
CSEP 544: Lecture 10

Column-Oriented Databases
and NoSQL

CSEP544 -- Winter 2014 1

Announcement
Take home final: 3/15-16
•  Online Webquiz

–  Need your UW NET ID,
check that it works!

–  I will also email the final
in pdf form (e.g. to print)

•  Opens Friday night,
closes Sunday night

•  No time limits:
–  Work, save, take a

break, return later…

•  No need to run code
•  Questions?

–  Email me and cc Priya
•  Watch your email

–  E.g. corrections
•  No discussion of the

final with colleagues
•  When you are done:

–  Submit and receive
confirmation code!

CSEP544 -- Winter 2014 2

Today’s Agenda

•  Column-oriented databases

•  No-SQL

•  Evaluation forms

CSEP544 -- Winter 2014 3

Column-Oriented Databases

CSEP544 -- Winter 2014 4

Brief discussion of the paper:
The Design and Implementation of Modern
Column-Oriented Database Systems

Column-Oriented Databases

•  Main idea:
– Physical storage: complete vertical partition;

each column stored separately: R.A, R.B, R.A
– Logical schema: remains the same R(A,B,C)

•  Main advantage:
–  Improved transfer rate: disk to memory,

memory to CPU, better cache locality
– Other advantages (next)

CSEP544 -- Winter 2014 5

Key Architectural Trends (Sec.1)

•  Virtual IDs

•  Block-oriented and vertical processing

•  Late materialization

•  Column-specific compression

CSEP544 -- Winter 2014 6

Key Architectural Trends (Sec.1)

•  Virtual IDs
– Offsets (arrays) instead of keys

•  Block-oriented and vertical processing
–  Iterator model: one tupleàone block of tuples

•  Late materialization
– Postpone tuple reconstruction in query plan

•  Column-specific compression
– Much better than row-compression (why?)

CSEP544 -- Winter 2014 7

Discussion

•  What are “covering indexes” (pp. 204)
And what is their connection to column-
oriented databases?

•  What is the main takeaway from Fig. 1.2?

CSEP544 -- Winter 2014 8

Discussion

•  What are “covering indexes” (pp. 204)
And what is their connection to column-
oriented databases?
– A set of indexes that can completely answer

the query; one index ≈ one column
•  What is the main takeaway from Fig. 1.2?

– Column-oriented databases don’t work!
Unless you really optimize them well

CSEP544 -- Winter 2014 9

Compression (Sec. 4)

•  What is the advantage of compression in
databases?

•  Discuss main column-at-a-time
compression techniques

CSEP544 -- Winter 2014 10

Compression (Sec. 4)

•  What is the advantage of compression in
databases?

•  Discuss main column-at-a-time
compression techniques
– Row-length encoding: F,F,F,F,M,Mà4F,2M
– Bit-vector (see also bit-map indexes)
– Dictionary. More generally: Ziv-Lempel

CSEP544 -- Winter 2014 11

Late Materialization (Sec. 4)

•  What is it?

•  Discuss ΠC(σA=‘a’ ∧ B=‘b’(R(A,B,C,D,…))

CSEP544 -- Winter 2014 12

Late Materialization (Sec. 4)

•  What is it?
– The result is an array of positions

•  Discuss ΠC(σA=‘a’ ∧ B=‘b’(R(A,B,C,D,…))
– Retrieve positions in column A: 2, 4, 5, 9, 25…
– Retrieve positions in column B: 3, 4, 7, 9,12,..
–  Intersect: 4, 9, …
– Lookup values in column C: C[4], C[9], …

CSEP544 -- Winter 2014 13

Joins (Sec. 4)

CSEP544 -- Winter 2014 14

The result of a join R.A ⋈ S.A is an array
of positions in R.A and S.A.
Note: sorted on R.A only.

1 Value42
2 Value36
3 Value42
4 Value44
5 Value38

1 Value38
2 Value42
3 Value46
4 Value36

R.A S.A

⋈ =
1 1 2
2 2 4
3 3 2
4 5 1

Positions
in R.A

(sorted)
Positions

in S.A
(unsorted)

Jive-Join (Sec. 4)

Problem: accessing the values in the second table
has poor memory locality
Solution: re-sort by the second coljun, fetch, sort back
E.g. ΠS.C(R(A,…) ⋈ S(B,C,…)

=
1 1 2
2 2 4
3 3 2
4 5 1

Sort
on positions

in S.B

1 5 1
2 1 2
3 3 2
4 2 4

Jive-Join (Sec. 4)

Problem: accessing the values in the second table
has poor memory locality
Solution: re-sort by the second coljun, fetch, sort back
E.g. ΠS.C(R(A,…) ⋈ S(B,C,…)

1 Smith
2 Johnson
3 Williams
4 Jones

=
1 1 2
2 2 4
3 3 2
4 5 1

Sort
on positions

in S.B

1 5 1
2 1 2
3 3 2
4 2 4

Lookup S.C
(this is a

merge-join;
why?)

⋈

Jive-Join (Sec. 4)

Problem: accessing the values in the second table
has poor memory locality
Solution: re-sort by the second coljun, fetch, sort back
E.g. ΠS.C(R(A,…) ⋈ S(B,C,…)

1 Smith
2 Johnson
3 Williams
4 Jones

=
1 1 2
2 2 4
3 3 2
4 5 1

Sort
on positions

in S.B

1 5 1
2 1 2
3 3 2
4 2 4

Lookup S.C
(this is a

merge-join;
why?)

1 5 1 Smith
2 1 2 Johnson
3 3 2 Johnson
4 2 4 Jones

= ⋈

Jive-Join (Sec. 4)

Problem: accessing the values in the second table
has poor memory locality
Solution: re-sort by the second coljun, fetch, sort back
E.g. ΠS.C(R(A,…) ⋈ S(B,C,…)

1 Smith
2 Johnson
3 Williams
4 Jones

=
1 1 2
2 2 4
3 3 2
4 5 1

Sort
on positions

in S.B

1 5 1
2 1 2
3 3 2
4 2 4

Lookup S.C
(this is a

merge-join;
why?)

1 5 1 Smith
2 1 2 Johnson
3 3 2 Johnson
4 2 4 Jones

= ⋈

Re-sort
on positions

in R.A

1 1 2 Johnson
2 2 4 Jones
3 3 2 Johnson
4 5 1 Smith

=

NoSQL Databases

CSEP544 -- Winter 2014 19

Based on paper by Cattell, in SIGMOD Record 2010

NoSLQ: Overview
•  Main objective: implement distributed state

– Different objects stored on different servers
– Same object replicated on different servers

•  Main idea: give up some of the ACID
constraints to improve performance

•  Simple interface:
– Write (=Put): needs to write all replicas
– Read (=Get): may get only one

•  Eventual consistency ß Strong consistency

CSEP544 -- Winter 2014 20

NoSQL

“Not Only SQL” or “Not Relational”.
Six key features:
1.  Scale horizontally “simple operations”
2.  Replicate/distribute data over many servers
3.  Simple call level interface (contrast w/ SQL)
4.  Weaker concurrency model than ACID
5.  Efficient use of distributed indexes and RAM
6.  Flexible schema

CSEP544 -- Winter 2014 21

Cattell, SIGMOD Record 2010

Outline of this Lecture

•  Main techniques and concepts:
– Distributed storage using DHTs
– Consistency: 2PC, vector clocks
– The CAP theorem

•  Overview of No-SQL systems (Cattell)
•  Short case studies:

– Dynamo, Cassandra, PNUTS
•  Critique (c.f. Stonebraker)

CSEP544 -- Winter 2014 22

Main Techniques and Concepts

CSEP544 -- Winter 2014 23

Main Techniques, Concepts

•  Distributed Hash Tables

•  Consistency: 2PC, Vector Clocks

•  The CAP theorem

CSEP544 -- Winter 2014 24

A Note

•  These techniques belong to a course on
distributed systems, and not databases

•  We will mention them because they are
very relevant to NoSQL, but this is not an
exhaustive treatment

CSEP544 -- Winter 2014 25

Distributed Hash Table
Implements a distributed storage
•  Each key-value pair (k,v) is stored at some server h(k)
•  API: write(k,v); read(k)

Use standard hash function: service key k by server h(k)
•  Problem 1: a client knows only one server, does’t

know how to access h(k)

•  Problem 2. if new server joins, then N à N+1, and the
entire hash table needs to be reorganized

•  Problem 3: we want replication, i.e. store the object at
more than one server

CSEP544 -- Winter 2014 26

Distributed Hash Table
h=0 h=2n-1

A

B

C D

Responsibility of B

Responsibility of C

Responsibility of A

Problem 1: Routing
A client doesn’t know server h(k), but some other server

•  Naive routing algorithm:

–  Each node knows its neighbors
–  Send message to nearest neighbor
–  Hop-by-hop from there
–  Obviously this is O(n), So no good

•  Better algorithm: “finger table”
–  Memorize locations of other nodes in the ring
–  a, a + 2, a + 4, a + 8, a + 16, ... a + 2n – 1
–  Send message to closest node to destination
–  Hop-by-hop again: this is log(n)

CSEP544 -- Winter 2014 28

Problem 1: Routing
h=0 h=2n-1

A

B

D

C

Read(k)

F
E

Client
 only “knows”

server A

Redirect
request

 to A + 2m

G

 to D + 2p

 to F + 1

Found
Read(k) !

h(k) handled
by server G

O(log n)

Problem 2: Joining
h=0 h=2n-1

A

B

C D

Responsibility of D

When X joins:
select random ID

Problem 2: Joining
h=0 h=2n-1

A

B

C D

When X joins:
select random ID

X Responsibility of D

Problem 2: Joining
h=0 h=2n-1

A

B

C D

When X joins:
select random ID

X Responsibility of X

Redistribute
the load at D

Responsibility of D

Problem 3: Replication

•  Need to have some degree of replication
to cope with node failure

•  Let N=degree of replication

•  Assign key k to h(k), h(k)+1, …, h(k)+N-1

CSEP544 -- Winter 2014 33

Problem 3: Replication
h=0 h=2n-1

A

B

C D

Responsibility of B,C,D

Responsibility of C,D,E

Responsibility of A,B,C

Consistency

•  ACID
– Two phase commit
– Paxos (will not discuss)

•  Eventual consistency
– Vector clocks

CSEP544 -- Winter 2014 35

Two Phase Commit

•  Multiple servers run parts of the same
transaction

•  They all must commit, or none should
commit

•  Two-phase commit is a complicated
protocol that ensures that

•  2PC can also be used for WRITE with
replication: commit the write at all replicas
before declaring success

CSEP544 -- Winter 2014 36

Two Phase Commit

Assumptions:
•  Each site logs actions at that site, but

there is no global log
•  There is a special site, called the

coordinator, which plays a special role
•  2PC involves sending certain messages:

as each message is sent, it is logged at
the sending site, to aid in case of recovery

CSEP544 -- Winter 2014 37

Two Phase Commit
Book, Sec. 21.13.1
1.  Coordinator sends prepare message

2.  Subordinates receive prepare statement; force-write
<prepare> log entry; answers yes or no

3.  If coordinator receives only yes, force write <commit>, sends
commit messages;
If at least one no, or timeout, force write <abort>, sends abort
messages

4.  If subordinate receives abort, force-write <abort>, sends ack
message and aborts; if receives commit, force-write
<commit>, sends ack, commits.

5.  When coordinator receives all ack, writes <end log>

Two Phase Commit

•  ACID properties, but expensive

•  Relies on central coordinator: both
performance bottleneck, and single-point-
of-failure

•  Solution: Paxos = distributed protocol
– Complex: will not discuss at all

CSEP544 -- Winter 2014 39

Vector Clocks
•  An extension of Multiversion Concurrency

Control (MVCC) to multiple servers

•  Standard MVCC:
each data item X has a timestamp t:
 X4, X9, X10, X14, …, Xt

•  Vector Clocks:
X has set of [server, timestamp] pairs
 X([s1,t1], [s2,t2],…)

CSEP544 -- Winter 2014 40

Vector Clocks Dynamo:2007

Vector Clocks: Example
•  A client writes D1 at server SX:

 D1 ([SX,1])
•  Another client reads D1, writes back D2; also

handled by server SX:
 D2 ([SX,2]) (D1 garbage collected)

• 

• 

• 

CSEP544 -- Winter 2014 42

Vector Clocks: Example
•  A client writes D1 at server SX:

 D1 ([SX,1])
•  Another client reads D1, writes back D2; also

handled by server SX:
 D2 ([SX,2]) (D1 garbage collected)

• 

• 

• 

CSEP544 -- Winter 2014 43

Vector Clocks: Example
•  A client writes D1 at server SX:

 D1 ([SX,1])
•  Another client reads D1, writes back D2; also

handled by server SX:
 D2 ([SX,2]) (D1 garbage collected)

•  Another client reads D2, writes back D3;
handled by server SY:
 D3 ([SX,2], [SY,1])

• 

• 

CSEP544 -- Winter 2014 44

Vector Clocks: Example
•  A client writes D1 at server SX:

 D1 ([SX,1])
•  Another client reads D1, writes back D2; also

handled by server SX:
 D2 ([SX,2]) (D1 garbage collected)

•  Another client reads D2, writes back D3;
handled by server SY:
 D3 ([SX,2], [SY,1])

•  Another client reads D2, writes back D4;
handled by server SZ:
 D4 ([SX,2], [SZ,1])

• 

CSEP544 -- Winter 2014 45

Vector Clocks: Example
•  A client writes D1 at server SX:

 D1 ([SX,1])
•  Another client reads D1, writes back D2; also

handled by server SX:
 D2 ([SX,2]) (D1 garbage collected)

•  Another client reads D2, writes back D3;
handled by server SY:
 D3 ([SX,2], [SY,1])

•  Another client reads D2, writes back D4;
handled by server SZ:
 D4 ([SX,2], [SZ,1])

•  Another client reads D3, D4: CONFLICT !

CSEP544 -- Winter 2014 46

Vector Clocks: Meaning

•  A data item D[(S1,v1),(S2,v2),…] means a
value that represents version v1 for S1,
version v2 for S2, etc.

•  If server Si updates D, then:
–  It must increment vi, if (Si, vi) exists
– Otherwise, it must create a new entry (Si,1)

CSEP544 -- Winter 2014 47

Vector Clocks: Conflicts

•  A data item D is an ancestor of D’ if for all
(S,v)∈D there exists (S,v’)∈D’ s.t. v ≤ v’

•  Otherwise, D and D’ are on parallel
branches, and it means that they have a
conflict that needs to be reconciled
semantically

CSEP544 -- Winter 2014 48

Vector Clocks: Conflict or not?

CSEP544 -- Winter 2014 49

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2])

Vector Clocks: Conflict or not?

CSEP544 -- Winter 2014 50

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

Vector Clocks: Conflict or not?

CSEP544 -- Winter 2014 51

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5])

Vector Clocks: Conflict or not?

CSEP544 -- Winter 2014 52

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

Vector Clocks: Conflict or not?

CSEP544 -- Winter 2014 53

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2])

Vector Clocks: Conflict or not?

CSEP544 -- Winter 2014 54

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

Vector Clocks: Conflict or not?

CSEP544 -- Winter 2014 55

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2])

Vector Clocks: Conflict or not?

CSEP544 -- Winter 2014 56

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2]) Yes

Vector Clocks: Conflict or not?

CSEP544 -- Winter 2014 57

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2]) Yes

([SX,3],[SY,10]) ([SX,3],[SY,20],[SZ,2])

Vector Clocks: Conflict or not?

CSEP544 -- Winter 2014 58

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2]) Yes

([SX,3],[SY,10]) ([SX,3],[SY,20],[SZ,2]) No

CAP Theorem

Brewer 2000:

You can only have two of the following three:
•  Consistency
•  Availability
•  Tolerance to Partitions

CSEP544 -- Winter 2014 59

CAP Theorem: No Partitions

•  CA = Consistency + Availability

•  Single site database
•  Cluster database

•  Need 2 phase commit
•  Need cache validation protocol

CSEP544 -- Winter 2014 60 Brewer 2000

CAP Theorem: No Availability

•  CP = Consistency + tolerance to Partitions

•  Distributed databases
•  Majority protocols

•  Make minority partitions unavailable

CSEP544 -- Winter 2014 61 Brewer 2000

CAP Theorem: No Consistency

•  AP = Availability + tolerance to Partitions

•  DNS
•  Web caching

CSEP544 -- Winter 2014 62 Brewer 2000

CAP Theorem: Criticism

•  Not really a “theorem”, since definitions
are imprecise: a real theorem was proven
a few years later, but under more limiting
assumptions

•  Many tradeoffs possible
•  D.Abadi: “CP makes no sense” because it

suggest never available. A, C asymmetric!
– No “C” = all the time
– No “A” = only when the network is partitioned

CSEP544 -- Winter 2014 63

Overview of No-SQL systems

CSEP544 -- Winter 2014 64

Cattell, SIGMOD Record 2010

Early “Proof of Concepts”

•  Memcached: demonstrated that in-
memory indexes (DHT) can be highly
scalable

•  Dynamo: pioneered eventual consistency
for higher availability and scalability

•  BigTable: demonstrated that persistent
record storage can be scaled to thousands
of nodes

CSEP544 -- Winter 2014 65

Cattell, SIGMOD Record 2010

ACID v.s. BASE

•  ACID = Atomicity, Consistency, Isolation,
and Durability

•  BASE = Basically Available, Soft state,
Eventually consistent

CSEP544 -- Winter 2014 66

Cattell, SIGMOD Record 2010

Terminology

•  Simple operations = key lookups, read/writes
of one record, or a small number of records

•  Sharding = horizontal partitioning by some
key, and storing records on different servers
in order to improve performance.

•  Horizontal scalability = distribute both data
and load over many servers

•  Vertical scaling = when a dbms uses multiple
cores and/or CPUs

CSEP544 -- Winter 2014 67

Cattell, SIGMOD Record 2010

Not exactly same as
horizontal partitioning

Definitely different
from vertical partitioning

Data Model

•  Tuple = row in a relational db
•  Document = nested values, extensible

records (think XML or JSON)
•  Extensible record = families of attributes

have a schema, but new attributes may be
added

•  Object = like in a programming language,
but without methods

CSEP544 -- Winter 2014 68

Cattell, SIGMOD Record 2010

1. Key-value Stores

Think “file system” more than “database”
•  Persistence,
•  Replication
•  Versioning,
•  Locking
•  Transactions
•  Sorting

CSEP544 -- Winter 2014 69

Cattell, SIGMOD Record 2010

1. Key-value Stores

•  Voldemort, Riak, Redis, Scalaris, Tokyo
Cabinet, Memcached/Membrain/Membase

•  Consistent hashing (DHT)
•  Only primary index: lookup by key
•  No secondary indexes
•  Transactions: single- or multi-update TXNs

–  locks, or MVCC

CSEP544 -- Winter 2014 70

Cattell, SIGMOD Record 2010

2. Document Stores

•  A "document" = a pointerless object = e.g.
JSON = nested or not = schema-less

•  In addition to KV stores, may have
secondary indexes

CSEP544 -- Winter 2014 71

Cattell, SIGMOD Record 2010

2. Document Stores

•  SimpleDB, CouchDB, MongoDB,
Terrastore

•  Scalability:
– Replication (e.g. SimpleDB, CounchDB –

means entire db is replicated),
– Sharding (MongoDB);
– Both

CSEP544 -- Winter 2014 72

Cattell, SIGMOD Record 2010

3. Extensible Record Stores
•  Typical Access: Row ID, Column ID, Timestamp

•  Rows: sharding by primary key
–  BigTable: split table into tablets = units of distribution

•  Columns: "column groups" = indication for which
columns to be stored together (e.g. customer
name/address group, financial info group, login
info group)

•  HBase, HyperTable, Cassandra, PNUT, BigTable

CSEP544 -- Winter 2014 73

Cattell, SIGMOD Record 2010

4. Scalable Relational Systems
•  Means RDBS that are offering sharding

•  Key difference: NoSQL make it difficult or
impossible to perform large-scope operations
and transactions (to ensure performance),
while scalable RDBMS do not *preclude*
these operations, but users pay a price only
when they need them.

•  MySQL Cluster, VoltDB, Clusterix, ScaleDB,
Megastore (the new BigTable)

CSEP544 -- Winter 2014 74

Cattell, SIGMOD Record 2010

Application 1

•  Web application that needs to display lots
of customer information; the users data is
rarely updated, and when it is, you know
when it changes because updates go
through the same interface. Store this
information persistently using a KV store.

CSEP544 -- Winter 2014 75

Key-value store

Cattell, SIGMOD Record 2010

Application 2

•  Department of Motor Vehicle: lookup
objects by multiple fields (driver's name,
license number, birth date, etc); "eventual
consistency" is ok, since updates are
usually performed at a single location.

CSEP544 -- Winter 2014 76

Document Store

Cattell, SIGMOD Record 2010

Application 3

•  eBay stile application. Cluster customers
by country; separate the rarely changed
"core” customer information (address,
email) from frequently-updated info
(current bids).

CSEP544 -- Winter 2014 77

Extensible Record Store

Cattell, SIGMOD Record 2010

Application 4

•  Everything else (e.g. a serious DMV
application)

CSEP544 -- Winter 2014 78

Scalable RDBMS

Cattell, SIGMOD Record 2010

Short Case Studies

CSEP544 -- Winter 2014 79

Case Study 1: Dynamo

•  Developed at Amazon, published 2007
•  It is probably in SimpleDB today, I couldn’t

confirm
•  Was the first to demonstrate that eventual

consistency can work

CSEP544 -- Winter 2014 80

Case Study 1: Dynamo

Key features:
•  Service Level Agreement (SLN): at the

99th percentile, and not on mean/median/
variance (otherwise, one penalizes the
heavy users)
–  “Respond within 300ms for 99.9% of its

requests”

CSEP544 -- Winter 2014 81

Case Study 1: Dynamo

Key features:
•  DHT with replication:

– Store value at k, k+1, …, k+N-1
•  Eventual consistency through vector

clocks
•  Reconciliation at read time:

– Writes never fail (“poor customer experience”)
– Conflict resolution: “last write wins” or

application specific

CSEP544 -- Winter 2014 82

Case Study 2: Cassandra
•  Cassandra stores semi-structured rows that belong to

column families
–  Rows are accessed by a key
–  Rows are replicated and distributed by hashing keys

•  Multi-master replication for each row
–  Enables Cassandra to run in multiple data centers
–  Also gives us partition tolerance

83

Aboulnaga’2011

Case Study 2: Cassandra
•  Client controls the consistency vs. latency trade-off for

each read and write operation
–  write(1)/read(1) – fast but not necessarily consistent
–  write(ALL)/read(ALL) – consistent but may be slow

•  Client decides the serialization order of updates

•  Scalable, elastic, highly available
–  Like many other cloud storage systems!

84

Aboulnaga’2011

Consistency vs. Latency
•  value = read(1, key, column)

–  Send read request to all replicas of the row (based on key)
–  Return first response received to client
–  Returns quickly but may return stale data

•  value = read(ALL, key, column)
–  Send read request to all replicas of the row (based on key)
–  Wait until all replicas respond and return latest version to client
–  Consistent but as slow as the slowest replica

•  write(1) vs. write(ALL)
–  Send write request to all replicas
–  Client provides a timestamp for each write

•  Other consistency levels are supported

85

Aboulnaga’2011

Consistency vs. Latency

•  Which v is returned to the read()?
–  write(1)/read(1): possibly v1, and eventually v2
–  write(ALL)/read(1): guaranteed to return v2 if successful
–  write(1)/read(ALL): guaranteed to return v2 if successful

86

Data Center 1 Data Center 2

Data Center 3

1- write(k, v1) 2- write(k, v2)

3- v = read(k)

Aboulnaga’2011

Consistency vs. Latency

87

Experiment on Amazon EC2 – Yahoo! Cloud Serving
Benchmark (YCSB) – 4 Cassandra Nodes

Same EC2 Availability Zone

Aboulnaga’2011

Consistency vs. Latency

88

Two EC2 Availability Zones
Same EC2 Geographic Region

Aboulnaga’2011

Consistency vs. Latency

89

Two EC2 Regions
(US East and US West)

Aboulnaga’2011

Case Study 3: PNUTS

•  Yahoo; the only system that has a
benchmark, and thorough experimental
evaluation

CSEP544 -- Winter 2014 90

Case Study 3: PNUTS

•  Read-any = returns any stable version
•  Read-critical(required_version) = reads a

version that is strictly newer
•  Read-latest = reads absolute latest
•  Test-and-set-write(required_version) = writes

only if current version is the required one

CSEP544 -- Winter 2014 91

Versions and
generations

Criticism

CSEP544 -- Winter 2014 92

Criticism

•  Two ways to improve OLTP performance:
– Sharding over shared-nothing
–  Improve per-server OLTP performance

•  Recent RDBMs do provide sharding:
Greenplum, Aster Data, Vertica, ParAccel

•  Hence, the discussion is about single-
node performance

CSEP544 -- Winter 2014 93

Stonebraker, CACM’2010 (blog 1)

Criticism (cont’d)

•  Single-node performance:
•  Major performance bottleneck:

communication with DBMS using ODBC or
JDBC
– Solution: stored procedures, OR embedded

databases
•  Server-side performance (next slide)

CSEP544 -- Winter 2014 94

Stonebraker, CACM’2010 (blog 1)

Criticism (cont’d)

Server-side performance: abut 25% each
•  Logging

– Everything written twice; log must be forced
•  Locking

– Needed for ACID semantics
•  Latching

– This is when the DBMS itself is multithreaded;
e.g. latch for the lock table

•  Buffer management
CSEP544 -- Winter 2014 95

Stonebraker, CACM’2010 (blog 1)

Criticism (cont’d)

Main take-away:
•  NoSQL databases give up 1, or 2, or 3 of

those features
•  Thus, performance improvement can only

be modest
•  Need to give up all 4 features for

significantly higher performance
•  On the downside, NoSQL give up ACID

CSEP544 -- Winter 2014 96

Stonebraker, CACM’2010 (blog 1)

Criticism (cont’d)

Who are the customers of NoSQL?
•  Lots of startups
•  Very few enterprises. Why? most

applications are traditional OLTP on
structured data; a few other applications
around the “edges”, but considered less
important

CSEP544 -- Winter 2014 97

Stonebraker, CACM’2011 (blog 2)

Criticism (cont’d)

•  No ACID Equals No Interest
– Screwing up mission-critical data is no-no-no

•  Low-level Query Language is Death
– Remember CODASYL?

•  NoSQL means NoStandards
– One (typical) large enterprise has 10,000

databases. These need accepted standards

CSEP544 -- Winter 2014 98

Stonebraker, CACM’2011 (blog 2)

