
Lecture 5: Parallel Databases

Feb. 4, 2014

CSEP 544 -- Winter 2014 1

Overview of Today’s Lecture

•  Finish: Query Execution/Optimization
•  Big Data

– Kumar et al. The Web as a Graph
•  Parallel databases

– Chapter 22.1 – 22.5
•  Map/Reduce

– Paper assignment
•  Will not discuss in class: PigLatin

CSEP 544 -- Winter 2014 2

Homework 3

•  Do not use “PARALLEL 50”

•  Remember to turn off your instances!

CSEP 544 -- Winter 2014 3

Brief Review

•  Difference between logical and physical
operators

•  Discuss implementations of the join
operators
– Main memory (aka in core)
– External memory (aka out of core)

CSEP 544 -- Winter 2014 4

Query Execution

•  Physical operators: join, group-by

•  Query execution: pipeline, iterator model

•  Query optimization

•  Database statistics
CSEP 544 -- Winter 2014 5

The Iterator Model

Each operator implements this interface

•  open()

•  get_next()

•  close()

CSEP 544 -- Winter 2014 6

Classic Hash Join

What do these operators do for the classic Hash
Join?

•  open()

•  get_next()

•  close()

CSEP 544 -- Winter 2014 7

⨝cid=cid

Purchase Customer

Purchase(pid,cid,store) ⨝cid=cid Customer(cid, name, city) Purchase(pid, cid, store)
Customer(cid, name, city)

Main Memory Hash Join
open() {
 Customer.open();
 while (c = Customer.get_next())
 hashTable.insert(c.cid, c);
 Customer.close();
 Purchase.open();
}

get_next() {
 repeat {
 p = Purchase.get_next();
 if (p == NULL)
 { c = hashTable.find(p.cid); }
 until (p == NULL or c != NULL);
 return (p,c)
}

close() {
 Purchase.close();
}

Purchase(pid,cid,store) ⨝cid=cid Customer(cid, name, city) Purchase(pid, cid, store)
Customer(cid, name, city)

Main Memory Hash Join
open() {
 Customer.open();
 while (c = Customer.get_next())
 hashTable.insert(c.cid, c);
 Customer.close();
 Purchase.open();
}

get_next() {
 repeat {
 p = Purchase.get_next();
 if (p == NULL)
 { c = hashTable.find(p.cid); }
 until (p == NULL or c != NULL);
 return (p,c)
}

close() {
 Purchase.close();
}

Purchase(pid,cid,store) ⨝cid=cid Customer(cid, name, city) Purchase(pid, cid, store)
Customer(cid, name, city)

What changes if we don’t
join on a key-foreign key?

10

Discussion in class

⋈

⋈ T(C,D)

R(A,B) S(B,C)

CSEP 544 -- Winter 2014

Every operator is a hash-join
and implements the iterator model

What happens:
•  When we call open() at the top?
•  When we call get_next() at the top?

11	

More Discussion

⋈

⋈

⋈ T

R S

U

HashTable ß S
repeat read(R, x)

 y ß join(HashTable, x)
 write(V1, y)

HashTable ß T
repeat read(V1, y)

 z ß join(HashTable, y)
 write(V2, z)

HashTable ß U
repeat read(V2, z)

 u ß join(HashTable, z)
 write(Answer, u)

V1

V2

CSEP 544 -- Winter 2014

12	

More Discussion
Question in class

Given B(R), B(S), B(T), B(U)

•  What is the total cost of the plan ?

–  Cost =
•  How much main memory do we need ?

–  M =

CSEP 544 -- Winter 2014

13	

More Discussion

⋈

⋈

⋈ T

R S

U

HashTable1 ß S
HashTable2 ß T
HashTable3 ß U
repeat read(R, x)

 y ß join(HashTable1, x)
 z ß join(HashTable2, y)
 u ß join(HashTable3, z)
 write(Answer, u)

CSEP 544 -- Winter 2014

14	

More Discussion
Question in class

Given B(R), B(S), B(T), B(U)

•  What is the total cost of the plan ?

–  Cost =
•  How much main memory do we need ?

–  M =

CSEP 544 -- Winter 2014

15	

More Discussion

⋈

⋈

⋈

X R S

⋈

⋈
Z

Y

⋈

V

T

⋈

I
CSEP 544 -- Winter 2014

Query Execution

•  Physical operators: join, group-by

•  Query execution: pipeline, iterator model

•  Query optimization

•  Database statistics
CSEP 544 -- Winter 2014 16

Query Optimization

•  Search space = set of all physical query
plans that are equivalent to the SQL query
– Defined by algebraic laws and restrictions on

the set of plans used by the optimizer
•  Search algorithm = a heuristics-based

algorithm for searching the space and
selecting an optimal plan

CSEP 544 -- Winter 2014 17

Relational Algebra Laws: Joins

CSEP 544 -- Winter 2014 18

Commutativity : R ⋈ S = S ⋈ R
Associativity: R ⋈ (S ⋈ T) = (R ⋈ S) ⋈ T
Distributivity: R ⨝ (S ∪ T) = (R ⨝ S) ∪ (R ⨝ T)

Outer joins get more complicated

Relational Algebra Laws:
Selections

CSEP 544 -- Winter 2014 19

R(A, B, C, D), S(E, F, G)

σ F=3 (R ⨝ D=E S) = ?
σ A=5 AND G=9 (R ⨝ D=E S) = ?

Relational Algebra Laws:
Selections

CSEP 544 -- Winter 2014 20

R(A, B, C, D), S(E, F, G)

σ F=3 (R ⨝ D=E S) = R ⨝ D=E (σ F=3 (S))
σ A=5 AND G=9 (R ⨝ D=E S) =σA=5(R) ⨝D=E σG=9(S)

Group-by and Join

CSEP 544 -- Winter 2014 21

γA, sum(D)(R(A,B) ⨝ B=C S(C,D)) = ?

R(A, B), S(C,D)

Group-by and Join

CSEP 544 -- Winter 2014 22

γA, sum(D)(R(A,B) ⨝ B=C S(C,D)) =
 γA, sum(D)(R(A,B) ⨝ B=C (γC, sum(D)S(C,D)))

These are very powerful laws.
They were introduced only in the 90’s.

R(A, B), S(C,D)

Laws Involving Constraints

CSEP 544 -- Winter 2014 23

Foreign key

Πpid, price(Product ⨝cid=cid Company) = ?

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

Laws Involving Constraints

CSEP 544 -- Winter 2014 24

Foreign key

Need a second constraint for this law to hold. Which ?

Πpid, price(Product ⨝cid=cid Company) = Πpid, price(Product)

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

Why such queries occur

CSEP 544 -- Winter 2014 25

CREATE VIEW CheapProductCompany
 SELECT *
 FROM Product x, Company y
 WHERE x.cid = y.cid and x.price < 100

SELECT pname, price
FROM CheapProductCompany

SELECT pname, price
FROM Product
WHERE price < 100

Foreign key

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

26

Law of Semijoins

•  Input: R(A1,…An), S(B1,…,Bm)
•  Output: T(A1,…,An)
•  Semjoin is: R ⋉ S = Π A1,…,An (R ⨝ S)

•  The law of semijoins is:

CSEP 544 -- Winter 2014

R ⨝ S = (R ⋉ S) ⨝ S

Laws with Semijoins

•  Used in parallel/distributed databases

•  Often combined with Bloom Filters

•  Read pp. 747 in the textbook

CSEP 544 -- Winter 2014 27

Left-Deep Plans and
Bushy Plans

CSEP 544 -- Winter 2014 28

R3 R1 R2 R4 R3 R1

R4

R2

Left-deep plan Bushy plan

System R considered only left deep plans,
and so do some optimizers today

Search Algorithms

•  Dynamic programming
–  Pioneered by System R for computing optimal join order, used

today by all advanced optimizers

•  Search space pruning
–  Enumerate partial plans, drop unpromising partial plans
–  Bottom-up v.s. top-down plans

•  Access path selection
–  Refers to the plan for accessing a single table

CSEP 544 -- Winter 2014 29

Complete Plans

CSEP 544 -- Winter 2014 30

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

⨝

S σA<40

R

⨝

T

⨝

S

σA<40

R

⨝

T

If the algorithm
enumerates
complete plans,
then it is difficult
to prune out
unpromising
sets of plans.

R(A,B)
S(B,C)
T(C,D)

Bottom-up Partial Plans

31

R(A,B)
S(B,C)
T(C,D)

⨝ σA<40

R S T

⨝

S σA<40

R

⨝

R S

⨝

S σA<40

R

⨝

T

…..

If the algorithm enumerates
partial bottom-up plans,
then pruning can be done
more efficiently

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

Top-down Partial Plans

32

R(A,B)
S(B,C)
T(C,D)

⨝ σA<40

T ⨝

S

⨝

T

…..

SELECT R.A, T.D
FROM R, S, T
WHERE R.B=S.B
 and S.C=T.C

SELECT *
FROM R, S
WHERE R.B=S.B
 and R.A < 40 SELECT *

FROM R
WHERE R.A < 40

Same here.

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

Access Path Selection

CSEP 544 -- Winter 2014 33

Supplier(sid,sname,scategory,scity,sstate)

V(Supplier,city) = 1000
V(Supplier,scategory)=100

Clustered index on scity
Unclustered index on (scategory,scity)

B(Supplier) = 10k
T(Supplier) = 1M

Access plan options:
•  Table scan: cost = ?
•  Index scan on scity: cost = ?
•  Index scan on scategory,scity: cost = ?

σscategory = ‘organic’ ∧ scity=‘Seattle’ (Supplier)

Access Path Selection

CSEP 544 -- Winter 2014 34

Access plan options:
•  Table scan: cost = 10k = 10k
•  Index scan on scity: cost = 10k/1000 = 10
•  Index scan on scategory,scity: cost = 1M/1000*100 = 10

Supplier(sid,sname,scategory,scity,sstate)

V(Supplier,city) = 1000
V(Supplier,scategory)=100

Clustered index on scity
Unclustered index on (scategory,scity)

B(Supplier) = 10k
T(Supplier) = 1M

σscategory = ‘organic’ ∧ scity=‘Seattle’ (Supplier)

Outline of the Lecture

•  Physical operators: join, group-by

•  Query execution: pipeline, iterator model

•  Query optimization

•  Database statistics
CSEP 544 -- Winter 2014 35

CSEP 544 -- Winter 2014 36

Database Statistics

•  Collect statistical summaries of stored data

•  Estimate size (=cardinality) in a bottom-up
fashion
–  This is the most difficult part, and still inadequate in

today’s query optimizers
•  Estimate cost by using the estimated size

–  Hand-written formulas, similar to those we used for
computing the cost of each physical operator

CSEP 544 -- Winter 2014 37

Database Statistics

•  Number of tuples (cardinality)
•  Indexes, number of keys in the index
•  Number of physical pages, clustering info
•  Statistical information on attributes

–  Min value, max value, number distinct values
–  Histograms

•  Correlations between columns (hard)

•  Collection approach: periodic, using sampling

Size Estimation Problem

CSEP 544 -- Winter 2014 38

S = SELECT list
 FROM R1, …, Rn
 WHERE cond1 AND cond2 AND . . . AND condk

Given T(R1), T(R2), …, T(Rn)
Estimate T(S)

How can we do this ? Note: doesn’t have to be exact.

Size Estimation Problem

CSEP 544 -- Winter 2014 39

Remark: T(S) ≤ T(R1) × T(R2) × … × T(Rn)

S = SELECT list
 FROM R1, …, Rn
 WHERE cond1 AND cond2 AND . . . AND condk

Selectivity Factor

•  Each condition cond reduces the size by
some factor called selectivity factor

•  Assuming independence, multiply the
selectivity factors

CSEP 544 -- Winter 2014 40

Example

CSEP 544 -- Winter 2014 41

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B is 1/3
Selectivity of S.C = T.C is 1/10
Selectivity of R.A < 40 is ½

What is the estimated size of the query output ?

Example

CSEP 544 -- Winter 2014 42

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B is 1/3
Selectivity of S.C = T.C is 1/10
Selectivity of R.A < 40 is ½

What is the estimated size of the query output ?

30k * 200k * 10k * 1/3 * 1/10 * ½
= 1TB

Rule of Thumb

•  If selectivities are unknown, then:
selectivity factor = 1/10
[System R, 1979]

CSEP 544 -- Winter 2014 43

44

Using Data Statistics

•  Condition is A = c /* value selection on R */
–  Selectivity = 1/V(R,A)

•  Condition is A < c /* range selection on R */
–  Selectivity = (c - Low(R, A))/(High(R,A) - Low(R,A))T(R)

•  Condition is A = B /* R ⨝A=B S */
–  Selectivity = 1 / max(V(R,A),V(S,A))
–  (will explain next)

CSEP 544 -- Winter 2014

45

Assumptions

•  Containment of values: if V(R,A) <= V(S,B), then
the set of A values of R is included in the set of B
values of S
–  Note: this indeed holds when A is a foreign key in R,

and B is a key in S

•  Preservation of values: for any other attribute C,
V(R ⨝A=B S, C) = V(R, C) (or V(S, C))

CSEP 544 -- Winter 2014

46

Selectivity of R ⨝A=B S

Assume V(R,A) <= V(S,B)

•  Each tuple t in R joins with T(S)/V(S,B) tuple(s) in S

•  Hence T(R ⨝A=B S) = T(R) T(S) / V(S,B)

In general: T(R ⨝A=B S) = T(R) T(S) / max(V(R,A),V(S,B))

CSEP 544 -- Winter 2014

47

Size Estimation for Join

Example:
•  T(R) = 10000, T(S) = 20000
•  V(R,A) = 100, V(S,B) = 200
•  How large is R ⨝A=B S ?

CSEP 544 -- Winter 2014

48

Histograms

•  Statistics on data maintained by the
RDBMS

•  Makes size estimation much more
accurate (hence, cost estimations are
more accurate)

CSEP 544 -- Winter 2014

Histograms

CSEP 544 -- Winter 2014 49

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

Histograms

CSEP 544 -- Winter 2014

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Estimate = 25000 / 50 = 500 Estimate = 25000 * 6 / 50 = 3000

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

Histograms

CSEP 544 -- Winter 2014

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Estimate = 1200 Estimate = 1*80 + 5*500 = 2580

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

σage=48(Empolyee) = ? σage>28 and age<35(Empolyee) = ?

Types of Histograms

•  How should we determine the bucket
boundaries in a histogram ?

CSEP 544 -- Winter 2014 53

Types of Histograms

•  How should we determine the bucket
boundaries in a histogram ?

•  Eq-Width
•  Eq-Depth
•  Compressed
•  V-Optimal histograms

CSEP 544 -- Winter 2014 54

Histograms

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 200 800 5000 12000 6500 500

Employee(ssn, name, age)

Age: 0..20 20..29 30-39 40-49 50-59 > 60

Tuples 1800 2000 2100 2200 1900 1800

Eq-width:

Eq-depth:

Compressed: store separately highly frequent values: (48,1900)

V-Optimal Histograms

•  Defines bucket boundaries in an optimal
way, to minimize the error over all point
queries

•  Computed rather expensively, using
dynamic programming

•  Modern databases systems use V-optimal
histograms or some variations

CSEP 544 -- Winter 2014 56

Difficult Questions on Histograms
•  Small number of buckets

– Hundreds, or thousands, but not more
– WHY ?

•  Not updated during database update, but
recomputed periodically
– WHY ?

•  Multidimensional histograms rarely used
– WHY ?

CSEP 544 -- Winter 2014 57

Summary of Query Optimization

•  Three parts:
– search space, algorithms, size/cost estimation

•  Ideal goal: find optimal plan. But
–  Impossible to estimate accurately
–  Impossible to search the entire space

•  Goal of today’s optimizers:
– Avoid very bad plans

CSEP 544 -- Winter 2014 58

Big Data

CSEP 544 -- Winter 2014 59

Big Data

•  Gartner report*
– High Volume
– High Variety
– High Velocity

•  Stonebraker:
– Big volumes, small analytics
– Big analytics, on big volumes
– Big velocity
– Big variety

* http://www.gartner.com/newsroom/id/1731916

Famous Example of Big Data
Analysis

Kumar et al., The Web as a Graph

•  Question 1: is the Web like a “random graph”?
–  Random Graphs introduced by Erdos and Reny in the

1940s
–  Extensively studied in mathematics, well understood
–  If the Web is a “random graph”, then we have

mathematical tools to understand it: clusters,
communities, diameter, etc

•  Question 2: how does the Web graph look like?

CSEP 544 -- Winter 2014 61

Graph Databases

Many large databases are
graphs
•  Give examples in class

CSEP 544 -- Winter 2014 62

b d

e c

f g

a

Source Target

a b

b a

a f

b f

b e

b d

d e

d c

e g

g c

c g

Graph Databases

Many large databases are
graphs
•  Give examples in class
•  The Web
•  The Internet
•  Social Networks
•  Flights between airports
•  Etc.

CSEP 544 -- Winter 2014 63

b d

e c

f g

a

Source Target

a b

b a

a f

b f

b e

b d

d e

d c

e g

g c

c g

Data Analytics on Big Graphs
Queries expressible in SQL:
•  How many nodes (edges)?
•  How many nodes have > 4

neighbors?
•  Which are “most connected nodes”?
Queries requiring recursion:
•  Is the graph connected?
•  What is the diameter of the graph?
•  Compute PageRank
•  Compute the Centrality of each node

CSEP 544 -- Winter 2014 64

b d

e c

f g

a

Source Target

a b

b a

a f

b f

b e

b d

d e

d c

e g

g c

c g

Example: the Histogram of a Graph

•  Outdegree of a node =
number of outgoing
edges

•  For each d, let n(d) =
number of nodes with
oudegree d

•  The outdegree
histogram of a graph =
the scatterplot (d, n(d))

CSEP 544 -- Winter 2014 65

0

2

4
2

1

1

1

d n(d)
0 1
1 3
2 2
3 0
4 1

0

1

2

3

4

0 1 2 3 4 5

d

n

Outdegree 1 is
seen at 3 nodes

Histograms Tell Us Something
About the Graph

CSEP 544 -- Winter 2014 66

What can you
say about these
graphs?

0
20
40
60
80

100
120

0 5 10

x
10

00
0

0
20
40
60
80

100
120

0 5 10

x
10

00
0 0

20
40
60
80

100
120

0 5 10

x
10

00
0

Exponential Distribution

•  n(d) ≅ c/2d (generally, cxd, for some x < 1)
•  A random graph has exponential distribution
•  Best seen when n is on a log scale

CSEP 544 -- Winter 2014 67

1
10

100
1000

10000
100000

1000000

0 5 10

n

0
200000
400000
600000
800000

1000000
1200000

0 5 10

n

Quickly vanishing

nodes with degree d

Long tail

Power Law Distribution (Zipf)

•  n(d) ≅ 1/dx, for some value x>0
•  Human-generated data follows power law:

letters in alphabet, words in vocabulary, etc.
•  Best seen in a log-log scale

CSEP 544 -- Winter 2014 68

1000

10000

100000

1 4 16

n

10

100

1000

10000

100000

0 2 4 6 8 10 12 14 16 18

n

The Histogram of the Web

CSEP 544 -- Winter 2014 69

Late 1990’s
200M Webpages

Exponential ?

Power Law?

The Bowtie Structure of the Web

70

Big Data: Summary

•  Today, such analysis are done daily, by all
large corporations

•  Increasingly, using Cluster Computing:
– Distributed File System (for storing the data)
– Map/reduce
– Declarative languages over Map/Reduce:

Pig-Latin, SQL, Hive, Scope, Dryad-Linq, …

CSEP 544 -- Winter 2014 71

Parallel Databases

CSEP 544 -- Winter 2014 72

Parallel Computation Today

Two Major Forces Pushing towards Parallel
Computing:

•  Change in Moore’s law

•  Cloud computing

CSEP 544 -- Winter 2014 73

Parallel Computation Today

1.  Change in Moore's law* (exponential growth in
transistors per chip density) no longer results in
increased clock speeds

–  Increased hw performance available only through
parallelism

–  Think multicore: 4 cores today, perhaps 64 in a few
years

* Moore's law says that the number of transistors that can be
placed inexpensively on an integrated circuit doubles approximately
every two years [Intel co-founder Gordon E. Moore described the
trend in his 1965 paper and predicted that it will last for at least 10 years]

74

Parallel Computation Today

2.  Cloud computing commoditizes access to
large clusters

–  Ten years ago, only Google could afford 1000
servers;

–  Today you can rent this from Amazon Web
Services (AWS)

75

Jeff Dean, SOCC’2010:

Dan Suciu - U. of Washington 76

Memory
access

Communication

Jeff Dean, SOCC’2010:

Dan Suciu - U. of Washington 77

Memory
access

Communication

Jeff Dean, SOCC’2010:

Dan Suciu - U. of Washington 78

Memory
access

Communication

Jeff Dean, SOCC’2010:

Dan Suciu - U. of Washington 79

Memory
access

Communication

Jeff Dean, SOCC’2010:

Dan Suciu - U. of Washington 80

Memory
access

Communication

Local access is
significantly faster
than communication

Parallel DBMSs
•  Goal

–  Improve performance by executing multiple
operations in parallel

•  Key benefit

– Cheaper to scale than relying on a single
increasingly more powerful processor

•  Key challenge
– Ensure overhead and contention do not kill

performance

CSEP 544 -- Winter 2014 81

Performance Metrics
for Parallel DBMSs

•  Speedup
–  More processors è higher speed
–  Individual queries should run faster
–  Should do more transactions per second (TPS)

•  Scaleup
–  More processors è can process more data
–  Batch scaleup

•  Same query on larger input data should take the same time
–  Transaction scaleup

•  N-times as many TPS on N-times larger database
•  But each transaction typically remains small

CSEP 544 -- Winter 2014 82

Linear v.s. Non-linear Speedup

CSEP 544 -- Winter 2014

processors (=P)

Speedup

83

Linear v.s. Non-linear Scaleup

processors (=P) AND data size

Batch
Scaleup

×1 ×5 ×10 ×15

CSEP 544 -- Winter 2014 84

Challenges to
Linear Speedup and Scaleup

•  Startup cost
– Cost of starting an operation on many

processors

•  Interference
– Contention for resources between processors

•  Skew
– Slowest processor becomes the bottleneck

CSEP 544 -- Winter 2014 85

Architectures for Parallel
Databases

•  Shared memory

•  Shared disk

•  Shared nothing

CSEP 544 -- Winter 2014 86

Architectures for Parallel
Databases

87

From: Greenplum Database Whitepaper

Shared Memory
•  Nodes share both RAM and disk
•  Dozens to hundreds of processors

Example: SQL Server runs on a single machine
and can leverage many threads to get a query
to run faster (see query plans)

•  Easy to use and program
•  But very expensive to scale: last remaining

cash cows in the hardware industry

CSEP 544 -- Winter 2014 88

Shared Disk
•  All nodes access the same disks
•  Found in the largest "single-box" (non-

cluster) multiprocessors

Oracle dominates this class of systems.

Characteristics:
•  Also hard to scale past a certain point:

existing deployments typically have fewer
than 10 machines

CSEP 544 -- Winter 2014 89

Shared Nothing
•  Cluster of machines on high-speed network
•  Called "clusters" or "blade servers”
•  Each machine has its own memory and disk: lowest

contention.

NOTE: Because all machines today have many cores
and many disks, then shared-nothing systems typically
run many "nodes” on a single physical machine.

Characteristics:
•  Today, this is the most scalable architecture.
•  Most difficult to administer and tune.

We discuss only Shared Nothing in class
90

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Taxonomy for
Parallel Query Evaluation

•  Inter-query parallelism
– Each query runs on one processor

• 
– 
– 

• 
– 

CSEP 544 -- Winter 2014 91

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Taxonomy for
Parallel Query Evaluation

•  Inter-query parallelism
– Each query runs on one processor

•  Inter-operator parallelism
– A query runs on multiple processors
– An operator runs on one processor

• 
– 

CSEP 544 -- Winter 2014 92

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Taxonomy for
Parallel Query Evaluation

•  Inter-query parallelism
– Each query runs on one processor

•  Inter-operator parallelism
– A query runs on multiple processors
– An operator runs on one processor

•  Intra-operator parallelism
– An operator runs on multiple processors

CSEP 544 -- Winter 2014 93

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Taxonomy for
Parallel Query Evaluation

•  Inter-query parallelism
– Each query runs on one processor

•  Inter-operator parallelism
– A query runs on multiple processors
– An operator runs on one processor

•  Intra-operator parallelism
– An operator runs on multiple processors

We study only intra-operator parallelism: most scalable

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Parallel Query Processing
How do we compute these operations on a shared-nothing parallel db?

•  Selection: σA=123(R) (that’s easy, won’t discuss…)

•  Group-by: γA,sum(B)(R)

•  Join: R ⋈ S

Before we answer that: how do we store R (and S) on a shared-nothing
parallel db?

CSEP 544 -- Winter 2014 95

Horizontal Data Partitioning

CSEP 544 -- Winter 2014 96

1 2 P . . .

Data: Servers:

K A B
… …

Horizontal Data Partitioning

CSEP 544 -- Winter 2014 97

K A B
… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Horizontal Data Partitioning

CSEP 544 -- Winter 2014 98

K A B
… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Which tuples
go to what server?

Horizontal Data Partitioning
•  Block Partition:

–  Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)

•  Hash partitioned on attribute A:
–  Tuple t goes to chunk i, where i = h(t.A) mod P + 1

•  Range partitioned on attribute A:
–  Partition the range of A into -∞ = v0 < v1 < … < vP = ∞
–  Tuple t goes to chunk i, if vi-1 < t.A < vi

99 CSEP 544 -- Winter 2014

Basic Parallel GroupBy
Data: R(K,A,B,C)
Query: γA,sum(C)(R)
Discuss in class how to compute in each case:

•  R is hash-partitioned on A

•  R is block-partitioned

•  R is hash-partitioned on K

100 CSEP 544 -- Winter 2014

Basic Parallel GroupBy

Data: R(K,A,B,C)
Query: γA,sum(C)(R)
•  R is block-partitioned or hash-partitioned

on K

101

R1 R2 RP . . .

R1’ R2’ RP’

. . .

Reshuffle R
on attribute A

CSEP 544 -- Winter 2014

Basic Parallel Join

•  Data: R(K1,A, B), S(K2, B, C)
•  Query: R(K1,A,B) ⋈ S(K2,B,C)

102 CSEP 544 -- Winter 2014

Initially, both R and S are horizontally partitioned on K1 and K2

R1, S1 R2, S2 RP, SP

Basic Parallel Join

•  Data: R(K1,A, B), S(K2, B, C)
•  Query: R(K1,A,B) ⋈ S(K2,B,C)

103

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally

CSEP 544 -- Winter 2014

Initially, both R and S are horizontally partitioned on K1 and K2

Speedup and Scaleup

•  Consider:
– Query: γA,sum(C)(R)
– Runtime: dominated by reading chunks from

disk
•  If we double the number of nodes P, what

is the new running time?

•  If we double both P and the size of R,
what is the new running time?

CSEP 544 -- Winter 2014 104

Speedup and Scaleup

•  Consider:
– Query: γA,sum(C)(R)
– Runtime: dominated by reading chunks from disk

•  If we double the number of nodes P, what is
the new running time?
– Half (each server holds ½ as many chunks)

•  If we double both P and the size of R, what is
the new running time?
– Same (each server holds the same # of chunks)

CSEP 544 -- Winter 2014 105

Uniform Data v.s. Skewed Data

•  Let R(K,A,B,C); which of the following
partition methods may result in skewed
partitions?

•  Block partition

•  Hash-partition
– On the key K
– On the attribute A

CSEP 544 -- Winter 2014 106

Uniform Data v.s. Skewed Data

•  Let R(K,A,B,C); which of the following
partition methods may result in skewed
partitions?

•  Block partition

•  Hash-partition
– On the key K
– On the attribute A

Uniform

Uniform

May be skewed

Assuming good
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition

CSEP 544 -- Winter 2014 107

Parallel DBMS

•  Parallel query plan: tree of parallel operators
Intra-operator parallelism
– Data streams from one operator to the next
– Typically all cluster nodes process all operators

•  Can run multiple queries at the same time
Inter-query parallelism
– Queries will share the nodes in the cluster

•  Notice that user does not need to know how
his/her SQL query was processed

CSEP 544 -- Winter 2014 108

109

Example: Teradata – Loading

AMP = “Access Module Processor” = unit of parallelism

CSEP 544 -- Winter 2014

110

Example: Teradata – Query Execution

SELECT *
 FROM Order o, Line i
 WHERE o.item = i.item
 AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order o Item i

Find all orders from today, along with the items
ordered

CSEP 544 -- Winter 2014

Order(oid, item, date), Line(item, …)

Query Execution

CSEP 544 -- Winter 2014 111

AMP 1 AMP 2 AMP 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

AMP 1 AMP 2 AMP 3

join

select

scan

date = today()

o.item = i.item

Order o

Order(oid, item, date), Line(item, …)

Query Execution

CSEP 544 -- Winter 2014 112

AMP 1 AMP 2 AMP 3

scan
Item i

AMP 1 AMP 2 AMP 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Item i

Order(oid, item, date), Line(item, …)

Query Execution

CSEP 544 -- Winter 2014 113

AMP 1 AMP 2 AMP 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

Order(oid, item, date), Line(item, …)

Cluster Computing

CSEP 544 -- Winter 2014 114

Cluster Computing

•  Large number of commodity servers,
connected by high speed, commodity
network

•  Rack: holds a small number of servers
•  Data center: holds many racks

CSEP 544 -- Winter 2014 115

Cluster Computing

•  Massive parallelism:
– 100s, or 1000s, or 10000s servers
– Many hours

•  Failure:
–  If medium-time-between-failure is 1 year
– Then 10000 servers have one failure / hour

CSEP 544 -- Winter 2014 116

Distributed File System (DFS)

•  For very large files: TBs, PBs
•  Each file is partitioned into chunks,

typically 64MB
•  Each chunk is replicated several times

(≥3), on different racks, for fault tolerance
•  Implementations:

– Google’s DFS: GFS, proprietary
– Hadoop’s DFS: HDFS, open source

CSEP 544 -- Winter 2014 117

Map Reduce

•  Google: paper published 2004
•  Free variant: Hadoop

•  Map-reduce = high-level programming
model and implementation for large-scale
parallel data processing

118 CSEP 544 -- Winter 2014

Data Model

Files !

A file = a bag of (key, value) pairs

A MapReduce program:
•  Input: a bag of (inputkey, value)pairs
•  Output: a bag of (outputkey, value)pairs

119 CSEP 544 -- Winter 2014

Step 1: the MAP Phase

User provides the MAP-function:
•  Input: (input key, value)
•  Ouput:

bag of (intermediate key, value)

System applies the map function in parallel
to all (input key, value) pairs in
the input file

120 CSEP 544 -- Winter 2014

Step 2: the REDUCE Phase

User provides the REDUCE function:
•  Input:
(intermediate key, bag of values)

•  Output: bag of output (values)

System groups all pairs with the same

intermediate key, and passes the bag of
values to the REDUCE function

121 CSEP 544 -- Winter 2014

Example

•  Counting the number of occurrences of each
word in a large collection of documents

•  Each Document
–  The key = document id (did)
–  The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

 EmitIntermediate(w, “1”);

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

 result += ParseInt(v);
Emit(AsString(result));

MAP REDUCE

(Bob,1)

(the,1)

(Bob,1)

…

(of,1)

(to,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(of, (1,1,1,…,1))

(the, (1,1,…))

(Bob,(1…))

…

…

…

…

(of, 25)

(the, 77)

(Bob, 12)

…

…

…

…

Shuffle

123

Jobs v.s. Tasks

•  A MapReduce Job
– One single “query”, e.g. count the words in all

docs
– More complex queries may consists of multiple

jobs

•  A Map Task, or a Reduce Task
– A group of instantiations of the map-, or reduce-

function, which are scheduled on a single worker

CSEP 544 -- Winter 2014 124

Workers

•  A worker is a process that executes one
task at a time

•  Typically there is one worker per
processor, hence 4 or 8 per node

CSEP 544 -- Winter 2014 125

MAP Tasks REDUCE Tasks

(Bob,1)

(the,1)

(Bob,1)

…

(of,1)

(to,1)

…

(Bob,1)

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(of, (1,1,1,…,1))

(the, (1,1,…))

(Bob,(1…))

…

…

…

…

(of, 25)

(the, 77)

(Bob, 12)

…

…

…

…

Shuffle

MapReduce Job

MapReduce Execution Details

CSEP 544 -- Winter 2014 127

Map

(Shuffle)

Reduce

Data	
 not	

necessarily	
 local	

Intermediate	
 data	

goes	
 to	
 local	
 	
 disk	

Output	
 to	
 disk,	

replicated	
 in	
 cluster	

File	
 system:	
 GFS	

or	
 HDFS	

Task

Task

Local	
 storage	
 `	

MR Phases

•  Each Map and Reduce task has multiple phases:

128 CSEP 544 -- Winter 2014

Implementation

•  There is one master node
•  Master partitions input file into M splits, by key
•  Master assigns workers (=servers) to the M

map tasks, keeps track of their progress
•  Workers write their output to local disk,

partition into R regions
•  Master assigns workers to the R reduce tasks
•  Reduce workers read regions from the map

workers’ local disks
129 CSEP 544 -- Winter 2014

Interesting Implementation Details

Worker failure:

•  Master pings workers periodically,

•  If down then reassigns the task to another
worker

130 CSEP 544 -- Winter 2014

Interesting Implementation Details
Backup tasks:
•  Straggler = a machine that takes unusually

long time to complete one of the last tasks.
Eg:
– Bad disk forces frequent correctable errors

(30MB/s à 1MB/s)
– The cluster scheduler has scheduled other tasks

on that machine
•  Stragglers are a main reason for slowdown
•  Solution: pre-emptive backup execution of

the last few remaining in-progress tasks

131 CSEP 544 -- Winter 2014

MapReduce Summary

•  Hides scheduling and parallelization
details

•  However, very limited queries
– Difficult to write more complex queries
– Need multiple MapReduce jobs

•  Solution: declarative query language

132 CSEP 544 -- Winter 2014

Declarative Languages on MR

•  PIG Latin (Yahoo!)
– New language, like Relational Algebra
– Open source

•  HiveQL (Facebook)
– SQL-like language
– Open source

•  SQL / Dremmel / Tenzing (Google)
– BigQuery – SQL in the cloud

133 CSEP 544 -- Winter 2014

Executing a Large MapReduce Job

CSEP 544 -- Winter 2014 134

Anatomy of a Query Execution

•  Running problem #4

•  20 nodes = 1 master + 19 workers

•  Using PARALLEL 50

CSEP 544 -- Winter 2014 135

March 2013
3/9/13 Hadoop job_201303091944_0001 on domU-12-31-39-06-75-A1

localhost:9100/jobdetails.jsp?jobid=job_201303091944_0001&refresh=30 1/3

Hadoop job_201303091944_0001 on domU-12-31-39-

06-75-A1

User: hadoop
Job Name: PigLatin:DefaultJobName
Job File:

hdfs://10.208.122.79:9000/mnt/var/lib/hadoop/tmp/mapred/staging/hadoop/.staging/job_201303091944_0001/job.xml
Submit Host: domU-12-31-39-06-75-A1.compute-1.internal
Submit Host Address: 10.208.122.79
Job-ACLs: All users are allowed

Job Setup: Successful
Status: Succeeded
Started at: Sat Mar 09 19:49:21 UTC 2013
Finished at: Sat Mar 09 23:33:14 UTC 2013
Finished in: 3hrs, 43mins, 52sec
Job Cleanup: Successful
Black-listed TaskTrackers: 1

Kind % Complete Num Tasks Pending Running Complete Killed
Failed/Killed

Task Attempts

map 100.00% 7908 0 0 7908 0 14 / 16

reduce 100.00% 50 0 0 50 0 0 / 8

Counter Map Reduce Total

Job Counters

SLOTS_MILLIS_MAPS 0 0 454,162,761

Launched reduce tasks 0 0 58

Total time spent by all reduces
waiting after reserving slots
(ms)

0 0 0

Rack-local map tasks 0 0 7,938

Total time spent by all maps
waiting after reserving slots
(ms)

0 0 0

Launched map tasks 0 0 7,938

SLOTS_MILLIS_REDUCES 0 0 239,044,219

File Output Format
Counters Bytes Written 0 0 0

File Input Format
Counters Bytes Read 0 0 0

FileSystemCounters

S3N_BYTES_READ 530,555,718,547 0 530,555,718,547

FILE_BYTES_READ 44,900,010,884 2,044,310,266 46,944,321,150

HDFS_BYTES_READ 2,797,236 0 2,797,236

FILE_BYTES_WRITTEN 15,198,970,239 2,053,439,376 17,252,409,615

Some other time (March 2012)

•  Let’s see what happened…

CSEP 544 -- Winter 2014 137

Reduce input records 0 0 0
Reduce input groups 0 0 0

Combine output records 173,820,131 9,112,575 182,932,706

Physical memory (bytes)
snapshot 1,912,514,703,360 3,980,988,416 1,916,495,691,776

Reduce output records 0 0 0

Virtual memory (bytes)
snapshot 2,975,862,571,008 11,173,437,440 2,987,036,008,448

Map output records 805,225,193 0 805,225,193

Map Completion Graph - close

0 1582 3164 4746 6328 7910 9492 11074 12656 14238 15820

100
90
80
70
60
50
40
30
20
10

0

Reduce Completion Graph - close

0 5 10 15 20 25 30 35 40 45 50

100
90
80
70
60
50
40
30
20
10

0

copy

sort

reduce

Go back to JobTracker

This is Apache Hadoop release 0.20.205

Hadoop job_201203041905_0001 on ip-10-203-30-146
User: hadoop
Job Name: PigLatin:DefaultJobName
Job File:
hdfs://10.203.30.146:9000/mnt/var/lib/hadoop/tmp/mapred/staging/hadoop/.staging/job_201203041905_0001/job.xml
Submit Host: ip-10-203-30-146.ec2.internal
Submit Host Address: 10.203.30.146
Job-ACLs: All users are allowed
Job Setup: Successful
Status: Running
Started at: Sun Mar 04 19:08:29 UTC 2012
Running for: 1hrs, 16mins, 33sec
Job Cleanup: Pending

Kind % Complete Num Tasks Pending Running Complete Killed Failed/Killed
Task Attempts

map 33.17% 15816 10549 38 5229 0 0 / 0

reduce 4.17% 50 31 19 0 0 0 / 0

Counter Map Reduce Total

Job Counters

SLOTS_MILLIS_MAPS 0 0 164,620,372

Launched reduce tasks 0 0 19

Rack-local map tasks 0 0 5,267

Launched map tasks 0 0 5,267

File Input Format
Counters Bytes Read 0 0 0

FileSystemCounters

S3N_BYTES_READ 175,523,148,980 0 175,523,148,980

HDFS_BYTES_READ 1,845,837 0 1,845,837

FILE_BYTES_WRITTEN 3,206,602,012 145,356,233 3,351,958,245

Map-Reduce
Framework

Map output materialized
bytes 2,444,314,273 0 2,444,314,273

Map input records 805,225,193 0 805,225,193

Reduce shuffle bytes 0 909,468,723 909,468,723

Spilled Records 173,820,131 0 173,820,131

Map output bytes 62,732,457,803 0 62,732,457,803

CPU time spent (ms) 55,277,520 2,656,940 57,934,460

Total committed heap usage
(bytes) 1,956,086,312,960 3,042,803,712 1,959,129,116,672

Combine input records 805,225,193 62,442,816 867,668,009

SPLIT_RAW_BYTES 1,845,837 0 1,845,837

1h 16min

Reduce input records 0 0 0
Reduce input groups 0 0 0

Combine output records 173,820,131 9,112,575 182,932,706

Physical memory (bytes)
snapshot 1,912,514,703,360 3,980,988,416 1,916,495,691,776

Reduce output records 0 0 0

Virtual memory (bytes)
snapshot 2,975,862,571,008 11,173,437,440 2,987,036,008,448

Map output records 805,225,193 0 805,225,193

Map Completion Graph - close

0 1582 3164 4746 6328 7910 9492 11074 12656 14238 15820

100
90
80
70
60
50
40
30
20
10

0

Reduce Completion Graph - close

0 5 10 15 20 25 30 35 40 45 50

100
90
80
70
60
50
40
30
20
10

0

copy

sort

reduce

Go back to JobTracker

This is Apache Hadoop release 0.20.205

Hadoop job_201203041905_0001 on ip-10-203-30-146
User: hadoop
Job Name: PigLatin:DefaultJobName
Job File:
hdfs://10.203.30.146:9000/mnt/var/lib/hadoop/tmp/mapred/staging/hadoop/.staging/job_201203041905_0001/job.xml
Submit Host: ip-10-203-30-146.ec2.internal
Submit Host Address: 10.203.30.146
Job-ACLs: All users are allowed
Job Setup: Successful
Status: Running
Started at: Sun Mar 04 19:08:29 UTC 2012
Running for: 1hrs, 16mins, 33sec
Job Cleanup: Pending

Kind % Complete Num Tasks Pending Running Complete Killed Failed/Killed
Task Attempts

map 33.17% 15816 10549 38 5229 0 0 / 0

reduce 4.17% 50 31 19 0 0 0 / 0

Counter Map Reduce Total

Job Counters

SLOTS_MILLIS_MAPS 0 0 164,620,372

Launched reduce tasks 0 0 19

Rack-local map tasks 0 0 5,267

Launched map tasks 0 0 5,267

File Input Format
Counters Bytes Read 0 0 0

FileSystemCounters

S3N_BYTES_READ 175,523,148,980 0 175,523,148,980

HDFS_BYTES_READ 1,845,837 0 1,845,837

FILE_BYTES_WRITTEN 3,206,602,012 145,356,233 3,351,958,245

Map-Reduce
Framework

Map output materialized
bytes 2,444,314,273 0 2,444,314,273

Map input records 805,225,193 0 805,225,193

Reduce shuffle bytes 0 909,468,723 909,468,723

Spilled Records 173,820,131 0 173,820,131

Map output bytes 62,732,457,803 0 62,732,457,803

CPU time spent (ms) 55,277,520 2,656,940 57,934,460

Total committed heap usage
(bytes) 1,956,086,312,960 3,042,803,712 1,959,129,116,672

Combine input records 805,225,193 62,442,816 867,668,009

SPLIT_RAW_BYTES 1,845,837 0 1,845,837

Only 19 reducers active,
out of 50. Why?

When will the other
31 reducers be scheduled? Copying by 19 reducers

in parallel with mappers.

1h 16min

Reduce input records 0 0 0
Reduce input groups 0 0 0

Combine output records 173,820,131 9,112,575 182,932,706

Physical memory (bytes)
snapshot 1,912,514,703,360 3,980,988,416 1,916,495,691,776

Reduce output records 0 0 0

Virtual memory (bytes)
snapshot 2,975,862,571,008 11,173,437,440 2,987,036,008,448

Map output records 805,225,193 0 805,225,193

Map Completion Graph - close

0 1582 3164 4746 6328 7910 9492 11074 12656 14238 15820

100
90
80
70
60
50
40
30
20
10

0

Reduce Completion Graph - close

0 5 10 15 20 25 30 35 40 45 50

100
90
80
70
60
50
40
30
20
10

0

copy

sort

reduce

Go back to JobTracker

This is Apache Hadoop release 0.20.205

Hadoop job_201203041905_0001 on ip-10-203-30-146
User: hadoop
Job Name: PigLatin:DefaultJobName
Job File:
hdfs://10.203.30.146:9000/mnt/var/lib/hadoop/tmp/mapred/staging/hadoop/.staging/job_201203041905_0001/job.xml
Submit Host: ip-10-203-30-146.ec2.internal
Submit Host Address: 10.203.30.146
Job-ACLs: All users are allowed
Job Setup: Successful
Status: Running
Started at: Sun Mar 04 19:08:29 UTC 2012
Running for: 3hrs, 50mins, 12sec
Job Cleanup: Pending

Kind % Complete Num Tasks Pending Running Complete Killed Failed/Killed
Task Attempts

map 100.00% 15816 0 0 15816 0 0 / 18

reduce 32.42% 50 31 19 0 0 0 / 0

Counter Map Reduce Total

Job Counters

SLOTS_MILLIS_MAPS 0 0 495,799,522

Launched reduce tasks 0 0 19

Rack-local map tasks 0 0 15,834

Launched map tasks 0 0 15,834

File Output Format
Counters Bytes Written 0 0 0

File Input Format
Counters Bytes Read 0 0 0

FileSystemCounters

S3N_BYTES_READ 530,591,875,823 0 530,591,875,823

FILE_BYTES_READ 0 309,198,848 309,198,848

HDFS_BYTES_READ 5,587,893 0 5,587,893

FILE_BYTES_WRITTEN 9,616,982,133 850,567,984 10,467,550,117

HDFS_BYTES_WRITTEN 0 946,814,498 946,814,498

Map output materialized
bytes 7,311,305,131 0 7,311,305,131

Map input records 2,501,793,030 0 2,501,793,030

Reduce shuffle bytes 0 2,755,605,871 2,755,605,871

Spilled Records 465,817,710 0 465,817,710

Map output bytes 199,575,247,017 0 199,575,247,017

CPU time spent (ms) 165,894,080 9,129,070 175,023,150

Map-Reduce
Framework

Total committed heap usage
(bytes)

5,922,097,602,560 3,008,761,856 5,925,106,364,416

Combine input records 2,501,793,030 168,420,895 2,670,213,925

SPLIT_RAW_BYTES 5,587,893 0 5,587,893

Reduce input records 0 21,039,080 21,039,080

Reduce input groups 0 13,593,157 13,593,157

Combine output records 465,817,710 47,802,630 513,620,340

Physical memory (bytes)
snapshot 5,790,488,764,416 4,018,405,376 5,794,507,169,792

Reduce output records 0 13,593,139 13,593,139

Virtual memory (bytes)
snapshot 9,001,329,868,800 11,175,534,592 9,012,505,403,392

Map output records 2,501,793,030 0 2,501,793,030

Map Completion Graph - close

0 1582 3164 4746 6328 7910 9492 11074 12656 14238 15820

100
90
80
70
60
50
40
30
20
10

0

Reduce Completion Graph - close

0 5 10 15 20 25 30 35 40 45 50

100
90
80
70
60
50
40
30
20
10

0

copy

sort

reduce

Go back to JobTracker

This is Apache Hadoop release 0.20.205

Hadoop job_201203041905_0001 on ip-10-203-30-146
User: hadoop
Job Name: PigLatin:DefaultJobName
Job File:
hdfs://10.203.30.146:9000/mnt/var/lib/hadoop/tmp/mapred/staging/hadoop/.staging/job_201203041905_0001/job.xml
Submit Host: ip-10-203-30-146.ec2.internal
Submit Host Address: 10.203.30.146
Job-ACLs: All users are allowed
Job Setup: Successful
Status: Running
Started at: Sun Mar 04 19:08:29 UTC 2012
Running for: 1hrs, 16mins, 33sec
Job Cleanup: Pending

Kind % Complete Num Tasks Pending Running Complete Killed Failed/Killed
Task Attempts

map 33.17% 15816 10549 38 5229 0 0 / 0

reduce 4.17% 50 31 19 0 0 0 / 0

Counter Map Reduce Total

Job Counters

SLOTS_MILLIS_MAPS 0 0 164,620,372

Launched reduce tasks 0 0 19

Rack-local map tasks 0 0 5,267

Launched map tasks 0 0 5,267

File Input Format
Counters Bytes Read 0 0 0

FileSystemCounters

S3N_BYTES_READ 175,523,148,980 0 175,523,148,980

HDFS_BYTES_READ 1,845,837 0 1,845,837

FILE_BYTES_WRITTEN 3,206,602,012 145,356,233 3,351,958,245

Map-Reduce
Framework

Map output materialized
bytes 2,444,314,273 0 2,444,314,273

Map input records 805,225,193 0 805,225,193

Reduce shuffle bytes 0 909,468,723 909,468,723

Spilled Records 173,820,131 0 173,820,131

Map output bytes 62,732,457,803 0 62,732,457,803

CPU time spent (ms) 55,277,520 2,656,940 57,934,460

Total committed heap usage
(bytes) 1,956,086,312,960 3,042,803,712 1,959,129,116,672

Combine input records 805,225,193 62,442,816 867,668,009

SPLIT_RAW_BYTES 1,845,837 0 1,845,837

Only 19 reducers active,
out of 50. Why?

When will the other
31 reducers be scheduled? Copying by 19 reducers

in parallel with mappers.

1h 16min 3h 50min

Reduce input records 0 0 0
Reduce input groups 0 0 0

Combine output records 173,820,131 9,112,575 182,932,706

Physical memory (bytes)
snapshot 1,912,514,703,360 3,980,988,416 1,916,495,691,776

Reduce output records 0 0 0

Virtual memory (bytes)
snapshot 2,975,862,571,008 11,173,437,440 2,987,036,008,448

Map output records 805,225,193 0 805,225,193

Map Completion Graph - close

0 1582 3164 4746 6328 7910 9492 11074 12656 14238 15820

100
90
80
70
60
50
40
30
20
10

0

Reduce Completion Graph - close

0 5 10 15 20 25 30 35 40 45 50

100
90
80
70
60
50
40
30
20
10

0

copy

sort

reduce

Go back to JobTracker

This is Apache Hadoop release 0.20.205

Hadoop job_201203041905_0001 on ip-10-203-30-146
User: hadoop
Job Name: PigLatin:DefaultJobName
Job File:
hdfs://10.203.30.146:9000/mnt/var/lib/hadoop/tmp/mapred/staging/hadoop/.staging/job_201203041905_0001/job.xml
Submit Host: ip-10-203-30-146.ec2.internal
Submit Host Address: 10.203.30.146
Job-ACLs: All users are allowed
Job Setup: Successful
Status: Running
Started at: Sun Mar 04 19:08:29 UTC 2012
Running for: 3hrs, 50mins, 12sec
Job Cleanup: Pending

Kind % Complete Num Tasks Pending Running Complete Killed Failed/Killed
Task Attempts

map 100.00% 15816 0 0 15816 0 0 / 18

reduce 32.42% 50 31 19 0 0 0 / 0

Counter Map Reduce Total

Job Counters

SLOTS_MILLIS_MAPS 0 0 495,799,522

Launched reduce tasks 0 0 19

Rack-local map tasks 0 0 15,834

Launched map tasks 0 0 15,834

File Output Format
Counters Bytes Written 0 0 0

File Input Format
Counters Bytes Read 0 0 0

FileSystemCounters

S3N_BYTES_READ 530,591,875,823 0 530,591,875,823

FILE_BYTES_READ 0 309,198,848 309,198,848

HDFS_BYTES_READ 5,587,893 0 5,587,893

FILE_BYTES_WRITTEN 9,616,982,133 850,567,984 10,467,550,117

HDFS_BYTES_WRITTEN 0 946,814,498 946,814,498

Map output materialized
bytes 7,311,305,131 0 7,311,305,131

Map input records 2,501,793,030 0 2,501,793,030

Reduce shuffle bytes 0 2,755,605,871 2,755,605,871

Spilled Records 465,817,710 0 465,817,710

Map output bytes 199,575,247,017 0 199,575,247,017

CPU time spent (ms) 165,894,080 9,129,070 175,023,150

Map-Reduce
Framework

Total committed heap usage
(bytes)

5,922,097,602,560 3,008,761,856 5,925,106,364,416

Combine input records 2,501,793,030 168,420,895 2,670,213,925

SPLIT_RAW_BYTES 5,587,893 0 5,587,893

Reduce input records 0 21,039,080 21,039,080

Reduce input groups 0 13,593,157 13,593,157

Combine output records 465,817,710 47,802,630 513,620,340

Physical memory (bytes)
snapshot 5,790,488,764,416 4,018,405,376 5,794,507,169,792

Reduce output records 0 13,593,139 13,593,139

Virtual memory (bytes)
snapshot 9,001,329,868,800 11,175,534,592 9,012,505,403,392

Map output records 2,501,793,030 0 2,501,793,030

Map Completion Graph - close

0 1582 3164 4746 6328 7910 9492 11074 12656 14238 15820

100
90
80
70
60
50
40
30
20
10

0

Reduce Completion Graph - close

0 5 10 15 20 25 30 35 40 45 50

100
90
80
70
60
50
40
30
20
10

0

copy

sort

reduce

Go back to JobTracker

This is Apache Hadoop release 0.20.205

Hadoop job_201203041905_0001 on ip-10-203-30-146
User: hadoop
Job Name: PigLatin:DefaultJobName
Job File:
hdfs://10.203.30.146:9000/mnt/var/lib/hadoop/tmp/mapred/staging/hadoop/.staging/job_201203041905_0001/job.xml
Submit Host: ip-10-203-30-146.ec2.internal
Submit Host Address: 10.203.30.146
Job-ACLs: All users are allowed
Job Setup: Successful
Status: Running
Started at: Sun Mar 04 19:08:29 UTC 2012
Running for: 1hrs, 16mins, 33sec
Job Cleanup: Pending

Kind % Complete Num Tasks Pending Running Complete Killed Failed/Killed
Task Attempts

map 33.17% 15816 10549 38 5229 0 0 / 0

reduce 4.17% 50 31 19 0 0 0 / 0

Counter Map Reduce Total

Job Counters

SLOTS_MILLIS_MAPS 0 0 164,620,372

Launched reduce tasks 0 0 19

Rack-local map tasks 0 0 5,267

Launched map tasks 0 0 5,267

File Input Format
Counters Bytes Read 0 0 0

FileSystemCounters

S3N_BYTES_READ 175,523,148,980 0 175,523,148,980

HDFS_BYTES_READ 1,845,837 0 1,845,837

FILE_BYTES_WRITTEN 3,206,602,012 145,356,233 3,351,958,245

Map-Reduce
Framework

Map output materialized
bytes 2,444,314,273 0 2,444,314,273

Map input records 805,225,193 0 805,225,193

Reduce shuffle bytes 0 909,468,723 909,468,723

Spilled Records 173,820,131 0 173,820,131

Map output bytes 62,732,457,803 0 62,732,457,803

CPU time spent (ms) 55,277,520 2,656,940 57,934,460

Total committed heap usage
(bytes) 1,956,086,312,960 3,042,803,712 1,959,129,116,672

Combine input records 805,225,193 62,442,816 867,668,009

SPLIT_RAW_BYTES 1,845,837 0 1,845,837

Only 19 reducers active,
out of 50. Why?

Speculative Execution

When will the other
31 reducers be scheduled?

Completed. Sorting, and
the rest of Reduce may

proceed now

Copying by 19 reducers
in parallel with mappers.

1h 16min 3h 50min

Map-Reduce
Framework

CPU time spent (ms) 165,894,080 10,013,680 175,907,760
Total committed heap usage
(bytes) 5,922,097,602,560 3,008,761,856 5,925,106,364,416

Combine input records 2,501,793,030 168,420,895 2,670,213,925

SPLIT_RAW_BYTES 5,587,893 0 5,587,893

Reduce input records 0 49,680,950 49,680,950

Reduce input groups 0 39,612,536 39,612,536

Combine output records 465,817,710 47,802,630 513,620,340

Physical memory (bytes)
snapshot 5,790,488,764,416 4,020,133,888 5,794,508,898,304

Reduce output records 0 39,612,527 39,612,527

Virtual memory (bytes)
snapshot 9,001,329,868,800 11,175,473,152 9,012,505,341,952

Map output records 2,501,793,030 0 2,501,793,030

Map Completion Graph - close

0 1582 3164 4746 6328 7910 9492 11074 12656 14238 15820

100
90
80
70
60
50
40
30
20
10

0

Reduce Completion Graph - close

0 5 10 15 20 25 30 35 40 45 50

100
90
80
70
60
50
40
30
20
10

0

copy

sort

reduce

Go back to JobTracker

This is Apache Hadoop release 0.20.205

Hadoop job_201203041905_0001 on ip-10-203-30-146
User: hadoop
Job Name: PigLatin:DefaultJobName
Job File:
hdfs://10.203.30.146:9000/mnt/var/lib/hadoop/tmp/mapred/staging/hadoop/.staging/job_201203041905_0001/job.xml
Submit Host: ip-10-203-30-146.ec2.internal
Submit Host Address: 10.203.30.146
Job-ACLs: All users are allowed
Job Setup: Successful
Status: Running
Started at: Sun Mar 04 19:08:29 UTC 2012
Running for: 3hrs, 51mins, 19sec
Job Cleanup: Pending

Kind % Complete Num Tasks Pending Running Complete Killed Failed/Killed
Task Attempts

map 100.00% 15816 0 0 15816 0 0 / 18

reduce 37.72% 50 19 22 9 0 0 / 0

Counter Map Reduce Total

Job Counters

SLOTS_MILLIS_MAPS 0 0 495,799,522

Launched reduce tasks 0 0 31

Rack-local map tasks 0 0 15,834

Launched map tasks 0 0 15,834

SLOTS_MILLIS_REDUCES 0 0 118,328,830

File Output Format
Counters Bytes Written 0 0 0

File Input Format
Counters Bytes Read 0 0 0

FileSystemCounters

S3N_BYTES_READ 530,591,875,823 0 530,591,875,823

FILE_BYTES_READ 0 754,835,408 754,835,408

HDFS_BYTES_READ 5,587,893 0 5,587,893

FILE_BYTES_WRITTEN 9,616,982,133 850,567,984 10,467,550,117

HDFS_BYTES_WRITTEN 0 3,400,371,086 3,400,371,086

Map output materialized
bytes 7,311,305,131 0 7,311,305,131

Map input records 2,501,793,030 0 2,501,793,030

Reduce shuffle bytes 0 2,755,605,871 2,755,605,871

Spilled Records 465,817,710 26,163,538 491,981,248

Map output bytes 199,575,247,017 0 199,575,247,017

3h 51min

Map-Reduce
Framework

CPU time spent (ms) 165,894,080 10,013,680 175,907,760
Total committed heap usage
(bytes) 5,922,097,602,560 3,008,761,856 5,925,106,364,416

Combine input records 2,501,793,030 168,420,895 2,670,213,925

SPLIT_RAW_BYTES 5,587,893 0 5,587,893

Reduce input records 0 49,680,950 49,680,950

Reduce input groups 0 39,612,536 39,612,536

Combine output records 465,817,710 47,802,630 513,620,340

Physical memory (bytes)
snapshot 5,790,488,764,416 4,020,133,888 5,794,508,898,304

Reduce output records 0 39,612,527 39,612,527

Virtual memory (bytes)
snapshot 9,001,329,868,800 11,175,473,152 9,012,505,341,952

Map output records 2,501,793,030 0 2,501,793,030

Map Completion Graph - close

0 1582 3164 4746 6328 7910 9492 11074 12656 14238 15820

100
90
80
70
60
50
40
30
20
10

0

Reduce Completion Graph - close

0 5 10 15 20 25 30 35 40 45 50

100
90
80
70
60
50
40
30
20
10

0

copy

sort

reduce

Go back to JobTracker

This is Apache Hadoop release 0.20.205

Hadoop job_201203041905_0001 on ip-10-203-30-146
User: hadoop
Job Name: PigLatin:DefaultJobName
Job File:
hdfs://10.203.30.146:9000/mnt/var/lib/hadoop/tmp/mapred/staging/hadoop/.staging/job_201203041905_0001/job.xml
Submit Host: ip-10-203-30-146.ec2.internal
Submit Host Address: 10.203.30.146
Job-ACLs: All users are allowed
Job Setup: Successful
Status: Running
Started at: Sun Mar 04 19:08:29 UTC 2012
Running for: 3hrs, 51mins, 19sec
Job Cleanup: Pending

Kind % Complete Num Tasks Pending Running Complete Killed Failed/Killed
Task Attempts

map 100.00% 15816 0 0 15816 0 0 / 18

reduce 37.72% 50 19 22 9 0 0 / 0

Counter Map Reduce Total

Job Counters

SLOTS_MILLIS_MAPS 0 0 495,799,522

Launched reduce tasks 0 0 31

Rack-local map tasks 0 0 15,834

Launched map tasks 0 0 15,834

SLOTS_MILLIS_REDUCES 0 0 118,328,830

File Output Format
Counters Bytes Written 0 0 0

File Input Format
Counters Bytes Read 0 0 0

FileSystemCounters

S3N_BYTES_READ 530,591,875,823 0 530,591,875,823

FILE_BYTES_READ 0 754,835,408 754,835,408

HDFS_BYTES_READ 5,587,893 0 5,587,893

FILE_BYTES_WRITTEN 9,616,982,133 850,567,984 10,467,550,117

HDFS_BYTES_WRITTEN 0 3,400,371,086 3,400,371,086

Map output materialized
bytes 7,311,305,131 0 7,311,305,131

Map input records 2,501,793,030 0 2,501,793,030

Reduce shuffle bytes 0 2,755,605,871 2,755,605,871

Spilled Records 465,817,710 26,163,538 491,981,248

Map output bytes 199,575,247,017 0 199,575,247,017

…Next Batch of Reducers started

Some of the 19 reducers have finished…

3h 51min

Map-Reduce
Framework

CPU time spent (ms) 165,894,080 10,013,680 175,907,760
Total committed heap usage
(bytes) 5,922,097,602,560 3,008,761,856 5,925,106,364,416

Combine input records 2,501,793,030 168,420,895 2,670,213,925

SPLIT_RAW_BYTES 5,587,893 0 5,587,893

Reduce input records 0 49,680,950 49,680,950

Reduce input groups 0 39,612,536 39,612,536

Combine output records 465,817,710 47,802,630 513,620,340

Physical memory (bytes)
snapshot 5,790,488,764,416 4,020,133,888 5,794,508,898,304

Reduce output records 0 39,612,527 39,612,527

Virtual memory (bytes)
snapshot 9,001,329,868,800 11,175,473,152 9,012,505,341,952

Map output records 2,501,793,030 0 2,501,793,030

Map Completion Graph - close

0 1582 3164 4746 6328 7910 9492 11074 12656 14238 15820

100
90
80
70
60
50
40
30
20
10

0

Reduce Completion Graph - close

0 5 10 15 20 25 30 35 40 45 50

100
90
80
70
60
50
40
30
20
10

0

copy

sort

reduce

Go back to JobTracker

This is Apache Hadoop release 0.20.205

Map-Reduce
Framework

CPU time spent (ms) 165,894,080 10,725,020 176,619,100
Total committed heap usage
(bytes) 5,922,097,602,560 9,412,485,120 5,931,510,087,680

Combine input records 2,501,793,030 175,243,866 2,677,036,896

SPLIT_RAW_BYTES 5,587,893 0 5,587,893

Reduce input records 0 54,940,866 54,940,866

Reduce input groups 0 44,756,179 44,756,179

Combine output records 465,817,710 48,604,128 514,421,838

Physical memory (bytes)
snapshot 5,790,488,764,416 11,311,841,280 5,801,800,605,696

Reduce output records 0 44,756,179 44,756,179

Virtual memory (bytes)
snapshot 9,001,329,868,800 21,805,244,416 9,023,135,113,216

Map output records 2,501,793,030 0 2,501,793,030

Map Completion Graph - close

0 1582 3164 4746 6328 7910 9492 11074 12656 14238 15820

100
90
80
70
60
50
40
30
20
10

0

Reduce Completion Graph - close

0 5 10 15 20 25 30 35 40 45 50

100
90
80
70
60
50
40
30
20
10

0

copy

sort

reduce

Go back to JobTracker

This is Apache Hadoop release 0.20.205

Hadoop job_201203041905_0001 on ip-10-203-30-146
User: hadoop
Job Name: PigLatin:DefaultJobName
Job File:
hdfs://10.203.30.146:9000/mnt/var/lib/hadoop/tmp/mapred/staging/hadoop/.staging/job_201203041905_0001/job.xml
Submit Host: ip-10-203-30-146.ec2.internal
Submit Host Address: 10.203.30.146
Job-ACLs: All users are allowed
Job Setup: Successful
Status: Running
Started at: Sun Mar 04 19:08:29 UTC 2012
Running for: 3hrs, 52mins, 51sec
Job Cleanup: Pending

Kind % Complete Num Tasks Pending Running Complete Killed Failed/Killed
Task Attempts

map 100.00% 15816 0 0 15816 0 0 / 18

reduce 42.35% 50 11 20 19 0 0 / 0

Counter Map Reduce Total

Job Counters

SLOTS_MILLIS_MAPS 0 0 495,799,522

Launched reduce tasks 0 0 39

Rack-local map tasks 0 0 15,834

Launched map tasks 0 0 15,834

SLOTS_MILLIS_REDUCES 0 0 250,004,109

File Output Format
Counters Bytes Written 0 0 0

File Input Format
Counters Bytes Read 0 0 0

FileSystemCounters

S3N_BYTES_READ 530,591,875,823 0 530,591,875,823

FILE_BYTES_READ 0 847,821,126 847,821,126

HDFS_BYTES_READ 5,587,893 0 5,587,893

FILE_BYTES_WRITTEN 9,616,982,133 864,512,016 10,481,494,149

HDFS_BYTES_WRITTEN 0 3,967,197,533 3,967,197,533

Map output materialized
bytes 7,311,305,131 0 7,311,305,131

Map input records 2,501,793,030 0 2,501,793,030

Reduce shuffle bytes 0 3,489,678,276 3,489,678,276

Spilled Records 465,817,710 54,940,866 520,758,576

Map output bytes 199,575,247,017 0 199,575,247,017

Hadoop job_201203041905_0001 on ip-10-203-30-146
User: hadoop
Job Name: PigLatin:DefaultJobName
Job File:
hdfs://10.203.30.146:9000/mnt/var/lib/hadoop/tmp/mapred/staging/hadoop/.staging/job_201203041905_0001/job.xml
Submit Host: ip-10-203-30-146.ec2.internal
Submit Host Address: 10.203.30.146
Job-ACLs: All users are allowed
Job Setup: Successful
Status: Running
Started at: Sun Mar 04 19:08:29 UTC 2012
Running for: 3hrs, 51mins, 19sec
Job Cleanup: Pending

Kind % Complete Num Tasks Pending Running Complete Killed Failed/Killed
Task Attempts

map 100.00% 15816 0 0 15816 0 0 / 18

reduce 37.72% 50 19 22 9 0 0 / 0

Counter Map Reduce Total

Job Counters

SLOTS_MILLIS_MAPS 0 0 495,799,522

Launched reduce tasks 0 0 31

Rack-local map tasks 0 0 15,834

Launched map tasks 0 0 15,834

SLOTS_MILLIS_REDUCES 0 0 118,328,830

File Output Format
Counters Bytes Written 0 0 0

File Input Format
Counters Bytes Read 0 0 0

FileSystemCounters

S3N_BYTES_READ 530,591,875,823 0 530,591,875,823

FILE_BYTES_READ 0 754,835,408 754,835,408

HDFS_BYTES_READ 5,587,893 0 5,587,893

FILE_BYTES_WRITTEN 9,616,982,133 850,567,984 10,467,550,117

HDFS_BYTES_WRITTEN 0 3,400,371,086 3,400,371,086

Map output materialized
bytes 7,311,305,131 0 7,311,305,131

Map input records 2,501,793,030 0 2,501,793,030

Reduce shuffle bytes 0 2,755,605,871 2,755,605,871

Spilled Records 465,817,710 26,163,538 491,981,248

Map output bytes 199,575,247,017 0 199,575,247,017

…Next Batch of Reducers started

Some of the 19 reducers have finished…

Next Batch of 19 reducers

3h 52min 3h 51min

Hadoop job_201203041905_0001 on ip-10-203-30-146
User: hadoop
Job Name: PigLatin:DefaultJobName
Job File:
hdfs://10.203.30.146:9000/mnt/var/lib/hadoop/tmp/mapred/staging/hadoop/.staging/job_201203041905_0001/job.xml
Submit Host: ip-10-203-30-146.ec2.internal
Submit Host Address: 10.203.30.146
Job-ACLs: All users are allowed
Job Setup: Successful
Status: Running
Started at: Sun Mar 04 19:08:29 UTC 2012
Running for: 4hrs, 18mins, 22sec
Job Cleanup: Pending
Black-listed TaskTrackers: 1

Kind % Complete Num Tasks Pending Running Complete Killed Failed/Killed
Task Attempts

map 99.88% 15816 2638 30 13148 0 15 / 3337

reduce 48.42% 50 15 16 19 0 0 / 0

Counter Map Reduce Total

Job Counters

SLOTS_MILLIS_MAPS 0 0 520,840,319

Launched reduce tasks 0 0 39

Rack-local map tasks 0 0 16,530

Launched map tasks 0 0 16,530

SLOTS_MILLIS_REDUCES 0 0 250,004,109

File Output Format
Counters Bytes Written 0 0 0

File Input Format
Counters Bytes Read 0 0 0

FileSystemCounters

S3N_BYTES_READ 441,403,920,262 0 441,403,920,262

FILE_BYTES_READ 0 847,821,126 847,821,126

HDFS_BYTES_READ 4,650,415 0 4,650,415

FILE_BYTES_WRITTEN 8,001,044,946 1,403,559,708 9,404,604,654

HDFS_BYTES_WRITTEN 0 3,967,197,533 3,967,197,533

Map output materialized
bytes 6,082,144,011 0 6,082,144,011

Map input records 2,078,999,323 0 2,078,999,323

Reduce shuffle bytes 0 5,045,223,844 5,045,223,844

Spilled Records 389,005,699 54,940,866 443,946,565

Map output bytes 165,741,477,602 0 165,741,477,602

Map-Reduce
Framework

CPU time spent (ms) 137,792,860 20,822,400 158,615,260

Total committed heap usage
(bytes) 4,923,491,106,816 9,237,303,296 4,932,728,410,112

Combine input records 2,077,586,535 308,803,126 2,386,389,661

SPLIT_RAW_BYTES 4,650,415 0 4,650,415

Reduce input records 0 54,940,866 54,940,866

Reduce input groups 0 44,756,179 44,756,179

Combine output records 389,005,699 83,268,384 472,274,083

Physical memory (bytes)
snapshot 4,811,045,253,120 11,161,067,520 4,822,206,320,640

Reduce output records 0 44,756,179 44,756,179

Virtual memory (bytes)
snapshot 7,488,476,110,848 20,624,834,560 7,509,100,945,408

Map output records 2,079,000,720 0 2,079,000,720

Map Completion Graph - close

0 1582 3164 4746 6328 7910 9492 11074 12656 14238 15820

100
90
80
70
60
50
40
30
20
10

0

Reduce Completion Graph - close

0 5 10 15 20 25 30 35 40 45 50

100
90
80
70
60
50
40
30
20
10

0

copy

sort

reduce

Go back to JobTracker

Several servers failed: “fetch error”.
Their map tasks need to be

rerun. All reducers
are waiting….

4h 18min

Hadoop job_201203041905_0001 on ip-10-203-30-146
User: hadoop
Job Name: PigLatin:DefaultJobName
Job File:
hdfs://10.203.30.146:9000/mnt/var/lib/hadoop/tmp/mapred/staging/hadoop/.staging/job_201203041905_0001/job.xml
Submit Host: ip-10-203-30-146.ec2.internal
Submit Host Address: 10.203.30.146
Job-ACLs: All users are allowed
Job Setup: Successful
Status: Running
Started at: Sun Mar 04 19:08:29 UTC 2012
Running for: 4hrs, 18mins, 22sec
Job Cleanup: Pending
Black-listed TaskTrackers: 1

Kind % Complete Num Tasks Pending Running Complete Killed Failed/Killed
Task Attempts

map 99.88% 15816 2638 30 13148 0 15 / 3337

reduce 48.42% 50 15 16 19 0 0 / 0

Counter Map Reduce Total

Job Counters

SLOTS_MILLIS_MAPS 0 0 520,840,319

Launched reduce tasks 0 0 39

Rack-local map tasks 0 0 16,530

Launched map tasks 0 0 16,530

SLOTS_MILLIS_REDUCES 0 0 250,004,109

File Output Format
Counters Bytes Written 0 0 0

File Input Format
Counters Bytes Read 0 0 0

FileSystemCounters

S3N_BYTES_READ 441,403,920,262 0 441,403,920,262

FILE_BYTES_READ 0 847,821,126 847,821,126

HDFS_BYTES_READ 4,650,415 0 4,650,415

FILE_BYTES_WRITTEN 8,001,044,946 1,403,559,708 9,404,604,654

HDFS_BYTES_WRITTEN 0 3,967,197,533 3,967,197,533

Map output materialized
bytes 6,082,144,011 0 6,082,144,011

Map input records 2,078,999,323 0 2,078,999,323

Reduce shuffle bytes 0 5,045,223,844 5,045,223,844

Spilled Records 389,005,699 54,940,866 443,946,565

Map output bytes 165,741,477,602 0 165,741,477,602

Map-Reduce
Framework

CPU time spent (ms) 137,792,860 20,822,400 158,615,260

Total committed heap usage
(bytes) 4,923,491,106,816 9,237,303,296 4,932,728,410,112

Combine input records 2,077,586,535 308,803,126 2,386,389,661

SPLIT_RAW_BYTES 4,650,415 0 4,650,415

Reduce input records 0 54,940,866 54,940,866

Reduce input groups 0 44,756,179 44,756,179

Combine output records 389,005,699 83,268,384 472,274,083

Physical memory (bytes)
snapshot 4,811,045,253,120 11,161,067,520 4,822,206,320,640

Reduce output records 0 44,756,179 44,756,179

Virtual memory (bytes)
snapshot 7,488,476,110,848 20,624,834,560 7,509,100,945,408

Map output records 2,079,000,720 0 2,079,000,720

Map Completion Graph - close

0 1582 3164 4746 6328 7910 9492 11074 12656 14238 15820

100
90
80
70
60
50
40
30
20
10

0

Reduce Completion Graph - close

0 5 10 15 20 25 30 35 40 45 50

100
90
80
70
60
50
40
30
20
10

0

copy

sort

reduce

Go back to JobTracker

Several servers failed: “fetch error”.
Their map tasks need to be

rerun. All reducers
are waiting….

4h 18min

Why did we lose some reducers?

Hadoop job_201203041905_0001 on ip-10-203-30-146
User: hadoop
Job Name: PigLatin:DefaultJobName
Job File:
hdfs://10.203.30.146:9000/mnt/var/lib/hadoop/tmp/mapred/staging/hadoop/.staging/job_201203041905_0001/job.xml
Submit Host: ip-10-203-30-146.ec2.internal
Submit Host Address: 10.203.30.146
Job-ACLs: All users are allowed
Job Setup: Successful
Status: Running
Started at: Sun Mar 04 19:08:29 UTC 2012
Running for: 4hrs, 18mins, 22sec
Job Cleanup: Pending
Black-listed TaskTrackers: 1

Kind % Complete Num Tasks Pending Running Complete Killed Failed/Killed
Task Attempts

map 99.88% 15816 2638 30 13148 0 15 / 3337

reduce 48.42% 50 15 16 19 0 0 / 0

Counter Map Reduce Total

Job Counters

SLOTS_MILLIS_MAPS 0 0 520,840,319

Launched reduce tasks 0 0 39

Rack-local map tasks 0 0 16,530

Launched map tasks 0 0 16,530

SLOTS_MILLIS_REDUCES 0 0 250,004,109

File Output Format
Counters Bytes Written 0 0 0

File Input Format
Counters Bytes Read 0 0 0

FileSystemCounters

S3N_BYTES_READ 441,403,920,262 0 441,403,920,262

FILE_BYTES_READ 0 847,821,126 847,821,126

HDFS_BYTES_READ 4,650,415 0 4,650,415

FILE_BYTES_WRITTEN 8,001,044,946 1,403,559,708 9,404,604,654

HDFS_BYTES_WRITTEN 0 3,967,197,533 3,967,197,533

Map output materialized
bytes 6,082,144,011 0 6,082,144,011

Map input records 2,078,999,323 0 2,078,999,323

Reduce shuffle bytes 0 5,045,223,844 5,045,223,844

Spilled Records 389,005,699 54,940,866 443,946,565

Map output bytes 165,741,477,602 0 165,741,477,602

Map-Reduce
Framework

CPU time spent (ms) 137,792,860 20,822,400 158,615,260

Total committed heap usage
(bytes) 4,923,491,106,816 9,237,303,296 4,932,728,410,112

Combine input records 2,077,586,535 308,803,126 2,386,389,661

SPLIT_RAW_BYTES 4,650,415 0 4,650,415

Reduce input records 0 54,940,866 54,940,866

Reduce input groups 0 44,756,179 44,756,179

Combine output records 389,005,699 83,268,384 472,274,083

Physical memory (bytes)
snapshot 4,811,045,253,120 11,161,067,520 4,822,206,320,640

Reduce output records 0 44,756,179 44,756,179

Virtual memory (bytes)
snapshot 7,488,476,110,848 20,624,834,560 7,509,100,945,408

Map output records 2,079,000,720 0 2,079,000,720

Map Completion Graph - close

0 1582 3164 4746 6328 7910 9492 11074 12656 14238 15820

100
90
80
70
60
50
40
30
20
10

0

Reduce Completion Graph - close

0 5 10 15 20 25 30 35 40 45 50

100
90
80
70
60
50
40
30
20
10

0

copy

sort

reduce

Go back to JobTracker

Hadoop job_201203041905_0001 on ip-10-203-30-146
User: hadoop
Job Name: PigLatin:DefaultJobName
Job File:
hdfs://10.203.30.146:9000/mnt/var/lib/hadoop/tmp/mapred/staging/hadoop/.staging/job_201203041905_0001/job.xml
Submit Host: ip-10-203-30-146.ec2.internal
Submit Host Address: 10.203.30.146
Job-ACLs: All users are allowed
Job Setup: Successful
Status: Running
Started at: Sun Mar 04 19:08:29 UTC 2012
Running for: 7hrs, 10mins, 54sec
Job Cleanup: Pending
Black-listed TaskTrackers: 3

Kind % Complete Num Tasks Pending Running Complete Killed Failed/Killed
Task Attempts

map 100.00% 15816 0 0 15816 0 26 / 5968

reduce 94.15% 50 0 6 44 0 0 / 8

Counter Map Reduce Total

Job Counters

SLOTS_MILLIS_MAPS 0 0 676,845,552

Launched reduce tasks 0 0 62

Rack-local map tasks 0 0 21,810

Launched map tasks 0 0 21,810

SLOTS_MILLIS_REDUCES 0 0 390,018,556

File Output Format
Counters Bytes Written 0 0 0

File Input Format
Counters Bytes Read 0 0 0

FileSystemCounters

S3N_BYTES_READ 530,591,952,796 0 530,591,952,796

FILE_BYTES_READ 0 1,921,632,609 1,921,632,609

HDFS_BYTES_READ 5,587,893 0 5,587,893

FILE_BYTES_WRITTEN 9,616,982,133 2,051,943,740 11,668,925,873

HDFS_BYTES_WRITTEN 0 9,411,137,927 9,411,137,927

Map output materialized
bytes 7,311,305,131 0 7,311,305,131

Map input records 2,501,793,030 0 2,501,793,030

Reduce shuffle bytes 0 7,226,095,915 7,226,095,915

Spilled Records 465,817,710 122,997,587 588,815,297

Map output bytes 199,575,247,017 0 199,575,247,017

Map-Reduce
Framework

CPU time spent (ms) 165,059,320 36,329,450 201,388,770

Total committed heap usage
(bytes) 5,920,284,372,992 15,076,560,896 5,935,360,933,888

Combine input records 2,501,793,030 437,117,972 2,938,911,002

SPLIT_RAW_BYTES 5,587,893 0 5,587,893

Reduce input records 0 126,918,315 126,918,315

Reduce input groups 0 106,505,013 106,505,013

Combine output records 465,817,710 117,266,617 583,084,327

Physical memory (bytes)
snapshot 5,781,194,698,752 17,890,435,072 5,799,085,133,824

Reduce output records 0 106,505,011 106,505,011

Virtual memory (bytes)
snapshot 8,999,333,040,128 29,498,195,968 9,028,831,236,096

Map output records 2,501,793,030 0 2,501,793,030

Map Completion Graph - close

0 1582 3164 4746 6328 7910 9492 11074 12656 14238 15820

100
90
80
70
60
50
40
30
20
10

0

Reduce Completion Graph - close

0 5 10 15 20 25 30 35 40 45 50

100
90
80
70
60
50
40
30
20
10

0

copy

sort

reduce

Go back to JobTracker

Several servers failed: “fetch error”.
Their map tasks need to be

rerun. All reducers
are waiting….

Mappers finished,
reducers resumed.

7h 10min 4h 18min

Why did we lose some reducers?

0 5 10 15 20 25 30 35 40 45 50

100
90
80
70
60
50
40
30
20
10

0

copy

sort

reduce

Go back to JobTracker

This is Apache Hadoop release 0.20.205

Hadoop job_201203041905_0001 on ip-10-203-30-146
User: hadoop
Job Name: PigLatin:DefaultJobName
Job File:
hdfs://10.203.30.146:9000/mnt/var/lib/hadoop/tmp/mapred/staging/hadoop/.staging/job_201203041905_0001/job.xml
Submit Host: ip-10-203-30-146.ec2.internal
Submit Host Address: 10.203.30.146
Job-ACLs: All users are allowed
Job Setup: Successful
Status: Succeeded
Started at: Sun Mar 04 19:08:29 UTC 2012
Finished at: Mon Mar 05 02:28:39 UTC 2012
Finished in: 7hrs, 20mins, 10sec
Job Cleanup: Successful
Black-listed TaskTrackers: 3

Kind % Complete Num Tasks Pending Running Complete Killed Failed/Killed
Task Attempts

map 100.00% 15816 0 0 15816 0 26 / 5968

reduce 100.00% 50 0 0 50 0 0 / 14

Counter Map Reduce Total

Job Counters

SLOTS_MILLIS_MAPS 0 0 676,850,579

Launched reduce tasks 0 0 64

Total time spent by all reduces
waiting after reserving slots
(ms)

0 0 0

Rack-local map tasks 0 0 21,810

Total time spent by all maps
waiting after reserving slots
(ms)

0 0 0

Launched map tasks 0 0 21,810

SLOTS_MILLIS_REDUCES 0 0 397,936,187

File Output Format
Counters Bytes Written 0 0 0

File Input Format
Counters Bytes Read 0 0 0

FileSystemCounters

S3N_BYTES_READ 530,591,952,796 0 530,591,952,796

FILE_BYTES_READ 0 2,112,335,501 2,112,335,501

HDFS_BYTES_READ 5,587,893 0 5,587,893

FILE_BYTES_WRITTEN 9,616,982,133 2,119,564,091 11,736,546,224

HDFS_BYTES_WRITTEN 0 10,432,880,333 10,432,880,333

Success! 7hrs, 20mins.

7h 20min

Parallel DBMS vs MapReduce

Parallel DBMS
•  Relational data model and schema
•  Declarative query language: SQL
•  Many pre-defined operators: relational algebra
•  Can easily combine operators into complex queries
•  Query optimization, indexing, and physical tuning
•  Streams data from one operator to the next without

blocking
•  Can do more than just run queries: Data management

–  Updates and transactions, constraints, security, etc.

149 CSEP 544 -- Winter 2014

Parallel DBMS vs MapReduce

MapReduce
•  Data model is a file with key-value pairs!
•  No need to “load data” before processing it
•  Easy to write user-defined operators
•  Can easily add nodes to the cluster (no need to even

restart)
•  Uses less memory since processes one key-group at a

time
•  Intra-query fault-tolerance thanks to results on disk
•  Intermediate results on disk also facilitate scheduling
•  Handles adverse conditions: e.g., stragglers
•  Arguably more scalable… but also needs more nodes!

150 CSEP 544 -- Winter 2014

Pig Latin – Reference only
(will not discuss in class)

CSEP 544 -- Winter 2014 151

- 152 -

What is Pig?

•  An engine for executing programs on top of Hadoop
•  It provides a language, Pig Latin, to specify these programs
•  An Apache open source project

http://hadoop.apache.org/pig/

Credit: Alan Gates, Yahoo!

- 153 -

Map Reduce Illustrated

map

reduce

map

reduce

Credit: Alan Gates, Yahoo!

- 154 -

Map Reduce Illustrated

map

reduce

map

reduce

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?

Credit: Alan Gates, Yahoo!

- 155 -

Map Reduce Illustrated

map

reduce

map

reduce

Romeo, Romeo, wherefore art thou Romeo?

Romeo, 1
Romeo, 1
wherefore, 1
art, 1
thou, 1
Romeo, 1

What, art thou hurt?

What, 1
art, 1
thou, 1
hurt, 1

Credit: Alan Gates, Yahoo!

- 156 -

Map Reduce Illustrated

map

reduce

map

reduce

Romeo, Romeo, wherefore art thou Romeo?

Romeo, 1
Romeo, 1
wherefore, 1
art, 1
thou, 1
Romeo, 1

art, (1, 1)
hurt (1),
thou (1, 1)

What, art thou hurt?

What, 1
art, 1
thou, 1
hurt, 1

Romeo, (1, 1, 1)
wherefore, (1)
what, (1)

Credit: Alan Gates, Yahoo!

- 157 -

Map Reduce Illustrated

map

reduce

map

reduce

Romeo, Romeo, wherefore art thou Romeo?

Romeo, 1
Romeo, 1
wherefore, 1
art, 1
thou, 1
Romeo, 1

art, (1, 1)
hurt (1),
thou (1, 1)

art, 2
hurt, 1
thou, 2

What, art thou hurt?

What, 1
art, 1
thou, 1
hurt, 1

Romeo, (1, 1, 1)
wherefore, (1)
what, (1)

Romeo, 3
wherefore, 1
what, 1

Credit: Alan Gates, Yahoo!

- 158 -

Why use Pig?

 Suppose you have
user data in one
file, website data in
another, and you
need to find the top
5 most visited sites
by users aged 18 -
25.

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Credit: Alan Gates, Yahoo!

- 159 -

In Map-Reduce
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.KeyValueTextInputFormat;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.RecordReader;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.SequenceFileInputFormat;
import org.apache.hadoop.mapred.SequenceFileOutputFormat;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.jobcontrol.Job;
import org.apache.hadoop.mapred.jobcontrol.JobControl;
import org.apache.hadoop.mapred.lib.IdentityMapper;

public class MRExample {
 public static class LoadPages extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, Text> {

 public void map(LongWritable k, Text val,
 OutputCollector<Text, Text> oc,
 Reporter reporter) throws IOException {
 // Pull the key out
 String line = val.toString();
 int firstComma = line.indexOf(',');
 String key = line.substring(0, firstComma);
 String value = line.substring(firstComma + 1);
 Text outKey = new Text(key);
 // Prepend an index to the value so we know which file
 // it came from.
 Text outVal = new Text("1" + value);
 oc.collect(outKey, outVal);
 }
 }
 public static class LoadAndFilterUsers extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, Text> {

 public void map(LongWritable k, Text val,
 OutputCollector<Text, Text> oc,
 Reporter reporter) throws IOException {
 // Pull the key out
 String line = val.toString();
 int firstComma = line.indexOf(',');
 String value = line.substring(firstComma + 1);
 int age = Integer.parseInt(value);
 if (age < 18 || age > 25) return;
 String key = line.substring(0, firstComma);
 Text outKey = new Text(key);
 // Prepend an index to the value so we know which file
 // it came from.
 Text outVal = new Text("2" + value);
 oc.collect(outKey, outVal);
 }
 }
 public static class Join extends MapReduceBase
 implements Reducer<Text, Text, Text, Text> {

 public void reduce(Text key,
 Iterator<Text> iter,
 OutputCollector<Text, Text> oc,
 Reporter reporter) throws IOException {
 // For each value, figure out which file it's from and
store it
 // accordingly.
 List<String> first = new ArrayList<String>();
 List<String> second = new ArrayList<String>();

 while (iter.hasNext()) {
 Text t = iter.next();
 String value = t.toString();
 if (value.charAt(0) == '1')
first.add(value.substring(1));
 else second.add(value.substring(1));

 reporter.setStatus("OK");
 }

 // Do the cross product and collect the values
 for (String s1 : first) {
 for (String s2 : second) {
 String outval = key + "," + s1 + "," + s2;
 oc.collect(null, new Text(outval));
 reporter.setStatus("OK");
 }
 }
 }
 }
 public static class LoadJoined extends MapReduceBase
 implements Mapper<Text, Text, Text, LongWritable> {

 public void map(
 Text k,
 Text val,
 OutputCollector<Text, LongWritable> oc,
 Reporter reporter) throws IOException {
 // Find the url
 String line = val.toString();
 int firstComma = line.indexOf(',');
 int secondComma = line.indexOf(',', firstComma);
 String key = line.substring(firstComma, secondComma);
 // drop the rest of the record, I don't need it anymore,
 // just pass a 1 for the combiner/reducer to sum instead.
 Text outKey = new Text(key);
 oc.collect(outKey, new LongWritable(1L));
 }
 }
 public static class ReduceUrls extends MapReduceBase
 implements Reducer<Text, LongWritable, WritableComparable,
Writable> {

 public void reduce(
 Text key,
 Iterator<LongWritable> iter,
 OutputCollector<WritableComparable, Writable> oc,
 Reporter reporter) throws IOException {
 // Add up all the values we see

 long sum = 0;
 while (iter.hasNext()) {
 sum += iter.next().get();
 reporter.setStatus("OK");
 }

 oc.collect(key, new LongWritable(sum));
 }
 }
 public static class LoadClicks extends MapReduceBase
 implements Mapper<WritableComparable, Writable, LongWritable,
Text> {

 public void map(
 WritableComparable key,
 Writable val,
 OutputCollector<LongWritable, Text> oc,
 Reporter reporter) throws IOException {
 oc.collect((LongWritable)val, (Text)key);
 }
 }
 public static class LimitClicks extends MapReduceBase
 implements Reducer<LongWritable, Text, LongWritable, Text> {

 int count = 0;
 public void reduce(
 LongWritable key,
 Iterator<Text> iter,
 OutputCollector<LongWritable, Text> oc,
 Reporter reporter) throws IOException {

 // Only output the first 100 records
 while (count < 100 && iter.hasNext()) {
 oc.collect(key, iter.next());
 count++;
 }
 }
 }
 public static void main(String[] args) throws IOException {
 JobConf lp = new JobConf(MRExample.class);
 lp.setJobName("Load Pages");
 lp.setInputFormat(TextInputFormat.class);

 lp.setOutputKeyClass(Text.class);
 lp.setOutputValueClass(Text.class);
 lp.setMapperClass(LoadPages.class);
 FileInputFormat.addInputPath(lp, new
Path("/user/gates/pages"));
 FileOutputFormat.setOutputPath(lp,
 new Path("/user/gates/tmp/indexed_pages"));
 lp.setNumReduceTasks(0);
 Job loadPages = new Job(lp);

 JobConf lfu = new JobConf(MRExample.class);
 lfu.setJobName("Load and Filter Users");
 lfu.setInputFormat(TextInputFormat.class);
 lfu.setOutputKeyClass(Text.class);
 lfu.setOutputValueClass(Text.class);
 lfu.setMapperClass(LoadAndFilterUsers.class);
 FileInputFormat.addInputPath(lfu, new
Path("/user/gates/users"));
 FileOutputFormat.setOutputPath(lfu,
 new Path("/user/gates/tmp/filtered_users"));
 lfu.setNumReduceTasks(0);
 Job loadUsers = new Job(lfu);

 JobConf join = new JobConf(MRExample.class);
 join.setJobName("Join Users and Pages");
 join.setInputFormat(KeyValueTextInputFormat.class);
 join.setOutputKeyClass(Text.class);
 join.setOutputValueClass(Text.class);
 join.setMapperClass(IdentityMapper.class);
 join.setReducerClass(Join.class);
 FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/indexed_pages"));
 FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/filtered_users"));
 FileOutputFormat.setOutputPath(join, new
Path("/user/gates/tmp/joined"));
 join.setNumReduceTasks(50);
 Job joinJob = new Job(join);
 joinJob.addDependingJob(loadPages);
 joinJob.addDependingJob(loadUsers);

 JobConf group = new JobConf(MRExample.class);
 group.setJobName("Group URLs");
 group.setInputFormat(KeyValueTextInputFormat.class);
 group.setOutputKeyClass(Text.class);
 group.setOutputValueClass(LongWritable.class);
 group.setOutputFormat(SequenceFileOutputFormat.class);
 group.setMapperClass(LoadJoined.class);
 group.setCombinerClass(ReduceUrls.class);
 group.setReducerClass(ReduceUrls.class);
 FileInputFormat.addInputPath(group, new
Path("/user/gates/tmp/joined"));
 FileOutputFormat.setOutputPath(group, new
Path("/user/gates/tmp/grouped"));
 group.setNumReduceTasks(50);
 Job groupJob = new Job(group);
 groupJob.addDependingJob(joinJob);

 JobConf top100 = new JobConf(MRExample.class);
 top100.setJobName("Top 100 sites");
 top100.setInputFormat(SequenceFileInputFormat.class);
 top100.setOutputKeyClass(LongWritable.class);
 top100.setOutputValueClass(Text.class);
 top100.setOutputFormat(SequenceFileOutputFormat.class);
 top100.setMapperClass(LoadClicks.class);
 top100.setCombinerClass(LimitClicks.class);
 top100.setReducerClass(LimitClicks.class);
 FileInputFormat.addInputPath(top100, new
Path("/user/gates/tmp/grouped"));
 FileOutputFormat.setOutputPath(top100, new
Path("/user/gates/top100sitesforusers18to25"));
 top100.setNumReduceTasks(1);
 Job limit = new Job(top100);
 limit.addDependingJob(groupJob);

 JobControl jc = new JobControl("Find top 100 sites for users
18 to 25");
 jc.addJob(loadPages);
 jc.addJob(loadUsers);
 jc.addJob(joinJob);
 jc.addJob(groupJob);
 jc.addJob(limit);
 jc.run();
 }
}

170 lines of code, 4 hours to write
Credit: Alan Gates, Yahoo!

- 160 -

In Pig Latin

Users = load ‘users’ as (name, age);
Fltrd = filter Users by
 age >= 18 and age <= 25;
Pages = load ‘pages’ as (user, url);
Jnd = join Fltrd by name, Pages by user;
Grpd = group Jnd by url;
Smmd = foreach Grpd generate group,
 COUNT(Jnd) as clicks;
Srtd = order Smmd by clicks desc;
Top5 = limit Srtd 5;
store Top5 into ‘top5sites’;

9 lines of code, 15 minutes to write

Credit: Alan Gates, Yahoo!

Background: Pig system

161

Pig Latin
program

A = LOAD 'file1' AS (sid,pid,mass,px:double);
B = LOAD 'file2' AS (sid,pid,mass,px:double);
C = FILTER A BY px < 1.0;
D = JOIN C BY sid,
 B BY sid;
 STORE g INTO 'output.txt';

Ensemble of
MapReduce jobs

- 162 -

But can it fly?

Credit: Alan Gates, Yahoo!

- 163 -

Essence of Pig

•  Map-Reduce is too low a level to program, SQL too high
•  Pig Latin, a language intended to sit between the two:

–  Imperative
–  Provides standard relational transforms (join, sort, etc.)
–  Schemas are optional, used when available, can be defined at

runtime
–  User Defined Functions are first class citizens
–  Opportunities for advanced optimizer but optimizations by

programmer also possible

Credit: Alan Gates, Yahoo!

- 164 -

How It Works

Parser

Script
A = load
B = filter
C = group
D = foreach

Logical Plan
Semantic
Checks

Logical Plan
Logical
Optimizer

Logical Plan

Logical to
Physical
Translator Physical Plan

Physical
To MR
Translator

MapReduce
Launcher

Jar to
hadoop

Map-Reduce Plan

Logical Plan ≈
relational algebra

Plan standard
optimizations

Physical Plan =
physical operators
to be executed

Map-Reduce Plan =
physical operators
broken into Map,
Combine, and
Reduce stages

Credit: Alan Gates, Yahoo!

Tenzing

•  Google’s implementation of SQL
•  Supports full SQL92
•  On top of google’s Map/Reduce
•  Uses traditional query optimizer, plus

optimizations to MR
•  Widely adopted inside Google, especially

by the non-engineering community

165

Join Algorithms on Map/Reduce

•  Broadcast join

•  Hash-join

•  Skew join

•  Merge join

CSEP 544 -- Winter 2014 166

- 167 -

Fragment Replicate Join

Pages Users

Aka
“Broakdcast Join”

Credit: Alan Gates, Yahoo!

- 168 -

Fragment Replicate Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Aka
“Broakdcast Join”

Credit: Alan Gates, Yahoo!

- 169 -

Fragment Replicate Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Aka
“Broakdcast Join”

Credit: Alan Gates, Yahoo!

- 170 -

Fragment Replicate Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Map 1

Map 2

Aka
“Broakdcast Join”

Credit: Alan Gates, Yahoo!

- 171 -

Fragment Replicate Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Map 1

Map 2

Users

Users

Pages
block 1

Pages
block 2

Aka
“Broakdcast Join”

Credit: Alan Gates, Yahoo!

- 172 -

Hash Join

Pages Users

Credit: Alan Gates, Yahoo!

- 173 -

Hash Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

Credit: Alan Gates, Yahoo!

- 174 -

Hash Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

Credit: Alan Gates, Yahoo!

- 175 -

Hash Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

Map 1

User
block n

Map 2

Page
block m

Credit: Alan Gates, Yahoo!

- 176 -

Hash Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

Map 1

User
block n

Map 2

Page
block m

(1, user)

(2, name)

Credit: Alan Gates, Yahoo!

Means: it comes
from relation #1

Means: it comes
from relation #2

- 177 -

Hash Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

Map 1

User
block n

Map 2

Page
block m

Reducer 1

Reducer 2

(1, user)

(2, name)

(1, fred)
(2, fred)
(2, fred)

(1, jane)
(2, jane)
(2, jane)

Credit: Alan Gates, Yahoo!

- 178 -

Skew Join

Pages Users

Credit: Alan Gates, Yahoo!

- 179 -

Skew Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

Credit: Alan Gates, Yahoo!

- 180 -

Skew Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

Credit: Alan Gates, Yahoo!

- 181 -

Skew Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

Map 1

Pages
block n

Map 2

Users
block m

Credit: Alan Gates, Yahoo!

- 182 -

Skew Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

Map 1

Pages
block n

Map 2

Users
block m

S
P

S
P

Credit: Alan Gates, Yahoo!

- 183 -

Skew Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

Map 1

Pages
block n

Map 2

Users
block m

(1, user)

(2, name)

S
P

S
P

Credit: Alan Gates, Yahoo!

- 184 -

Skew Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

Map 1

Pages
block n

Map 2

Users
block m

Reducer 1

Reducer 2

(1, user)

(2, name)

(1, fred, p1)
(1, fred, p2)
(2, fred)

(1, fred, p3)
(1, fred, p4)
(2, fred)

S
P

S
P

Credit: Alan Gates, Yahoo!

- 185 -

Merge Join

Pages Users
aaron
 .
 .
 .
 .
 .
 .
 .
 .
zach

aaron
 .
 .
 .
 .
 .
 .
 .
 .
zach

Credit: Alan Gates, Yahoo!

- 186 -

Merge Join

Pages Users
aaron
 .
 .
 .
 .
 .
 .
 .
 .
zach

aaron
 .
 .
 .
 .
 .
 .
 .
 .
zach

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “merge”;

Credit: Alan Gates, Yahoo!

- 187 -

Merge Join

Pages Users
aaron
 .
 .
 .
 .
 .
 .
 .
 .
zach

aaron
 .
 .
 .
 .
 .
 .
 .
 .
zach

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “merge”;

Credit: Alan Gates, Yahoo!

- 188 -

Merge Join

Pages Users
aaron
 .
 .
 .
 .
 .
 .
 .
 .
zach

aaron
 .
 .
 .
 .
 .
 .
 .
 .
zach

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “merge”;

Map 1

Map 2

Users

Users

Pages

Pages

aaron…
amr

aaron
…

amy…
barb

amy
…

Credit: Alan Gates, Yahoo!

- 189 -

Multi-store script

A = load ‘users’ as (name, age, gender,
 city, state);
B = filter A by name is not null;
C1 = group B by age, gender;
D1 = foreach C1 generate group, COUNT(B);
store D into ‘bydemo’;
C2= group B by state;
D2 = foreach C2 generate group, COUNT(B);
store D2 into ‘bystate’;

load users filter nulls

group by state

group by age,
gender

apply UDFs

apply UDFs

store into
‘bystate’

store into
‘bydemo’

Credit: Alan Gates, Yahoo!

- 190 -

Multi-Store Map-Reduce Plan

map filter

local rearrange
split

local rearrange

reduce

demux package package

foreach foreach

Credit: Alan Gates, Yahoo!

Other Optimizations in Tenzing

•  Keep processes running: process pool
•  Remove reducer-side sort for hash-based

algorithms
– Note: the data must fit in main memory,

otherwise the task fails
•  Pipelining
•  Indexes

CSEP 544 -- Winter 2014 191

Final Thoughts

Challenging problems in MR jobs:

•  Skew

•  Fault tolerance

CSEP 544 -- Winter 2014 192

Skew
Balazinska, A study of Skew

Skew
Balazinska, A study of Skew

Skew
Balazinska, A study of Skew

Fault Tolerance

•  Fundamental tension:
•  Materialize after each Map and each Reduce

– This is what MR does
–  Ideal for fault tolerance
– Very poor performance

•  Pipeline between steps
– This is what Parallel DBs usually do
–  Ideal for performance
– Very poor fault tolerance

CSEP 544 -- Winter 2014 196

197

Pig Latin Mini-Tutorial

(will skip in class; please read in
order to do homework 6)

Outline

Based entirely on Pig Latin: A not-so-
foreign language for data processing,
by Olston, Reed, Srivastava, Kumar,
and Tomkins, 2008

Quiz section tomorrow: in CSE 403

(this is CSE, don’t go to EE1)
198

Pig-Latin Overview
•  Data model = loosely typed nested

relations
•  Query model = a sql-like, dataflow

language

•  Execution model:
– Option 1: run locally on your machine
– Option 2: compile into sequence of map/

reduce, run on a cluster supporting Hadoop

•  Main idea: use Opt1 to debug, Opt2 to
execute

199

Example

•  Input: a table of urls:
 (url, category, pagerank)

•  Compute the average pagerank of all
sufficiently high pageranks, for each
category

•  Return the answers only for categories
with sufficiently many such pages

200

First in SQL…

201

SELECT category, AVG(pagerank)
FROM urls
WHERE pagerank > 0.2
GROUP By category
HAVING COUNT(*) > 106

…then in Pig-Latin

202

good_urls = FILTER urls BY pagerank > 0.2
groups = GROUP good_urls BY category
big_groups = FILTER groups

 BY COUNT(good_urls) > 106

output = FOREACH big_groups GENERATE
 category, AVG(good_urls.pagerank)

Types in Pig-Latin

•  Atomic: string or number, e.g. ‘Alice’ or 55

•  Tuple: (‘Alice’, 55, ‘salesperson’)

•  Bag: {(‘Alice’, 55, ‘salesperson’),
 (‘Betty’,44, ‘manager’), …}

•  Maps: we will try not to use these

203

Types in Pig-Latin

Bags can be nested !

•  {(‘a’, {1,4,3}), (‘c’,{ }), (‘d’, {2,2,5,3,2})}

Tuple components can be referenced by
number

•  $0, $1, $2, …
204

205

Loading data

•  Input data = FILES !
– Heard that before ?

•  The LOAD command parses an input
file into a bag of records

•  Both parser (=“deserializer”) and output
type are provided by user

206

Loading data

207

queries = LOAD ‘query_log.txt’
 USING myLoad()
 AS (userID, queryString, timeStamp)

Loading data

•  USING userfuction() -- is optional
–  Default deserializer expects tab-delimited file

•  AS type – is optional
–  Default is a record with unnamed fields; refer to

them as $0, $1, …
•  The return value of LOAD is just a handle to a

bag
–  The actual reading is done in pull mode, or

parallelized

208

FOREACH

209

expanded_queries =
 FOREACH queries
 GENERATE userId, expandQuery(queryString)

expandQuery() is a UDF that produces likely expansions
Note: it returns a bag, hence expanded_queries is a nested bag

FOREACH

210

expanded_queries =
 FOREACH queries
 GENERATE userId,
 flatten(expandQuery(queryString))

Now we get a flat collection

211

FLATTEN

Note that it is NOT a first class function !
(that’s one thing I don’t like about Pig-latin)

•  First class FLATTEN:
– FLATTEN({{2,3},{5},{},{4,5,6}}) = {2,3,5,4,5,6}
– Type: {{T}} à {T}

•  Pig-latin FLATTEN
– FLATTEN({4,5,6}) = 4, 5, 6
– Type: {T} à T, T, T, …, T ?????

212

FILTER

213

real_queries = FILTER queries BY userId neq ‘bot’

Remove all queries from Web bots:

real_queries = FILTER queries
 BY NOT isBot(userId)

Better: use a complex UDF to detect Web bots:

JOIN

214

join_result = JOIN results BY queryString
 revenue BY queryString

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

join_result : {(queryString, url, position, adSlot, amount)}

215

GROUP BY

216

grouped_revenue = GROUP revenue BY queryString
query_revenues =
 FOREACH grouped_revenue
 GENERATE queryString,
 SUM(revenue.amount) AS totalRevenue

revenue: {(queryString, adSlot, amount)}

grouped_revenue: {(queryString, {(adSlot, amount)})}
query_revenues: {(queryString, totalRevenue)}

Simple Map-Reduce

217

map_result = FOREACH input
 GENERATE FLATTEN(map(*))
key_groups = GROUP map_result BY $0
output = FOREACH key_groups

 GENERATE reduce($1)

input : {(field1, field2, field3,)}

map_result : {(a1, a2, a3, . . .)}
key_groups : {(a1, {(a2, a3, . . .)})}

Co-Group

218

grouped_data =
 COGROUP results BY queryString,
 revenue BY queryString;

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

grouped_data: {(queryString, results:{(url, position)},
 revenue:{(adSlot, amount)})}

What is the output type in general ?

Co-Group

219
Is this an inner join, or an outer join ?

Co-Group

220

url_revenues = FOREACH grouped_data
 GENERATE
 FLATTEN(distributeRevenue(results, revenue));

grouped_data: {(queryString, results:{(url, position)},
 revenue:{(adSlot, amount)})}

distributeRevenue is a UDF that accepts search re-
sults and revenue information for a query string at a time,
and outputs a bag of urls and the revenue attributed to them.

Co-Group v.s. Join

221

grouped_data = COGROUP results BY queryString,
 revenue BY queryString;
join_result = FOREACH grouped_data
 GENERATE FLATTEN(results),
 FLATTEN(revenue);

grouped_data: {(queryString, results:{(url, position)},
 revenue:{(adSlot, amount)})}

Result is the same as JOIN

Asking for Output: STORE

222

STORE query_revenues INTO `myoutput'
 USING myStore();

Meaning: write query_revenues to the file ‘myoutput’

Implementation

•  Over Hadoop !
•  Parse query:

– Everything between LOAD and STORE à
one logical plan

•  Logical plan à sequence of Map/
Reduce ops

•  All statements between two
(CO)GROUPs à one Map/Reduce op

223

Implementation

224

