Lecture 4:
Query Execution

Tuesday, January 28, 2014
Announcements

• Homework 2 was due last night
• Paper review (Shapiro) was due today
• Homework 3 is posted
 – You have received a token (=$100@AWS)
 – You need to write 4 simple queries
 – Data is huge: last query ≈ 4-7 hours
 – Learn PigLatin on your own (easy)
 – Plan a lot of time for setup
Where We Are

Query execution!

• We have seen:
 – Disk organization = set of blocks (pages)
 – The buffer pool
 – How records are organized in pages
 – Indexes, in particular B+ -trees

• Today: rest of query execution, optimization
Steps of the Query Processor

1. Parse & Rewrite SQL Query
2. Select Logical Plan
3. Select Physical Plan
4. Query Execution
Steps in Query Evaluation

• **Step 0: Admission control**
 – User connects to the db with username, password
 – User sends query in text format

• **Step 1: Query parsing**
 – Parses query into an internal format
 – Performs various checks using catalog
 • Correctness, authorization, integrity constraints

• **Step 2: Query rewrite**
 – View rewriting, flattening, etc.
Continue with Query Evaluation

• **Step 3: Query optimization**
 – Find an efficient query plan for executing the query

• **A query plan is**
 – **Logical query plan**: an extended relational algebra tree
 – **Physical query plan**: with additional annotations at each node
 • Access method to use for each relation
 • Implementation to use for each relational operator
Final Step in Query Processing

- **Step 4: Query execution**
 - Each operator has several implementation algorithms

- Synchronization techniques:
 - Pipelined execution
 - Materialized relations for intermediate results

- Passing data between operators:
 - Iterator interface
 - One thread per operator
SQL Query

```
SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and
      x.price > 100 and z.city = 'Seattle'
```
Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Temporary tables T1, T2, ...

Logical Plan

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)
Logical v.s. Physical Plan

• Physical plan = Logical plan plus annotations

• Access path selection for each relation
 – Use a file scan or use an index

• Implementation choice for each operator

• Scheduling decisions for operators
Logical Query Plan

\[\Pi_{\text{sname}} \]

\[\sigma_{\text{sscity}='Seattle' \land \text{sstate}='WA' \land pno=2} \]

\[\text{sno} = \text{sno} \]

Supplier

Supply

\[\text{Supplier}\left(\text{sno, sname, scity, sstate}\right) \]
\[\text{Supply}\left(\text{sno, pno, price}\right) \]
Physical Query Plan

\[\sigma_{\text{sscity}='Seattle' \land \text{sstate}='WA' \land \text{pno}=2} \]

\[\Pi_{\text{snname}} \]

\[\text{sno} = \text{sno} \]

\[\text{Supplier(sno, sname, scity, sstate)} \]
\[\text{Supply(sno, pno, price)} \]

(On the fly)

(On the fly)

(Nested loop)

(On the fly)

(File scan)

(File scan)
Outline of the Lecture

• Physical operators: join, group-by

• Query execution: pipeline, iterator model

• Query optimization

• Database statistics
Extended Algebra Operators

- Union \cup, difference $-$
- Selection σ
- Projection Π
- Join \Join -- also: semi-join, anti-semi-join
- Rename ρ
- Duplicate elimination δ
- Grouping and aggregation γ
- Sorting τ
Sets v.s. Bags

- Sets: \{a,b,c\}, \{a,d,e,f\}, \{\}\ldots
- Bags: \{a, a, b, c\}, \{b, b, b, b, b\}, \ldots

Relational Algebra has two semantics:
- Set semantics (paper “Three languages…”)
- Bag semantics
Physical Operators

Each of the logical operators may have one or more implementations = physical operators

Will discuss several basic physical operators, with a focus on join
Logical operator:
\[
\text{Supply}(sno, pno, price) \bowtie_{\text{pno}=\text{pno}} \text{Part}(pno, pname, psize, pcolor)
\]

Propose three physical operators for the join, assuming the tables are in main memory:

1.
2.
3.
Question in Class

Logical operator:
\[
\text{Supply}(\text{sno}, \text{pno}, \text{price}) \times_{\text{pno} = \text{pno}} \text{Part}(\text{pno}, \text{pname}, \text{psize}, \text{pcolor})
\]

Propose three physical operators for the join, assuming the tables are in main memory:
1. Nested Loop Join
2. Merge join
3. Hash join
BRIEF Review of Hash Tables

Separate chaining:

A (naïve) hash function:

\[h(x) = x \mod 10 \]

Operations:

\[\text{find}(103) = \text{??} \]
\[\text{insert}(488) = \text{??} \]
BRIEF Review of Hash Tables

- \(\text{insert}(k, v) = \) inserts a key \(k \) with value \(v \)

- Many values for one key
 - Hence, duplicate \(k \)'s are OK

- \(\text{find}(k) = \) returns the list of all values \(v \) associated to the key \(k \)
The cost of an operation = total number of I/Os

Cost parameters (used both in the book and by Shapiro):

- \(B(R) \) = number of blocks for relation \(R \) (Shapiro: \(|R|\))
- \(T(R) \) = number of tuples in relation \(R \)
- \(V(R, a) \) = number of distinct values of attribute \(a \)
- \(M \) = size of main memory buffer pool, in blocks

Facts:
1. \(B(R) << T(R) \)
2. When \(a \) is a key, \(V(R, a) = T(R) \)
 - When \(a \) is not a key, \(V(R, a) << T(R) \)
Cost of an Operator

Assumption: runtime dominated by # of disk I/O’s; will ignore the main memory part of the runtime

• If R (and S) fit in main memory, then we use a main-memory algorithm
• If R (or S) does not fit in main memory, then we use an external memory algorithm
Ad-hoc Convention

• The operator *reads* the data from disk
 – Note: different from Shapiro
• The operator *does not write* the data back to disk (e.g.: pipelining)
• Thus:

 Any main memory join algorithms for $R \bowtie S$: Cost = $B(R) + B(S)$

 Any main memory grouping $\gamma(R)$: Cost = $B(R)$
Nested Loop Joins

• Tuple-based nested loop $R \bowtie S$

\begin{verbatim}
for each tuple r in R do
 for each tuple s in S do
 if r and s join then output (r,s)
\end{verbatim}

• Cost: $T(R) \times B(S)$
Examples

M = 4

• Example 1:
 – B(R) = 1000, T(R) = 10000
 – B(S) = 2, T(S) = 20
 – Cost = ?

• Example 2:
 – B(R) = 1000, T(R) = 10000
 – B(S) = 4, T(S) = 40
 – Cost = ?

Can you do better with nested loops?
Block-Based Nested-loop Join

\begin{verbatim}
for each (M-2) blocks bs of S do
 for each block br of R do
 for each tuple s in bs
 for each tuple r in br do
 if “r and s join” then
 output(r,s)
\end{verbatim}

Terminology alert: sometimes S is called S the \textit{inner} relation
Block-Based Nested-loop Join

for each (M-2) blocks bs of S do
 for each block br of R do
 for each tuple s in bs
 for each tuple r in br do
 if “r and s join” then output(r,s)

Terminology alert: sometimes S is called the inner relation
Block-Based Nested-loop Join

for each (M-2) blocks bs of S do
 for each block br of R do
 for each tuple s in bs
 for each tuple r in br do
 if “r and s join” then output(r,s)

Terminology alert: sometimes S is called S the *inner* relation.
Block Nested-loop Join

R & S

Hash table for block of S (M-2 pages)

Input buffer for R

Output buffer

Join Result
Examples

M = 4

• Example 1:
 – $B(R) = 1000$, $T(R) = 10000$
 – $B(S) = 2$, $T(S) = 20$
 – Cost = $B(S) + B(R) = 1002$

• Example 2:
 – $B(R) = 1000$, $T(R) = 10000$
 – $B(S) = 4$, $T(S) = 40$
 – Cost = $B(S) + 2B(R) = 2004$

Note: T(R) and T(S) are irrelevant here.
Cost of Block Nested-loop Join

- Read S once: cost $B(S)$
- Outer loop runs $\frac{B(S)}{(M-2)}$ times, and each time need to read R: costs $\frac{B(S)B(R)}{(M-2)}$

$$\text{Cost} = B(S) + \frac{B(S)B(R)}{(M-2)}$$
Index Based Selection

Recall IMDB; assume indexes on Movie.id, Movie.year

\[
\text{SELET} \ast \\
\text{FROM} \text{ Movie} \\
\text{WHERE id} = \text{‘12345’}
\]

B(Movie) = 10k
T(Movie) = 1M

\[
\text{SELET} \ast \\
\text{FROM} \text{ Movie} \\
\text{WHERE year} = \text{‘1995’}
\]

What is your estimate of the I/O cost?

CSEP 544 -- Winter 2014
Index Based Selection

Selection on equality: \(\sigma_{a=v}(R) \)

- **Clustered** index on a: cost ?

- **Unclustered** index: cost ?
Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- **Clustered** index on a: cost $B(R)/V(R,a)$

- **Unclustered** index: cost $T(R)/V(R,a)$
Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- **Clustered** index on a: cost $B(R)/V(R,a)$
- **Unclustered** index: cost $T(R)/V(R,a)$

Note: we assume that the cost of reading the index = 0

Why?
Index Based Selection

- Example:
 - Table scan:
 - \(B(R) = 10k \)
 - \(T(R) = 1M \)
 - Index based selection:
 - If index is clustered: \(\frac{B(R)}{V(R,a)} = 100 \) I/Os
 - If index is unclustered: \(\frac{T(R)}{V(R,a)} = 10000 \) I/Os

\[\text{cost of } \sigma_{a=v}(R) = ? \]

Rule of thumb:
don’t build unclustered indexes when \(V(R,a) \) is small!
Index Based Join

• $R \Join S$
• Assume S has an index on the join attribute

\begin{verbatim}
for each tuple r in R do
 lookup the tuple(s) s in S using the index
 output (r,s)
\end{verbatim}
Index Based Join

Cost:

• If index is clustered:
• If unclustered:
Index Based Join

Cost:

- If index is clustered: $B(R) + T(R)B(S)/V(S,a)$
- If unclustered: $B(R) + T(R)T(S)/V(S,a)$
Operations on Very Large Tables

• Compute $R \bowtie S$ when each is larger than main memory

• Two methods:
 – Partitioned hash join (many variants)
 – Merge-join

• Similar for grouping
External Sorting

• Problem:
• Sort a file of size B with memory M
• Where we need this:
 – ORDER BY in SQL queries
 – Several physical operators
 – Bulk loading of B+-tree indexes.
• Will discuss only 2-pass sorting, when B < M²
Basic Terminology

• A run in a sequence is an increasing subsequence

• What are the runs?

2, 4, 99, 103, 88, 77, 3, 79, 100, 2, 50
External Merge-Sort: Step 1

- Phase one: load M bytes in memory, sort

Runs of length M bytes

Can increase to length 2M using “replacement selection”
Basic Terminology

• Merging multiple runs to produce a longer run:
 0, 14, 33, 88, 92, 192, 322
 2, 4, 7, 43, 78, 103, 523
 1, 6, 9, 12, 33, 52, 88, 320

Output:
 0, 1, 2, 4, 6, 7, ?
External Merge-Sort: Step 2

- Merge $M - 1$ runs into a new run
- Result: runs of length M ($M - 1) \approx M^2$

If $B \leq M^2$ then we are done.
Cost of External Merge Sort

• \(\text{Read} + \text{write} + \text{read} = 3B(R) \)

• Assumption: \(B(R) \leq M^2 \)
Group-by

Group-by: $\gamma_{a, \text{sum}(b)}(R)$

- Idea: do a two step merge sort, but change one of the steps

- Question in class: which step needs to be changed and how?

Cost = $3B(R)$
Assumption: $B(\delta(R)) \leq M^2$
Merge-Join

Join R \(\bowtie \) S

• How?....
Merge-Join

Join R △ S

• Step 1a: initial runs for R
• Step 1b: initial runs for S
• Step 2: merge and join
Merge-Join

\[M_1 = \frac{B(R)}{M} \text{ runs for } R \]
\[M_2 = \frac{B(S)}{M} \text{ runs for } S \]

Merge-join \(M_1 + M_2 \) runs;
need \(M_1 + M_2 \leq M \)
Partitioned Hash Algorithms

Idea:

• If $B(R) > M$, then partition it into smaller files: $R_1, R_2, R_3, \ldots, R_k$

• Assuming $B(R_1)=B(R_2)=\ldots=B(R_k)$, we have $B(R_i) = B(R)/k$

• Goal: each R_i should fit in main memory: $B(R_i) \leq M$

How big can k be?
Partitioned Hash Algorithms

- Idea: partition a relation R into M-1 buckets, on disk
- Each bucket has size approx. $B(R)/(M-1) \approx B(R)/M$

Assumption: $B(R)/M \leq M$, i.e. $B(R) \leq M^2$
Grouping

• $\gamma(R) = \text{grouping and aggregation}$
• Step 1. Partition R into buckets
• Step 2. Apply γ to each bucket (may read in main memory)

• Cost: $3B(R)$
• Assumption: $B(R) \leq M^2$
Grace-Join

Note: grace-join is also called \textit{partitioned hash-join}
Grace-Join

\(R \otimes S \)

- **Step 1:**
 - Hash \(S \) into \(M \) buckets
 - Send all buckets to disk

- **Step 2**
 - Hash \(R \) into \(M \) buckets
 - Send all buckets to disk

- **Step 3**
 - Join every pair of buckets

Note: grace-join is also called partitioned hash-join
Grace-Join

- Partition both relations using hash fn h: R tuples in partition i will only match S tuples in partition i.

![Diagram of Grace-Join process]
Grace-Join

- Partition both relations using hash fn \(h \): R tuples in partition \(i \) will only match S tuples in partition \(i \).

- Read in a partition of R, hash it using \(h_2 (\neq h) \). Scan matching partition of S, search for matches.
Grace Join

• Cost: $3B(R) + 3B(S)$
• Assumption: $\min(B(R), B(S)) \leq M^2$
Hybrid Hash Join Algorithm

• How does it work?
Hybrid Hash Join Algorithm

• Partition S into k buckets
 t buckets S_1, \ldots, S_t stay in memory
 k-t buckets S_{t+1}, \ldots, S_k to disk

• Partition R into k buckets
 – First t buckets join immediately with S
 – Rest k-t buckets go to disk

• Finally, join k-t pairs of buckets:
 $(R_{t+1}, S_{t+1}), (R_{t+2}, S_{t+2}), \ldots, (R_k, S_k)$
Hybrid Hash Join Algorithm

- Partition S into k buckets
 - t buckets $S_1, ..., S_t$ stay in memory
 - $k-t$ buckets $S_{t+1}, ..., S_k$ go to disk
- Partition R into k buckets
 - First t buckets join immediately with S
 - Rest $k-t$ buckets go to disk
- Finally, join $k-t$ pairs of buckets:
 $$(R_{t+1}, S_{t+1}), (R_{t+2}, S_{t+2}), \ldots, (R_k, S_k)$$

Shapiro’s notation:
- $1/(B+1) = t/k$ in main memory
- $B/(B+1) = (k-t)/k$ go to disk
Hybrid Hash Join Algorithm

Original Relation

Disk

INPUT

B main memory buffers

Partitions

Disk

h

1

2

k

t

t+1

t+1

k
Hybrid Join Algorithm

• How to choose k and t ?
 – Choose k large but s.t. $k \leq M$
 – Choose t/k large but s.t. $t/k \cdot B(S) \leq M$
 – Moreover: $t/k \cdot B(S) + k-t \leq M$

• Assuming $t/k \cdot B(S) >> k-t$: $t/k = M/B(S)$
Hybrid Join Algorithm

Cost of Hybrid Join:

- **Grace join**: $3B(R) + 3B(S)$
- **Hybrid join**:
 - Saves 2 I/Os for $\frac{t}{k}$ fraction of buckets
 - Saves $2\frac{t}{k}(B(R) + B(S))$ I/Os
 - Cost:
 $$(3-2\frac{t}{k})(B(R) + B(S)) = (3-2\frac{M}{B(S)})(B(R) + B(S))$$
Hybrid Join Algorithm

• Question in class: what is the advantage of the hybrid algorithm?
Summary of External Join Algorithms

• Block Nested Loop: $B(S) + B(R) \times B(S)/M$

• Index Join: $B(R) + T(R)B(S)/V(S,a)$

• Partitioned Hash: $3B(R)+3B(S)$;
 $- \min(B(R),B(S)) \leq M^2$

• Merge Join: $3B(R)+3B(S)$
 $- B(R)+B(S) \leq M^2$
Other Operators

- Selection, projection
- Duplicate elimination
- Semi-join
- Anti-semijoin
Selections, Projections

- Selection = easy, check condition on each tuple at a time

- Projection = easy (assuming no duplicate elimination), remove extraneous attributes from each tuple
Duplicate Elimination IS
Group By

Duplicate elimination $\delta(R)$ is \textit{the same} as group by $\gamma(R)$ WHY ???

- Hash table in main memory

- Cost: $B(R)$
- Assumption: $B(\delta(R)) \leq M$
Semijoin

\[R \bowtie_C S = \Pi_{A_1, \ldots, A_n} (R \bowtie_C S) \]

- Where \(A_1, \ldots, A_n \) are the attributes in \(R \)

Formally, \(R \bowtie_C S \) means this: retain from \(R \) only those tuples that have some matching tuple in \(S \)
- Duplicates in \(R \) are preserved
- Duplicates in \(S \) don’t matter
Semijoins in Distributed Databases

Employee ⨝_{SSN=EmpSSN} (σ_{age>71} (Dependent))

Assumptions
- Very few dependents have age > 71.
- “Stuff” is big.

Task: compute the query with minimum amount of data transfer
Semijoins in Distributed Databases

Employee ⨝_{SSN=EmpSSN} (σ_{age>71} (Dependent))

Dependent

<table>
<thead>
<tr>
<th>EmpSSN</th>
<th>DepName</th>
<th>Age</th>
<th>Stuff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Employee

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Stuff</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

T = Π_{EmpSSN} σ_{age>71} (Dependents)
Semijoins in Distributed Databases

Employee

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Stuff</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Dependent

<table>
<thead>
<tr>
<th>EmpSSN</th>
<th>DepName</th>
<th>Age</th>
<th>Stuff</th>
</tr>
</thead>
<tbody>
<tr>
<td>. . .</td>
<td>. . .</td>
<td>. .</td>
<td>. . .</td>
</tr>
</tbody>
</table>

network

\[
R = \text{Employee} \bowtie_{\text{SSN}=\text{EmpSSN}} (\sigma_{\text{age}>71} (\text{Dependent}))
\]

\[
T = \Pi_{\text{EmpSSN}} \sigma_{\text{age}>71} (\text{Dependents})
\]

\[
T = \Pi_{\text{EmpSSN}} \sigma_{\text{age}>71} (\text{Dependents})
\]
Semijoins in Distributed Databases

Employee

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Stuff</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Dependent

<table>
<thead>
<tr>
<th>EmpSSN</th>
<th>DepName</th>
<th>Age</th>
<th>Stuff</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Network

Employee \(\bowtie_{SSN=EmpSSN} (\sigma_{\text{age}>71} \text{(Dependent)}) \)

\[T = \Pi_{\text{EmpSSN}} \sigma_{\text{age}>71} (\text{Dependents}) \]

\[R = \text{Employee} \bowtie_{SSN=EmpSSN} T \]

Answer = \[R \bowtie_{SSN=EmpSSN} \sigma_{\text{age}>71} \text{Dependents} \]
Anti-Semi-Join

• Notation: \(R \triangleright S \)
 – Warning: not a standard notation

• Meaning: all tuples in \(R \) that do NOT have a matching tuple in \(S \)
Set Difference v.s. Anti-semijoin

Plan=

```
SELECT DISTINCT R.B
FROM R
WHERE not exists (SELECT *
FROM S
WHERE R.B=S.B)
```

```
SELECT DISTINCT *
FROM R
WHERE not exists (SELECT *
FROM S
WHERE R.B=S.B)
```
Set Difference v.s. Anti-semijoin

```
SELECT DISTINCT R.B
FROM R
WHERE not exists (SELECT * FROM S
                  WHERE R.B=S.B)

SELECT DISTINCT *
FROM R
WHERE not exists (SELECT *
                 FROM S
                 WHERE R.B=S.B)
```

Plan=

```
-\n  Π_B
  R(A,B)
    S(B)
```

R(A,B)
S(B)
Set Difference v.s. Anti-semijoin

\[\text{SELECT DISTINCT } R.B \\
\text{FROM } R \\
\text{WHERE not exists } (\text{SELECT } * \\
\text{FROM } S \\
\text{WHERE } R.B=S.B) \]

Plan=

\[\Pi_B (\text{R(A,B)}) \]

\[\text{SELECT DISTINCT } * \\
\text{FROM R} \\
\text{WHERE not exists } (\text{SELECT } * \\
\text{FROM } S \\
\text{WHERE } R.B=S.B) \]

Plan=
Set Difference v.s. Anti-semijoin

Plan

\[
\Pi_B \quad R(A,B) \quad S(B)
\]

\[
\Pi_B \quad \text{Semi-join}
\]

\[
\Pi_B \quad R(A,B) \quad R(A,B) \quad S(B)
\]

SELECT DISTINCT

\[
\text{R.B} \\
\text{FROM R} \\
\text{WHERE not exists} \quad (\text{SELECT} \quad * \quad \text{FROM} \quad S \\
\text{WHERE R.B=S.B})
\]

SELECT DISTINCT

\[
\text{*} \\
\text{FROM R} \\
\text{WHERE not exists} \quad (\text{SELECT} \quad * \quad \text{FROM} \quad S \\
\text{WHERE R.B=S.B})
\]
Set Difference v.s. Anti-semijoin

\[
\text{Plan=}\quad \Pi_B \quad \begin{cases}
R(A,B) \\
S(B)
\end{cases}
\]

\[
\text{Plan=}\quad \Pi_B \\
\begin{cases}
R(A,B) \\
S(B)
\end{cases}
\]

SELECT DISTINCT R.B
FROM R
WHERE not exists (SELECT *
FROM S
WHERE R.B=S.B)

SELECT DISTINCT *
FROM R
WHERE not exists (SELECT *
FROM S
WHERE R.B=S.B)
Operators on Bags

- Duplicate elimination δ
 $$\delta(R) = \text{SELECT DISTINCT * FROM } R$$

- Grouping γ
 $$\gamma_{A,\text{sum}(B)}(R) = \text{SELECT } A,\text{sum}(B) \text{ FROM } R \text{ GROUP BY } A$$

- Sorting τ
Outline of the Lecture

• Physical operators: join, group-by

• Query execution: pipeline, iterator model

• Query optimization

• Database statistics
Iterator Interface

• Each **operator implements this interface**
• Interface has only three methods
 • **open()**
 – Initializes operator state
 – Sets parameters such as selection condition
 • **get_next()**
 – Operator invokes get_next() recursively on its inputs
 – Performs processing and produces an output tuple
 • **close()**: cleans-up state
1. Nested Loop Join

```python
for S in Supply do {
    for P in Part do {
        if (S.pno == P.pno) output(S, P);
    }
}
```

Supply = *outer relation*
Part = *inner relation*

Note: sometimes terminology is switched

Would it be more efficient to choose Part=outer, Supply=inner? What if we had an index on Part.pno?
It’s more complicated…

- Each **operator implements this interface**
 - `open()`
 - `get_next()`
 - `close()`
Main Memory Nested Loop Join

open () {
 Supply.open();
 Part.open();
 S = Supply.get_next();
}

close () {
 Supply.close ();
 Part.close ();
}

get_next() {
 repeat {
 P= Part.get_next();
 if (P== NULL) {
 Part.close();
 S= Supply.get_next();
 if (S== NULL) return NULL;
 Part.open();
 P= Part.get_next();
 }
 until (S.pno == P.pno);
 return (S, P)
 }

ALL operators need to be implemented this way!

Supplier(sno, sname, scity, sstate)
Supply(sno, pno, price)
Part(pno, pname, psize, pcolor)
2. Hash Join (main memory)

for S in Supply do insert(S.pno, S);
for P in Part do {
 LS = find(P.pno);
 for S in LS do {
 output(S, P);
 }
}

Recall: need to rewrite as open, get_next, close
3. Merge Join (main memory)

Part1 = sort(Part, pno);
Supply1 = sort(Supply, pno);
P = Part1.get_next(); S = Supply1.get_next();

While (P!=NULL and S!=NULL) {
 case:
 P.pno < S.pno: P = Part1.get_next();
 P.pno > S.pno: S = Supply1.get_next();
 P.pno == S.pno { output(P,S);
 S = Supply1.get_next();
 }
}

Why ???
Pipelined Execution

(On the fly)

\[\Pi_{sname} \]

(On the fly)

\[\sigma_{sscity='Seattle' \land sstate='WA' \land pno=2} \]

(Nested loop)

\[sno = sno \]

Supplier

(File scan)

Supply

(File scan)
Pipelined Execution

• Applies parent operator to tuples directly as they are produced by child operators

• Benefits
 – No operator synchronization issues
 – Saves cost of writing intermediate data to disk
 – Saves cost of reading intermediate data from disk
 – Good resource utilizations on single processor

• This approach is used whenever possible
Intermediate Tuple Materialization

(On the fly)

\[\Pi_{\text{sname}} \]

(Sort-merge join) \[\sigma_{\text{sscity}='Seattle' \land \text{sstate}='WA' \land \text{pno}=2} \]

(Scan: write to T1)

(Scan: write to T2)

\[\text{sno} = \text{sno} \]

Supplier (File scan)

Supply (File scan)
Intermediate Tuple Materialization

• Writes the results of an operator to an intermediate table on disk

• No direct benefit but
• Necessary data is larger than main memory
• Necessary when operator needs to examine the same tuples multiple times
Outline of the Lecture

• Physical operators: join, group-by

• Query execution: pipeline, iterator model

• Query optimization

• Database statistics
Query Optimization

- **Search space** = set of all physical query plans that are equivalent to the SQL query
 - Defined by *algebraic laws* and restrictions on the *set of plans* used by the optimizer
- **Search algorithm** = a heuristics-based algorithm for searching the space and selecting an optimal plan
Relational Algebra Laws: Joins

Commutativity: \(R \bowtie S = S \bowtie R \)
Associativity: \(R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T \)
Distributivity: \(R \bowtie (S \cup T) = (R \bowtie S) \cup (R \bowtie T) \)

Outer joins get more complicated
Relational Algebra Laws: Selections

\[R(A, B, C, D), S(E, F, G) \]

\[\sigma_{F=3} (R \bowtie_{D=E} S) = ? \]

\[\sigma_{A=5 \text{ AND } G=9} (R \bowtie_{D=E} S) = ? \]
Relational Algebra Laws: Selections

$\sigma_{F=3} \left(R \Join_{D=E} S \right) = R \Join_{D=E} \left(\sigma_{F=3} (S) \right)$

$\sigma_{A=5 \text{ AND } G=9} \left(R \Join_{D=E} S \right) = \sigma_{A=5} (R) \Join_{D=E} \sigma_{G=9} (S)$
Group-by and Join

\[
\gamma_{A, \text{sum}(D)}(R(A,B) \bowtie_{B=C} S(C,D)) = ?
\]
Group-by and Join

\[R(A, B), \ S(C,D) \]

\[\gamma_A, \text{sum}(D)(R(A,B) \Join_{B=C} S(C,D)) = \gamma_A, \text{sum}(D)(R(A,B) \Join_{B=C} (\gamma_C, \text{sum}(D)S(C,D))) \]

These are very powerful laws. They were introduced only in the 90’s.
Laws Involving Constraints

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

\[\Pi_{pid, price} (Product \bowtie_{cid=cid} Company) = ? \]
Laws Involving Constraints

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

\[\Pi_{\text{pid, price}}(\text{Product} \bowtie_{\text{cid}=\text{cid}} \text{Company}) = \Pi_{\text{pid, price}}(\text{Product}) \]

Need a second constraint for this law to hold. Which?
Why such queries occur

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

CREATE VIEW CheapProductCompany
SELECT *
FROM Product x, Company y
WHERE x.cid = y.cid and x.price < 100

SELECT pname, price
FROM CheapProductCompany

SELECT pname, price
FROM Product
WHERE price < 100
Law of Semijoins

- **Input**: $R(A_1,\ldots,A_n)$, $S(B_1,\ldots,B_m)$
- **Output**: $T(A_1,\ldots,A_n)$
- **Semjoin** is: $R \bowtie S = \Pi_{A_1,\ldots,A_n} (R \bowtie S)$

- **The law of semijoins is**:

\[
R \bowtie S = (R \bowtie S) \bowtie S
\]
Laws with Semijoins

- Used in parallel/distributed databases
- Often combined with Bloom Filters
- Read pp. 747 in the textbook
System R considered only left deep plans, and so do some optimizers today.
Search Algorithms

• **Dynamic programming**
 – Pioneered by System R for computing optimal join order, used today by all advanced optimizers

• **Search space pruning**
 – Enumerate partial plans, drop unpromising partial plans
 – Bottom-up v.s. top-down plans

• **Access path selection**
 – Refers to the plan for accessing a single table
SELECT *
FROM R, S, T
WHERE R.B = S.B and S.C = T.C and R.A < 40

If the algorithm enumerates complete plans, then it is difficult to prune out unpromising sets of plans.
If the algorithm enumerates partial bottom-up plans, then pruning can be done more efficiently.

```
SELECT *
FROM R, S, T
WHERE R.B = S.B and S.C = T.C and R.A < 40
```
Top-down Partial Plans

R(A,B)
S(B,C)
T(C,D)

\[
\begin{align*}
\text{SELECT } & \ast \\
\text{FROM } & \text{R, S, T} \\
\text{WHERE } & \text{R.B=S.B and S.C=T.C and R.A<40}
\end{align*}
\]

Same here.

\[
\begin{align*}
\text{SELECT } & \ast \\
\text{FROM } & \text{R, S} \\
\text{WHERE } & \text{R.B=S.B and R.A < 40}
\end{align*}
\]

\[
\begin{align*}
\text{SELECT } & \ast \\
\text{FROM } & \text{R} \\
\text{WHERE } & \text{R.A < 40}
\end{align*}
\]

\[
\begin{align*}
\text{SELECT } & \ast \\
\text{FROM } & \text{R, S, T} \\
\text{WHERE } & \text{R.B=S.B and S.C=T.C and R.A<40}
\end{align*}
\]

\[
\begin{align*}
\text{SELECT } & \ast \\
\text{FROM } & \text{R, S} \\
\text{WHERE } & \text{R.B=S.B}
\end{align*}
\]

\[
\begin{align*}
\text{SELECT } & \ast \\
\text{FROM } & \text{R} \\
\text{WHERE } & \text{R.A < 40}
\end{align*}
\]
Access Path Selection

Supplier(sid, sname, scategory, scity, sstate)

Clustered index on scity
Unclustered index on (scategory, scity)

B(Supplier) = 10k
T(Supplier) = 1M

V(Supplier, city) = 1000
V(Supplier, scategory) = 100

Access plan options:
• Table scan: cost = ?
• Index scan on scity: cost = ?
• Index scan on scategory, scity: cost = ?

σ_{scategory = 'organic' \land scity='Seattle'}(Supplier)
Access Path Selection

Supplier(sid,sname,scategory,scity,sstate)

\[\sigma_{\text{scategory} = 'organic' \land \text{scity} = 'Seattle'} (\text{Supplier}) \]

Clustered index on scity
Unclustered index on (scategory,scity)

Access plan options:
- Table scan: \[\text{cost} = 10k \]
- Index scan on scity: \[\text{cost} = 10k/1000 = 10 \]
- Index scan on scategory,scity: \[\text{cost} = 1M/1000*100 = 10 \]
Outline of the Lecture

• Physical operators: join, group-by

• Query execution: pipeline, iterator model

• Query optimization

• Database statistics
Database Statistics

• **Collect** statistical summaries of stored data

• **Estimate** **size** (=cardinality) in a bottom-up fashion
 – This is the most difficult part, and still inadequate in today’s query optimizers

• **Estimate** **cost** by using the estimated size
 – Hand-written formulas, similar to those we used for computing the cost of each physical operator
Database Statistics

• Number of tuples (cardinality)
• Indexes, number of keys in the index
• Number of physical pages, clustering info
• Statistical information on attributes
 – Min value, max value, number distinct values
 – Histograms
• Correlations between columns (hard)

• Collection approach: periodic, using sampling
Size Estimation Problem

\[S = \text{SELECT} \ \text{list} \]
\[\text{FROM} \ \ R1, \ldots, \ Rn \]
\[\text{WHERE} \ \ \text{cond}_1 \ \text{AND} \ \text{cond}_2 \ \text{AND} \ \ldots \ \text{AND} \ \text{cond}_k \]

Given \(T(R1), T(R2), \ldots, T(Rn) \)
Estimate \(T(S) \)

How can we do this? Note: doesn’t have to be exact.
Size Estimation Problem

\[
S = \text{SELECT list} \\
\text{FROM } \ R1, \ldots, \ Rn \\
\text{WHERE} \ \text{cond}_1 \ \text{AND} \ \text{cond}_2 \ \text{AND} \ \ldots \ \text{AND} \ \text{cond}_k
\]

Remark: \(T(S) \leq T(R1) \times T(R2) \times \ldots \times T(Rn) \)
Selectivity Factor

• Each condition $cond$ reduces the size by some factor called \textit{selectivity factor}

• Assuming independence, multiply the selectivity factors
Example

```
SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40
```

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B is 1/3
Selectivity of S.C = T.C is 1/10
Selectivity of R.A < 40 is ½

What is the estimated size of the query output?
Example

R(A,B)
S(B,C)
T(C,D)

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B is 1/3
Selectivity of S.C = T.C is 1/10
Selectivity of R.A < 40 is 1/2

What is the estimated size of the query output?

\[30k \times 200k \times 10k \times 1/3 \times 1/10 \times 1/2 = 1TB \]
Rule of Thumb

• If selectivities are unknown, then:
 selectivity factor = 1/10
 [System R, 1979]
Using Data Statistics

• Condition is $A = c$ /* value selection on R */
 – Selectivity = $1/V(R,A)$

• Condition is $A < c$ /* range selection on R */
 – Selectivity = $(c - \text{Low}(R,A))/(\text{High}(R,A) - \text{Low}(R,A))T(R)$

• Condition is $A = B$ /* $R \bowtie_{A=B} S$ */
 – Selectivity = $1 / \max(V(R,A),V(S,A))$
 – (will explain next)
Assumptions

• *Containment of values*: if $V(R,A) \leq V(S,B)$, then the set of A values of R is included in the set of B values of S

 – Note: this indeed holds when A is a foreign key in R, and B is a key in S

• *Preservation of values*: for any other attribute C, $V(R \bowtie_{A=B} S, C) = V(R, C)$ (or $V(S, C)$)
Selectivity of $R \bowtie_{A=B} S$

Assume $V(R,A) \leq V(S,B)$

- Each tuple t in R joins with $T(S)/V(S,B)$ tuple(s) in S

- Hence $T(R \bowtie_{A=B} S) = T(R) \cdot T(S) / V(S,B)$

In general: $T(R \bowtie_{A=B} S) = T(R) \cdot T(S) / \max(V(R,A),V(S,B))$
Size Estimation for Join

Example:

• $T(R) = 10000$, $T(S) = 20000$
• $V(R,A) = 100$, $V(S,B) = 200$
• How large is $R \bowtie_{A=B} S$?
Histograms

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)
Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Employee, age) = 50
min(age) = 19, max(age) = 68

σ_{age=48}(Employee) = ?
σ_{age>28 \ and \ age<35}(Employee) = ?
Employee(ssn, name, age)

T(Employee) = 25000, V(Employee, age) = 50
min(age) = 19, max(age) = 68

\[\sigma_{\text{age}=48}(\text{Employee}) = ? \]
\[\sigma_{\text{age}>28 \text{ and age}<35}(\text{Employee}) = ? \]

Estimate = 25000 / 50 = 500
Estimate = 25000 * 6 / 50 = 3000
Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Employee, age) = 50
min(age) = 19, max(age) = 68

\[\sigma_{\text{age}=48}(\text{Employee}) = ? \]
\[\sigma_{\text{age}>28 \text{ and age}<35}(\text{Employee}) = ? \]

<table>
<thead>
<tr>
<th>Age:</th>
<th>0..20</th>
<th>20..29</th>
<th>30-39</th>
<th>40-49</th>
<th>50-59</th>
<th>> 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuples</td>
<td>200</td>
<td>800</td>
<td>5000</td>
<td>12000</td>
<td>6500</td>
<td>500</td>
</tr>
</tbody>
</table>
Histograms

Employee(ssn, name, age)

$T(\text{Employee}) = 25000$, $V(\text{Employee, age}) = 50$
министр(age) = 19, max(age) = 68

$\sigma_{\text{age}=48}(\text{Employee}) = ?$
$\sigma_{\text{age}>28 \text{ and age}<35}(\text{Employee}) = ?$

<table>
<thead>
<tr>
<th>Age:</th>
<th>0..20</th>
<th>20..29</th>
<th>30-39</th>
<th>40-49</th>
<th>50-59</th>
<th>> 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuples</td>
<td>200</td>
<td>800</td>
<td>5000</td>
<td>12000</td>
<td>6500</td>
<td>500</td>
</tr>
</tbody>
</table>

Estimate = 1200
Estimate = $1 \times 80 + 5 \times 500 = 2580$
Types of Histograms

• How should we determine the bucket boundaries in a histogram?
Types of Histograms

• How should we determine the bucket boundaries in a histogram?

• Eq-Width
• Eq-Depth
• Compressed
• V-Optimal histograms
Employee(ssn, name, age)

Histograms

<table>
<thead>
<tr>
<th>Age:</th>
<th>0..20</th>
<th>20..29</th>
<th>30-39</th>
<th>40-49</th>
<th>50-59</th>
<th>> 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuples</td>
<td>200</td>
<td>800</td>
<td>5000</td>
<td>12000</td>
<td>6500</td>
<td>500</td>
</tr>
</tbody>
</table>

Eq-width:

<table>
<thead>
<tr>
<th>Age:</th>
<th>0..20</th>
<th>20..29</th>
<th>30-39</th>
<th>40-49</th>
<th>50-59</th>
<th>> 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuples</td>
<td>1800</td>
<td>2000</td>
<td>2100</td>
<td>2200</td>
<td>1900</td>
<td>1800</td>
</tr>
</tbody>
</table>

Eq-depth:

Compressed: store separately highly frequent values: (48,1900)
V-Optimal Histograms

- Defines bucket boundaries in an optimal way, to minimize the error over all point queries
- Computed rather expensively, using dynamic programming
- Modern databases systems use V-optimal histograms or some variations
Difficult Questions on Histograms

• Small number of buckets
 – Hundreds, or thousands, but not more
 – WHY ?
• Not updated during database update, but recomputed periodically
 – WHY ?
• Multidimensional histograms rarely used
 – WHY ?
Summary of Query Optimization

• Three parts:
 – search space, algorithms, size/cost estimation

• Ideal goal: find optimal plan. But
 – Impossible to estimate accurately
 – Impossible to search the entire space

• Goal of today’s optimizers:
 – Avoid very bad plans