
Principles of Database Systems
CSE 544

Lecture 01
Introduction and SQL

1 CSEP544 - Fall, 2015

Staff

•  Instructor: Dan Suciu
– CSE 662, suciu@cs.washington.edu
– Office hour: Wednesdays, 5:30-6:20, CSE 662

•  TA:
– Laurel Orr ljorr1@cs.washington.edu
– Office hours: Mondays, 5:30-6:20, room TBA

CSEP544 - Fall, 2015 2

About Me

•  Joined CSE in 2000
– Previously at Bell Labs / AT&T Labs

•  Research: where math can bring big gains
to data management:
– Probabilistic databases
– Novel query evaluation algorithms for big data
– Pricing and enforcing data use agreements
– Discovering causal relationships in data

CSEP544 - Fall, 2015 3

Class Format
•  Lectures Mondays, 6:30-9:20

–  Two lecture rooms: CSE and Microsoft
–  Video streamed + archived

•  5 Homework Assignments

•  Several reading assignments

•  An online, take-home final (two days), Dec. 9-10

4 CSEP544 - Fall, 2015

Textbook and Papers
•  Main Textbook:

–  Database Management Systems. 3rd Ed., by
Ramakrishnan and Gehrke. McGraw-Hill.

–  Book available on the Kindle too
–  Use it to read background material
–  You may borrow it, no need to buy

•  Optional Textbook
–  Database Systems: The Complete Book, by Garcia-

Molina, Ullman, Widom
•  Other Books

–  Foundations of Databases, by Abiteboul, Hull, Vianu

5 CSEP544 - Fall, 2015

Textbook and Papers

Several papers to read and review
•  Some are short blogs (Stonebraker)
•  Most are real papers
•  All papers are available from the course

Website with your CSE or UWID
credentials

•  Most are also available online, and on
Kindle

6 CSEP544 - Fall, 2015

Resources
•  Web page:

courses.cs.washington.edu/courses/csep544/15au/
–  Lectures + video
–  Homework assignments
–  Reading assignments
–  Information about the final

•  Mailing list:
–  Announcements, group discussions
–  Low traffic, must read

•  Discussion board:
–  Feel free to post, discuss
–  TA will check regularly

CSEP544 - Fall, 2015 7

Content of the Class
•  Relational Data Model

– SQL, Data Models, Relational calculus
•  Database internals

– Storage, query execution/optimization, statistics
•  Parallel databases and MapReduce
•  Transactions

– Recovery (Aries), Concurrency control
•  Advanced Topics

– Datalog
– ColumnStore (maybe NoSQL)

CSEP544 - Fall, 2015 8

Evaluation
•  Homework Assignments 50%:

– Three light programming, two theory

•  Paper reviews 20%:
– About ½ page each

•  Final exam 30%:
– Take home, online exam
– Two days: Wednesday-Thursday, Dec. 9-10

CSEP544 - Fall, 2015 9

Homework Assignments 50%

•  HW1: SQL programming
•  HW2: RC/RA, DB Design theory
•  HW3: PigLatin on AWS programming
•  HW4: DB Application programming
•  HW5: Transactions theory

Late days policy:
•  4 late-days in 24-hour chunks, no questions asked
•  at most 2 late-days per assignment
•  Absolutely no additional extensions granted

Assignments 50%
HW1: SQL – posted!
•  Three Tasks:

–  Create tables
–  Create indexes
–  Compute 11 SQL Queries

•  Dataset = a copy of IMDB from 2010
•  Install a DMBS on your machine: either Postgres

or SQL Server.
•  Watch mailing list for a possible update (+Azure)
Due: Tuesday, October 20

11 CSEP544 - Fall, 2015

Paper Reviews
•  Papers:

– A few short blogs by Stonebraker
– Several systems-research papers

•  Reviews:
– Due Mondays, by 3pm
– Brief (½ page) summary of the lessons you

learned from the paper
– Website has some suggested questions

•  Next Monday:
– Blog on Big Data (what is that??)
– Paper on data models + perils of inventing new

CSEP544 - Fall, 2015 12

Final

Format
•  Take-home, online final

•  Opens: Wednesday, Dec. 9 at 8am

•  Closes: Thursday, Dec. 10 at 8pm

•  No late days/hours/minutes/seconds

CSEP544 - Fall, 2015 13

Goals of the Class

This is a graduate level class!

•  Deep understanding of traditional material

•  Novel material

CSEP544 - Fall, 2015 14

Background

You should have heard about most of:
•  E/R diagrams
•  Normal forms (1st, 3rd)
•  SQL
•  Relational Algebra
•  Indexes, search trees
•  Search in a binary tree

•  Query optimization
•  Transactions (e.g. ACID)
•  Logic: ∧,∨,∀,∃,¬,∈
•  Reachability in a graph

CSEP544 - Fall, 2015 15

We will cover these topics in class, but assume some background

Agenda for Today

•  Brief overview of a traditional database
systems

•  SQL: Chapters 5.2 – 5.6 in the textbook

CSEP544 - Fall, 2015 16

Databases

What is a database ?

Give examples of databases

17 CSEP544 - Fall, 2015

Databases

What is a database ?
•  A collection of files storing related data

Give examples of databases
•  Accounts database; payroll database;

UW’s students database; Amazon’s
products database; airline reservation
database

18 CSEP544 - Fall, 2015

Database Management System

What is a DBMS ?

Give examples of DBMS

CSEP544 - Fall, 2015 19

Database Management System
What is a DBMS ?
•  A big C program written by someone else that

allows us to manage efficiently a large
database and allows it to persist over long
periods of time

Give examples of DBMS
•  DB2 (IBM), SQL Server (MS), Oracle,

Sybase
•  MySQL, Postgres, …

CSEP544 - Fall, 2015 20

An Example

The Internet Movie Database
http://www.imdb.com

•  Entities:
Actors (1.5M), Movies (1.8M), Directors

•  Relationships:
who played where, who directed what, …

21 CSEP544 - Fall, 2015

Tables

22 CSEP544 - Fall, 2015

Actor: Casts:

Movie:

id fName lName gender

195428 Tom Hanks M
645947 Amy Hanks F

. . .

id Name year

337166 Toy Story 1995

.

pid mid

195428 337166
. . .

SQL – Preview

23

SELECT *
FROM Actor

CSEP544 - Fall, 2015

SQL – Preview

24

SELECT *
FROM Actor

CSEP544 - Fall, 2015

SELECT *
FROM Actor
LIMIT 50

SQL – Preview

25

SELECT *
FROM Actor

CSEP544 - Fall, 2015

SELECT count(*)
FROM Actor SELECT *

FROM Actor
LIMIT 50

SQL – Preview

26

SELECT *
FROM Actor

CSEP544 - Fall, 2015

SELECT count(*)
FROM Actor

SELECT *
FROM Actor
WHERE lName = ‘Hanks’

SELECT *
FROM Actor
LIMIT 50

SQL – Preview

27

SELECT *
FROM Actor x, Casts y, Movie z
WHERE x.lname='Hanks'
 and x.id = y.pid
 and y.mid=z.id
 and z.year=1995

This query has selections and joins

CSEP544 - Fall, 2015

1.8M actors, 11M casts, 1.5M movies;
How can it be so fast ?

28

How Can We Evaluate the Query ?

Actor: Casts: Movie:
id fName lName gender

. . . Hanks

. . .

id Name year

. . . 1995

. . .

pid mid

. . .

. . .

CSEP544 - Fall, 2015

1.8M actors 11M casts 1.5M movies

SELECT *
FROM Actor x, Casts y, Movie z
WHERE x.lname='Hanks'
 and x.id = y.pid
 and y.mid=z.id
 and z.year=1995

29

How Can We Evaluate the Query ?

Actor: Casts: Movie:
id fName lName gender

. . . Hanks

. . .

id Name year

. . . 1995

. . .

pid mid

. . .

. . .

Plan 1: [in class]

Plan 2: [in class]

CSEP544 - Fall, 2015

1.8M actors 11M casts 1.5M movies

SELECT *
FROM Actor x, Casts y, Movie z
WHERE x.lname='Hanks'
 and x.id = y.pid
 and y.mid=z.id
 and z.year=1995

30

Query Plans – Preview

▹◃

▹◃

Actor Casts Movie

σlName=‘Hanks’ σyear=1995

▹◃

▹◃

Actor Casts Movie

σlName=‘Hanks’ σyear=1995

CSEP544 - Fall, 2015

Classical query optimizations:
•  Pushing selections down
•  Join reorder

Classical query execution
•  Index-based selection
•  Hash-join
•  Merge-join
•  Index-join

Classical statistics
•  Table cardinalities
•  # distinct values
•  histograms

Physical Data Independence

Physical data independence:
•  Applications should be isolated from

changes to the physical organization
•  E.g. add/drop index

CSEP544 - Fall, 2015 31

See Goes around…
paper, due next week

Physical Data Independence

Physical data independence:
•  Applications should be isolated from

changes to the physical organization
•  E.g. add/drop index
•  E.g. Different storage organization:

CSEP544 - Fall, 2015 32

See Goes around…
paper, due next week

Physical Data Independence

Physical data independence:
•  Applications should be isolated from

changes to the physical organization
•  E.g. add/drop index
•  E.g. Different storage organization:

CSEP544 - Fall, 2015 33

A1 M1 M2 M3 A2 M4 M5 A3 M6 M7 … (Actor,Movie*)*

See Goes around…
paper, due next week

Physical Data Independence

Physical data independence:
•  Applications should be isolated from

changes to the physical organization
•  E.g. add/drop index
•  E.g. Different storage organization:

CSEP544 - Fall, 2015 34

A1 M1 M2 M3 A2 M4 M5 A3 M6 M7 …

M1 A1 A2 M2 A3 A4 M3 A5 A6 A7 …

(Actor,Movie*)*

 (Movie,Actor*)*

See Goes around…
paper, due next week

Physical Data Independence

Physical data independence:
•  Applications should be isolated from

changes to the physical organization
•  E.g. add/drop index
•  E.g. Different storage organization:

CSEP544 - Fall, 2015 35

A1 M1 M2 M3 A2 M4 M5 A3 M6 M7 …

M1 A1 A2 M2 A3 A4 M3 A5 A6 A7 …

A1 A2 … M1 M2 … C1 C2 …

(Actor,Movie*)*

 (Movie,Actor*)*

(Movie*, Casts*, Actor*)

See Goes around…
paper, due next week

Physical Data Independence

Query optimizer = Translate WHAT to HOW:

•  SQL = WHAT we want = declarative

•  Relational algebra = HOW to get it = algorithm

•  RDBMS are about translating WHAT to HOW

CSEP544 - Fall, 2015 36

Client/Server Architecture
•  Server: stores the database

– Single server or cluster of servers
– Postgres: runs server on your own computer

•  Clients: run apps and connect to DBMS
•  Connection Protocol: ODBC/JDBC

•  Others:
–  Three-tier architecture: add the app server
–  Embedded in app (e.g. SQLite): no server

Why is client/server preferable to embedded in app?

SQL
•  Will cover SQL rather quickly today

•  Will not finish discussing all slides in class:
please read the rest on your own!

•  Other resources for learning SQL:
–  Textbook
–  Office hours
–  Postgres help: type \h or \?
–  SQL Server help
–  Discussion board

•  Start working on HW1!

CSEP544 - Fall, 2015 38

39

Tables in SQL

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Attribute names Table name

Tuples or rows

Key

CSEP544 - Fall, 2015

40

SQL

•  Data Manipulation Language (DML)
– Querying: SELECT-FROM-WHERE
– Modifying: INSERT/DELETE/UPDATE

•  Data Definition Language (DDL)
– CREATE/ALTER/DROP
– Constraints: will discuss these in class

CSEP544 - Fall, 2015

41

Creating Tables, Importing Data
CREATE TABLE Product (
 pname varchar(10) primary key,
 price float,
 category char(20),
 manufacturer text
);

CSEP544 - Fall, 2015

INSERT INTO Product VALUES (‘Gizmo’, 19.99, ‘Gadgets’,’GizmoWorks’);
INSERT INTO Product VALUES (‘Powergizmo’,29.99,’Gadgets’,’GizmoWorks’);
INSERT INTO Product VALUES (‘SingleTouch’,149.99,’Photography’,’Canon’);
INSERT INTO Product VALUES (‘MultiTouch’, 203.99,’Household’,’Hitachi’);

Better: bulk insert (but database specific!)

COPY Product FROM ‘/my/directory/datafile.txt’; -- postgres only!

42

Other Ways to Bulk Insert
CREATE TABLE Product (
 pname varchar(10) primary key,
 price float,
 category char(20),
 manufacturer text
);

CSEP544 - Fall, 2015

INSERT into Product (
 SELECT …
 FROM …
 WHERE…
);

Quick method: create AND insert
CREATE TABLE Product AS
 SELECT …
 FROM …
 WHERE…

43

Data Types in SQL

•  Atomic types:
– Characters: CHAR(20), VARCHAR(50), TEXT
– Numbers: INT, BIGINT, SMALLINT, FLOAT
– Others: MONEY, DATETIME, …
– Note: an attribute cannot be another table!

•  Record (aka tuple)
– Has atomic attributes

•  Table (relation)
– A set of tuples

CSEP544 - Fall, 2015 No nested tables! (Discussion next…)

Normal Forms

•  First Normal Form
– All tables must be flat tables
– Why?

•  1NF is an exception. Other NF’s refer to
splitting a wide table into smaller tables:
– Boyce Codd Normal Form (BCNF)
– Third Normal Form (3NF)

•  We will discuss BCNF later in class
CSEP544 - Fall, 2015 44

45

Selections in SQL

SELECT *
FROM Product
WHERE category=‘Gadgets’

CSEP544 - Fall, 2015

Product (PName, price, category, manufacturer)

46

Selections in SQL

SELECT *
FROM Product
WHERE category=‘Gadgets’

CSEP544 - Fall, 2015

SELECT *
FROM Product
WHERE category > ‘Gadgets’

Product (PName, price, category, manufacturer)

47

Selections in SQL

SELECT *
FROM Product
WHERE category=‘Gadgets’

CSEP544 - Fall, 2015

SELECT *
FROM Product
WHERE category > ‘Gadgets’

SELECT *
FROM Product
WHERE category LIKE ‘Ga%’

Product (PName, price, category, manufacturer)

48

Selections in SQL

SELECT *
FROM Product
WHERE category=‘Gadgets’

CSEP544 - Fall, 2015

SELECT *
FROM Product
WHERE category > ‘Gadgets’

SELECT *
FROM Product
WHERE category LIKE ‘Ga%’

SELECT *
FROM Product
WHERE category LIKE ‘%dg%’

Product (PName, price, category, manufacturer)

49

Projections (and Selections) in SQL

SELECT pname
FROM Product
WHERE category=‘Gadgets’

CSEP544 - Fall, 2015

Product (PName, price, category, manufacturer)

50

Projections (and Selections) in SQL

SELECT pname
FROM Product
WHERE category=‘Gadgets’

CSEP544 - Fall, 2015

SELECT category
FROM Product

Product (PName, price, category, manufacturer)

51

Projections (and Selections) in SQL

SELECT pname
FROM Product
WHERE category=‘Gadgets’

CSEP544 - Fall, 2015

SELECT category
FROM Product

Product (PName, price, category, manufacturer)

SELECT DISTINCT category
FROM Product

Need DISTINCT
(why?)

52

“DISTINCT”, “ORDER BY”, “LIMIT”

SELECT DISTINCT category
FROM Product

CSEP544 - Fall, 2015

SELECT pname, price, manufacturer
FROM Product
WHERE category=‘gizmo’ AND price > 50
ORDER BY price, pname
LIMIT 20

Postgres uses LIMIT k
SQL Server uses TOP k

Keys and Foreign Keys

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Product

Company

CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Key

Foreign
key

54

Joins

SELECT x.PName, x.Price
FROM Product x, Company y
WHERE x.Manufacturer=y.CName
 AND y.Country=‘Japan’
 AND x.Price <= 200

CSEP544 - Fall, 2015

Find all products under $200 manufactured in Japan;

Product (PName, Price, Category, Manufacturer)
Company (CName, stockPrice, Country)

55

Semantics of SQL Queries
SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

CSEP544 - Fall, 2015

56

Semantics of SQL Queries
SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Answer = {}
for x1 in R1 do
 for x2 in R2 do
 …..
 for xn in Rn do
 if Conditions
 then Answer = Answer ∪ {(a1,…,ak)}
return Answer

CSEP544 - Fall, 2015

Subqueries

•  A subquery or a nested query is another
SQL query nested inside a larger query

•  A subquery may occur in:
SELECT
FROM
WHERE

Avoid writing nested queries when possible;
keep in mind that sometimes it’s impossible

 Examples at the end of the lecture

Examples on following slides

Running Example

CSEP544 - Fall, 2015 58

Run this in postgres, then try the examples on
the following slides.

create table company(cname text primary key, city text);
create table product(pname text primary key, price int, company text references company);

insert into company values('abc', 'seattle');
insert into company values('cde', 'seattle');
insert into company values('fgh', 'portland');
insert into company values('klm', 'portland');

insert into product values('p1', 10, 'abc');
insert into product values('p2', 200, 'abc');
insert into product values('p3', 10, 'cde');
insert into product values('p4', 20, 'cde');

insert into product values('p5', 10, 'fgh');
insert into product values('p6', 200, 'fgh');
insert into product values('p7', 10, 'klm');
insert into product values('p8', 220, 'klm');

Product (pname, price, company)
Company(cname, city)

Existential Quantifiers

CSEP544 - Fall, 2015 59

Find cities that have a company
 that manufacture some product with price < 100

Product (pname, price, company)
Company(cname, city)

Existential Quantifiers

CSEP544 - Fall, 2015 60

Existential quantifiers are easy! J

Find cities that have a company
 that manufacture some product with price < 100

Product (pname, price, company)
Company(cname, city)

SELECT DISTINCT c.city
FROM Company c, Product p
WHERE c.cname = p.company
 and p.price < 100

Universal Quantifiers

CSEP544 - Fall, 2015 61

Find cities that have a company
 such that all its products have price < 100

Product (pname, price, company)
Company(cname, city)

Universal Quantifiers

CSEP544 - Fall, 2015 62

Universal quantifiers are hard ! L

Find cities that have a company
 such that all its products have price < 100

Product (pname, price, company)
Company(cname, city)

Universal Quantifiers

CSEP544 - Fall, 2015 63

Relational Calculus (a.k.a. First Order Logic) – next week

q(y)= ∃x. Company(x,y) ∧ (∀z.∀p. Product(z,p,x) à p < 100)

Product (pname, price, company)
Company(cname, city)

Find cities that have a company
 such that all its products have price < 100

Universal Quantifiers
De Morgan’s Laws:

¬(A ∧ B) = ¬A ∨ ¬B
¬(A ∨ B) = ¬A ∧ ¬B
¬∀x. P(x) = ∃x. ¬ P(x)
¬∃x. P(x) = ∀x. ¬ P(x)

Product (pname, price, company)
Company(cname, city)

¬(A à B) = A ∧ ¬B

Universal Quantifiers

q(y)= ∃x. Company(x,y) ∧ (∀z.∀p. Product(z,p,x) à p < 100)

De Morgan’s Laws:
¬(A ∧ B) = ¬A ∨ ¬B
¬(A ∨ B) = ¬A ∧ ¬B
¬∀x. P(x) = ∃x. ¬ P(x)
¬∃x. P(x) = ∀x. ¬ P(x)

¬(A à B) = A ∧ ¬B

=

Product (pname, price, company)
Company(cname, city)

Universal Quantifiers

q(y)= ∃x. Company(x,y) ∧ (∀z.∀p. Product(z,p,x) à p < 100)

De Morgan’s Laws:
¬(A ∧ B) = ¬A ∨ ¬B
¬(A ∨ B) = ¬A ∧ ¬B
¬∀x. P(x) = ∃x. ¬ P(x)
¬∃x. P(x) = ∀x. ¬ P(x)

q(y) = ∃x. Company(x,y) ∧¬(∃z∃p. Product(z,p,x) ∧ p ≥ 100)

¬(A à B) = A ∧ ¬B

=

Product (pname, price, company)
Company(cname, city)

Universal Quantifiers

q(y)= ∃x. Company(x,y) ∧ (∀z.∀p. Product(z,p,x) à p < 100)

De Morgan’s Laws:
¬(A ∧ B) = ¬A ∨ ¬B
¬(A ∨ B) = ¬A ∧ ¬B
¬∀x. P(x) = ∃x. ¬ P(x)
¬∃x. P(x) = ∀x. ¬ P(x)

q(y) = ∃x. Company(x,y) ∧¬(∃z∃p. Product(z,p,x) ∧ p ≥ 100)

theOtherCompanies(x) = ∃z∃p. Product(z,p,x) ∧ p ≥ 100
q(y) = ∃x. Company(x,y) ∧	
 ¬ theOtherCompanies(x)

=

=

Product (pname, price, company)
Company(cname, city)

¬(A à B) = A ∧ ¬B

Universal Quantifiers: NOT IN

CSEP544 - Fall, 2015 68

SELECT DISTINCT c.city
FROM Company c
WHERE c.cname NOT IN (SELECT p.company
 FROM Product p
 WHERE p.price >= 100)

Product (pname, price, company)
Company(cname, city)

theOtherCompanies(x) = ∃z∃p. Product(z,p,x) ∧ p ≥ 100
q(y) = ∃x. Company(x,y) ∧	
 ¬ theOtherCompanies(x)

Universal Quantifiers: NOT EXISTS

SELECT DISTINCT c.city
FROM Company c
WHERE NOT EXISTS (SELECT *
 FROM Product p
 WHERE c.cname = p.company AND p.price >= 100)

Correlated
subquery!

Product (pname, price, company)
Company(cname, city)

theOtherCompanies(x) = ∃z∃p. Product(z,p,x) ∧ p ≥ 100
q(y) = ∃x. Company(x,y) ∧	
 ¬ theOtherCompanies(x)

Universal Quantifiers: ALL

CSEP544 - Fall, 2015 70

SELECT DISTINCT c.city
FROM Company c
WHERE 100 > ALL (SELECT p.price
 FROM Product p
 WHERE p.company = c.cname)

Product (pname, price, company)
Company(cname, city)

71

Question for Database Fans
and their Friends

•  Can we unnest this query ?

Find cities that have a company
 such that all its products have price < 100

Monotone Queries
•  Definition A query Q is monotone if:

–  Whenever we add tuples to one or more input tables, the
answer to the query will not lose any existing tuples

Product (pname, price, cid)
Company(cid, cname, city)

Monotone Queries
•  Definition A query Q is monotone if:

–  Whenever we add tuples to one or more input tables, the
answer to the query will not lose any existing tuples

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c003

Camera 149.99 c001

Product (pname, price, cid)
Company(cid, cname, city)

cid cname city

c001 Sunworks Bonn

c002 DB Inc. Lyon

c003 Builder Lodtz

Product Company
A B

149.99 Lodtz

19.99 Lyon

Q

Monotone Queries
•  Definition A query Q is monotone if:

–  Whenever we add tuples to one or more input tables, the
answer to the query will not lose any existing tuples

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c003

Camera 149.99 c001

Product (pname, price, cid)
Company(cid, cname, city)

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c003

Camera 149.99 c001

iPad 499.99 c001

cid cname city

c001 Sunworks Bonn

c002 DB Inc. Lyon

c003 Builder Lodtz

Product Company
A B

149.99 Lodtz

19.99 Lyon

cid cname city

c001 Sunworks Bonn

c002 DB Inc. Lyon

c003 Builder Lodtz

Product Company

Q

Monotone Queries
•  Definition A query Q is monotone if:

–  Whenever we add tuples to one or more input tables, the
answer to the query will not lose any existing tuples

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c003

Camera 149.99 c001

Product (pname, price, cid)
Company(cid, cname, city)

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c003

Camera 149.99 c001

iPad 499.99 c001

cid cname city

c001 Sunworks Bonn

c002 DB Inc. Lyon

c003 Builder Lodtz

Product Company
A B

149.99 Lodtz

19.99 Lyon

cid cname city

c001 Sunworks Bonn

c002 DB Inc. Lyon

c003 Builder Lodtz

A B

149.99 Lyon

19.99 Lyon

19.99 Bonn

149.99 Bonn

Product Company

Q

Q

Monotone Queries
•  Definition A query Q is monotone if:

–  Whenever we add tuples to one or more input tables, the
answer to the query will not lose any existing tuples

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c003

Camera 149.99 c001

Product (pname, price, cid)
Company(cid, cname, city)

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c003

Camera 149.99 c001

iPad 499.99 c001

cid cname city

c001 Sunworks Bonn

c002 DB Inc. Lyon

c003 Builder Lodtz

Product Company
A B

149.99 Lodtz

19.99 Lyon

cid cname city

c001 Sunworks Bonn

c002 DB Inc. Lyon

c003 Builder Lodtz

A B

149.99 Lyon

19.99 Lyon

19.99 Bonn

149.99 Bonn

Is the mystery
query monotone?

Product Company

Q

Q

Monotone Queries
•  Definition A query Q is monotone if:

–  Whenever we add tuples to one or more input tables, the
answer to the query will not lose any existing tuples

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c003

Camera 149.99 c001

Product (pname, price, cid)
Company(cid, cname, city)

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c003

Camera 149.99 c001

iPad 499.99 c001

cid cname city

c001 Sunworks Bonn

c002 DB Inc. Lyon

c003 Builder Lodtz

Product Company
A B

149.99 Lodtz

19.99 Lyon

cid cname city

c001 Sunworks Bonn

c002 DB Inc. Lyon

c003 Builder Lodtz

A B

149.99 Lyon

19.99 Lyon

19.99 Bonn

149.99 Bonn

Is the mystery
query monotone?

Product Company

Q

Q

NO!

Monotone Queries

78

SELECT a1, a2, …, ak
FROM R1 as x1, R2 as x2, …, Rn as xn
WHERE Conditions

Theorem: If Q is a SELECT-FROM-WHERE query
that does not have subqueries, and no aggregates,
then it is monotone.

Monotone Queries

79

SELECT a1, a2, …, ak
FROM R1 as x1, R2 as x2, …, Rn as xn
WHERE Conditions

for x1 in R1 do
 for x2 in R2 do
 …..
 for xn in Rn do
 if Conditions
 output (a1,…,ak)

Theorem: If Q is a SELECT-FROM-WHERE query
that does not have subqueries, and no aggregates,
then it is monotone.

Proof. We use the nested loop semantics:
if we insert a tuple in a relation Ri,
then xi will take all the old values,
in addition to the new value.

Monotone Queries

80

Product (pname, price, cid)
Company(cid, cname, city)

Find cities that have a company
 such that all its products have price < 100

This query is not monotone:

Monotone Queries

81

pname price cid

Gizmo 19.99 c001

cid cname city

c001 Sunworks Bonn

cname

Sunworks

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c001

cid cname city

c001 Sunworks Bonn

cname

Product (pname, price, cid)
Company(cid, cname, city)

Find cities that have a company
 such that all its products have price < 100

This query is not monotone:

Monotone Queries

82

pname price cid

Gizmo 19.99 c001

cid cname city

c001 Sunworks Bonn

cname

Sunworks

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c001

cid cname city

c001 Sunworks Bonn

cname

Product (pname, price, cid)
Company(cid, cname, city)

Find cities that have a company
 such that all its products have price < 100

This query is not monotone:

Consequence: we cannot write it as a
SELECT-FROM-WHERE query without nested subqueries

NULLS in SQL
•  Whenever we don’t have a value, we can put a NULL

•  Can mean many things:
–  Value does not exists
–  Value exists but is unknown
–  Value not applicable
–  Etc.

•  The schema specifies for each attribute if can be null
(nullable attribute) or not

CSEP544 - Fall, 2015 83

Null Values

CSEP544 - Fall, 2015 84

Person(name, age, height, weight)

INSERT INTO Person VALUES(‘Joe’,20,NULL,200)

height unknown

Null Values

Rules for computing with NULLs
•  If x is NULL then x+7 is still NULL
•  If x is 2 then x>5 is FALSE
•  If x is NULL then x>5 is UNKNOWN
•  If x is 10 then x>5 is TRUE

CSEP544 - Fall, 2015 85

Person(name, age, height, weight)

INSERT INTO Person VALUES(‘Joe’,20,NULL,200)

height unknown

Null Values

Rules for computing with NULLs
•  If x is NULL then x+7 is still NULL
•  If x is 2 then x>5 is FALSE
•  If x is NULL then x>5 is UNKNOWN
•  If x is 10 then x>5 is TRUE

CSEP544 - Fall, 2015 86

Person(name, age, height, weight)

INSERT INTO Person VALUES(‘Joe’,20,NULL,200)

height unknown

FALSE = 0
UNKNOWN = 0.5
TRUE = 1

Null Values

•  C1 AND C2 = min(C1, C2)
•  C1 OR C2 = max(C1, C2)
•  NOT C1 = 1 – C1

CSEP544 - Fall, 2015 87

Null Values

•  C1 AND C2 = min(C1, C2)
•  C1 OR C2 = max(C1, C2)
•  NOT C1 = 1 – C1

Rule in SQL: result includes only tuples that yield TRUE

CSEP544 - Fall, 2015 88

SELECT *
FROM Person
WHERE (age < 25) AND
 (height > 6 OR weight > 190)

E.g.
age=20
height=NULL
weight=200

Null Values

Unexpected behavior:

Some Persons not included !

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

CSEP544 - Fall, 2015 89

Null Values

Can test for NULL explicitly:
x IS NULL
x IS NOT NULL

Now all Person are included

SELECT *
FROM Person
WHERE age < 25 OR age >= 25 OR age IS NULL

CSEP544 - Fall, 2015 90

Detour into DB Research
Imielinski&Libski, Incomplete Databases, 1986
•  Database = is in one of several states, or possible worlds

–  Number of possible worlds is exponential in size of db

•  Query semantics = return the certain answers

CSEP544 - Fall, 2015 91

Detour into DB Research
Imielinski&Libski, Incomplete Databases, 1986
•  Database = is in one of several states, or possible worlds

–  Number of possible worlds is exponential in size of db

•  Query semantics = return the certain answers
Very influential paper:
•  Incomplete DBs used in probabilistic databases, what-if

scenarios, data cleaning, data exchange

CSEP544 - Fall, 2015 92

Detour into DB Research
Imielinski&Libski, Incomplete Databases, 1986
•  Database = is in one of several states, or possible worlds

–  Number of possible worlds is exponential in size of db

•  Query semantics = return the certain answers
Very influential paper:
•  Incomplete DBs used in probabilistic databases, what-if

scenarios, data cleaning, data exchange
In SQL, NULLs are the simplest form of incomplete
database:
•  Database: NULL takes independently any possible value
•  Query semantics: not exactly certain answers (why?)

Outerjoins

SELECT x.name, y.store
FROM Product x JOIN Purchase y ON
 x.name = y.prodName

SELECT x.name, y.store
FROM Product x, Purchase y
WHERE x.name = y.prodName

Same as:

But Products that never sold will be lost

An “inner join”:

CSEP544 - Fall, 2015 94

Product(name, category)
Purchase(prodName, store)

Outerjoins

 SELECT x.name, y.store
 FROM Product x LEFT OUTER JOIN Purchase y ON
 x.name = y.prodName

If we want the never-sold products, need a “left outer join”:

CSEP544 - Fall, 2015 95

Product(name, category)
Purchase(prodName, store)

name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

name store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Product Purchase

Product(name, category)
Purchase(prodName, store)

Outer Joins
•  Left outer join:

–  Include the left tuple even if there’s no match

•  Right outer join:
–  Include the right tuple even if there’s no match

•  Full outer join:
–  Include both left and right tuples even if there’s no

match

CSEP544 - Fall, 2015 97

Aggregations

Five basic aggregate operations in SQL
•  count
•  sum
•  avg
•  max
•  min

CSEP544 - Fall, 2015 98

COUNT applies to duplicates, unless otherwise stated:

SELECT count(product)
FROM Purchase
WHERE price>3.99

Same as count(*)

We probably want:
SELECT count(DISTINCT product)
FROM Purchase
WHERE price>3.99

Counting Duplicates

CSEP544 - Fall, 2015 99

Except if some product is NULL

Purchase(product, price, quantity)

Grouping and Aggregation
Purchase(product, price, quantity)

SELECT product, sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

What is the answer?

Find total quantities for all sales over $1, by product.

CSEP544 - Fall, 2015 100

product price quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

Grouping and Aggregation

1. Compute the FROM and WHERE clauses.

2. Group by the attributes in the GROUP BY

3. Compute the SELECT clause: group attrs and aggregates.

CSEP544 - Fall, 2015 101

1&2. FROM-WHERE-GROUPBY

CSEP544 - Fall, 2015 102

SELECT product, sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

3. SELECT:
Each Group à One Answer

SELECT product, sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product TotalSales

Bagel 40

Banana 20

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

103

Ordering Results

SELECT product, sum(quantity) as TotalSales
FROM purchase
GROUP BY product
ORDER BY TotalSales DESC
LIMIT 20

SELECT product, sum(quantity) as TotalSales
FROM purchase
GROUP BY product
ORDER BY sum(quantity) DESC
LIMIT 20

Equivalent, but not all systems accept both syntax forms

HAVING Clause

SELECT product, sum(quantity)
FROM Purchase
WHERE price > 1
GROUP BY product
HAVING count(*) > 30

Same query as earlier, except that we consider only products
that had at least 30 sales.

HAVING clause contains conditions on aggregates.

WHERE vs HAVING

•  WHERE condition: applied to individual rows
– Determine which rows contributed to the aggregate
– All attributes are allowed
– No aggregates functions allowed

•  HAVING condition: applied to the entire group
– Entire group is returned, or not al all
– Only group attributes allowed
– Aggregate functions allowed

General form of Grouping
and Aggregation

S = may contain attributes a1,…,ak and/or any
aggregates but NO OTHER ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn
C2 = is any condition on aggregate expressions

 and on attributes a1,…,ak

Why ?

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

CSEP544 - Fall, 2015 107

Semantics of SQL With Group-By

Evaluation steps:
1.  Evaluate FROM-WHERE using Nested Loop Semantics
2.  Group by the attributes a1,…,ak
3.  Apply condition C2 to each group (may have aggregates)
4.  Compute aggregates in S and return the result

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

CSEP544 - Fall, 2015 108

Empty Groups Running Example

CSEP544 - Fall, 2015 109

For the next slides, run this in postgres:

create table Purchase(pid int primary key, product text, price float, quantity int, month varchar(15));
create table Product (pid int primary key, pname text, manufacturer text);

insert into Purchase values(01,'bagel',1.99,20,'september');
insert into Purchase values(02,'bagel',2.50,12,'december');
insert into Purchase values(03,'banana',0.99,9,'september');
insert into Purchase values(04,'banana',1.59,9,'february');
insert into Purchase values(05,'gizmo',99.99,5,'february');
insert into Purchase values(06,'gizmo',99.99,3,'march');
insert into Purchase values(07,'gizmo',49.99,3,'april');
insert into Purchase values(08,'gadget',89.99,3,'january');
insert into Purchase values(09,'gadget',89.99,3,'february');
insert into Purchase values(10,'gadget',49.99,3,'march');
insert into Purchase values(11,'orange',null,5,'may');

insert into product values(1,'bagel','Sunshine Co.');
insert into product values(2,'banana','BusyHands');
insert into product values(3,'gizmo','GizmoWorks');
insert into product values(4,'gadget','BusyHands');
insert into product values(5,'powerGizmo','PowerWorks');

Empty Group Problem

CSEP544 - Fall, 2015 110

SELECT x.manufacturer, count(*)
FROM Product x, Purchase y
WHERE x.pname = y.product
GROUP BY x.manufacturer

Purchase(product, price, quantity)
Product(pname, manufacturer)

Query: for each manufacturer,
compute the total number of purchases
for its products

Problem: a group can never be empty!
In particular, count(*) is never 0

Solution 1: Outer Join

CSEP544 - Fall, 2015 111

SELECT x.manufacturer, count(y.product)
FROM Product x LEFT OUTER JOIN Purchase y
ON x.pname = y.product
GROUP BY x.manufacturer

Purchase(product, price, quantity)
Product(pname, manufacturer)

Query: for each manufacturer,
compute the total number of purchases
for its products

Use a LEFT OUTER JOIN.
Make sure you count an attribute that may be NULL

Solution 2: Nested Query

CSEP544 - Fall, 2015 112

SELECT DISTINCT x.manufacturer,
 (SELECT count(*)
 FROM Product z, Purchase y
 WHERE x.manufacturer = z.manufacturer
 and z.pname = y.product)
FROM Product x

Purchase(product, price, quantity)
Product(pname, manufacturer)

Query: for each manufacturer,
compute the total number of purchases
for its products

Use a subquery in the SELECT clause Notice second
use of Product.

Why?

Finding Witnesses

CSEP544 - Fall, 2015 113

Query: for each manufacturer, find its most expensive product

Purchase(product, price, quantity)
Product(pname, manufacturer)

Finding the maximum price is easy:

Finding Witnesses

CSEP544 - Fall, 2015 114

Query: for each manufacturer, find its most expensive product

Purchase(product, price, quantity)
Product(pname, manufacturer)

Finding the maximum price is easy:

SELECT x.manufacturer, max(y.price)
FROM Product x, Purchase y
WHERE x.pname = y.product
GROUP BY x.manufacturer

…but we need to find the product that sold at that price!

Finding Witnesses

CSEP544 - Fall, 2015 115

Query: for each manufacturer, find its most expensive product

Purchase(product, price, quantity)
Product(pname, manufacturer)

Use a subquery in the FROM clause:

SELECT DISTINCT u.manufacturer, u.pname
FROM Product u, Purchase v,
 (SELECT x.manufacturer, max(y.price) as mprice
 FROM Product x, Purchase y
 WHERE x.pname = y.product
 GROUP BY x.manufacturer) z
WHERE u.pname = v.product
 and u.manufacturer = z.manufacturer
 and v.price = z.mprice

Finding Witnesses

CSEP544 - Fall, 2015 116

Query: for each manufacturer, find its most expensive product

Purchase(product, price, quantity)
Product(pname, manufacturer)

Using WITH :

WITH Temp as (SELECT x.manufacturer, max(y.price) as mprice
 FROM Product x, Purchase y
 WHERE x.pname = y.product
 GROUP BY x.manufacturer)
SELECT DISTINCT u.manufacturer, u.pname
FROM Product u, Purchase v, Temp z
WHERE u.pname = v.product
 and u.manufacturer = z.manufacturer
 and v.price = z.mprice

Terminology for Query Workloads

•  OLTP (OnLine-Transaction-Processing)
– Many updates: transactions are critical
– Many “point queries”: access record by key
– Commercial applications

•  Decision-Support
or OLAP (Online Analytical Processing)
– Many aggregate/group-by queries.
– Sometimes called data warehouse
– Data analytics

CSEP544 - Fall, 2015 117

