# CSEP 544 

Lecture 9:
Provenance, Views

## Announcements

- Homework 5:
- See schedule examples in today's email
- Minor mistakes fixed yesterday (see email)
- Homework due next Monday
- Reading assignment next week:
- Long paper + short paper = 1 review
- Final Exam
- Take home exam Saturday-Sunday 3/15-16


## Data Provenance

## Data Provenance

- Provenance inside the DBMS
- Will discuss today
- Provenance outside of the DBMS
- Much more messy; there is a standard, OPM (Open Provenance Model)


## Provenance Annotations

- Some query produces an output table $T(A, B, C)$
- We store it over some period of time
- Later we ask: "where did

| A | B | C |
| :---: | :---: | :---: |
| a1 | b1 | c1 |
| a2 | b1 | c1 |
| a2 | b2 | c2 |
| a2 | b2 | c3 |

provenance1
provenance2
provenance3
provenance4 this tuple come from?"

- The "provenance annotation" answers this.


## Provenance Annotations

- Start by annotating each tuple in the original database with a unique identifier; can be the Tuple Id (TID)

| A | B |
| :---: | :---: |
| a1 | b1 |
| a2 | b1 |
| a2 | b2 |

- Next, compute the provenance expression inductively, based on the query plan


## Join Operator



## Projection Operator



## Union Operator



## Selection Operator

| $\sigma_{A=a 1}$ |  |
| :---: | :---: |
| A | B |
| a1 | b1 |
| a1 | b2 |
| a2 | b1 |
| a2 | b2 |
| a2 | b3 |


| A | B |
| :---: | :---: |
| a1 | b1 |
| a1 | b2 |

We could simply remove the tuples filtered out. But it's better to keep them around (we'll see why). What is their annotation?

## Selection Operator

| $\sigma_{A=a}$ |  |
| :---: | :---: |
| A | B |
| a1 | b1 |
| a1 | b2 |
| a2 | b1 |
| a2 | b2 |
| a2 | b3 |


| A | B |
| :---: | :---: |
| a1 | b1 |
| a1 | b2 |
| a2 | b1 |
| a2 | b2 |
| a2 | b3 |

We could simply remove the tuples filtered out. But it's better to keep them around (we'll see why). What is their annotation?

## Simple Example 1

$$
\Pi_{\mathrm{AC}}(\mathrm{R}) \bowtie \Pi_{\mathrm{BC}}(\mathrm{R})=
$$

$\mathrm{R}=$

| A | B | C |
| :--- | :--- | :--- |
| a | b | c |
| X |  |  |
| d | b | e |
| y |  |  |
| f | g | e |
| Z |  |  |


| A | $B$ | $C$ |  |
| :---: | :---: | :---: | :--- |
| $a$ | $b$ | $c$ | $X \cdot X$ |
| $d$ | $b$ | $e$ | $Y \cdot Y$ |
| $d$ | $g$ | $e$ | $Y \cdot Z$ |
| f | b | $e$ | $Z \cdot Y$ |
| f | g | $e$ | $Z \cdot Z$ |

Discuss in class what these annotations mean

## Simple Example 2

$$
\sigma_{\mathrm{C}=\mathrm{e}}(\mathrm{R})=
$$



| A | B | C |
| :---: | :---: | :---: |
| a | b | c |
| d | b | e |
| f | g | e |


| A | B | C |  |
| :---: | :---: | :---: | :---: |
| a | b | C | $0=X \cdot 0$ |
| d | b | e | $Y=Y \cdot 1$ |
| f | g | e | $\mathrm{Z}=\mathrm{Z} \cdot 1$ |

Discuss in class what these annotations mean

## Complex Example

$$
\sigma_{\mathrm{C}=\mathrm{e}} \prod_{\mathrm{AC}}\left(\prod_{\mathrm{AC}}(\mathrm{R}) \bowtie \prod_{\mathrm{BC}}(\mathrm{R}) \cup \prod_{\mathrm{AB}}(\mathrm{R}) \bowtie \prod_{\mathrm{BC}}(\mathrm{R})\right)=
$$

| $\mathrm{R}=$ |  |  |
| :---: | :---: | :---: |
| A | B | C |
| a | b | c |
| d | b | e |
| f | g | e |


| A | $C$ |  |
| :---: | :---: | :--- |
| $a$ | $c$ | $(X \cdot X+X \cdot X) \cdot 0=0 \cdot 2 \cdot X^{2}=0$ |
| $a$ | $e$ | $X \cdot Y \cdot 1=X \cdot Y$ |
| $d$ | $c$ | $Y \cdot X \cdot 0=0$ |
| $d$ | $e$ | $(Y \cdot Y+Y \cdot Z+Y \cdot Y) \cdot 1=2 \cdot Y^{2}+Y \cdot Z$ |
| $f$ | $e$ | $(Z \cdot Z+Z \cdot Y+Z \cdot Z) \cdot 1=2 \cdot Z^{2}+Y \cdot Z$ |

Discuss in class what these annotations mean

## K-Relations

Definition. A K-relation is a relation where each tuple is annotated with an element from the set K .

What we have described so far is an extension of the positive operations of the relational algebra to K-relations

We assumed that K has the operators +,

## Identities on Provenance Expressions

The problem:

- We have defined provenance for a query plan $P$
- Given a query Q, we want the provenance to be independent of the plan
- Needed: if P1=P2, then provenance $(\mathrm{P} 1)=$ Provenance $(\mathrm{P} 2)$


## Example

## $q(x, y):=R(x), S(x, y), T(y)$

Do these plans compute the same provenance for the output $(\mathrm{a}, \mathrm{b})$ ?

$R=$

$S=$

| $x$ | $y$ |
| :---: | :---: |
| $a$ | $b$ |


$T=$| $y$ |
| :--- |
| $y$ |
| $y$ |

## Example

$$
\begin{aligned}
& q(x):=R(x), S(x) \\
& q(x):=R(x), T(x)
\end{aligned}
$$

Do these two plans compute the same provenance expression for the output (a)?

$$
\begin{aligned}
& V(x):=S(x) \\
& V(x):=T(x) \\
& q(x):=R(x), V(x)
\end{aligned}
$$



## Identities on Provenance Expressions

Definition. A structure $(\mathrm{K},+, \cdot, 0,1)$ is called a commutative semiring if:

1. $(\mathrm{K},+, 0)$ is a commutative monoid:
a. + is associative: $\quad(x+y)+z=x+(y+z)$
b. + is commutative: $\quad x+y=y+x$
c. 0 is the identity for $+: \quad x+0=0+x=x$
2. $(K, \cdot, 1)$ is a commutative monoid:
a. ... (similar identities)
3. distributes over + : $\quad x \cdot(y+z)=x \cdot y+x \cdot z$
4. For all x :
$x \cdot 0=0 \cdot x=0$

## Identities on Provenance Expressions

Definition. A structure $(\mathrm{K},+, \cdot, 0,1)$ is called a commutative semiring if:

1. $(\mathrm{K},+, 0)$ is a commutative monoid:
a. + is associative: $\quad(x+y)+z=x+(y+z)$
b. + is commutative: $\quad x+y=y+x$
c. 0 is the identity for $+: \quad x+0=0+x=x$
2. $(\mathrm{K}, \cdot, 1)$ is a commutative monoid:
a. ... (similar identities)
3. distributes over + : $\quad x \cdot(y+z)=x \cdot y+x \cdot z$
4. For all x :
$x \cdot 0=0 \cdot x=0$

Theorem. The standard identities of the Bag algebra hold for K-relations iff $(K,+, \cdot, 0,1)$ is a commutative semiring.

## Example

## $q(x, u):=R(x, y), S(y, z), T(z, u)$

In class: compute the provenance of the output ( $a, b$ ) for both plans.

| x | y | X1 | y | z | Y1 | z | u |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a | b1 |  | b1 | c1 |  | c1 | d | Z1 |
| a | b2 | X2 | b1 | c2 | Y2 | c2 | d | Z2 |
|  |  |  | b2 | c2 | Y3 |  |  |  |



## Applications

$$
\sigma_{\mathrm{C}=\mathrm{e}} \prod_{\mathrm{AC}}\left(\prod_{\mathrm{AC}}(\mathrm{R}) \bowtie \prod_{\mathrm{BC}}(\mathrm{R}) \cup \prod_{\mathrm{AB}}(\mathrm{R}) \bowtie \prod_{\mathrm{BC}}(\mathrm{R})\right)=
$$

| $\mathrm{R}=$ |  |  |
| :---: | :---: | :---: |
| A | B | C |
| a | b | c |
| d | b | e |
| f | g | e |


| A | C |  |
| :---: | :---: | :---: |
| a | c | 0 |
| a | e | $X \cdot Y$ |
| d | e | $2 \cdot Y^{2}+Y \cdot Z$ |
| f | e | $2 \cdot Z^{2}+Y \cdot Z$ |

Q: Suppose we delete the tuple ( $\mathrm{d}, \mathrm{b}, \mathrm{e}$ ) from R . Which tuple(s) disappear from the result?

## Applications

## $\sigma_{C=0} \Pi_{A C}\left(\Pi_{A C}(R) \bowtie \Pi_{B C}(R) \cup \Pi_{A B}(R) \bowtie \Pi_{B C}(R)\right)=$

| $\mathrm{R}=$ |  |  |
| :---: | :---: | :---: |
| A | B | C |
| a | b | c |
| d | b | e |
| f | g | e |


| A | C |  |
| :---: | :---: | :---: |
| a | c | 0 |
| a | e | X•Y |
| d | e | $2 \cdot Y^{2}+Y \cdot Z$ |
| f | e | $2 \cdot Z^{2}+Y \cdot Z$ |


| A | C |
| :---: | :---: |
| a | c |
| a | e |
| d | e |
| f | e |

Q: Suppose we delete the tuple ( $\mathrm{d}, \mathrm{b}, \mathrm{e}$ ) from R.
A: Set $\mathrm{Y}=0$ Which tuple(s) disappear from the result?

## Applications

$$
\sigma_{\mathrm{C}=\mathrm{e}} \prod_{\mathrm{AC}}\left(\prod_{\mathrm{AC}}(\mathrm{R}) \bowtie \prod_{\mathrm{BC}}(\mathrm{R}) \cup \prod_{\mathrm{AB}}(\mathrm{R}) \bowtie \prod_{\mathrm{BC}}(\mathrm{R})\right)=
$$

| $\mathrm{R}=$ |  |  |
| :---: | :---: | :---: |
| A | B | C |
| a | b | c |
| d | b | e |
| f | g | e |


| A | C |  |
| :---: | :---: | :---: |
| a | c | 0 |
| a | e | $X \cdot Y$ |
| d | e | $2 \cdot Y^{2}+Y \cdot Z$ |
| f | e | $2 \cdot Z^{2}+Y \cdot Z$ |

Q: Suppose each tuple in $R$ occurs 3 times (bag semantics). How many times occurs each tuple in the answer?

## Applications

$$
\sigma_{\mathrm{C}=\mathrm{e}} \prod_{\mathrm{AC}}\left(\prod_{\mathrm{AC}}(\mathrm{R}) \bowtie \prod_{\mathrm{BC}}(\mathrm{R}) \cup \prod_{\mathrm{AB}}(\mathrm{R}) \bowtie \prod_{\mathrm{BC}}(\mathrm{R})\right)=
$$

| $\mathrm{R}=$ |  |  |
| :---: | :---: | :---: |
| A | B | C |
| a | b | c |
| d | b | e |
| f | g | e |


| A | C |  |
| :---: | :---: | :---: |
| a | c | 0 |
| a | e | X•Y |
| d | e | $2 \cdot Y^{2}+Y \cdot Z$ |
| f | e | $2 \cdot Z^{2}+Y \cdot Z$ |


| A | C |
| :---: | :---: |
| a | c |
| a | e |
| d | e |
| f | e |

Q: Suppose each tuple in R occurs 3 times (bag semantics).
A. Set $X=Y=Z=3$ How many times occurs each tuple in the answer?

## Sets of Contributing Tuples

$$
\sigma_{C=e} \Pi_{A C}\left(\Pi_{A C}(R) \bowtie \Pi_{B C}(R) \cup \Pi_{A B}(R) \bowtie \Pi_{B C}(R)\right)=
$$

| $\mathrm{R}=$ |  |  |
| :---: | :---: | :---: |
| A | B | C |
| a | b | C |
| d | b | e |
| f | g | e |


| A | $C$ |  |
| :---: | :---: | :--- |
| $a$ | $c$ | 0 |
| $a$ | $e$ | $X \cdot Y$ |
| $d$ | $e$ | $2 \cdot Y^{2}+Y \cdot Z$ |
| $f$ | $e$ | $2 \cdot Z^{2}+Y \cdot Z$ |


$\rightarrow \quad$| $A$ | $C$ |  |
| :---: | :---: | :--- |
| $a$ | $c$ | - |
| $a$ | $e$ | $X, Y$ |
| $d$ | $e$ | $Y, Z$ |
| $f$ | $e$ | $Y, Z$ |

Trace only the set of input tuples that contributed to an output tuple
This is also a semi-ring! Which one?

## Variants of Provenance

- Depending on the application we may want to tune the degree of detail that we keep in the provenance
- Historically, researchers have first proposed ad-hoc definitions of provenance (often called lineage)
- Later, all these were proven to be special cases of semi-rings


## Semirings for various models of provenance (1)

$$
\mathrm{R}=
$$

| $A$ | $B$ | $C$ |
| :---: | :---: | :---: |
| $a$ | $b$ | $c$ |
| d | b | $e$ |
| f | Y | $e$ |
|  | $Z$ |  |

Q =


## Lineage [CuiWidomWiener'00]

Set of contributing tuples Semiring: $(\operatorname{Lin}(X),+, \cup, \perp, \varnothing)$
Semirings for various models of provenance (2)

$$
R=
$$

$$
Q=
$$

| A | B | C |
| :---: | :---: | :---: |
| a | b | c |
| d | b | e |
| f | g | e |


| A | C |
| :---: | :---: |
|  |  |
| d | e |
|  | $\{\{Y\},\{\mathrm{Y}, \mathrm{Z}\}\}$ |
|  |  |

Why-provenance [Buneman'08]
Set of sets of witnesses Semiring: (Why $(X), \cup, \uplus, \varnothing,\{\varnothing\})$

## Semirings for various models of provenance (3) <br> $$
\mathrm{R}=
$$ <br> | $A$ | $C$ |
| :---: | :---: | :---: |
|  |  |
| $d$ | $e$ |
|  | $\{Y\}$ |
|  |  |

Why-provenance [Buneman'08] Set of sets of minimal witnesses Semiring: $(\operatorname{PosBool}(X), \Lambda, \vee, \tau, \perp)$

## Semirings for various models of provenance (4)

| $\mathrm{R}=$ |  |  |
| :---: | :---: | :---: |
| A | B | C |
| a | b | c |
| d | b | e |
| f | g | e |



Notation:
\{\} set
[] bag

## Trio lineage [Das Sarma'08] Bags of sets of witnesses Semiring: (Trio $(X),+, \cdot, 0,1)$

## Semirings for various models of provenance (5)

| $\mathrm{R}=$ |  |  |
| :---: | :---: | :---: |
| A | B | C |
| a | b | C |
| d | b | e |
| f | g | e |

$\mathrm{Q}=$

| A | C |
| :--- | :--- |
|  |  |
| d | e |
|  | $\{[\mathrm{Y}, \mathrm{Y}],[\mathrm{Y}, \mathrm{Z}]\}$ |
|  |  |

Notation:
\{\} set
[] bag

Polynomials with boolean coefficients [Green'09] Sets of bags of contributing tuples Semiring: $(B[X],+, \cdot, 0,1)$

## Semirings for various models of provenance (6)

$\mathrm{R}=$

| A | B | C |
| :---: | :---: | :---: |
| a | b | c |
| y | X |  |
| d | b | e |
| y | y |  |
| f | g | e |
| z |  |  |

$Q=$


## Provenance polynomials [Green'07] Bags of bags of contributing tuples Semiring: ( $N[X],+, \cdot, 0,1$ )

## Application

## Discretionary Access Control [LaPadula]

- Public $=P$
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing... $=0$

| $A$ | $C$ |  |
| :---: | :---: | :--- |
| $a$ | $c$ | $2 \cdot X^{2}=?$ |
| $a$ | $e$ | $X \cdot Y=?$ |
| $d$ | $e$ | $2 \cdot Y^{2}+Y \cdot Z=?$ |
| $f$ | $e$ | $2 \cdot Z^{2}+Y \cdot Z=?$ |

## Application

## Discretionary Access Control [LaPadula]

- Public = P
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing... $=0$

Alice has clearance S:

- Alice can read C data
- Alice cannot read T data
- Alice can write T data
- Alice cannot read C data

Why??

## Application

## Discretionary Access Control [LaPadula]

- Public = P
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing... $=0$

Alice has clearance S:

- Alice can read C data
- Alice cannot read T data
- Alice can write T data
- Alice cannot read C data

Why??

Q: Join record $A$ labeled $C$ with record $B$ labeled $S$. What is the label of $(A, B)$ ?

## Application

## Discretionary Access Control [LaPadula]

- Public = P
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing... $=0$

Alice has clearance S:

- Alice can read C data
- Alice cannot read T data
- Alice can write T data
- Alice cannot read C data

Why??

Q: Join record $A$ labeled $C$ with record $B$ labeled $S$. What is the label of $(A, B)$ ?
A: S

## Application

## Discretionary Access Control [LaPadula]

- Public = P
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing... $=0$

Alice has clearance S:

- Alice can read C data
- Alice cannot read T data
- Alice can write T data
- Alice cannot read C data

Why??

Q: Join record $A$ labeled $C$ with record $B$ labeled $S$. What is the label of $(A, B)$ ? A: S

Q: Eliminate duplicates $\{A, A, A, A\}$ labeled $T, C, C, S$. What is the label of $A$ ?

## Application

## Discretionary Access Control [LaPadula]

- Public = P
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing... $=0$

Alice has clearance S:

- Alice can read C data
- Alice cannot read T data
- Alice can write T data
- Alice cannot read C data

Why??

Q: Join record $A$ labeled $C$ with record $B$ labeled $S$. What is the label of $(A, B)$ ? A: S

Q: Eliminate duplicates $\{A, A, A, A\}$ labeled $T, C, C, S$. What is the label of $A$ ? A: C

## Application

## Discretionary Access Control [LaPadula]

- Public = P
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing... $=0$

What are the labels of these records?

| $A$ | $C$ |  |
| :---: | :---: | :--- |
| $a$ | $c$ | $2 \cdot X^{2}$ |
| $a$ | $e$ | $X \cdot Y$ |
| $d$ | $e$ | $2 \cdot Y^{2}+Y \cdot Z$ |
| $f$ | $e$ | $2 \cdot Z^{2}+Y \cdot Z$ |

(A, min, max, 0, P), where $\mathrm{A}=\mathrm{P}<\mathrm{C}<\mathrm{S}<\mathrm{T}<0$

## Application

## Discretionary Access Control [LaPadula]

- Public = P
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing... $=0$

| $A$ | $C$ |  |
| :---: | :---: | :--- |
| $a$ | $c$ | $2 \cdot X^{2}=C$ |
| $a$ | $e$ | $X \cdot Y=C$ |
| $d$ | $e$ | $2 \cdot Y^{2}+Y \cdot Z=C$ |
| $f$ | $e$ | $2 \cdot Z^{2}+Y \cdot Z=T$ |

(A, min, max, 0, P), where $\mathrm{A}=\mathrm{P}<\mathrm{C}<\mathrm{S}<\mathrm{T}<0$

## Semirings

| $(\mathrm{B}, \wedge, \vee, \mathrm{T}, \perp)$ | Set semantics |
| :--- | :--- |
| $(\mathbb{N},+, \cdot, 0,1)$ | Bag semantics |
| $(\mathrm{P}(\Omega), \cup, \cap, \varnothing, \Omega)$ | Probabilistic events <br> [FuhrRölleke 97] |
| $($ BoolExp $(\mathrm{X}), \wedge, \vee, \mathrm{T}, \perp)$ | Conditional tables (c-tables) <br> [ImielinskiLipski 84] |
| $\left(\mathrm{R}_{+}^{\infty}, \min ,+, 1,0\right)$ | Tropical semiring <br> (cost/distrust score/confidence need) |
| (A, min, max, $0, \mathrm{P})$ <br> where $\mathrm{A}=\mathrm{P}<\mathrm{C}<\mathrm{S}<\mathrm{T}<0$ | Access control levels <br> [PODS8] |

## A provenance hierarchy



## A provenance hierarchy



A path downward from $K_{1}$ to $K_{2}$ indicates that there exists an onto (surjective) semiring homomorphism $h: K_{1} \rightarrow K_{2}$

## A provenance hierarchy



A path downward from $K_{1}$ to $K_{2}$ indicates that there exists an onto (surjective) semiring homomorphism $h: K_{1} \rightarrow K_{2}$

## A provenance hierarchy



A path downward from $K_{1}$ to $K_{2}$ indicates that there exists an onto (surjective) semiring homomorphism $h: K_{1} \rightarrow K_{2}$

## A provenance hierarchy

$$
\text { Example: } 2 x^{2} y+x y+5 y^{2}+z
$$

drop coefficients $x^{2} y+x y+y^{2}+z \quad \mathrm{~B}[X] \quad \operatorname{Trio}(X) \quad 3 x y+5 y+z$ drop both exp. and coeff.

$$
x y+y+z
$$



A path downward from $K_{1}$ to $K_{2}$ indicates that there exists an onto (surjective) semiring homomorphism $h: K_{1} \rightarrow K_{2}$

## A provenance hierarchy

$$
\text { Example: } 2 x^{2} y+x y+5 y^{2}+z
$$



A path downward from $K_{1}$ to $K_{2}$ indicates that there exists an onto (surjective) semiring homomorphism $h: K_{1} \rightarrow K_{2}$

## A provenance hierarchy

$$
\text { Example: } 2 x^{2} y+x y+5 y^{2}+z
$$

drop coefficients $x^{2} y+x y+y^{2}+z \quad \mathrm{~B}[X]$
$\mathrm{N}[X]$
drop both exp. and coeff.

$$
\text { Why }(X)
$$

$$
x y+y+z
$$

A path downward from $K_{1}$ to $K_{2}$ indicates that there exists an onto (surjective) semiring homomorphism $h: K_{1} \rightarrow K_{2}$

## Using homomorphisms to relate models

$$
\text { Example: } 2 x^{2} y+x y+5 y^{2}+z
$$

drop coefficients $x^{2} y+x y+y^{2}+z \quad \mathrm{~B}[X]$
$\mathrm{N}[X]$
drop both exp. and coeff.

$$
x y+y+z
$$

$$
\text { Why }(X)
$$



Homomorphism?
$h(x+y)=h(x)+h(y) \quad h(x y)=h(x) h(y) \quad h(0)=0 \quad h(1)=1$
Moreover, for these homomorphisms $h(x)=x$

## Views

## Overview

Views are ubiquitous in data management:

- Used in SQL as names for predefined queries
- More generally, any derived data is a view


## Views

- A view in SQL =
- A table computed from other tables, s.t., whenever the base tables are updated, the view is updated too
- More generally:
- A view is derived data that keeps track of changes in the original data
- Compare:
- A function computes a value from other values, but does not keep track of changes to the inputs


## A Simple View

Create a view that returns for each store the prices of products purchased at that store

```
CREATE VIEW StorePrice AS
    SELECT DISTINCT x.store, y.price
    FROM Purchase x, Product y
    WHERE x.product = y.pname
```

This is like a new table StorePrice(store,price)

## We Use a View Like Any Table

- A "high end" store is a store that sell some products over 1000.
- For each customer, return all the high end stores that they visit.

```
SELECT DISTINCT u.name, u.store
FROM Purchase u, StorePrice v
WHERE u.store = v.store
    AND v.price > 1000
```


## Types of Views

- Virtual views
- Used in databases
- Computed only on-demand - slow at runtime
- Always up to date
- Materialized views
- Used in data warehouses
- Pre-computed offline - fast at runtime
- May have stale data (must recompute or update)
- Indexes are materialized views


## Query Modification

For each customer, find all the high end stores that they visit.
CREATE VIEW StorePrice AS SELECT DISTINCT x.store, y.price FROM Purchase x, Product y WHERE x . product = y.pname

SELECT DISTINCT u.name, u.store FROM Purchase u, StorePrice v
WHERE u.store = v.store
AND v.price > 1000

## Query Modification

For each customer, find all the high end stores that they visit.
CREATE VIEW StorePrice AS SELECT DISTINCT x.store, y.price FROM Purchase x, Product y WHERE x.product = y.pname

SELECT DISTINCT u.name, u.store FROM Purchase u, StorePrice v WHERE u.store = v.store AND v.price > 1000


SELECT DISTINCT u.customer, u.store FROM Purchase u, (SELECT DISTINCT x.store, y.price FROM Purchase $x$, Product y
WHERE x.product = y.pname) v
WHERE u.store = v.store
AND v.price > 1000

## Query Modification

For each customer, find all the high end stores that they visit.
SELECT DISTINCT u.customer, u.store FROM Purchase u, Purchase x, Product y
WHERE u.store = x.store
AND y.price > 1000
AND x.product = y.pname

## Notice that <br> Purchase occurs twice. Why?

Modified query:

Modified and unnested query:


Purchase(customer, product, store) Product(pname, price)

## Further Virtual View Optimization

Retrieve all stores whose name contains ACME
CREATE VIEW StorePrice AS SELECT DISTINCT x.store, y.price FROM Purchase $x$, Product y WHERE $x$.product = y.pname

SELECT DISTINCT v.store FROM StorePrice v<br>WHERE v.store like '\%ACME\%'

## Further Virtual View Optimization

Retrieve all stores whose name contains ACME
CREATE VIEW StorePrice AS
SELECT DISTINCT x.store, y.price FROM Purchase $x$, Product $y$ WHERE x.product = y.pname

SELECT DISTINCT v.store FROM StorePrice v
WHERE v.store like '\%ACME\%'


> SELECT DISTINCT v.store FROM
> (SELECT DISTINCT x.store, y.price
> FROM Purchase x, Product y
> WHERE x.product = y.pname) v
> WHERE v.store like '\%ACME\%'

## Further Virtual View Optimization

Retrieve all stores whose name contains ACME

SELECT DISTINCT x.store FROM Purchase x, Product y WHERE x.product = y.pname AND x.store like '\%ACME\%'

Modified and unnested query:


We can further optimize! How?

Modified query:

```
SELECT DISTINCT v.store FROM
(SELECT DISTINCT x.store, y.price
FROM Purchase x, Product y
WHERE x. product = y.pname) v
WHERE v.store like '\%ACME\%'
```


## Further Virtual View Optimization

Retrieve all stores whose name contains ACME

SELECT DISTINCT x.store FROM Purchase $x$, Product y WHERE $x$.product $=y$ pname -AND-x.store like '\%ACME\%'

Modified and unnested query:

Assuming Product.pname is a key and Purchase.product is a foreign key


Final Query

## SELECT DISTINCT x.store FROM Purchase $x$ WHERE x.store like '\%ACME\%'

## Applications of Virtual Views

- Increased physical data independence. E.g.
- Vertical data partitioning
- Horizontal data partitioning
- Logical data independence. E.g.
- Change schemas of base relations (i.e., stored tables)
- Security
- View reveals only what the users are allowed to know


## Physical Data Independence: Vertical Partitioning

| Resumes | SSN | Name | Address | Resume | Picture |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 234234 | Mary | Huston | Clob1... | Blob1... |
|  | 345345 | Sue | Seattle | Clob2... | Blob2... |
|  | 345343 | Joan | Seattle | Clob3... | Blob3... |
|  | 234234 | Ann | Portland | Clob4... | Blob4. |

T1

| SSN | Name | Address |
| :--- | :--- | :--- |
| 234234 | Mary | Huston |
| 345345 | Sue | Seattle |
| $\ldots$ |  |  |


| T2 |  |
| :--- | :--- |
| SSN | Resume |
| 234234 | Clob1... |
| 345345 | Clob2... |
|  |  |

T3

| SSN | Picture |
| :--- | :--- |
| 234234 | Blob1... |
| 345345 | Blob2... |
|  |  |

## Vertical Partitioning

CREATE VIEW Resumes AS SELECT T1.ssn, T1.name, T1.address, T2.resume, T3.picture<br>FROM T1,T2,T3<br>WHERE T1.ssn=T2.ssn and T2.ssn=T3.ssn

## Vertical Partitioning

## SELECT address FROM Resumes <br> WHERE name = 'Sue'

We want the system to query only table T 1 .
Will that happen?

## Vertical Partitioning

- Hot trend in databases today for analytics
- Main idea:
- Storage = Column(TID, value) pairs
- Sort by TID $\rightarrow$ enables reconstructing the table
- Compress $\rightarrow$ great compression, minimize I/O
- Updates = VERY, VERY expensive
- Companies: $\underline{\text { C-Store }}$ and Vertica


## Horizontal Partitioning

Customers

| SSN | Name | City |
| :--- | :--- | :--- |
| 234234 | Mary | Huston |
| 345345 | Sue | Seattle |
| 345343 | Joan | Seattle |
| 234234 | Ann | Portland |
| -- | Frank | Calgary |
| -- | Jean | Montreal |

CustomersInHuston

| SSN | Name | City |
| :--- | :--- | :--- |
| 234234 | Mary | Huston |

CustomersInSeattle

$\square>|$| SSN | Name | City |
| :--- | :--- | :--- |
| 345345 | Sue | Seattle |
| 345343 | Joan | Seattle |

## Horizontal Partitioning

## CREATE VIEW Customers AS

CustomersInHuston UNION ALL
CustomersInSeattle UNION ALL

## Horizontal Partitioning

## SELECT name FROM Customers WHERE city = 'Seattle'

Which tables are queried by the system?

WHY ???

## Horizontal Partitioning

## SELECT name <br> FROM Customers <br> WHERE city = 'Seattle'

Now even humans can't tell which table contains customers in Seattle

CREATE VIEW Customers AS
CustomersInXXX UNION ALL
CustomersInYYY UNION ALL

## Horizontal Partitioning

A hack around the problem:

## CREATE VIEW Customers AS

 (SELECT SSN, name, 'Huston’ as city FROM CustomersInHuston) UNION ALL (SELECT SSN, name, 'Seattle’ as city FROM CustomersInSeattle) UNION ALL
## Horizontal Partitioning

## SELECT name FROM Customers WHERE city = 'Seattle'



## SELECT name FROM CustomersInSeattle

## Denormalization

- Pre-compute a view that is the join of several tables
- The view is now a relation that is not in BCNF (why not?)

Purchase(customer, product, store)
Product(pname, price)

> CREATE VIEW CustomerPurchase AS
> SELECT x.customer, x.store, y.pname, y.price
> FROM Purchase x, Product y
> WHERE x.product = y.pname
 John is not allowed to see >0 balances

## Customers:

| Name | Address | Balance |
| :--- | :--- | :--- |
| Mary | Huston | 450.99 |
| Sue | Seattle | -240 |
| Joan | Seattle | 333.25 |
| Ann | Portland | -520 |


| Name | Address | Balance |
| :--- | :--- | :--- |
| Mary | Huston | 450.99 |
| Sue | Seattle | -240 |
| Joan | Seattle | 333.25 |
| Ann | Portland | -520 |

CREATE VIEW PublicCustomers SELECT Name, Address FROM Customers

CREATE VIEW BadCreditCustomers SELECT *
FROM Customers
WHERE Balance < 0

## Data Integration Terminology



Global as View
Local as View

Which one needs query expansion, which one needs query answering using views ?

## Horizontal Partitioning as LAV

## CREATE VIEW CustomersInSeattle AS (SELECT * FROM Customers WHERE city = 'Seattle') <br> CREATE VIEW CustomersInHuston AS (SELECT * FROM Customers <br> WHERE city = 'Huston')

SELECT name
FROM CustomersInSeattle

## Indexes are Materialized Views

Product(pid, name, weight, price, ...)
CREATE INDEX W
ON Product(weight)
CREATE INDEX P
ON Product(price)

Indexes as LAV:

```
CREATE VIEW W AS
    SELECT weight, pid
    FROM Product y
CREATE VIEW P AS
    SELECT price, pid
    FROM Product y
```

SELECT weight, price FROM Product WHERE weight > 10 and price < 100
"Covering indexes": query uses only the indexes

SELECT x.weight, y.price FROM W x, Py WHERE x.weight > 10 and y.price $<100$ and $x$. pid $=y$.pid

## Answering Queries Using Views

- We have several materialized views:
- V1, V2, ..., Vn
- Given a query Q
- Answer it by using views instead of base tables
- Variation: Query rewriting using views
- Answer it by rewriting it to another query first
- Example: if the views are indexes, then we rewrite the query to use indexes


## Rewriting Queries Using Views

## Purchase(buyer, seller, product, store) <br> Person(pname, city)

Have this materialized view:

## CREATE VIEW SeattleView AS

SELECT y.buyer, y.seller, y.product, y.store FROM Person x, Purchase y WHERE x.city = 'Seattle’ AND x.pname = y.buyer

Goal: rewrite this query in terms of the view

SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = 'Seattle' AND x..pname = y.buyer AND y.product='gizmo'

## Rewriting Queries Using Views

SELECT y.buyer, y.seller FROM Person x, Purchase y<br>WHERE x.city = 'Seattle' AND<br>x..pname = y.buyer AND y.product='gizmo'



> SELECT buyer, seller FROM SeattleView WHERE product= 'gizmo'

## Rewriting is not always possible

CREATE VIEW DifferentView AS
SELECT y.buyer, y.seller, y.product, y.store FROM Person x, Purchase y, Product z WHERE x.city = 'Seattle' AND x.pname = y.buyer AND y.product = z.name AND z.price < 100

SELECT y.buyer, y.seller<br>FROM Person x, Purchase y<br>WHERE x.city = 'Seattle' AND<br>x..pname = y.buyer AND<br>y.product='gizmo'

# "Maximally contained rewriting" 

SELECT buyer, seller FROM WHERE product= 'gizmo'

## Technical Aspects

- View inlining, or query modification

$$
\mathrm{Db} \xrightarrow{\mathrm{~V}} \text { View }
$$ $\underset{\mathrm{Q}}{\mathrm{Db} \xrightarrow{\mathrm{V}} \text { View }} \begin{gathered}\text { Answer }\end{gathered}$



## Technical Aspects of Views

- Simplifying queries after the views have been in-lined
- Query un-nesting
- Query minimization
- Handling updates
- Updating virtual views
- Incremental update of materialized views


## Updating Views

Purchase(customer, product, store)
Product(pname, price)

INSERT
INTO Expensive-Product
VALUES(‘Gizmo')

CREATE VIEW Expensive-Product AS
SELECT pname
FROM Product
WHERE price > 100

Updateable view

## Updatable Views

- Have a virtual view V(A1, A2, ...) over tables R1, R2, ...
- User wants to update a tuple in V
- Insert/modify/delete
- Can we translate this into updates to R1, R2, ... ?
- If yes: $\mathrm{V}=$ "an updateable view"
- If not: V = "a non-updateable view"


## Updating Views

Purchase(customer, product, store)
Product(pname, price)
INSERT
INTO Expensive-Product
VALUES(‘Gizmo’)
CREATE VIEW Expensive-Product AS
SELECT pname
FROM Product
WHERE price > 100

Updateable view

INSERT<br>INTO Product<br>VALUES(‘Gizmo’, NULL)

## Updating Views

Purchase(customer, product, store)
Product(pname, price)

INSERT
INTO AcmePurchase
VALUES(‘Joe’, ‘Gizmo’)

CREATE VIEW AcmePurchase AS SELECT customer, product FROM Purchase WHERE store = 'AcmeStore’

Updateable view

## Updating Views

Purchase(customer, product, store)
Product(pname, price)

## INSERT <br> INTO AcmePurchase <br> VALUES(‘Joe’, ‘Gizmo’)

CREATE VIEW AcmePurchase AS SELECT customer, product FROM Purchase WHERE store = 'AcmeStore

INSERT
INTO Purchase
VALUES(‘Joe’,'Gizmo’,NULL)

## Updateable view

Note this

## Updating Views

Purchase(customer, product, store)
Product(pname, price)

INSERT INTO CustomerPrice VALUES('Joe', 200)

CREATE VIEW CustomerPrice AS SELECT x.customer, y.price FROM Purchase x, Product y WHERE x. product = y.pname

Non-updateable view

????? non-updateable

## Incremental View Update

Also known as view synchronization

- Immediate synchronization = after each update
- Deferred synchronization
- Lazy = at query time
- Periodic
- Forced = manual


## Incremental View Update

Order(cid, pid, date)
Product(pid, name, price)

> CREATE VIEW FullOrder AS SELECT x.cid,x.pid,x.date,y.name,y.price FROM Order x, Product y
> WHERE $\quad$ x.pid = y.pid

UPDATE Product SET price = price / 2
WHERE pid = ' 12345 '


UPDATE FullOrder SET price = price / 2
WHERE pid = '12345'
No need to recompute the entire view !

## Incremental View Update

Product(pid, name, category, price)

## CREATE VIEW Categories AS SELECT DISTINCT category FROM Product

DELETE Product WHERE pid = '12345'


DELETE Categories
WHERE category in (SELECT category FROM Product WHERE pid = '12345')

It doesn't work ! Why ? How can we fix it?

## Incremental View Update

Product(pid, name, category, price)

```
CREATE VIEW Categories AS
SELECT category, count(*) as c
FROM Product
GROUP BY category
```

DELETE Product WHERE pid = '12345'

UPDATE Categories
SET c = c-1 WHERE category in
(SELECT category
FROM Product
WHERE pid = '12345');
DELETE Categories
WHERE c = 0

