} \\
\mathrm{~B} & \rightarrow & \mathrm{D}
\end{array}
$$

Practice at Home

Find all FD's implied by:

$$
\begin{array}{lll}
\mathrm{A}, \mathrm{~B} & \rightarrow \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{~B} \\
\mathrm{~B} & \rightarrow & \mathrm{D}
\end{array}
$$

Step 1: Compute X^{+}, for every X :

$$
\begin{aligned}
& \mathrm{A}+=\mathrm{A}, \mathrm{~B}+=\mathrm{BD}, \mathrm{C}+=\mathrm{C}, \mathrm{D}+=\mathrm{D} \\
& \mathrm{AB}+=\mathrm{ABCD}, \mathrm{AC}+=\mathrm{AC}, \mathrm{AD}+=\mathrm{ABCD}, \\
& \mathrm{BC}+=\mathrm{BCD}, \mathrm{BD}+=\mathrm{BD}, \mathrm{CD}+=\mathrm{CD} \\
& \mathrm{ABC}+=\mathrm{ABD}+=\mathrm{ACD}+=\mathrm{ABCD} \text { (no need to compute- why ?) } \\
& \mathrm{BCD}^{+}=\mathrm{BCD}, \mathrm{ABCD}+=\mathrm{ABCD}
\end{aligned}
$$

Practice at Home

Find all FD's implied by:

$$
\begin{array}{lll}
\mathrm{A}, \mathrm{~B} & \rightarrow \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{~B} \\
\mathrm{~B} & \rightarrow & \mathrm{D}
\end{array}
$$

Step 1: Compute X^{+}, for every X :

$$
\begin{aligned}
& A+=A, \quad B+=B D, \quad C+=C, \quad D+=D \\
& A B+=A B C D, A C+=A C, A D+=A B C D, \\
& B C+=B C D, B D+=B D, C D+=C D
\end{aligned}
$$

$\mathrm{ABC}+=\mathrm{ABD}+=\mathrm{ACD}+=\mathrm{ABCD}$ (no need to compute- why ?)
$B C D+$ BCD, $\quad A B C D+=A B C D$
Step 2: Enumerate all FD's $X \rightarrow Y$, s.t. $Y \subseteq X^{+}$and $X \cap Y=\varnothing$: $\mathrm{AB} \rightarrow \mathrm{CD}, \mathrm{AD} \rightarrow \mathrm{BC}, \mathrm{ABC} \rightarrow \mathrm{D}, \mathrm{ABD} \rightarrow \mathrm{C}, \mathrm{ACD} \rightarrow \mathrm{B}$

Keys

- A superkey is a set of attributes A_{1}, \ldots, A_{n} s.t. for any other attribute B, we have $A_{1}, \ldots, A_{n} \rightarrow B$
- A key is a minimal superkey
- A superkey and for which no subset is a superkey

Computing (Super)Keys

- For all sets X , compute X^{+}
- If $\mathrm{X}^{+}=$[all attributes], then X is a superkey
- Try only the minimal X's to get the keys

Example

Product(name, price, category, color)

name, category \rightarrow price category \rightarrow color

What is the key?

Example

Product(name, price, category, color)

name, category \rightarrow price category \rightarrow color

What is the key?
(name, category) + = \{ name, category, price, color \}
Hence (name, category) is a key

Key or Keys ?

Can we have more than one key?

Given $R(A, B, C)$ define FD's s.t. there are two or more keys

Key or Keys?

Can we have more than one key?

Given $R(A, B, C)$ define $F D$'s s.t. there are two or more keys

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{~B} \\
& \mathrm{~B} \rightarrow \mathrm{C} \\
& \mathrm{C} \rightarrow \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{AB} \rightarrow \mathrm{C} \\
& \mathrm{BC} \rightarrow \mathrm{~A}
\end{aligned}
$$

$A \rightarrow B C$
$B \rightarrow A C$
what are the keys here?

Eliminating Anomalies

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield
Joe	$987-65-4321$	$908-555-1234$	Westfield

SSN \rightarrow Name, City What is the key?

Suggest a rule for decomposing the table to eliminate anomalies

Eliminating Anomalies

Main idea:

- $X \rightarrow A$ is OK if X is a (super)key
- $X \rightarrow A$ is not OK otherwise
- Need to decompose the table, but how?

Boyce-Codd Normal Form

There are no "bad" FDs:

Definition. A relation R is in BCNF if:
Whenever $X \rightarrow B$ is a non-trivial dependency, then X is a superkey.

Equivalently: Definition. A relation R is in BCNF if: $\forall X$, either $X^{+}=X \quad$ or $X^{+}=$[all attributes]

BCNF Decomposition Algorithm

Normalize(R)
find X s.t.: $X \neq X^{+} \neq$[all attributes]
if (not found) then " R is in BCNF"
let $Y=X^{+}-X ; \quad Z=[$ all attributes $]-X^{+}$ decompose R into R1 $(X \cup Y)$ and R2 $(X \cup Z)$ Normalize(R1); Normalize(R2);

Example

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield
Joe	$987-65-4321$	$908-555-1234$	Westfield

SSN \rightarrow Name, City

The only key is: \{SSN, PhoneNumber\} Hence SSN \rightarrow Name, City is a "bad" dependency

In other words:
SSN+ = Name, City and is neither SSN nor All Attributes

Example BCNF Decomposition

Name	SSN	City
Fred	$123-45-6789$	Seattle
Joe	$987-65-4321$	Westfield

SSN \rightarrow Name, City

SSN	PhoneNumber
$123-45-6789$	$206-555-1234$
$123-45-6789$	$206-555-6543$
$987-65-4321$	$908-555-2121$
$987-65-4321$	$908-555-1234$

Let's check anomalies:
Redundancy?
Update?
Delete?

Find X s.t.: $\mathrm{X} \neq \mathrm{X}^{+} \neq[$all attributes $]$

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber) SSN \rightarrow name, age age \rightarrow hairColor

Find X s.t.: $\mathrm{X} \neq \mathrm{X}^{+} \neq[$all attributes $]$

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber) SSN \rightarrow name, age age \rightarrow hairColor
Iteration 1: Person: SSN+ = SSN, name, age, hairColor Decompose into: P(SSN, name, age, hairColor) Phone(SSN, phoneNumber)

Find X s.t.: $\mathrm{X} \neq \mathrm{X}^{+} \neq$[all attributes]

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN \rightarrow name, age age \rightarrow hairColor

What are the keys?

Iteration 1: Person: SSN+ = SSN, name, age, hairColor Decompose into: P(SSN, name, age, hairColor) Phone(SSN, phoneNumber)

Iteration 2: P : age+ = age, hairColor
Decompose: People(SSN, name, age)
Hair(age, hairColor)
Phone(SSN, phoneNumber)

Find X s.t.: $\mathrm{X} \neq \mathrm{X}^{+} \neq$[all attributes]

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)
SSN \rightarrow name, age age \rightarrow hairColor

Note the keys!

Iteration 1: Person: SSN+ = SSN, name, age, hairColor Decompose into: P(SSN, name, age, hairColor)

Phone(SSN, phoneNumber)

Iteration 2: P : age+ = age, hairColor
Decompose: People(SSN, name, age)
Hair(age, hairColor)
Phone(SSN, phoneNumber)
$R(A, B, C, D)$

Practice at Home

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow C
\end{aligned}
$$

R(A,B,C,D)
 $A^{+}=A B C \neq A B C D$

Practice at Home

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow C
\end{aligned}
$$

What happens if in R we first pick B^{+}? Or AB^{+}?

Schema Refinements = Normal Forms

- 1st Normal Form = all tables are flat
- 2nd Normal Form = obsolete
- Boyce Codd Normal Form = today
- 3rd Normal Form = see book

