
CSEP 544

Lecture 9:
Provenance, Views

Announcements

•  Homework 5:
– See schedule examples in today’s email
– Minor mistakes fixed yesterday (see email)
– Homework due next Monday

•  Reading assignment next week:
– Long paper + short paper = 1 review

•  Final Exam
– Take home exam Saturday-Sunday 3/15-16

Data Provenance

Data Provenance

•  Provenance inside the DBMS
– Will discuss today

•  Provenance outside of the DBMS
– Much more messy; there is a standard, OPM

(Open Provenance Model)

CSEP 544 - Winter 2014 4

Provenance Annotations

•  Some query produces an
output table T(A,B,C)

•  We store it over some
period of time

•  Later we ask: “where did
this tuple come from?”

•  The “provenance
annotation” answers this.

CSEP 544 - Winter 2014 5

A B C
a1 b1 c1 provenance1
a2 b1 c1 provenance2
a2 b2 c2 provenance3
a2 b2 c3 provenance4

Provenance Annotations

•  Start by annotating each
tuple in the original database
with a unique identifier; can
be the Tuple Id (TID)

•  Next, compute the
provenance expression
inductively, based on the
query plan

CSEP 544 - Winter 2014 6

A B
a1 b1 X1
a2 b1 X2
a2 b2 X3

Join Operator

CSEP 544 - Winter 2014 7

A B
a1 b1 X1
a2 b1 X2
a2 b2 X3

B C
b1 c1 Y1
b2 c2 Y2
b2 c3 Y3

⋈ =
A B C
a1 b1 c1 X1⋅Y1
a2 b1 c1 X2⋅Y1
a2 b2 c2 X3⋅Y2
a2 b2 c3 X3⋅Y3

Projection Operator

CSEP 544 - Winter 2014 8

A B
a1 b1 X1
a1 b2 X2
a2 b1 X3
a2 b2 X4
a2 b3 X5

=
A
a1 X1+X2
a2 X3+X4+X5

Π

Union Operator

CSEP 544 - Winter 2014 9

A B
a1 b1 X1
a2 b2 X2

=
⋃

A B
a2 b2 Y1
a3 b3 Y2

A B
a1 b1 X1
a2 b2 X2+Y1
a3 b3 X3

Selection Operator

CSEP 544 - Winter 2014 10

A B
a1 b1 X1
a1 b2 X2
a2 b1 X3
a2 b2 X4
a2 b3 X5

=

σA=a1 A B
a1 b1 X1
a1 b2 X2

We could simply remove the tuples filtered out.
But it’s better to keep them around (we’ll see why).
What is their annotation?

Selection Operator

CSEP 544 - Winter 2014 11

A B
a1 b1 X1
a1 b2 X2
a2 b1 X3
a2 b2 X4
a2 b3 X5

=

σA=a1 A B
a1 b1 X1⋅1
a1 b2 X2⋅1
a2 b1 X3⋅0
a2 b2 X4⋅0
a2 b3 X5⋅0

We could simply remove the tuples filtered out.
But it’s better to keep them around (we’ll see why).
What is their annotation?

Simple Example 1

CSEP 544 - Winter 2014 12

A B C
a b c X
d b e Y
f g e Z

A B C
a b c X ⋅ X

d b e Y ⋅ Y
d g e Y ⋅ Z
f b e Z ⋅ Y
f g e Z ⋅ Z

R =

ΠAC(R) ⋈ ΠBC(R) =

Discuss in class what these annotations mean

Simple Example 2

CSEP 544 - Winter 2014 13

A B C
a b c X
d b e Y
f g e Z

R =

σC=e (R) =

Discuss in class what these annotations mean

A B C
a b c 0 = X⋅0
d b e Y = Y⋅1
f g e Z = Z⋅1

Complex Example

CSEP 544 - Winter 2014 14

A B C
a b c X
d b e Y
f g e Z

A C
a c (X ⋅ X + X ⋅ X) ⋅ 0 = 0⋅2⋅X2 = 0

a e X ⋅ Y ⋅ 1 = X⋅Y
d c Y ⋅ X ⋅ 0 = 0
d e (Y ⋅ Y + Y ⋅ Z + Y ⋅ Y) ⋅ 1 = 2⋅Y2 + Y ⋅ Z

f e (Z ⋅ Z + Z ⋅ Y + Z ⋅ Z) ⋅ 1 = 2⋅Z2 + Y ⋅ Z

R =

σC=eΠAC(ΠAC(R) ⋈ ΠBC(R) ⋃ ΠAB(R) ⋈ ΠBC(R)) =

Discuss in class what these annotations mean

K-Relations

CSEP 544 - Winter 2014 15

Definition. A K-relation is a relation where each tuple is annotated
with an element from the set K.

What we have described so far is an extension of the positive operations
of the relational algebra to K-relations

We assumed that K has the operators +, ⋅

Identities on Provenance
Expressions

The problem:
•  We have defined provenance for a query plan P

•  Given a query Q, we want the provenance to be
independent of the plan

•  Needed: if P1=P2,
then provenance(P1) = Provenance(P2)

CSEP 544 - Winter 2014 16

Example

q(x,y) := R(x), S(x,y), T(y) Do these plans compute
the same provenance for
the output (a,b)?

⋈

⋈
R(x) S(x,y) T(y)

⋈

⋈

R(x) S(x,y) T(y)

x y
a b Y

x
a X

y
b Z

R= S= T=

Example
q(x) := R(x), S(x)
q(x) := R(x), T(x)

Do these two plans
compute the same
provenance expression
for the output (a)?

⋈
∪

R(x) S(x) T(x)

∪

⋈

R(x) S(x) T(x)

x
a Y

x
a X

x
a Z

R= S= T=

V(x) := S(x)
V(x) := T(x)
q(x) := R(x), V(x)

∪

R(x)

Identities on Provenance
Expressions

CSEP 544 - Winter 2014 19

Definition. A structure (K, +, ⋅, 0, 1) is called a commutative semiring if:

1.  (K,+,0) is a commutative monoid:

a.  + is associative: (x+y)+z=x+(y+z)
b.  + is commutative: x+y=y+x
c.  0 is the identity for +: x+0=0+x=x

2.  (K, ⋅, 1) is a commutative monoid:
a.  … (similar identities)

3.  ⋅ distributes over +: x⋅(y+z) = x⋅y + x⋅z

4.  For all x: x⋅0 = 0⋅x = 0

Identities on Provenance
Expressions

CSEP 544 - Winter 2014 20

Theorem. The standard identities of the Bag algebra hold for K-relations
iff (K, +, ⋅, 0, 1) is a commutative semiring.

Definition. A structure (K, +, ⋅, 0, 1) is called a commutative semiring if:

1.  (K,+,0) is a commutative monoid:

a.  + is associative: (x+y)+z=x+(y+z)
b.  + is commutative: x+y=y+x
c.  0 is the identity for +: x+0=0+x=x

2.  (K, ⋅, 1) is a commutative monoid:
a.  … (similar identities)

3.  ⋅ distributes over +: x⋅(y+z) = x⋅y + x⋅z

4.  For all x: x⋅0 = 0⋅x = 0

Example
q(x,u) := R(x,y), S(y,z), T(z,u)

In class: compute the provenance
of the output (a,b) for both plans.

⋈
⋈

R(x,y) S(y,z) T(z,u)

Πxu

⋈
⋈

R(x,y) S(y,z) T(z,u)

Πxu

y z
b1 c1 Y1
b1 c2 Y2
b2 c2 Y3

x y
a b1 X1
a b2 X2

z u
c1 d Z1
c2 d Z2

Applications

CSEP 544 - Winter 2014 22

A B C
a b c X
d b e Y
f g e Z

A C
a c 0

a e X⋅Y
d e 2⋅Y2 + Y ⋅ Z

f e 2⋅Z2 + Y ⋅ Z

R =

σC=eΠAC(ΠAC(R) ⋈ ΠBC(R) ⋃ ΠAB(R) ⋈ ΠBC(R)) =

Q: Suppose we delete the tuple (d,b,e) from R.
Which tuple(s) disappear from the result?

Applications

CSEP 544 - Winter 2014 23

A B C
a b c X
d b e Y
f g e Z

R =

σC=eΠAC(ΠAC(R) ⋈ ΠBC(R) ⋃ ΠAB(R) ⋈ ΠBC(R)) =

Q: Suppose we delete the tuple (d,b,e) from R.
Which tuple(s) disappear from the result?

A: Set Y=0

A C
a c 0

a e 0
d e 0

f e 2⋅Z2

=

A C
a c 0

a e X⋅Y
d e 2⋅Y2 + Y ⋅ Z

f e 2⋅Z2 + Y ⋅ Z

Applications

CSEP 544 - Winter 2014 24

A B C
a b c X
d b e Y
f g e Z

R =

σC=eΠAC(ΠAC(R) ⋈ ΠBC(R) ⋃ ΠAB(R) ⋈ ΠBC(R)) =

Q: Suppose each tuple in R occurs 3 times (bag semantics).
How many times occurs each tuple in the answer?

A C
a c 0

a e X⋅Y
d e 2⋅Y2 + Y ⋅ Z

f e 2⋅Z2 + Y ⋅ Z

Applications

CSEP 544 - Winter 2014 25

A B C
a b c X
d b e Y
f g e Z

R =

σC=eΠAC(ΠAC(R) ⋈ ΠBC(R) ⋃ ΠAB(R) ⋈ ΠBC(R)) =

Q: Suppose each tuple in R occurs 3 times (bag semantics).
How many times occurs each tuple in the answer?

A. Set X=Y=Z=3

A C
a c 0

a e 9
d e 27

f e 27

A C
a c 0

a e X⋅Y
d e 2⋅Y2 + Y ⋅ Z

f e 2⋅Z2 + Y ⋅ Z

Sets of Contributing Tuples

CSEP 544 - Winter 2014 26

A B C
a b c X
d b e Y
f g e Z

A C
a c 0

a e X⋅Y
d e 2⋅Y2 + Y ⋅ Z

f e 2⋅Z2 + Y ⋅ Z

R =

σC=eΠAC(ΠAC(R) ⋈ ΠBC(R) ⋃ ΠAB(R) ⋈ ΠBC(R)) =

Trace only the set of input tuples that contributed to an output tuple

A C
a c -

a e X, Y
d e Y, Z

f e Y, Z

è

This is also a semi-ring! Which one?

Variants of Provenance
•  Depending on the application we may want to

tune the degree of detail that we keep in the
provenance

•  Historically, researchers have first proposed
ad-hoc definitions of provenance (often called
lineage)

•  Later, all these were proven to be special
cases of semi-rings

 Semirings for various models of
provenance (1)

28

Lineage [CuiWidomWiener’00]
Set of contributing tuples
Semiring: (Lin(X), +, ⋃, ⊥, ∅)

Source: Green ICDT 2009

A B C
a b c X
d b e Y
f g e Z

A C

d e {Y,Z}

R = Q =

Examples, define the semi-ring (in class)

 Semirings for various models of
provenance (2)

29
Source: Tannen, EDBT 2010

A B C
a b c X
d b e Y
f g e Z

A C

d e {{Y},{Y,Z}}

R = Q =

Why-provenance [Buneman’08]
Set of sets of witnesses
Semiring: (Why(X), ⋃, ⋓, ∅, {∅})

Examples, define the semi-ring (in class)

 Semirings for various models of
provenance (3)

30
Source: Tannen, EDBT 2010

A B C
a b c X
d b e Y
f g e Z

A C

d e {Y}

R = Q =

Why-provenance [Buneman’08]
Set of sets of minimal witnesses
Semiring: (PosBool(X), ∧, ∨, ⊤, ⊥)

Examples, define the semi-ring (in class)

 Semirings for various models of
provenance (4)

31

Notation:
{ } set
[] bag

Source: Tannen, EDBT 2010

A B C
a b c X
d b e Y
f g e Z

A C

d e [{Y}, {Y}, {Y,Z}]

R = Q =

Trio lineage [Das Sarma’08]
Bags of sets of witnesses
Semiring: (Trio(X), +, ⋅, 0, 1)

Examples, define the semi-ring (in class)

 Semirings for various models of
provenance (5)

32
Source: Tannen, EDBT 2010

A B C
a b c X
d b e Y
f g e Z

A C

d e {[Y,Y], [Y,Z]}

R = Q =

Polynomials with boolean coefficients [Green’09]
Sets of bags of contributing tuples
Semiring: (B[X], +, ⋅, 0, 1)

Notation:
{ } set
[] bag

 Semirings for various models of
provenance (6)

CSEP 544 - Winter 2014 33
Source: Tannen, EDBT 2010

A B C
a b c X
d b e Y
f g e Z

A C

d e [[Y,Y], [Y,Y], [Y,Z]]

R = Q =

Provenance polynomials [Green’07]
Bags of bags of contributing tuples
Semiring: (N[X], +, ⋅, 0, 1)

Notation:
{ } set
[] bag

Application

CSEP 544 - Winter 2014 34

Discretionary Access Control [LaPadula]
•  Public = P
•  Confidential = C
•  Secret = S
•  Top Secret = T
•  No Such Thing… = 0

A B C
a b c X=C
d b e Y=P
f g e Z=T

A C
a c 2⋅X2 = ?

a e X⋅Y = ?
d e 2⋅Y2 + Y ⋅ Z = ?

f e 2⋅Z2 + Y ⋅ Z = ?

R =

Application

CSEP 544 - Winter 2014 35

Discretionary Access Control [LaPadula]
•  Public = P
•  Confidential = C
•  Secret = S
•  Top Secret = T
•  No Such Thing… = 0

Alice has clearance S:
•  Alice can read C data
•  Alice cannot read T data

•  Alice can write T data
•  Alice cannot read C data

Why??

Application

CSEP 544 - Winter 2014 36

Discretionary Access Control [LaPadula]
•  Public = P
•  Confidential = C
•  Secret = S
•  Top Secret = T
•  No Such Thing… = 0

Alice has clearance S:
•  Alice can read C data
•  Alice cannot read T data

•  Alice can write T data
•  Alice cannot read C data

Why??

Q: Join record A labeled C with record B labeled S. What is the label of (A,B)?

Application

CSEP 544 - Winter 2014 37

Discretionary Access Control [LaPadula]
•  Public = P
•  Confidential = C
•  Secret = S
•  Top Secret = T
•  No Such Thing… = 0

Alice has clearance S:
•  Alice can read C data
•  Alice cannot read T data

•  Alice can write T data
•  Alice cannot read C data

Why??

Q: Join record A labeled C with record B labeled S. What is the label of (A,B)?
A: S

Application

CSEP 544 - Winter 2014 38

Discretionary Access Control [LaPadula]
•  Public = P
•  Confidential = C
•  Secret = S
•  Top Secret = T
•  No Such Thing… = 0

Alice has clearance S:
•  Alice can read C data
•  Alice cannot read T data

•  Alice can write T data
•  Alice cannot read C data

Why??

Q: Join record A labeled C with record B labeled S. What is the label of (A,B)?
A: S

Q: Eliminate duplicates {A, A, A,A} labeled T, C, C, S. What is the label of A?

Application

CSEP 544 - Winter 2014 39

Discretionary Access Control [LaPadula]
•  Public = P
•  Confidential = C
•  Secret = S
•  Top Secret = T
•  No Such Thing… = 0

Alice has clearance S:
•  Alice can read C data
•  Alice cannot read T data

•  Alice can write T data
•  Alice cannot read C data

Why??

Q: Join record A labeled C with record B labeled S. What is the label of (A,B)?
A: S

Q: Eliminate duplicates {A, A, A,A} labeled T, C, C, S. What is the label of A?
A: C

Application

CSEP 544 - Winter 2014 40

A C
a c 2⋅X2

a e X⋅Y
d e 2⋅Y2 + Y ⋅ Z

f e 2⋅Z2 + Y ⋅ Z

R =

(A, min, max, 0, P), where A = P < C < S < T < 0

Discretionary Access Control [LaPadula]
•  Public = P
•  Confidential = C
•  Secret = S
•  Top Secret = T
•  No Such Thing… = 0

A B C
a b c X=C
d b e Y=P
f g e Z=T

What are the
labels of these

records?

Application

CSEP 544 - Winter 2014 41

A C
a c 2⋅X2 = C

a e X⋅Y = C
d e 2⋅Y2 + Y ⋅ Z = C

f e 2⋅Z2 + Y ⋅ Z = T

R =

(A, min, max, 0, P), where A = P < C < S < T < 0

Discretionary Access Control [LaPadula]
•  Public = P
•  Confidential = C
•  Secret = S
•  Top Secret = T
•  No Such Thing… = 0

A B C
a b c X=C
d b e Y=P
f g e Z=T

Semirings

(B, ∧, ∨, ⊤, ⊥) Set semantics

(ℕ, +, ·, 0, 1) Bag semantics

(P(Ω), ⋃, ⋂, ∅, Ω) Probabilistic events
 [FuhrRölleke 97]

(BoolExp(X), ∧, ∨, ⊤, ⊥) Conditional tables (c-tables)
 [ImielinskiLipski 84]

(R+
∞, min, +, 1, 0) Tropical semiring

(cost/distrust score/confidence need)

(A, min, max, 0, P)
 where A = P < C < S < T < 0

Access control levels
 [PODS8]

CSEP 544 - Winter 2014 42

A provenance hierarchy

CSEP 544 - Winter 2014 43

N[X]

B[X] Trio(X)

Why(X)

Lin(X) PosBool(X)

most informative

least informative

A provenance hierarchy

CSEP 544 - Winter 2014 44

N[X]

B[X] Trio(X)

Why(X)

Lin(X) PosBool(X)

Example: 2x2y + xy + 5y2 + z

A path downward from K1 to K2 indicates that there exists an onto (surjective)
semiring homomorphism h : K1 → K2

A provenance hierarchy

CSEP 544 - Winter 2014 45

N[X]

B[X] Trio(X)

Why(X)

Lin(X) PosBool(X)

Example: 2x2y + xy + 5y2 + z

drop coefficients
x2y + xy + y2 + z

A path downward from K1 to K2 indicates that there exists an onto (surjective)
semiring homomorphism h : K1 → K2

A provenance hierarchy

CSEP 544 - Winter 2014 46

N[X]

B[X] Trio(X)

Why(X)

Lin(X) PosBool(X)

Example: 2x2y + xy + 5y2 + z

drop exponents
3xy + 5y + z

drop coefficients
x2y + xy + y2 + z

A path downward from K1 to K2 indicates that there exists an onto (surjective)
semiring homomorphism h : K1 → K2

A provenance hierarchy

CSEP 544 - Winter 2014 47

N[X]

B[X] Trio(X)

Why(X)

Lin(X) PosBool(X)

Example: 2x2y + xy + 5y2 + z

drop exponents
3xy + 5y + z

drop coefficients
x2y + xy + y2 + z

drop both exp. and coeff.
 xy + y + z

A path downward from K1 to K2 indicates that there exists an onto (surjective)
semiring homomorphism h : K1 → K2

A provenance hierarchy

CSEP 544 - Winter 2014 48

N[X]

B[X] Trio(X)

Why(X)

Lin(X) PosBool(X)

Example: 2x2y + xy + 5y2 + z

drop exponents
3xy + 5y + z

drop coefficients
x2y + xy + y2 + z

collapse terms
xyz

drop both exp. and coeff.
 xy + y + z

A path downward from K1 to K2 indicates that there exists an onto (surjective)
semiring homomorphism h : K1 → K2

A provenance hierarchy

CSEP 544 - Winter 2014 49

N[X]

B[X] Trio(X)

Why(X)

Lin(X) PosBool(X)

Example: 2x2y + xy + 5y2 + z

drop exponents
3xy + 5y + z

drop coefficients
x2y + xy + y2 + z

collapse terms
xyz

drop both exp. and coeff.
 xy + y + z

apply absorption
(ab + b = b)

y + z

A path downward from K1 to K2 indicates that there exists an onto (surjective)
semiring homomorphism h : K1 → K2

Using homomorphisms to relate models

CSEP 544 - Winter 2014 50

Homomorphism?
h(x+y) = h(x)+h(y) h(xy)=h(x)h(y) h(0)=0 h(1)=1
Moreover, for these homomorphisms h(x)= x

N[X]

B[X] Trio(X)

Why(X)

Lin(X) PosBool(X)

Example: 2x2y + xy + 5y2 + z

drop exponents
3xy + 5y + z

drop coefficients
x2y + xy + y2 + z

collapse terms
xyz

drop both exp. and coeff.
 xy + y + z

apply absorption
(ab + b = b)

y + z

Views

CSEP544 - Winter 2014 51

Overview

Views are ubiquitous in data management:

•  Used in SQL as names for predefined
queries

•  More generally, any derived data is a
view

CSEP544 - Winter 2014 52

Views
•  A view in SQL =

– A table computed from other tables, s.t.,
whenever the base tables are updated, the view
is updated too

•  More generally:
– A view is derived data that keeps track of

changes in the original data
•  Compare:

– A function computes a value from other values,
but does not keep track of changes to the inputs

A Simple View

CSEP544 - Winter 2014 54

CREATE VIEW StorePrice AS
 SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

This is like a new table
StorePrice(store,price)

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

Create a view that returns for each store
the prices of products purchased at that store

We Use a View Like Any Table
•  A "high end" store is a store that sell some products over

1000.
•  For each customer, return all the high end stores that

they visit.

CSEP544 - Winter 2014

SELECT DISTINCT u.name, u.store
FROM Purchase u, StorePrice v
WHERE u.store = v.store
 AND v.price > 1000

55

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

Types of Views
•  Virtual views

– Used in databases
– Computed only on-demand – slow at runtime
– Always up to date

•  Materialized views
– Used in data warehouses
– Pre-computed offline – fast at runtime
– May have stale data (must recompute or update)
–  Indexes are materialized views

CSEP544 - Winter 2014 56

Query Modification

CSEP544 - Winter 2014 57

For each customer, find all the high end stores that they visit.

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

CREATE VIEW StorePrice AS
 SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

SELECT DISTINCT u.name, u.store
FROM Purchase u, StorePrice v
WHERE u.store = v.store
 AND v.price > 1000

Query Modification

CSEP544 - Winter 2014 58

For each customer, find all the high end stores that they visit.

CREATE VIEW StorePrice AS
 SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

SELECT DISTINCT u.name, u.store
FROM Purchase u, StorePrice v
WHERE u.store = v.store
 AND v.price > 1000

SELECT DISTINCT u.customer, u.store
FROM Purchase u,
 (SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname) v
WHERE u.store = v.store
 AND v.price > 1000

Modified query:

Query Modification

CSEP544 - Winter 2014 59

For each customer, find all the high end stores that they visit.

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

SELECT DISTINCT u.customer, u.store
FROM Purchase u,
 (SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname) v
WHERE u.store = v.store
 AND v.price > 1000

Modified query:

SELECT DISTINCT u.customer, u.store
FROM Purchase u, Purchase x, Product y
WHERE u.store = x.store
 AND y.price > 1000
 AND x.product = y.pname

Modified and unnested query:

Notice that
Purchase
occurs twice.
Why?

Further Virtual View Optimization

CSEP544 - Winter 2014 60

Retrieve all stores whose name contains ACME

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

CREATE VIEW StorePrice AS
 SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

SELECT DISTINCT v.store
FROM StorePrice v
WHERE v.store like ‘%ACME%’

Further Virtual View Optimization

CSEP544 - Winter 2014 61

Retrieve all stores whose name contains ACME

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

CREATE VIEW StorePrice AS
 SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

SELECT DISTINCT v.store
FROM StorePrice v
WHERE v.store like ‘%ACME%’

SELECT DISTINCT v.store
FROM
 (SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname) v
WHERE v.store like ‘%ACME%’

Modified query:

Further Virtual View Optimization

CSEP544 - Winter 2014 62

Retrieve all stores whose name contains ACME

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

SELECT DISTINCT v.store
FROM
 (SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname) v
WHERE v.store like ‘%ACME%’

Modified query:

Modified and unnested query:

We can further optimize! How? SELECT DISTINCT x.store
FROM Purchase x, Product y
WHERE x.product = y.pname
 AND x.store like ‘%ACME%’

Further Virtual View Optimization

CSEP544 - Winter 2014 63

Retrieve all stores whose name contains ACME

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

SELECT DISTINCT x.store
FROM Purchase x
WHERE x.store like ‘%ACME%’

Final Query
Modified and unnested query:

Assuming Product.pname is a key
and Purchase.product is a foreign key SELECT DISTINCT x.store

FROM Purchase x, Product y
WHERE x.product = y.pname
 AND x.store like ‘%ACME%’

Applications of Virtual Views

•  Increased physical data independence. E.g.
– Vertical data partitioning
– Horizontal data partitioning

•  Logical data independence. E.g.
– Change schemas of base relations (i.e., stored

tables)

•  Security
– View reveals only what the users are allowed to

know

CSEP544 - Winter 2014 64

Physical Data Independence:
Vertical Partitioning

SSN Name Address Resume Picture
234234 Mary Huston Clob1… Blob1…
345345 Sue Seattle Clob2… Blob2…
345343 Joan Seattle Clob3… Blob3…
234234 Ann Portland Clob4… Blob4…

Resumes

SSN Name Address
234234 Mary Huston
345345 Sue Seattle
 . . .

SSN Resume
234234 Clob1…
345345 Clob2…

SSN Picture
234234 Blob1…
345345 Blob2…

T1 T2 T3

Vertical Partitioning

CSEP544 - Winter 2014 66

CREATE VIEW Resumes AS
 SELECT T1.ssn, T1.name, T1.address,
 T2.resume, T3.picture
 FROM T1,T2,T3
 WHERE T1.ssn=T2.ssn and T2.ssn=T3.ssn

Vertical Partitioning

CSEP544 - Winter 2014 67

SELECT address
FROM Resumes
WHERE name = ‘Sue’

We want the system to query only table T1.

Will that happen ?

Vertical Partitioning

•  Hot trend in databases today for analytics
•  Main idea:

– Storage = Column(TID, value) pairs
– Sort by TID à enables reconstructing the table
– Compress à great compression, minimize I/O
– Updates = VERY, VERY expensive

•  Companies: C-Store and Vertica

CSEP544 - Winter 2014 68

Horizontal Partitioning

SSN Name City
234234 Mary Huston
345345 Sue Seattle
345343 Joan Seattle
234234 Ann Portland
-- Frank Calgary
-- Jean Montreal

Customers

SSN Name City
234234 Mary Huston

CustomersInHuston

SSN Name City
345345 Sue Seattle
345343 Joan Seattle

CustomersInSeattle

.

Horizontal Partitioning

CSEP544 - Winter 2014 70

CREATE VIEW Customers AS
 CustomersInHuston
 UNION ALL
 CustomersInSeattle
 UNION ALL
 . . .

Horizontal Partitioning

CSEP544 - Winter 2014 71

SELECT name
FROM Customers
WHERE city = ‘Seattle’

Which tables are queried by the system ?

WHY ???

Horizontal Partitioning

CSEP544 - Winter 2014 72

SELECT name
FROM Customers
WHERE city = ‘Seattle’

Now even humans
can’t tell which table
contains customers
in Seattle

CREATE VIEW Customers AS
 CustomersInXXX
 UNION ALL
 CustomersInYYY
 UNION ALL
 . . .

Horizontal Partitioning

CSEP544 - Winter 2014 73

CREATE VIEW Customers AS
 (SELECT SSN, name, ‘Huston’ as city
 FROM CustomersInHuston)
 UNION ALL
 (SELECT SSN, name, ‘Seattle’ as city
 FROM CustomersInSeattle)
 UNION ALL
 . . .

A hack around the problem:

Horizontal Partitioning

CSEP544 - Winter 2014 74

SELECT name
FROM Customers
WHERE city = ‘Seattle’

SELECT name
FROM CustomersInSeattle

Denormalization

•  Pre-compute a view that is the join of
several tables

•  The view is now a relation that is not in
BCNF (why not?)

CSEP544 - Winter 2014 75

CREATE VIEW CustomerPurchase AS
 SELECT x.customer, x.store, y.pname, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

Purchase(customer, product, store)
Product(pname, price)

Views and Security

Name Address Balance
Mary Huston 450.99
Sue Seattle -240
Joan Seattle 333.25
Ann Portland -520

Customers:

Fred is not
allowed to

see Balance

CREATE VIEW PublicCustomers
 SELECT Name, Address
 FROM Customers

Name Address Balance
Mary Huston 450.99
Sue Seattle -240
Joan Seattle 333.25
Ann Portland -520

John is
not allowed
to see >0
balances

CREATE VIEW BadCreditCustomers
 SELECT *
 FROM Customers
 WHERE Balance < 0

Data Integration Terminology

Local DB1 Local DBk …

Integrated Data

Local DB1 Local DBk …

Integrated Data

Global as View

V V1 Vk

Local as View

Which one needs query expansion,
which one needs query answering using views ?

Horizontal Partitioning as LAV

CREATE VIEW CustomersInSeattle AS
 (SELECT * FROM Customers
 WHERE city = ‘Seattle’)
CREATE VIEW CustomersInHuston AS
 (SELECT * FROM Customers
 WHERE city = ‘Huston’)
….

SELECT name FROM Customers
WHERE city = ‘Seattle’

SELECT name
FROM CustomersInSeattle

CREATE INDEX W
 ON Product(weight)
CREATE INDEX P
 ON Product(price)

Indexes are Materialized Views

SELECT weight, price
FROM Product
WHERE weight > 10
 and price < 100

Product(pid, name, weight, price, …)

SELECT x.weight, y.price
FROM W x, P y
WHERE x.weight > 10
 and y.price < 100
 and x.pid = y.pid

CREATE VIEW W AS
 SELECT weight, pid
 FROM Product y
CREATE VIEW P AS
 SELECT price, pid
 FROM Product y

Indexes as LAV:

“Covering indexes”:
query uses
only the indexes

Answering Queries Using Views
•  We have several materialized views:

–  V1, V2, …, Vn

•  Given a query Q
–  Answer it by using views instead of base tables

•  Variation: Query rewriting using views
–  Answer it by rewriting it to another query first

•  Example: if the views are indexes, then we
rewrite the query to use indexes

CSEP544 - Winter 2014 80

Rewriting Queries Using Views

81

Purchase(buyer, seller, product, store)
Person(pname, city)

CREATE VIEW SeattleView AS
 SELECT y.buyer, y.seller, y.product, y.store
 FROM Person x, Purchase y
 WHERE x.city = ‘Seattle’ AND
 x.pname = y.buyer

SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND
 x..pname = y.buyer AND
 y.product=‘gizmo’

Goal: rewrite this query
in terms of the view

Have this
materialized
view:

Rewriting Queries Using Views

CSEP544 - Winter 2014 82

SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND
 x..pname = y.buyer AND
 y.product=‘gizmo’

SELECT buyer, seller
FROM SeattleView
WHERE product= ‘gizmo’

Rewriting is not always possible

83

CREATE VIEW DifferentView AS
 SELECT y.buyer, y.seller, y.product, y.store
 FROM Person x, Purchase y, Product z
 WHERE x.city = ‘Seattle’ AND
 x.pname = y.buyer AND
 y.product = z.name AND
 z.price < 100

SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND
 x..pname = y.buyer AND
 y.product=‘gizmo’ SELECT buyer, seller

FROM DifferentView
WHERE product= ‘gizmo’

“Maximally
contained
rewriting”

Technical Aspects
•  View inlining, or query

modification

•  Query answering using
views

•  Updating views

•  Incremental view update

Db View

Answer

V

Q

Db View

Answer

V

Q

Db View
V

Update ??

Db View
V

Update ??

Technical Aspects of Views

•  Simplifying queries after the views have
been in-lined
– Query un-nesting
– Query minimization

•  Handling updates
– Updating virtual views
–  Incremental update of materialized views

CSEP544 - Winter 2014 85

Updating Views

CSEP544 - Winter 2014 86

CREATE VIEW Expensive-Product AS
 SELECT pname
 FROM Product
 WHERE price > 100

INSERT
INTO Expensive-Product
VALUES(‘Gizmo’)

Purchase(customer, product, store)
Product(pname, price)

Updateable
view

Updatable Views

•  Have a virtual view V(A1, A2, …) over
tables R1, R2, …

•  User wants to update a tuple in V
–  Insert/modify/delete

•  Can we translate this into updates to
R1, R2, … ?

•  If yes: V = “an updateable view”
•  If not: V = “a non-updateable view”

CSEP544 - Winter 2014 87

Updating Views

CSEP544 - Winter 2014 88

CREATE VIEW Expensive-Product AS
 SELECT pname
 FROM Product
 WHERE price > 100

INSERT
INTO Product
VALUES(‘Gizmo’, NULL)

Purchase(customer, product, store)
Product(pname, price)

Updateable
view

INSERT
INTO Expensive-Product
VALUES(‘Gizmo’)

Updating Views

CSEP544 - Winter 2014 89

CREATE VIEW AcmePurchase AS
 SELECT customer, product
 FROM Purchase
 WHERE store = ‘AcmeStore’

INSERT
INTO AcmePurchase
VALUES(‘Joe’, ‘Gizmo’)

Purchase(customer, product, store)
Product(pname, price)

Updateable
view

Updating Views

CSEP544 - Winter 2014 90

CREATE VIEW AcmePurchase AS
 SELECT customer, product
 FROM Purchase
 WHERE store = ‘AcmeStore’

INSERT
INTO AcmePurchase
VALUES(‘Joe’, ‘Gizmo’)

INSERT
INTO Purchase
VALUES(‘Joe’,’Gizmo’,NULL)

Note
this

Purchase(customer, product, store)
Product(pname, price)

Updateable
view

Updating Views

CSEP544 - Winter 2014 91

INSERT INTO CustomerPrice
VALUES(‘Joe’, 200)

? ? ? ? ?

Non-updateable
view

Most views are
non-updateable

CREATE VIEW CustomerPrice AS
 SELECT x.customer, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

Purchase(customer, product, store)
Product(pname, price)

Incremental View Update
Also known as view synchronization
•  Immediate synchronization = after each

update
•  Deferred synchronization

– Lazy = at query time
– Periodic
– Forced = manual

92

Incremental View Update

CSEP544 - Winter 2014 93

CREATE VIEW FullOrder AS
 SELECT x.cid,x.pid,x.date,y.name,y.price
 FROM Order x, Product y
 WHERE x.pid = y.pid

UPDATE Product
SET price = price / 2
WHERE pid = ‘12345’

Order(cid, pid, date)
Product(pid, name, price)

UPDATE FullOrder
SET price = price / 2
WHERE pid = ‘12345’

No need to recompute the entire view !

Incremental View Update

94

CREATE VIEW Categories AS
 SELECT DISTINCT category
 FROM Product

DELETE Product
WHERE pid = ‘12345’

Product(pid, name, category, price)

DELETE Categories
WHERE category in
 (SELECT category
 FROM Product
 WHERE pid = ‘12345’)

It doesn’t work ! Why ? How can we fix it ?

Incremental View Update

95

CREATE VIEW Categories AS
 SELECT category, count(*) as c
 FROM Product
 GROUP BY category

DELETE Product
WHERE pid = ‘12345’

Product(pid, name, category, price)

UPDATE Categories
SET c = c-1 WHERE category in
 (SELECT category
 FROM Product
 WHERE pid = ‘12345’);
DELETE Categories
WHERE c = 0

