Lecture 5: Parallel Databases

Overview of Today’s Lecture

Finish: Query Execution/Optimization
Big Data

— Kumar et al. The Web as a Graph
Parallel databases

— Chapter 22.1 — 22.5

Map/Reduce

— Paper assignment

Will not discuss in class: PigLatin

Homework 3

* Do not use “PARALLEL 50”

 Remember to turn off your instances!

Brief Review

» Difference between logical and physical
operators

* Discuss implementations of the join
operators
— Main memory (aka in core)
— External memory (aka out of core)

Query

Execution

* Physical operators: join, group-by

« Query execution

- pipeline, iterator model

* Query optimization

 Database statistics

CSEP 544 -- Winter 2014

The lterator Model

Each operator implements this interface
* open()
« get _next()

* close()

CSEP 544 -- Winter 2014

Purchase(pid, cid, store) Purchase(pid,cid,store) X,y Customer(cid, name, city)

Customer(cid, name, city)] .
Classic Hash Join

What do these operators do for the classic Hash
Join?

* open
P () [X]cid=cid

« get _next()

Purchase Customer

 close()

CSEP 544 -- Winter 2014 7

Purchase(pid, cid, store) Purchase(pid,cid,store) X, Customer(cid, name, city)
Customer(cid, name, city)

Main Memory Hash Join

open() { get_next() {
Customer.open(): repeat {
while (c = Customer.get_next()) p = Purchase.get_nexi();
hashTable.insert(c.cid, c); if (p == NULL)
Customer.close(); { c = hashTable.find(p.cid); }
Purchase.open(); until (p == NULL or ¢ != NULL);
) return (p,c)
}

close() {
Purchase.close();

}

Purchase(pid, cid, store) Purchase(pid,cid,store) X, Customer(cid, name, city)
Customer(cid, name, city)

Main Memory Hash Join

open() { get_next() {
Customer.open(): repeat {
while (c = Customer.get_next()) p = Purchase.get_next(),
hashTable.insert(c.cid, c); if (p == NULL) |
Customer.close(); { c = hashTable.find(p.cid); }
Purchase.open(); until (p == NULL or ¢ != NULL);
) return (p,c)
}

close() {
Purchase.close();

}

What changes if we don't
join on a key-foreign key?

Discussion In class

Every operator is a hash-join
and implements the iterator model

X
/

X
o

R(A,B S(B,C)

T(C,D)

What happens:
* When we call open() at the top?
 When we call get next() at the top?

More Discussion

/\
/\

/K

@shTable < S \

repeat read(R, x)
y < join(HashTable, x)
write(V1, y)

HashTable < T

repeat read(V1,y)
z < join(HashTable, y)
write(V2, z)

HashTable < U
repeat read(V2, z)
u < join(HashTable, z)

\ write(Answer, u) /

More Discussion

Question in class
Given B(R), B(S), B(T), B(U)

 What is the total cost of the plan ?
— Cost =

 How much main memory do we need ?
— M=

More Discussion

/// N
\\09/ / \\
&
& x
X T

/HashTabIe1 < S \

HashTable2 €« T

HashTable3 < U

repeat read(R, x)
y < join(HashTable1, x)
z < join(HashTable2, y)

u € join(HashTable3, z)

\ write(Answer, u) /

More Discussion

Question in class
Given B(R), B(S), B(T), B(U)

 What is the total cost of the plan ?
— Cost =

 How much main memory do we need ?
— M=

More Discussion

V., K

/y ’//A
S T | X Y

Query Execution

* Physical operators: join, group-by

* Query execution: pipeline, iterator model

* Query optimization

 Database statistics

CSEP 544 -- Winter 2014 16

Query Optimization

» Search space = set of all physical query
plans that are equivalent to the SQL query
— Defined by algebraic laws and restrictions on
the set of plans used by the optimizer
« Search algorithm = a heuristics-based
algorithm for searching the space and
selecting an optimal plan

Relational Algebra Laws: Joins

Commutativity : RXS=SXR
Associativity: RX(SXT)=(RXS)XT
Distributivity: RX(SUT) = (RXS)U(RNXT)

Outer joins get more complicated

CSEP 544 -- Winter 2014 18

Relational Algebra Laws:
Selections

R(A, B, C, D), S(E, F, G)

OF=3(R[X]D=E S)= ?
O a=5AND G=9 (R X pg S) = ?

CSEP 544 -- Winter 2014 19

Relational Algebra Laws:
Selections

R(A, B, C, D), S(E, F, G)

O F=3 (RX pp S) = R X pg (0 (=3 (S))
O a=5 AND G=9 (R X p_p S) =0-5(R) Mp_g 0g=9(S)

CSEP 544 -- Winter 2014 20

Group-by and Join

R(A, B), S(C,D)

VA, sum(D)(R(AaB) M g=c S(C,D)) =

CSEP 544 -- Winter 2014

?

21

Group-by and Join

R(A, B), S(C,D)

VA, sum(D)(R(AaB) M g=c S(C,D)) =
YA, sum(D (R(A,B) X B=C (YC, sum(D S(C’D)))

These are very powerful laws.
They were introduced only in the 90's.

CSEP 544 -- Winter 2014

22

Laws Involving Constraints

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

d. pricelProduct X ,_ .,y Company) = ?

CSEP 544 -- Winter 2014

23

Laws Involving Constraints

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

d. oricelProduct X ._..qy GCompany) = I1; ,...(Product)

Need a second constraint for this law to hold. Which ?

CSEP 544 -- Winter 2014 24

Why such queries occur

Foreign key

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

SELECT *
FROM Product x, Company y

SELECT pname, price
FROM CheapProductCompany

CSEP 544 -- Winter 2014

WHERE x.cid = y.cid and x.price < 100

CREATE VIEW CheapProductCompany

SELECT pname, price
FROM Product
WHERE price < 100

25

Law of Semijoins

Input: R(A1,...An), S(B1,...,Bm)
Output: T(A1,...,An)
Semjoinis: RX S =11 4,

The law of semijoins is:

R X S=(RXS) X S

CSEP 544 -- Winter 2014

26

Laws with Semijoins

» Used in parallel/distributed databases
« Often combined with Bloom Filters

 Read pp. 747 in the textbook

Left-Deep Plans and
Bushy Plans

S R TN
A VANERVAN
R3 R1

R3 R1
Left-deep plan Bushy plan

System R considered only left deep plans,
and so do some optimizers today

Search Algorithms

* Dynamic programming
— Pioneered by System R for computing optimal join order, used
today by all advanced optimizers

e Search space pruning
— Enumerate partial plans, drop unpromising partial plans
— Bottom-up v.s. top-down plans

« Access path selection
— Refers to the plan for accessing a single table

Complete Plans

R(A,B) SELECT *

FROMR, S, T
S(B,C) WHERE R.B=S.B and S.C=T.C and R.A<40
T(C,D)

/ : \
X .
/ \ If the algorithm

enumerates

T
/ \ o complete plans,
A[<40 /lxl\ then it is difficult
S T

O a<s0 S to prune out
A[R unpromising
sets of plans.
R

CSEP 544 -- Winter 2014 30

Bottom-up Partial Plans

R(A,B) SELECT *
S(B,C) FROMR, S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40

If the algorithm enumerates
partial bottom-up plans, X
then pruning can be done / \

more efficiently

Top-down Partial Plans

R(A,B)
S(B,C)
T(C,D)

Same here.

[\

SELECT *

FROMR, S

WHERE R.B=S.B
and R.A<40

T

SELECT *
FROMR, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

N \ O <40

SELECTR.A, T.D

/ FROMR, S, T

WHERE R.B=S.B

SELECT * and SC=TCRE ...un

FROM R
WHERE R.A< 40

32

Access Path Selection

Supplier(sid,sname,scategory,scity,sstate) g(supplier) = 10k

T(Supplier) = 1M

Gscate ory = ‘organic’ A scity='Seattle’ (Suppller)

V(Supplier,city) = 1000

_ _ V(Supplier,scategory)=100
Clustered index on scity

Unclustered index on (scategory,scity)

Access plan options:

« Table scan: cost= ?
* Index scan on scity: cost= ?
« Index scan on scategory,scity: cost= ?

CSEP 544 -- Winter 2014 33

Access Path Selection

Supplier(sid,sname,scategory,scity,sstate)

0]

scateqgory = ‘organic’ A scity=‘Seattle’ (

Clustered index on scity
Unclustered index on (scategory,scity)

Access plan options:

« Table scan:

* Index scan on scity:

« Index scan on scategory,scity:

Supplier)

cost =
cost =
cost =

CSEP 544 -- Winter 2014

B(Supplier) = 10k
T(Supplier) = 1M

V(Supplier,city) = 1000
V(Supplier,scategory)=100

10K =10k
10k/1000 =10
1M/1000*100 =10

34

Outline of the Lecture

* Physical operators: join, group-by
* Query execution: pipeline, iterator model

* Query optimization

 Database statistics

CSEP 544 -- Winter 2014

35

Database Statistics

* Collect statistical summaries of stored data

« Estimate size (=cardinality) in a bottom-up
fashion
— This is the most difficult part, and still inadequate in
today’s query optimizers
« Estimate cost by using the estimated size

— Hand-written formulas, similar to those we used for
computing the cost of each physical operator

Database Statistics

Number of tuples (cardinality)
Indexes, number of keys in the index
Number of physical pages, clustering info

Statistical information on attributes
— Min value, max value, number distinct values
— Histograms

Correlations between columns (hard)

 Collection approach: periodic, using sampling

Size Estimation Problem

S = SELECT list
FROM R1,...,Rn
WHERE cond,; AND cond, AND . . . AND cond,

Given T(R1), T(R2), ..., T(Rn)
Estimate T(S)

How can we do this ? Note: doesn’t have to be exact.

CSEP 544 -- Winter 2014 38

Size Estimation Problem

S = SELECT list
FROM R1,...,Rn
WHERE cond,; AND cond, AND . . . AND cond,

Remark: T(S) = T(R1) x T(R2) x ... x T(Rn)

CSEP 544 -- Winter 2014 39

Selectivity Factor

* Each condition cond reduces the size by
some factor called selectivity factor

* Assuming independence, multiply the
selectivity factors

Example

R(A,B) SELECT *
S(B,C) FROMR, S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40

T(R) = 30k, T(S) =200k, T(T) = 10k

Selectivity of R.B=S.B is 1/3
Selectivity of S.C=T.Cis 1/10
Selectivity of R A<40is %

What is the estimated size of the query output ?

CSEP 544 -- Winter 2014 41

Example

R(A,B) SELECT *
S(B,C) FROMR, S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40

T(R) = 30k, T(S) =200k, T(T) =10k
Selectivity of R.B=S.B is 1/3
Selectivity of S.C=T.Cis 1/10
Selectivity of R A<40is %

What is the estimated size of the query output ?

CSEP 544 -- Wintg

Rule of Thumb

* |f selectivities are unknown, then:
selectivity factor = 1/10
[System R, 1979]

Using Data Statistics

e ConditionisA=c [*value selectionon R */
— Selectivity = 1/V(R,A)

 ConditionisA<c /*range selectionon R */
— Selectivity = (c - Low(R, A))/(High(R,A) - Low(R,A))T(R)

« ConditionisA=B "R Xp g S*/
— Selectivity = 1 / max(V(R,A),V(S,A))
— (will explain next)

Assumptions

« Containment of values: if V(R,A) <= V(S,B), then
the set of A values of R is included in the set of B
values of S

— Note: this indeed holds when A is a foreign key in R,
and BisakeyinS

« Preservation of values: for any other attribute C,
V(R M5 S, C) = V(R, C) (or V(S, C))

Selectivity of R Xy_g S

Assume V(R,A) <= V(S,B)
« Each tuple tin R joins with T(S)/V(S,B) tuple(s) in S
 Hence T(R X5z S)=T(R) T(S) / V(S,B)

In general: T(R X,_g S) = T(R) T(S) / max(V(R,A),V(S,B))

Size Estimation for Join

Example:

« T(R)=10000, T(S)=20000
* V(R,A) =100, V(S,B) =200
* How large is R X,_g S 7

Histograms

» Statistics on data maintained by the
RDBMS

* Makes size estimation much more
accurate (hence, cost estimations are
more accurate)

Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Gage=48(EmpO|yee) =7 Gage>28 and age<35(EmpO|yee) =7

Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Gage=48(EmpO|yee) =7 Gage>28 and age<35(EmpO|yee) =7

$ $

Estimate = 25000 / 50 = 500 Estimate = 25000 * 6 /50 = 3000

Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Gage=48(EmpO|yee) =7 Gage>28 and age<35(EmpO|yee) =7

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Gage=48(EmpO|yee) =7 Gage>28 and age<35(EmpO|yee) =7

Age:

0..20

20..29

30-39

40-49

50-59

> 60

Tuples

200

800

5000

12000

6500

500

Estimate = 1200

Estimate = 1*80 + 5*500 = 2580

Types of Histograms

 How should we determine the bucket
boundaries in a histogram ?

Types of Histograms

How should we determine the bucket
boundaries in a histogram ?

Eqg-Width

Eqg-Depth
Compressed
V-Optimal histograms

Employee(ssn, name, age)

Histograms
Eg-width:
Age: 0..20 20..29 30-39 40-49 50-59 > 60
Tuples 200 800 5000 12000 6500 500
Eqg-depth:
Age: 0..20 20..29 30-39 40-49 50-59 > 60
Tuples 1800 2000 2100 2200 1900 1800

Compressed: store separately highly frequent values: (48,1900)

V-Optimal Histograms

» Defines bucket boundaries in an optimal

way, to minimize the error over all point
gueries

« Computed rather expensively, using
dynamic programming

 Modern databases systems use V-optimal
histograms or some variations

Difficult Questions on Histograms

« Small number of buckets
— Hundreds, or thousands, but not more
— WHY ?

* Not updated during database update, but
recomputed periodically
— WHY ?

* Multidimensional histograms rarely used
— WHY ?

Summary of Query Optimization

* Three parts:
— search space, algorithms, size/cost estimation

* |deal goal: find optimal plan. But
— Impossible to estimate accurately
— Impossible to search the entire space

« Goal of today’s optimizers:
— Avoid very bad plans

Big Data

Big Data

* Gartner report®
— High Volume
— High Variety
— High Velocity
» Stonebraker:
— Big volumes, small analytics
— Big analytics, on big volumes
— Big velocity
— Big variety

* http://www.gartner.com/newsroom/id/1731916

Famous Example of Big Data
Analysis
Kumar et al., The Web as a Graph

* Question 1: is the Web like a “random graph”?

— Random Graphs introduced by Erdos and Reny in the
1940s

— Extensively studied in mathematics, well understood

— If the Web is a “random graph”, then we have
mathematical tools to understand it: clusters,
communities, diameter, etc

* Question 2: how does the Web graph look like?

Graph Databases

Many large databases are
graphs

« Give examples in class

CSEP 544 -- Winter 2014

62

Graph Databases

Many large databases are
graphs

Give examples in class
The Web

The Internet

Social Networks

Flights between airports
Etc.

CSEP 544 -- Winter 2014

63

Data Analytics on Big Graphs

Queries expressible in SQL:
 How many nodes (edges)?

 How many nodes have > 4
neighbors?

* Which are “most connected nodes”? Source | Target
Queries requiring recursion:

* |s the graph connected?

* What is the diameter of the graph?

« Compute PageRank

« Compute the Centrality of each node

W)
(op

0O |l |o|la|jlao|jlo|]o|TO|» |T
Q |oje oo ||l ||+]|D

Example: the Histogram of a Graph

* QOutdegree of a node =
number of outgoing
edges

» For each d, let n(d) =

4

number of nodes with

n(d)

oudegree d

* The outdegree

histogram of a graph =

the scatterplot (d, n(d))

AITWOIN~(O|Q

- O IN|W

CSEP 544 -- Winter 2014

Outdegree 1 is
seen at 3 nodes

65

Histograms Tell Us Something
About the Graph

o 120 o 120
S 100 ¢ S
x< 80 . 80
60 60
40 40
20 20
¢ ¢
0 oo o 120 0 00009
0 0 0 1400 0 5 10
—
~ 80
What >
at can you 10
say about these 20 *
graphs’) D10 0000 09

0 5 10

Exponential Distribution

nodes with degree d

* n(d) = c/29 (generally, cx9, for some x < 1)
* A random graph has exponential distribution
* Best seen when n is on a log scale

1200000 1000000 .
1000000 — 100000 < .
800000 10000 & .
600000 on 1000 & o on
400000 o 100 o
200000 10
&
0 S 9 090909 1

0) 10 0) 10
Quickly vanishing

Power Law Distribution (Zipf)

n(d) = 1/d*, for some value x>0

Human-generated data follows power law:
letters in alphabet, words in vocabulary, etc.

Best seen in a log-log scale

100000 ¢ 100000 ¢

<&
10000 %, R

%
<><> ®
1000 <><><><><><> on 10000 N on

pd
100 / ¢ o
1000 %

10 g
f’ 4 6 81012141618 1 4 16

The Histogram of the Web

In-degree (total, remote-only’ distr.

le+10
le+B89
le+88

le+B6
1660606
188848
1688
168

18

number of pages

1

le+B@7 *

-

Total in-degree O -
Power law, exponent 2.89
Remote-only in-degree +

Fower law, exponent 2.1

18 186 1866808
in-degree

Figure 2: In-degree distribution.

CSEP 544 -- Winter 2014

Late 1990’s
200M Webpages

Exponential ?

Power Law?

69

The Bowtie Structure of the Web

IN

P — .h,.
44 Ml lrem nexdes

SCC
SE Ml ltem nexdes

OuT

R — .h
44 Milltem nexies

OOO

O “——— Disconnected components

Figure 4: The web as a bowtie. SCC is a giant strongly connected component. IN consists of pages with paths to SCC, but no
path from SCC. OUT consists of pages with paths from SCC, but no path to SCC. TENDRILS consists of pages that canot
surf to SCC, and which cannot be reached by surfing from SCC.

Big Data: Summary

* Today, such analysis are done daily, by all
large corporations

* Increasingly, using Cluster Computing:
— Distributed File System (for storing the data)

— Map/reduce

— Declarative languages over Map/Reduce:
Pig-Latin, SQL, Hive, Scope, Dryad-Linq, ...

Parallel Databases

Parallel Computation Today

Two Major Forces Pushing towards Parallel
Computing:

* Change in Moore’s law

* Cloud computing

CSEP 544 -- Winter 2014

73

Parallel Computation Today

1. Change in Moore's law* (exponential growth in
transistors per chip density) no longer results in

iIncreased clock speeds
— Increased hw performance available only through
parallelism

— Think multicore: 4 cores today, perhaps 64 in a few
years

* Moore's law says that the number of transistors that can be
placed inexpensively on an integrated circuit doubles approximately
every two years [Intel co-founder Gordon E. Moore described the
trend in his 1965 paper and predicted that it will last for at least 10 years]

Parallel Computation Today

2. Cloud computing commoditizes access to
large clusters

— Ten years ago, only Google could afford 1000
Servers;

— Today you can rent this from Amazon Web
Services (AWS)

Jeff Dean, SOCC’2010:

—

Memory

Numbers Everyone Should Know Aocess
L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 25 ns
Main memory reference
Compress 1K w/cheap compression algorithm 3,000 ns
Send 2K bytes over 1 Gbps network
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns : >

, , Communication
Read 1 MB sequentially from disk 20,000,000 ns
Send packet CA->Netherlands->CA 150,000,000 ns
Gougle

Dan Suciu - U. of Washington 76

Jeff Dean, SOCC’2010:

—

Memory

Numbers Everyone Should Know Aocess
L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 25 ns
Main memory reference
Compress 1K w/cheap compression algorithm 3,000 ns
Sen@ytes over 1 Gbps network
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns : >

, , Communication
Read 1 MB sequentially from disk 20,000,000 ns
Send packet CA->Netherlands->CA 150,000,000 ns
Gougle

Dan Suciu - U. of Washington 77

Jeff Dean, SOCC’2010:

—

Memory

Numbers Everyone Should Know Aocess
L1 cache reference
Branch mispredict 5 ns
L2 cache reference @
Mutex lock/unlock 25 ns
Main memory reference
Compress 1K w/cheap compression algorithm 3,000 ns
Sen@ytes over 1 Gbps network
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns : >

, , Communication
Read 1 MB sequentially from disk 20,000,000 ns
Send packet CA->Netherlands->CA 150,000,000 ns
Gougle

Dan Suciu - U. of Washington 78

Jeff Dean, SOCC’2010:

—

Memory

Numbers Everyone Should Know Aocess
L1 cache reference
Branch mispredict 5 ns
L2 cache reference @
Mutex lock/unlock 25 ns
Main memory reference
Compress 1K w/cheap compression algorithm 3,000 ns
Sen@ytes over 1 Gbps network
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter
Disk seek 10,000,000 ns : >

, , Communication
Read 1 MB sequentially from disk 20,000,000 ns
Send packet CA->Netherlands->CA 150,000,000 ns
Gougle

Dan Suciu - U. of Washington 79

Jeff Dean, SOCC’2010:

—

Memory
Numbers Everyone Should Know Aocess
L1 cache reference
Branch mispredict 5 ns
L2 cache reference <::::::>
Mutex lock/unlock 25 ns LLocal access is

significantly faster
S

Compress 1K w/cheap compression algorithm 3,000 n

Sen@ytes over 1 Gbps network than Communication

Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns . .
_ , Communication
Read 1 MB sequentially from disk 20,000,000 ns
Send packet CA->Netherlands->CA 150,000,000 ns
Gougle

Dan Suciu - U. of Washington 80

Parallel DBMSs

e Goal

— Improve performance by executing multiple
operations in parallel

+ Key benefit

— Cheaper to scale than relying on a single
increasingly more powerful processor

» Key challenge

— Ensure overhead and contention do not kill
performance

Performance Metrics

for Parallel DBMSs

o Speedup
— More processors =» higher speed
— Individual queries should run faster
— Should do more transactions per second (TPS)

* Scaleup

— More processors =» can process more data
— Batch scaleup
« Same query on larger input data should take the same time

— Transaction scaleup
* N-times as many TPS on N-times larger database
« But each transaction typically remains small

Linear v.s. Non-linear Speedup

A

Speedup

processors (=P)

Linear v.s. Non-linear Scaleup

A

Batch
Scaleup

%1 x5 x10 x15

>

processors (=P) AND data size

Challenges to
Linear Speedup and Scaleup

o Startup cost

— Cost of starting an operation on many
Processors

* Interference
— Contention for resources between processors

« Skew
— Slowest processor becomes the bottleneck

CSEP 544 -- Winter 2014 85

Architectures for Parallel
Databases

* Shared memory

 Shared disk

* Shared nothing

Architectures for Parallel
Databases

Figure 1 - Types of database architecture

I Slllnd-lloﬂllgg ‘ﬂ. G& um! I

- L Ii -l

|

From: Greenplum Database Whitepaper

Shared Memory

* Nodes share both RAM and disk
* Dozens to hundreds of processors

Example: SQL Server runs on a single machine
and can leverage many threads to get a query
to run faster (see query plans)

« Easy to use and program

» But very expensive to scale: last remaining
cash cows in the hardware industry

Shared Disk

 All nodes access the same disks

* Found in the largest "single-box" (non-
cluster) multiprocessors

Oracle dominates this class of systems.

Characteristics:

* Also hard to scale past a certain point:
existing deployments typically have fewer
than 10 machines

Shared Nothing

» Cluster of machines on high-speed network
« Called "clusters" or "blade servers”

« Each machine has its own memory and disk: lowest
contention.

NOTE: Because all machines today have many cores
and many disks, then shared-nothing systems typically
run many "nodes” on a single physical machine.

Characteristics:
* Today, this is the most scalable architecture.
 Most difficult to administer and tune.

[We discuss only Shared Nothing in class}

Taxonomy for
Parallel Query Evaluation

- Inter-query parallelism /\ \

— Each query runs on one processor / mmmmmmmmmmmmmmmmm

IIIIIII

<id=cid

Taxonomy for
Parallel Query Evaluation .

cid=cid

* Inter-query parallelism /\ \ \

— Each query runs on one processor f '''''''''''''''''''''

IIIIIII

<id=cid

* |nter-operator parallelism ol
— A query runs on multiple processors /\
— An operator runs on one processor \ Gustomer

Taxonomy for
Parallel Query Evaluation = . _

Inter-query parallelism /\ \ \

ppppppp

— Each query runs on one processor f mmmmmmmmmmmm

Product Purchas

Inter-operator parallelism .
— A query runs on multiple processors /\
— An operator runs on one processor \

Intra-operator parallelism /\
— An operator runs on multiple processors f '''''''''''''

Taxonomy for
Parallel Query Evaluation = . _

Inter-query parallelism /\ \ \

ppppppp

— Each query runs on one processor f mmmmmmmmmmmm

Product Purchas

Inter-operator parallelism ol
— A query runs on multiple processors /\

— An operator runs on one processor \
Intra-operator parallelism /\
— An operator runs on multiple processors f '''''''''''''

Product Purchas

[We study only intra-operator parallelism: most scalable }

Parallel Query Processing

How do we compute these operations on a shared-nothing parallel db?

« Selection: 0,_43(R) (that’s easy, won't discuss...)

* Group-by: YA,sum(B)(R)

. Join: R™'s

Before we answer that: how do we store R (and S) on a shared-nothing
parallel db?

Horizontal Data Partitioning

Data: Servers:

TATE 1 2 P

CSEP 544 -- Winter 2014

Horizontal Data Partitioning

Data: Servers:
D
K A B K A1-B K A98 - - - K A B
A

1] A

_J

N

> [

_J

CSEP 544 -- Winter 2014

Data:

Horizontal Data Partitioning

I=
| >

AN

Servers:
1 9
N\
1
> Which tuples
go to what server?

CSEP 544 -- Winter 2014

98

Horizontal Data Partitioning

* Block Partition:
— Partition tuples arbitrarily s.t. size(R,)= ... = size(Rp)

« Hash partitioned on attribute A:
— Tuple t goes to chunk i, where i = h(t.A) mod P + 1

« Range partitioned on attribute A:
— Partition the range of Ainto -© =vy<v,<...<vp=
— Tuple t goes to chunk i, if v, ; <t A<,

CSEP 544 -- Winter 2014

o)

99

Basic Parallel GroupBy

Data: R(K,A,B,C)

Query: Y sumc)(R)

Discuss in class how to compute in each case:
* R is hash-partitioned on A

* R is block-partitioned

* R is hash-partitioned on K

Basic Parallel GroupBy

Data: R(K,A,B,C)
Query: Y sumc)(R)

* R iIs block-partitioned or hash-partitioned

on K

Reshuffle R
on attribute A

R,

Ry

R,

R,

CSEP 544 -- Winter 2014

Rp

101

Basic Parallel Join

. Data: R(K1,A, B), S(K2, B, C)
. Query: R(K1,A,B) = S(K2,B,C)

Initially, both R and S are horizontally partitioned on K1 and K2

Basic Parallel Join

. Data: R(K1,A, B), S(K2, B, C)
. Query: R(K1,A,B) = S(K2,B,C)

Reshuffle R on R.B
and Son S.B

Each server computes
the join locally

Initially, both R and S are horizontally partitioned on K1 and K2

R1’ S1

R2’ SZ

Re, Sp

R,1’ S’1

R’Z’ S,Z

CSEP 544 -- Winter 2014

103

Speedup and Scaleup

 Consider:

— Query: VA,sum(C)(R)
— Runtime: dominated by reading chunks from
disk

* |f we double the number of nodes P, what
IS the new running time?

* |f we double both P and the size of R,
what is the new running time??

CSEP 544 -- Winter 2014 104

Speedup and Scaleup

 Consider:

— Query: Ya sumc)(R)
— Runtime: dominated by reading chunks from disk

 |f we double the number of nodes P, what is
the new running time??
— Half (each server holds 2z as many chunks)

 |f we double both P and the size of R, what is

the new running time?
— Same (each server holds the same # of chunks)

CSEP 544 -- Winter 2014 105

Uniform Data v.s. Skewed Data

* Let R(K,A,B,C); which of the following
partition methods may result in skewed
partitions?

* Block partition

* Hash-partition
— On the key K
— On the attribute A

Uniform Data v.s. Skewed Data

* Let R(K,A,B,C); which of the following
partition methods may result in skewed
partitions?

* Block partitiOn Uniform

Assuming good
hash function

* Hash-partition _
— On the key K . £, hen l reords

. f the attribute A, th
_ On the attnbute A May be skewed Zu reec(?rdrs ened up ine?he
same partition

Parallel DBMS

» Parallel query plan: tree of parallel operators
Intra-operator parallelism

— Data streams from one operator to the next

— Typically all cluster nodes process all operators
« Can run multiple queries at the same time

Inter-query parallelism

— Queries will share the nodes in the cluster

 Notice that user does not need to know how
his/her SQL query was processed

Example: Teradata — Loading

A Customer Row is Inserted—l

1. A Hash Bucket

/Hashmg Al onthm produces
2. A Hash-ID

The Hash Bucket Points
to One AMP

Node 1 Node 2 Node 3 Node 4

AMP = “Access Module Processor” = unit of parallelism

CSEP 544 -- Winter 2014 109

Order(oid, item, date), Line(item, ...)

Example: Teradata — Query Execution

Find all orders from today, along with the items
ordered

SELECT *

FROM Order o, Line 1
WHERE o.item i.item ‘

AND o.date today ()

o.item = i.item

date = today()

Order o

ltem i

CSEP 544 -- Winter 2014 110

Order(oid, item, date), Line(item, ...)

Query Execution

AMP 1

hash

h(o.item)
select
date=today()

scan
Order o

AMP 1

AMP 2

——

hash
\ h(o.item)

d

ate=today

scan
Order o

AMP 2

()

~

o.item = i.item

date = today()

< scan > Order o /

AMP 3

ha

sh

ol

h(o.item)

ec

date=today()

Scan

Order o

AMP 3

Order(oid, item, date), Line(item, ...)

Query Execution

AMP 1 AMP 2
hash hash
h(i.item) h(i.item)
scan scan
ltem | ltem |

AMP 1 AMP 2

o.item = i.item

~

ha

sh

Scan

h(i.item)

ltem i

AMP 3

Order(oid, item, date), Line(item, ...)

Query Execution

m join join
o.item = i.item o.item = i.item o.item = i.item

AMP 1 AMP 2 AMP 3

contains all orders and all

lines where hash(item) = 3

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 1

CSEP 544 -- Winter 2014 113

Cluster Computing

Cluster Computing

» Large number of commodity servers,
connected by high speed, commodity
network

 Rack: holds a small number of servers
« Data center: holds many racks

Cluster Computing

* Massive parallelism:
— 100s, or 1000s, or 10000s servers
— Many hours

e Failure:
— If medium-time-between-failure is 1 year
— Then 10000 servers have one failure / hour

Distributed File System (DFS)

* For very large files: TBs, PBs

« Each file is partitioned into chunks,
typically 64MB

« Each chunk is replicated several times
(23), on different racks, for fault tolerance
* Implementations:
— Google’'s DFS: GFS, proprietary
— Hadoop’'s DFS: HDFS, open source

Map Reduce

* Google: paper published 2004
* Free variant: Hadoop

* Map-reduce = high-level programming
model and implementation for large-scale
parallel data processing

Data Model

Files !
Afile = a bag of (key, wvalue) pairs
A MapReduce program:

* Input: a bag of (inputkey, wvalue)pairs
* Qutput: a bag of (outputkey, wvalue) pairs

Step 1: the MAP Phase

User provides the MAP-function:
* Input: (input key, wvalue)
* Ouput:
bag of (intermediate key, wvalue)

System applies the map function in parallel
to all (input key, wvalue) pairsin
the input file

CSEP 544 -- Winter 2014 120

Step 2: the REDUCE Phase

User provides the REDUCE function:
* Input:

(Lntermediate key, bag of wvalues)
» Qutput: bag of output (values)

System groups all pairs with the same

intermediate key, and passes the bag of
values to the REDUCE function

CSEP 544 -- Winter 2014 121

Example

« Counting the number of occurrences of each
word in a large collection of documents

 Each Document
— The key = document id (did)
— The value = set of words (word)

map(String key, String value): reduce(String key, lterator values):
// key: document name // key: a word
// value: document contents /[values: a list of counts
for each word w in value: int result = 0;

Emitintermediate(w, “17); for each v in values:

result += Parselnt(v);
Emit(AsString(result));

M

(did1,v1)

(did2,v2)

(did3,v3)

>
=

(Bob, 1)

(the,1)

(Bob, 1)

(of,1)

(to,1)

| 11 1l

Shuffle

REDUCE

(of, (1,1,1,...,1))

(the, (1,1,...))

(Bob,(1...))

:::><i:i
T~ [

by

(of, 25)

(the, 77)

(Bob, 12)

123

Jobs v.s. Tasks

A MapReduce Job

— One single “query”, e.g. count the words in all
docs

— More complex queries may consists of multiple
jobs

A Map Task, or a Reduce Task

— A group of instantiations of the map-, or reduce-
function, which are scheduled on a single worker

Workers

A worker is a process that executes one
task at a time

* Typically there is one worker per
processor, hence 4 or 8 per node

MapReduce Job

~

L

& 1)

(did1,v1) |~

vV

(did2,v2) | T

(did3,v3) | >

MAP Tasks

(Bob, 1)

(the,1)

(Bob, 1)

(of,1)

(to,1)

(Bob, 1)

Shuffle

REDUCE Tasks

/

~N

(of, (1,1,1,...

1))

(the, (1,1,...))

(Bob,(1...))

by oy

(of, 25)

(the, 77)

(Bob, 12)

MapReduce Execution Details
..
Reduce Task

Intermediate d.ata
(Shuffle)

Map Task
Data not
necessarily local
C S
File system: GFS
or HDFS
CSEP 544 -- Winter 2014

MR Phases

Each Map and Reduce task has multiple phases:

Map Task Reduce Task

{P1} {P2} {P 3} {P 4} {P 5}

Split Record Reader—Map —.>:Combine:——>‘ Copy i—*@—»l Reduce \
file | 11 l file |
Local storage ———

CSEP 544 -- Winter 2014 128

Implementation

There is one master node
Master partitions input file into M splits, by key

Master assigns workers (=servers) to the M
map tasks, keeps track of their progress

Workers write their output to local disk,
partition into R regions

Master assigns workers to the R reduce tasks

Reduce workers read regions from the map
workers’ local disks

Interesting Implementation Details

Worker failure:
» Master pings workers periodically,

* If down then reassigns the task to another
worker

Interesting Implementation Details

Backup tasks:

« Straggler = a machine that takes unusually
long time to complete one of the last tasks.
Eg:

— Bad disk forces frequent correctable errors
(30MB/s - 1MB/s)

— The cluster scheduler has scheduled other tasks
on that machine

» Stragglers are a main reason for slowdown

* Solution. pre-emptive backup execution of
the last few remaining in-progress tasks

MapReduce Summary

* Hides scheduling and parallelization
detalls

 However, very limited queries
— Difficult to write more complex queries
— Need multiple MapReduce jobs

» Solution: declarative query language

Declarative Languages on MR

« PIG Latin (Yahoo!)

— New language, like Relational Algebra
— Open source

» HiveQL (Facebook)
— SQL-like language
— Open source

« SQL / Dremmel / Tenzing (Google)
— BigQuery — SQL in the cloud

Executing a Large MapReduce Job

Anatomy of a Query Execution

* Running problem #4
« 20 nodes = 1 master + 19 workers

« Using PARALLEL 50

March 2013

3/9/13 Hadoop job_201303091944_0001 on domU-12-31-39-06-75-A1

Hadoop job_201303091944_0001 on domU-12-31-39-
06-75-A1

User: hadoop

Job Name: PiglLatin:DefaultJobName

Job File:

hdfs:/10.208.122.79:9000/mnt/var/lib/hadoop/tmp/mapred/staging/hadoop/.staging/job 201303091944 0001/job.xml
Submit Host: domU-12-31-39-06-75-A1.compute-1.internal

Submit Host Address: 10.208.122.79

Job-ACLs: All users are allowed

Job Setup: Successful

Status: Succeeded

Started at: Sat Mar 09 19:49: 21 UTC 2013

Job Cleanu prSuceess
Black-listed TaskTrackers

Kind || % Complete || Num Tasks || Pending || Running || Complete || Killed T';Z:le:iﬂ(”'"ea!
100.00%
map _—— \ 7908 0 0 / 7908 \ 0 / 14716
100.00%
reduce —_— 50 0 0 \ 50 0 \ 0/8
—_—
Counter Map Reduce Total
SLOTS_MILLIS_MAPS 0 0 454,162,761
Launched reduce tasks 0 0 58
Total time spent by all reduces
waiting after reserving slots 0 0 0
(ms)
Job Counters Rack-local map tasks 0 0 7,938
Total time spent by all maps
waiting after reserving slots 0 0 0

Some other time (March 2012)

* Let's see what happened...

1h 16min

. . . . Failed/Killed
Kind | % Complete || Num Tasks || Pending || Running || Complete | Killed Task Attempts
33.17%
map —_—— 15816 10549 38 5229 0 0/0
4.17%
reduce 50 31 19 0 0 0/0
100
90
80
70
60
50
40
30
20
10
00 1582 3164 4746 6328 7910 9492 11074 12656 14238 15820

luce Completion Graph - close

100
90
80
70
60
50
40
30
20
10

Il copy
I sort

reduce

30

35

0 45

50

1h 16min

Only 19 reducers active,
out of 50. Why?

. . . . Failed/Killed

Kind || % Complete || Num Tasks || Pending thnmg Complete || Killed Task Attempts
33.17%

map —_—tl 15816 10549 / 38\ 5229 0 0/0
417%

reduce 50 31 \ 19 0 0 0/0

100
90
80
70
60
50
40
30
20
10

0 1582 3164 4746 6328 7910 9492 11074 12656 14238 15820

luce Completion Graph - close

100
o o
70 When will the other M sort

60 | Copying by 19 reducers 31 reducers be scheduled? reduce

ig in parallel with mappers.

30
20

35

1h 16min

Only 19 reducers active,
out of 50. Why?

Kind || % Complete | Num Tasks

Complete || Killed

Failed/Killed
Task Attempts

33.17%

=] 15816

map

5229 0

)

0/0

4.17%

reduce 50

19 0 0

0/0

100
90
80
70
60
50
40
30
20
10

0 1582 3164 4746 6328

7910 9492 11074 12656

14238 15820

luce Completion Graph - close

100

90
80
70
60
50
40
30
20

I copy

Copying by 19 reducers

When will the other

31 reducers be scheduled?

I sort

reduce

in parallel with mappers.

35

3h 50min

Kind || % Complete

Num Tasks

Pending

Running

Complete || Killed

Failed/Killed
Task Attempts

100.00%
map | —

15816

0

0

0/18

reduce 32.42%

50

31

19

0/0

100

80
70

50
40

20
10

0 1582 3164

4746

6328

7910

9492

11074 12656

14238

15820

ice Completion Graph - close

100
920
80
70
60
50
40
30
20
10

0 0

Il copy
W sort

reduc

25 30

35

40 45

50

1h 16min

Only 19 reducers active,
out of 50. Why?

. . . . Failed/Killed

Kind || % Complete | Num Tasks || Pending F%(mmg Complete | Killed | - 1 A ttempts
map 15816 10549 / 38 5229 0 0/0
reduce 4.17% 50 31 & 19 0 0 0/0

100

90

80

70

60

50

40

30

20

10

0% 1582 3164 4746 6328 7910 9492 11074 12656 14238 15820
luce Completion Graph - close

100

gg Il copy

70 When will the other Il sort

60 {| Copying by 19 reducers 31 reducers be scheduled? reduce

50 11 in parallel with mappers.

40

30
20

35

3h 50min

Speculative Execution

Completed. Sorting, and
the rest of Reduce may

proceed now

\

v

Kind

% Complete

Num Tasks

\
PeLding

. . Failed/Ki
Running | Complete || Killed Task Aftempts

map

100.00%
=

15816

(o

0 15816 0 (0/18

reduce

32.42%

50

31

19 0 0

100

80
70

50
40

20
10

0 1582

3164

4746

6328

7910

9492 11074 12656 14238 15820

ice Completion Graph - close

100
90
80
70
60
50
40
30
20
10

0 0

Il copy
W sort

reduc

25 30

35 40 45 50

3h 51min

. . . . Failed/Killed
Kind || % Complete || Num Tasks || Pending | Running || Complete || Killed Task Attempts
map | _100.00% 15816 0 0 15816 0 0/18
reduce 37.72% 50 19 22 9 0 0/0

> Completion Graph - close
100
90
80
70
60
50
40
30
20
10
00 3164 4746 6328 7910 9492 11074 12656 14238

juce Completion Graph - close

100
90
80
70
60
50
40
30
20
10

0 0

[l copy
W sort
[reduc

25

3h 51min

. . . . Failed/Killed
Kind || % Complete || Num Tasks || Pending | Running || Complete || Killed Task Attempts
map | _100.00% 15816 0 0 15816 0 0/18
reduce 37.72% 50 19 22 9 0 0/0

> Completion Graph - close

100
90
80
70
60
50
40
30
20
10

0 0

3164

4746

6328

7910

9492

11074

12656

14238

juce Completion Graph

Some of the 19 reducers have finished...

[l copy
W sort

...Next Batch of Reducers started

[reduc

~

35

40

45

50

3h 51min

3h 52min

. . . " i i N . . . Fail illed
Kind | % Complete | Num Tasks || Pending || Running | Complete | Killed T%m Kind || % Complete | Num Tasks | Pending || Running | Complete | Killed Task Attempts
map 100.00% 15816 0 0 15816 0 0/18 map | _100.00% 15816 0 0 15816 0 0/18
reduce 37.72% 50 19 22 9 0 0/0 reduce | _ 4235% 50 1 20 19 0 0/0

> Completion Graph - close

100 100
920 90
80 80
70 70
60 60
50 50
40 40
30 30
20 20
10 10
0

%5

3164

4746

6328

7910

9492

11074

12656

14238

1582 3164 4746 6328 7910 9492 11074 12656 14238 15820

juce Completion Graph

Some of the 19 reducers have finished...

[l copy
W sort

...Next Batch of Reducers started

~

35

40

45

50

[reduc

ce Completion Graph - close

100
90 CO|
80 I copy
70 B sort
gg Next Batch of 19 reducers [reduce

40
30
20
10

0

/

45 50

4h 18min

rerun. All reducers
are waiting.

Several servers failed: “fetch error”.
Their map tasks need to be

. . . Failed/Killed
L) T AW TV
Kind || % Complete || Num Tasks || Pend ning || Complete || Killed Tas 5
map 99.88% 1581€< 2638 30 13148 0 & 15/3337
2638 30 15/3337
reduce —lzl‘% 50 L 16 ‘ 19 0 070

100

g
ol
ol
ol
ol
ol
ol

20 |

10 ol

uce Completion Graph - close

100
90
80
70
60
50
40
30
20
10

0 0

[l copy
W sort

] reduce

45

50

4h 18min

are waiting....

Several servers failed: “fetch error”.
Their map tasks need to be
rerun. All reducers

.) . . Failed/Killed
Kind || % Complete || Num Tasks || Pend ning || Complete || Killed Task Attempts
99.88%
map _ 1581((2638 30 13148 0 15/3337
48.42%
reduce 50 15] 16 19 0 0/0

100
90

70
60
50
40
30

10

0 1582 3164

4746 6328 7910 9492

11074 12656 14238 15820

uce Completion Graph - close

Why did we lose some reducers?

I\ copy

W sort

reduce

4h 18min 7h 10min
01w ” Mappers finished
Several servers failed: “fetch error’. q PP d
. regqucers resumead.
Their map tasks need to be
rerun. All reducers
are waiting....
\\ |
. N \ N N
Kind || % Complete || Num Tasks || Pendi Bun% Complete || Killed T';:'—Ilec' %\ﬁi Kind | % Complete || Num Tasks PWW Complete || Killed T% I;:S
map 99.88% 1581(< 2638 30 13148 0 &1_/@> map | _10000% 15816 Q 0 0 15816 0 26 /5968
reduce 48.42% 50 15 16 19 0 070 reduce | __94.15% 50 0 6 44 0 0/8
100 100
))
80 ‘] 80
70 70
60 60
50 50
40 40
30 30
20 20
10 10
OO0 1582 a3f64 4746 6328 7910 9492 11074 12656 14236 15820 0 1582 3164 4746 6328 7910 9492 11074 12666 14238 15820
uce Completion Graph - close ice Completion Graph - close
100 100
))
80 Why did we lose some reducers? i copy 80 i copy
W sort 70 W sort
reduce 60 redu
50
40
30
20
10
45 50 °3 5 10 15 20 25 30 35 40 45 50

7h 20min

Success! 7hrs, 20mins.

Hadoop job_201203041905_0001 on ip-10-203-30-146

User: hadoop

Job Name: PigLatin:DefaultJobName

Job File:

hdfs://10.203.30.146:9000/mnt/var/lib/hadoop/tmp/mapred/staging/hadoop/.staging/job 201203041905 0001/job.xml
Submit Host: ip-10-203-30-146.ec2.internal

Submit Host Address: 10.203.30,146

Job-ACLs: All users are allowe:

Job Setup: Successful

Status: Succeeded

Started at: Sun Mar04 9 UTC 2012

Finished a TC 2012
Finished i
Job Cleantsp: Successfu
Black-listed 3
. . . . Failed/Killed
Kind || % Complete || Num Tasks || Pending | Running || Complete || Killed Task Attempts
100.00% 2968
map I§°l 15816 0 0 15816 0 26 /5968
100.00%
reduce ‘§°l 50 0 0 50 0 0/14
100
90
co|
80 [copy
70 sort

|
60 reduce
50
40
30
20
10
0 0 5 10 15 20 25 30 35 40 45 50

Parallel DBMS vs MapReduce

Parallel DBMS

« Relational data model and schema

« Declarative query language: SQL

« Many pre-defined operators: relational algebra

« Can easily combine operators into complex queries

* Query optimization, indexing, and physical tuning

« Streams data from one operator to the next without
blocking

« Can do more than just run queries: Data management
— Updates and transactions, constraints, security, etc.

Parallel DBMS vs MapReduce

MapReduce

Data model is a file with key-value pairs!
No need to “load data” before processing it
Easy to write user-defined operators

Can easily add nodes to the cluster (no need to even
restart)

Uses less memory since processes one key-group at a
time

Intra-query fault-tolerance thanks to results on disk
Intermediate results on disk also facilitate scheduling
Handles adverse conditions: e.g., stragglers

Arguably more scalable... but also needs more nodes!

Pig Latin — Reference only
(will not discuss in class)

What is Pig?

* An engine for executing programs on top of Hadoop
« |t provides a language, Pig Latin, to specify these programs

* An Apache open source project
http://hadoop.apache.org/pig/

Credit: Alan Gates, Yahoo!

-152 -

Map Reduce lllustrated

el el

Credit: Alan Gates, Yahoo! -153 - Q’

Map Reduce lllustrated

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?
N _- ’
S N P d -’
\\ _- L
AN ~

N P 4
map map
reduce reduce

Credit: Alan Gates, Yahoo! -154 - 9’

Map Reduce lllustrated

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?
S N\ " = ~ ¢ -
N\ N R _ - ~
Romeo, 1 S <"
Romeo, 1 What, 1
wherefore, 1 map map art, 1
art, 1 thou, 1
thou, 1 hurt, 1
Romeo, 1
reduce reduce

Credit: Alan Gates, Yahoo! -155 - 9’

Map Reduce lllustrated

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?
\\\ //”
\\\ ,,/
Romeo, 1 S <"
Romeo, 1 What, 1
wherefore, 1 map map art, 1
art, 1 thou, 1
thou, 1 hurt, 1
Romeo, 1
art, (1, 1) reduce reduce Romeo, (1, 1, 1)
hurt (1), wherefore, (1)
thou (1, 1) what, (1)

Credit: Alan Gates, Yahoo! -156 - Q’

Map Reduce lllustrated

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?
\\\ //”
\\\ ,,/
Romeo, 1 S <"
Romeo, 1 What, 1
wherefore, 1 map map art, 1
art, 1 thou, 1
thou, 1 hurt, 1
Romeo, 1
art, (1, 1) reduce reduce Romeo, (1,1, 1)
hurt (1), wherefore, (1)
thou (1, 1) _ what, (1)
art, 2 7 “~_ Romeo, 3
hurt, 1 <~ . wherefore, 1
thou, 2 what, 1

Credit: Alan Gates, Yahoo! -157 - Q’

Why use Pig?

Suppose you have [LoadUsers’ Load Pages

user data in one h

file, website data in |
another, and you

need to find the top

5 most visited sites

by users aged 18 -

25.

Join on name.
Grouponut
Gout ks
Oonderby s
Take'op5

Credit: Alan Gates, Yahoo! -158 - Q’

In Map-Reduce

import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import org.apache.hadoop.fs.Path

import org.apache.hadoop.io.WritableComparable;

import org.apache.hadoop.mapred.FileInputFormat;

import org.apache.hadoop.mapred.FileOutputFormat;

import org.apache.hadoop.mapred.JobConf;

import org.apache.hadoop.mapred.KeyValueTextInputFormat;
import org.apache.hadoop.mapred.Mapper;

import org.apache.hadoop.mapred.MapReduceBase;

import org.apache.hadoop.mapred.OutputCollector;

import org.apache.hadoop.mapred.SequenceFileInputFormat;
import org.apache.hadoop.mapred.SequenceFileOutputFormat;
import org.apache.hadoop.mapred.TextInputFormat;

import org.apache.hadoop.mapred.jobcontrol.Job;

import org.apache.hadoop.mapred.jobcontrol.JobControl;
import org.apache.hadoop.mapred.lib.IdentityMapper;

public class MRExample {
public static class LoadPages extends MapReduceBase
implements Mapper<LongWritable, Text, Text, Text> {

public void map(LongWritable k, Text val,
OutputCollector<Text, Text> oc,
Reporter reporter) throws IOException {
// Pull the key out

String line = val.toString();
int firstComma = line.indexOf(',');

String key = line.substring(0, firstComma);
String value = line.substring(firstComma + 1);
Text outKey = new Text(key);

// Prepend an index to the value so we know which file

Text outval = new Text("1" + value);
oc.collect(outKey, outval);

¥

3
public static class L ilterusers
implements Mapper<LongWritable, Text, Text, Text> {

public void map(LongWritable k, Text val,
OutputCollector<Text, Text>
Reporter reporter) throws IOExceptxon {
// Pull the key out

String line = val.toString();

int firstComma = line.indexOf(',');

Sstring value = line.substring(firstComma + 1);
int age = Integer.parselInt(value);

if (age < 18 || age > 25) return;

string key = line.substring(0, firstComma);
Text outKey = new Text(key);

// Prepend an index to the value so we know which file

Text outval = new Text("2" + value);
oc.collect(outKey, outval);
}
¥
public static class Join extends MapReduceBase
implements Reducer<Text, Text, Text, Text> {

public void reduce(Text key,
Iterator<Text> iter,
OutputCollector<Text, Text> oc
Reporter reporter) throws IOExGeption

// For each value, figure out which file it's from and

store it
// accordingly.
List<String> first = new ArrayList<string>()
List<String> second = new ArrayList<String>();

while (iter.hasNext()) {
er.next();
String value = t. toSt:xng();
if (value.charAt(0) == '
first.add(value.substring(1));
lse second.add(value.substring(1));

reporter.setStatus("OK");

// Do the cross product and collect the values
{

for (String sl : first)
for (string s2 : second) {
String outval = key + "," + sl YLt o+ 825

oc.collect(null, new Texc(outval)),
reporter.setstatus("OK");

}

3
publxc static class LoadJoined extends MapReduceBase
mplements Mapper<Text, Text, Text, LongWritable> {

public void map(
Text k,

Text val,
outputCollector<Text, LongWritable> oc,
Reporter reporter) throws IoBxception {

// Find the ur.
string line

val.toStrinq():

int firstComma line.indexOf(',")
int secondComma = line.indexOf(',', firstComma);
String key = line.substring(firstComma, secondComma);

// drop the rest of the record, I don't need it anymore,
// just pass a 1 for the combiner/reducer to sum instead.
Text outKey = new Text(key);

oc.collect(outKey, new LongWritable(1L));

¥

b
public static class ReduceUrls
implements Reducer<Text, LongWritable, WritableComparable,
Writable> {

public void reduce(
Text ke
Iteratcr<LongWr1table> iter,
OutputCollector<writableComparable, Writable> oc,
Reporter reporter) throws IOException

// Bdd up all the values we see

long sum = 0;
while (iter.hasNext()) {

+= iter.next().get()

reporter.setStatus("OK")

oc.collect(key, new LongWritable(sum));
}

¥
public static class LoadCllcks extends MapReduceBase
ts b1 writable, LongWritable,

Text> {

public void map(
writableComparable key,
writable
OutputCollector<LongWritable, Text> oc,
Reporter reporter) throws IOException {
oc.collect((LongWritable)val, (Text)key);
}

¥
public static class LimitClicks extends MapReduceBase
implements Reducer<LongWritable, Text, LongWritable, Text> {

int count = 0;

public void reduce(
LongWritable key,
Iterator<Text> iter,
OutputCollector<LongWritable, Text> oc,
Reporter reporter) throws IOException {

// only output the first 100 records

while (count < 100 && iter.hasNext()) {
oc.collect(key, iter.next());
countt+;
¥
¥
b
public static void main(String[] args) throws IOException {
obConf 1p = new JobConf (MRExample.class)

lp.setJobName("Load Pages");
1p.setInputFormat (TextInputFormat.class);

1p.setoutputKeyClass (Text.class);
1p.setoutputvalueClass (Text.class);
1p4setMapperClass(LoadPaqes.class):
FileInputFormat.addInputPath(lp, new
Path("/user/gates/pages”));

FileOutputFormat.setOutputPath (1,

new Path(" /user/gates/tmp/xndexed pages"));
1p.setNumReduceTasks (0);
Job loadPages = new Job(lp

JobConf 1fu = new JobConf(MRExample.class);
1lfu.setJobName("Load and Filter Users");
1fu.setInputFormat (TextInputFormat.class);
1fu.setOutputKeyClass (Text.class);
1fu.setOutputvalueClass (Text.class);
1fu.setMapperClass (LoadAndFilterUsers.class);
FileInputFormat.addInputPath(1lfu, new
Path("/user/gates/users”));

FileOutputFormat.setOutputPath(1lfu,

new Path("/user/gates/tmp/filtered_users"));
1fu.setNumReduceTasks (0);
Job loadUsers = new Job(lfu);

JobConf join = new JobConf(MRExample.class);
join.setJobName("Join Users and Pages");
join.setInputFormat (KeyValueTextInputFormat.class);
join.setOutputKeyClass (Text.class);
join.setOutputvalueClass(Text.class);
join.setMapperClass(IdentityMapper.class);
join.setReducerClass(Join.class);
FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/indexed_pages"));
FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/filtered users"));
FileOutputFormat.setOutputPath(join, new
Path(” /user/gates/tmp/jolned"))
NumReduceTasks (50) ;
Fob jeindon o new Job(Soins
joinJob.addpependingJob (loadPages) ;
joinJob.addpependingJob (loadUsers) ;

JobConf group = new JobConf(MRExample.class);
group.setJobName ("Group URLS
group.setInputFormat (KeyValueTextInputFormat.class);
group.setOutputKeyClass(Text.class);
group.setOutputvalueClass(LongWritable.class);
group.setOutputFormat (SequenceFileOutputFormat.class);
group.setMapperClass (LoadJoined.class) ;
group.setCombinerClass (ReduceUrls.class);
group.setReducerClass (ReduceUrls.class);
FileInputFormat.addInputPath(group, new
Path("/user/gates/tmp/joined"))
FileOutputFormat.setOutputPath(group, new
Path("/user/gates/tmp/grouped”));
group.setNumReduceTasks (50) ;
Job groupJob = new Job(group);
groupJob.addDependingJob(joinJob);

JobConf topl00 = new JobConf (MRExample.class);
topl00.setJobName("Top 100 sites");
+op100.setInputFormat (SequenceFileInputFormat.class);
topl00.setOutputKeyClass (LongWritable.class);
topl00.setOutputValueClass (Text.class);
topl00.setOutputFormat (SequenceFileOutputFormat.class);
+op100.setMapperClass (LoadClicks.class) ;
topl00.setCombinerClass(LimitClicks.class);
topl00.setReducerClass (LimitClicks.class);
FileInputFormat.addInputPath(topl00, new
Path("/user/gates/tmp/grouped"));
FileOutputFormat.setOutputPath(topl00, new
Path("/user/gates/toplOOsitesforusersl8to25"));
topl00.setNumReduceTasks (1) ;
Job limit = new Job(topl00);
limit.addDependingJob (groupJdob) ;

JobControl jc = new JobControl("Find top 100 sites for users
18 to 25");

jc.addJob(loadPages) ;

jc.addJob(loadUsers) ;

jc.addJob(joindob) ;

jc.addJob(groupJob) ;

jc.addJob(limit);

je.run();

170 lines of code, 4 hours to write

Credit: Alan Gates, Yahoo!

- 159 -

In Pig Latin

Users = load ‘users’ as (name, age);
Fltrd = filter Users by
age >= 18 and age <= 25;

Pages = load ‘pages’ as (user, url);
Jnd = jJoin Fltrd by name, Pages by user;
Grpd = group Jnd by url;
smmd = foreach Grpd generate group,

COUNT (Jnd) as clicks;
Srtd = order Smmd by clicks desc;
TopS = 1limit Srtd 5;
store Topb into ‘topbsites’;

O lines of code, 15 minutes to write

Credit: Alan Gates, Yahoo! -160 - Q’

Background Pig system

Pig Latin
program

LOAD 'filel' AS (sid,pid,mass,px:double);
= LOAD 'file2' AS (sid,pid,mass,px:double);

vy,

@)

= FILTER A BY px < 1.0;
D = JOIN C BY sid,

B BY sid;
STORE g INTO 'output.txt';

Pig parser
Parsed
| ---------- program
Plg compller

161

But can it fly?

Pig Performance vs Map-Reduce
7.6

7.0 -
6.0 -
5.0 -
40 -

30 - 2.5
1.8 1.6

2.0 - ' 1.5 1.4 1.2 1.0

1.0 -
0o ...----

Sep 11 08 Nov 11 Jan 20 09Feb 23 09Apr 20 09Jun 28 09 Aug 28 Oct 18 09
08 09

1

Credit: Alan Gates, Yahoo! -162 - Q’

Essence of Pig

« Map-Reduce is too low a level to program, SQL too high

* Pig Latin, a language intended to sit between the two:

Credit: Alan Gates, Yahoo! -163 - Q’

Imperative
Provides standard relational transforms (join, sort, etc.)

Schemas are optional, used when available, can be defined at
runtime

User Defined Functions are first class citizens

Opportunities for advanced optimizer but optimizations by
programmer also possible

%

Logical Plan =
relational algebra

Plan standard
optimizations

icilp;oad Logical Plan _ Logical Plan _
. P Semantic Logical
B = filter — Farser > > .
C = group Checks Optimizer
D = foreach
Logical Plan
Physical Logical to
'Ii"aaupn'zﬁg‘:“e . ToMR L Physical
Map-Reduce Plan Translator| Physical Plan | Translator
Jar to Map-Reduce Plan = Physical Plan =
hadoop physical operators physical operators

@‘ broken into Map,
0y, =[ajaja]o/ Combine, and

Credit: Alan Gates, Yahoo!

Reduce stages

-164 -

to be executed

Tenzing

Google’s implementation of SQL
Supports full SQL92
On top of google’s Map/Reduce

Uses traditional query optimizer, plus
optimizations to MR

Widely adopted inside Google, especially
by the non-engineering community

Join Algorithms on Map/Reduce

* Broadcast join
* Hash-join
* Skew join

* Merge join

Aka

Fragment Replicate Join “Broakdcast Join”

Pages Users

Credit: Alan Gates, Yahoo! -167 - 9’

Aka
“Broakdcast Join”

Fragment Replicate Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Credit: Alan Gates, Yahoo!

!

Aka
“Broakdcast Join”

Fragment Replicate Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Credit: Alan Gates, Yahoo!

!

Aka
“Broakdcast Join”

Fragment Replicate Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

4 Map 1 A

Pages Users

N7
NS

Map 2

Credit: Alan Gates, Yahoo!

!

Aka
“Broakdcast Join”

Fragment Replicate Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

4 Map 1 A

Pages Users
Pages Users block 1

N /
2 4 Map 2 N

Pages Users
block 2

_ /
&/

Credit: Alan Gates, Yahoo!

Hash Join

Pages Users

Credit: Alan Gates, Yahoo! 2172 - 9’

Hash Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);

Jnd = join Users by name, Pages by user;
Pages Users

Credit: Alan Gates, Yahoo!

!

Hash Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);

Jnd = join Users by name, Pages by user;
Pages Users

Credit: Alan Gates, Yahoo!

-174 - Q.’

Hash Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;
Map 1
User
Pages Users
J block n

_ /
a Map 2 A

Page
block m

\ /
-175 - Ql’

Credit: Alan Gates, Yahoo!

Hash Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

Means: it comes

g Map 1 A

(1, user)

User
Pages Users block n

_ /
/ Map 2 \ Means: it comes
from rélation #2

Page
block m

_ /
- 176 - Q.’

(2, name)

Credit: Alan Gates, Yahoo!

Hash Join

Users = load
Pages = load
Jnd =

Pages

‘users’
‘pages’

Users

as
as

Jjoln Users by name,

(name, age);
(user, url);

/’Iwap1 A

User
block n

Credit: Alan Gates, Yahoo!

Pages by user;

(1, user)

_ /
a Map 2 A
Page

block m

Reducer 1

(1, fred)
(2, fred)

\J /

=177 -

(2, name)

(2, fred)

_ /

Reducer 2

(1, jane)
(2, jane)
(2, jane)

_

Skew Join

Pages Users

Credit: Alan Gates, Yahoo! -178 - 9’

Skew Join

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “skewed”;
Pages Users

Credit: Alan Gates, Yahoo!

!

Skew Join

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “skewed”;
Pages Users

Credit: Alan Gates, Yahoo!

!

Skew Join

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “skewed”;
Map 1
Pages

Pages Users J
block n

_ /
a Map 2 A

Users
block m

_ /
-181 - Ql’

Credit: Alan Gates, Yahoo!

Skew Join

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “skewed”;
Map 1
Pages S

Pages Users J P
block n

_ N
4 N

Map 2
Users S
block m P

_ N
-182 - Ql’

Credit: Alan Gates, Yahoo!

Skew Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

g Map 1 A

(1, user)

Pages S
Pages Users hlock P

_ N
a Map 2 A

Users S
block m P

\C A
-183 - Ql’

(2, name)

Credit: Alan Gates, Yahoo!

Skew Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;
Map 1 A Reducer 1
S (1, user)
Pages | (1, fred, p1)
Pages Users block n P (1. fred. p2)
(2, fred)
_ A N /
4 N e a
Map 2 Reducer 2
Users S - (1, fred, p3)
block m P (1, fred, p4)
(2, name) | (2, fred)
_ A N /

Credit: Alan Gates, Yahoo!

-184 - Q’
=

Merge Join

Pages Users
aaron daaron
zach zach

Credit: Alan Gates, Yahoo! -185 - 9’

Merge Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “merge”;

Pages Users
aaron daaron
zach zach

Credit: Alan Gates, Yahoo!

-186 -

Merge Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “merge”;

Pages Users
aaron daaron
zach zach

Credit: Alan Gates, Yahoo!

-187 -

Merge Join

Users = load

‘users’

Pages = load ‘pages’

Pages

aaron

zach

Credit: Alan Gates, Yahoo!

Users

aaron

zach

(name,

(user, url);
Jnd = join Pages by user,

age) ;

Users by name using “merge”;

-

~

N7

Map 1
Pages Users
aaron... aaron
amr

Map 2
Pages Users
amy... amy
barb

/
N

/

-188 -

Multi-store script

A = load ‘users’ as (name, age, gender,
city, state);

filter A by name is not null;

Cl = group B by age, gender;

D1 = foreach Cl generate group, COUNT (B)

store D into ‘bydemo’;

C2= group B by state;

D2 = foreach C2 generate group, COUNT (B) ;

store D2 into ‘bystate’;

oy,
I

group by age,)
gender)—>[apply UDFs]—>\

store into
‘bydemo’

[load users H filter nulls

) 4

group by state —>[apply UDFs]—>

J

store into
‘bystate’

Credit: Alan Gates, Yahoo! -189 -

Multi-Store Map-Reduce Plan

filter

!

\
split
local rearrange local rearrange
L “/
\
\

/reduce
/
demux
package package
foreach foreach

\> </

Credit: Alan Gates, Yahoo! -190 - 9’

Other Optimizations in Tenzing

Keep processes running. process pool

Remove reducer-side sort for hash-based
algorithms

— Note: the data must fit in main memory,
otherwise the task fails

Pipelining
Indexes

Final Thoughts

Challenging problems in MR jobs:
« Skew

 Fault tolerance

Balazinska, A study of Skew

Skew

Time (seconds)
0 100 200 300

m Shuffle
Sort

B Exec

Tasks

mOCoOm@

LA Y A A AP gy
[T NETIY T "X P TYTT R e

Fig. 1. A timing chart of a MapReduce job running the PageRank
algorithm from Cloud 9 [5]. Exec represents the actual map and
reduce operations. The slowest map task (first one from the top)
takes more than twice as long to complete as the second slowest
map task, which is still five times slower than the average. If all
tasks took approximately the same amount of time, the job would
have completed in less than half the time.

300
250 ...
v
€ 200}
o
Q
4
Q
E
= PR | —
- :
2 -
Ty S— s :
A0 [
0 20 40 60 80 100 120 140

Rank
(a) Page Rank - Map

Balazinska, A study of Skew

25.. ..
,6;20 an0s0sunnsssBoennsss s sanssdsssunsassosunBessssnsansssshonssssonnsessdasnssssasansadsssaflsssse
o
c : : : :

o s : :
0 : 5 : ‘
4] ; f ' ? : :
g 10+ : 51‘ : S || .
c %
- | |
A ph
5 Hl ‘ || ‘ ’ ‘
% 20 40 7120

0 60 80 100 120 140

Rank
(b) Page Rank - Reduce

Fig. 2. The distribution of task runtimes for PageRank with 128 map
and 128 reduce tasks. A graph node with a large number of edges
is much more expensive to process than many graph nodes with few
edges. Skew arises in both the map and reduce phases, but the overall

job 1s dominated by the map phase.

Skew

Balazinska, A study of Skew

30000 .
250 A
_ 25000} b gl
g g Ny
§200" §20000 ; ‘ ']
: HNERRy
‘q')’ 150r) 4]0 ¢ I . S— o f
: sy X
€ 100 € 100000 il
: <o TR I8 0
I i ‘\ LD
% 20 40 60 80 100 120 140 160 180 20 40 80 100 120 140
Rank Rank
(a) CloudBurst - Map (b) CloudBurst - Reduce

Fig. 3. Distribution of task runtime for CloudBurst. Total 162 map
tasks, and 128 reduce tasks. The map phase exhibits a bimodal
distribution. Each mode corresponds to map tasks processing a
different input dataset. The reduce is computationally expensive and
has a smooth runtime distribution, but there i1s a factor of five
difference in runtime between the fastest and the slowest reduce tasks.

Fault Tolerance

* Fundamental tension:

* Materialize after each Map and each Reduce
— This is what MR does
— |ldeal for fault tolerance
— Very poor performance

* Pipeline between steps
— This is what Parallel DBs usually do
— |deal for performance
— Very poor fault tolerance

Pig Latin Mini-Tutorial

(will skip in class; please read in
order to do homework 6)

197

Outline

Based entirely on Pig Latin: A not-so-
foreign language for data processing,
by Olston, Reed, Srivastava, Kumar,
and Tomkins, 2008

Quiz section tomorrow: in CSE 403
(this is CSE, don't go to EE1)

198

Pig-Latin Overview

« Data model = loosely typed nested
relations

* Query model = a sql-like, dataflow
language

» Execution model:
— Option 1: run locally on your machine

— Option 2: compile into sequence of map/
reduce, run on a cluster supporting Hadoop o0

Example

 Input: a table of urls:
(url, category, pagerank)

« Compute the average pagerank of all
sufficiently high pageranks, for each
category

* Return the answers only for categories
with sufficiently many such pages

200

First in SQL...

SELECT category, AVG(pagerank)
FROM urls

WHERE pagerank > 0.2

GROUP By category

HAVING COUNT(*) > 106

201

...then in Pig-Latin

good urls = FILTER urls BY pagerank > 0.2
groups = GROUP good_urls BY category
big_groups = FILTER groups
BY COUNT(good urls) > 10°
output = FOREACH big_groups GENERATE
category, AVG(good urls.pagerank)

202

Types in Pig-Latin
Atomic: string or number, e.g. ‘Alice’ or 55
Tuple: (‘Alice’, 55, ‘'salesperson’)

Bag: {(‘Alice’, 55, ‘salesperson’),
(‘Betty’,44, ‘'manager’), ...}

Maps: we will try not to use these

203

Types in Pig-Latin

Bags can be nested !

* (&, {1,4,3}), (¢, }), (d',12,2,5,3,2});

Tuple components can be referenced by
number

- $0, $1, $2, ...

204

t = (‘alice’,{

(‘lakers’, 1) },[‘age’—’Qo})

(‘iPod’, 2)

Let fields of tuple t be called £f1, £2, £3

Expression Type Example Value for t
Constant ‘bob’ Independent of t
Field by position $0 ‘alice’
Field by name £3 ‘age’ — 20 |
L (‘lakers’)
Projection £2.$0 { (‘iPod’)
Map Lookup f3#‘age’ 20
Function Evaluation SUM(£2.$1) 1+2=3
— - , >
Cond1t1911al ‘ f3# age‘ >'18 Cadult’
Expression adult’: ‘minor’
. ‘lak ', 1
Flattening FLATTEN (£2) =

“‘iPod’, 2

Loading data

* Input data = FILES !
— Heard that before ?

 The LOAD command parses an input
file into a bag of records

* Both parser (="deserializer”) and output
type are provided by user

206

Loading data

queries = LOAD ‘query_log.txt
USING myLoad()
AS (userlD, queryString, timeStamp)

207

Loading data

« USING userfuction() --is optional
— Default deserializer expects tab-delimited file
« AS type — is optional

— Default is a record with unnamed fields; refer to
them as $0, $1, ...

« The return value of LOAD is just a handle to a
bag
— The actual reading is done in pull mode, or
parallelized

208

FOREACH

expanded queries =
FOREACH queries
GENERATE userld, expandQuery(queryString)

expandQuery() is a UDF that produces likely expansions
Note: it returns a bag, hence expanded queries is a nested bag

209

FOREACH

expanded queries =
FOREACH queries

GENERATE userld,
flatten(expandQuery(queryString))

Now we get a flat collection

210

queries:
(userld, queryString, timestamp)

FOREACH queries GENERATE

(alice, lakers, 1) expandQuery(queryString)
(bob, iPod, 3)

(without flattening)

(alice,{(

-

lakers rumors)
(lakers news)

> (1Pod nano)]
bob, ~(iPod shuffle)

-

(alice, lakers rumors)

with flattening
3 >

(bob, 1Pod

(alice, lakers news)

nano)

(bob, iPod shuffle)

211

FLATTEN

Note that it is NOT a first class function !
(that’s one thing | don’t like about Pig-latin)

 First class FLATTEN:
— FLATTEN({{2,3},{5},{},44,5,61}) = {2,3,5,4,5,6)
- Type: {{T}} > {T)
* Pig-latin FLATTEN
— FLATTEN({4,5,6}) = 4, 5, 6
—Type: {T}>T,T,T,....T 27?2?27

212

FILTER

Remove all queries from Web bots:

real_queries = FILTER queries BY userld neq ‘bot’

Better: use a complex UDF to detect Web bots:

real_queries = FILTER queries
BY NOT isBot(userld)

213

JOIN

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

join_result = JOIN results BY queryString
revenue BY queryString

join_result : {(queryString, url, position, adSlot, amount)}

214

results:
(queryString, url, rank)

(lakers, nba.com, 1)
(lakers, espn.com, 2) |
(kings, nhl.com, 1)
(kings, nba.com, 2) —+—

revenue.

(queryString, adSlot, amount)
(lakers, nba.com, 1, top , S0)

(lakers, top, 50) — (lakers, nba.com, 1, side, 20)
(lakers, side, 20) v » (lakers, espn.com, 2, top, 50)
(kings, top, 30) JOIN (lakers, espn.com, 2, side, 20)
(kings, side, 1@) L

215

GROUP BY

revenue: {(queryString, adSlot, amount)}

grouped_revenue = GROUP revenue BY queryString
query_revenues =
FOREACH grouped revenue
GENERATE queryString,
SUM(revenue.amount) AS totalRevenue

grouped_revenue: {(queryString, {(adSlot, amount)})}
query_revenues: {(query3tring, totalRevenue)} 2

Simple Map-Reduce
input : {(field1, field2, field3,)}

map_result = FOREACH input
GENERATE FLATTEN(map(*))
key groups = GROUP map_result BY $0

output = FOREACH key groups
GENERATE reduce($1)

map_result . {(a1, a2, a3, .. .)}
key groups : {(al, {(a2, a3, .. .)})}

217

Co-Group

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

grouped_ data =
COGROUP results BY queryString,
revenue BY queryS3tring;

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

What is the output type in general ? | 21s

results:
(queryString, url, rank)

(lakers, nba.com, 1)
(lakers, espn.com,

(kings, nhl.com, 1)
(kings, nba.com, 2)

revenue.

(queryString, adSlot, amount)
(lakers, top, 50) —

(lakers, side, 20)

(kings, top, 30) |

(kings, side, 1@)

(lakers, nba.com, 1)
(}akers, (lakers, espn.com, 2)
COGROUP

A

Co-Group

grouped_data: (group, results, revenue)

-

-

» -
. (kings, nhl.com, 1)
(kings, {(kings, nba.com, 2) (°

-

(lakers, top, 50)
9 (lakers, side, 20)

—

(kings, top, 3@)
9 (kings, side, 10)

S—

Is this an inner join, or an outer join ’.;9

Co-Group

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

url_revenues = FOREACH grouped data
GENERATE

FLATTEN(distributeRevenue(results, revenue));

distributeRevenue is a UDF that accepts search re-

sults and revenue information for a query string at a time,

and outputs a bag of urls and the revenue attributed to them.
220

Co-Group v.s. Join

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

grouped data = COGROUP results BY queryString,
revenue BY queryString;
join_result = FOREACH grouped_data
GENERATE FLATTEN(results),
FLATTEN(revenue);

Result is the same as JOIN 991

Asking for Output: STORE

STORE query revenues INTO "myoutput’
USING myStore();

Meaning: write query_revenues to the file ‘myoutput’

222

Implementation

* Over Hadoop !

» Parse query:
— Everything between LOAD and STORE -
one logical plan

* Logical plan = sequence of Map/
Reduce ops

 All statements between two
(CO)GROUPs - one Map/Reduce op

223

Implementation

map, reduce, map; reduce;map,;,, reduce;,,
load » filter » group ------------ » cogroup ----p cogr':ow —>
C, ‘ G i
load

224

