Lecture 4.
Query Execution

Tuesday, January 28, 2014

CSEP 544 -- Winter 2014

Announcemenents

 Homework 2 was due last night
« Paper review (Shapiro) was due today

« Homework 3 is posted
— You have received a token (=$100@AWS)
— You need to write 4 simple queries
— Data is huge: last query = 4-7 hours
— Learn PigLatin on your own (easy)
— Plan a lot of time for setup

Where We Are

Query execution!

* \We have seen:
— Disk organization = set of blocks(pages)
— The buffer pool
— How records are organized in pages
— Indexes, In particular B+ -trees

* Today: rest of query execution,
optimization

CSEP 544 -- Winter 2014

Steps of the Query Processor

SQL query
}
[Parse & Rewrite SQL Query}

/_ ' .
[Select Logical Plan} Logical
Query olan
optimization< v
[Select Physical PIan}
- Physical
| w
[Query Execution}

Steps in Query Evaluation

« Step 0: Admission control
— User connects to the db with username, password
— User sends query in text format

« Step 1: Query parsing
— Parses query into an internal format

— Performs various checks using catalog
« Correctness, authorization, integrity constraints

« Step 2: Query rewrite

— View rewriting, flattening, etc.

CSEP 544 -- Winter 2014

Continue with Query

Evaluation

» Step 3: Query optimization
— Find an efficient query plan for executing the query

A query planis
— Logical query plan: an extended relational algebra tree

— Physical query plan: with additional annotations at each
node
» Access method to use for each relation
» Implementation to use for each relational operator

CSEP 544 -- Winter 2014 6

Final Step in Query

Processing
« Step 4: Query execution

— Each operator has several implementation algorithms

« Synchronization techniques:

— Pipelined execution
— Materialized relations for intermediate results

« Passing data between operators:
— lterator interface
— One thread per operator

CSEP 544 -- Winter 2014 7

SQL Query

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name

FROM Product x, Purchase y, Customer z

WHERE x.pid = y.pid and y.cid = y.cid and
x.price > 100 and z.city = ‘Seattle’

Logical Plan

| Final answer

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

e T4(name,name)

0

IT

X.name,z.name
—————

T2(...) S
\. price>100 and city=‘Seattle’

T1(pid,name,price,pid,cid,store) ><] id=cid
Temporary tables < i \
11,12, ... / \ Customer

Product Purchase

Logical v.s. Physical Plan

Physical plan = Logical plan plus annotations

Access path selection for each relation
— Use a file scan or use an index

Implementation choice for each operator

Scheduling decisions for operators

CSEP 544 -- Winter 2014 10

Supplier(sno, sname, scity, sstate)
Supply(sho, pno, price)

Logical Query Plan

IT

sname

Y sscity="Seattle’ nsstate="WA' A pno=2

(>

SNOo = Sno

N

Supplier Supply

Supplier(sno, sname, scity, sstate)
Supply(sho, pno, price)

Physical Query Plan

(On the fly) IT

sname

(Onthefly) o

sscity="Seattle’ nsstate="WA' A pno=2

(Nested loop) =

SNOo = Sno

N

Supplier Supply
(File scan) (File scan)

Outline of the Lecture

* Physical operators: join, group-by

* Query execution: pipeline, iterator model

* Query optimization

 Database statistics

CSEP 544 -- Winter 2014 13

Extended Algebra Operators

_ _ ™)
Union U, difference -

Selection o Basig RA
Projection [
Join X -- also: semi-join, anti-semi-joig

Rename p ExtendedRA
Duplicate elimination 6 >
Grouping and aggregation vy

Sorting t)

CSEP 544 -- Winter 2014 14

Sets v.s. Bags

« Sets: {a,b,c}, {a,d,e,f},{}, ...
« Bags:{a, a,b,c}, {b,b,b,b, b}, ...

Relational Algebra has two semantics:
« Set semantics (paper “Three languages...”)
* Bag semantics

CSEP 544 -- Winter 2014

15

Physical Operators

Each of the logical operators may have one or
more implementations = physical operators

WIll discuss several basic physical operators,
with a focus on join

CSEP 544 -- Winter 2014 16

Supply(sho, pno, price)
Part(pno, pname, psize, pcolor)

Question in Class

Logical operator:
Supply(sno,pno,price) X, Part(pno,pname,psize,pcolor)

Propose three physical operators for the join, assuming the
tables are in main memory:

1.
2.
3.

CSEP 544 -- Winter 2014 17

Supply(sho, pno, price)
Part(pno, pname, psize, pcolor)

Question in Class

Logical operator:

Supply(snho,pno,price) X Part(pno,pname,psize,pcolor)

pno=pno

Propose three physical operators for the join, assuming the
tables are in main memory:

1. Nested Loop Join
2. Merge join
3. Hash join

CSEP 544 -- Winter 2014 18

BRIEF Review of Hash Tables

Separate chaining:

A (naive) hash function: 0 Duplicates OK
1 WHY 2?2
h(x) = x mod 10 2 -
3 5503 | 1103 | [—1503
4
0 fions: 5
perations: 6 76 T ees
find(103) = 27 7
8 ——>(48
9

insert(488) = ?7?

BRIEF Review of Hash Tables

* insert(k, v) = inserts a key k with value v

* Many values for one key
— Hence, duplicate k's are OK

 find(k) = returns the list of all values v
associated to the key k

CSEP 544 -- Winter 2014 20

Cost Parameters

The cost of an operation = total number of I/Os
Cost parameters (used both in the book and by Shapiro):

* B(R) = number of blocks for relation R (Shapiro: |R|)
T(R) = number of tuples in relation R

* V(R, a) = number of distinct values of attribute a

* M = size of main memory buffer pool, in blocks

Facts: (1) B(R) << T(R):
(2) When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) << T(R)

Cost of an Operator

Assumption: runtime dominated by # of disk
1/O’s; will ignore the main memory part of
the runtime

 If R (and S) fit in main memory, then we
use a main-memory algorithm

* If R (or S) does not fit in main memory,
then we use an external memory algorithm

Ad-hoc Convention

* The operator reads the data from disk
— Note: different from Shapiro

* The operator does not write the data
back to disk (e.g.: pipelining)

* Thus:

Any main memory join algorithms for R =~ S: Cost = B(R)+B(S)

Any main memory grouping y(R): Cost = B(R)

Nested Loop Joins
* Tuple-based nested loop R X' S

for each tuple rin R do

R=outer relation

fgr each tup esinsS @ S=inner relation
if rand s join then output (r,s)

. Cost: T(R) B(S)

CSEP 544 -- Winter 2014 24

Examples

M=4

 Example 1:
— B(R) = 1000, T(R) = 10000
— B(S)=2, T(S) =20
— Cost =7

Can you do better with nested loops?

 Example 2:
— B(R) = 1000, T(R) = 10000
— B(S) = 4, T(S) = 40
— Cost="7?

CSEP 544 -- Winter 2014 25

Block-Based Nested-loop Join

for each (M-2) blocks bs of S do
for each block br of R do
for each tuple s in bs
for each tuple r in br do
if “r and s join” then output(r,s)

Terminology alert: sometimes S is called S the inner relation

CSEP 544 -- Winter 2014 26

Block-Based Nested-loop Join

Why not M ?

—

for each (M-2) blocks bs of S do
for each block br of R do
for each tuple s in bs
for each tuple r in br do
if “r and s join” then output(r,s)

Terminology alert: sometimes S is called S the inner relation

CSEP 544 -- Winter 2014 27

Block-Based Nested-loop Join

Why not M ?

— |

for each (M-2) blocks bs of S do St e
for each block br of R do s o
for each tuple s in bs
for each tuple r in br do

if “r and s join” then output(r,s)

Terminology alert: sometimes S is called S the inner relation

CSEP 544 -- Winter 2014 28

Block Nested-loop Join

Join Result
Hash table for block of S -

(M-2 pages)

Y

o

7

Input buffer for R Output buffen

.
>

CSEP 544 -- Winter 2014

Examples

M =4
 Example 1:

— B(R) = 1000, T(R) = 10000

- B(S)=2, T(S) =20

— Cost = B(S) + B(R) = 1002

Note: T(R) and

« Example 2: T(S) are irrelevant

— B(R) = 1000, T(R) = 10000 here.

— B(S) =4, T(S) =40

— Cost = B(S) + 2B(R) = 2004

CSEP 544 -- Winter 2014 30

Cost of Block Nested-loop Join

 Read S once: cost B(S)

» Quter loop runs B(S)/(M-2) times, and
each time need to read R: costs
B(S)B(R)/(M-2)

Cost = B(S) + B(S)B(R)/(M-2)

CSEP 544 -- Winter 2014

31

Index Based Selection

Recall IMDB; assume indexes on Movie.id, Movie.year

SELET *
FROM Movie
WHERE id = 12345

SELET *
FROM Movie
WHERE year = ‘1995

B(Movie) = 10k
T(Movie) = 1M

What is your estimate
of the 1/O cost ?

CSEP 544 -- Winter 2014 32

Index Based Selection

Selection on equality: o, (R)
e Clustered index on a: cost ?

 Unclustered index : cost ?

CSEP 544 -- Winter 2014

33

Index Based Selection

Selection on equality: o, (R)
» Clustered index on a: cost B(R)/V(R,a)

* Unclustered index : cost T(R)/V(R,a)

CSEP 544 -- Winter 2014

34

Index Based Selection

Selection on equality: o, (R)
» Clustered index on a: cost B(R)/V(R,a)

* Unclustered index : cost T(R)/V(R,a)

Note: we assume that the cost of reading the index = 0
Why?

Index Based Selection

B(R) = 10k
* Example: | T(R)=1M cost of 0. (R) =7
V(R, a) =100

« Table scan:
— B(R) = 10k I/Os
 |Index based selection:

— If index is clustered: B(R)/V(R,a) = 100 1/Os
— If index is unclustered: T(R)/V(R,a) = 10000 I/Os

Rule of thumb:
don’t build unclustered indexes when V(R,a) is small !

Index Based Join

* R X S

 Assume S has an index on the join
attribute

for each tuple rin R do

lookup the tuple(s) s in S using the index
output (r,s)

CSEP 544 -- Winter 2014 37

Index Based Join

Cost:

* |f index is clustered:
* |f unclustered:

CSEP 544 -- Winter 2014

38

Index Based Join

Cost:

 If index is clustered: B(R) + T(R)B(S)/V(S,a)
* If unclustered: B(R) + T(R)T(S)/V(S,a)

CSEP 544 -- Winter 2014 39

Operations on Very Large
Tables

« Compute R < S when each is larger
than main memory

* Two methods:
— Partitioned hash join (many variants)
— Merge-join

» Similar for grouping

External Sorting

Problem:
Sort a file of size B with memory M

Where we need this:

— ORDER BY in SQL queries

— Several physical operators

— Bulk loading of B+-tree indexes.

Will discuss only 2-pass sorting, when B < M?

CSEP 544 -- Winter 2014 41

Basic Terminology

 Arun in a sequence is an increasing
subsequence

 \What are the runs?

2,4,99,103, 88, 77, 3, 79, 100, 2, 50

CSEP 544 -- Winter 2014

42

External Merge-Sort: Step 1

 Phase one: load M bytes in memory, sort

> >
M~ @ @
—— =
| |
| | | |
\—/ \._/
Disk Main memory Disk

Runs of length M bytes

[Can increase to length 2M using “replacement selection”}

Basic Terminology

* Merging multiple runs to produce a
longer run:
, 14, 33, 88, 92, 192, 322
, 43, 78, 103, 523
, 9,12, 33, 52, 88, 320

Output:
0,1,2,4,6,7,7

CSEP 544 -- Winter 2014

44

External Merge-Sort: Step 2

 Merge M — 1 runs into a new run
« Result: runs of length M (M — 1)= M?

ﬁZ:::::?////»Input1 S
| |
| ! “|nput2 2/ Qutput H—' '
|] - e e / | I
[7|InputM —
Disk Main memory Disk

If B <= M? then we are done

Cost of External Merge Sort

* Read+write+read = 3B(R)

« Assumption: B(R) <= M?

CSEP 544 -- Winter 2014

46

Group-by

Group-by: v, sump) (R)
* |ldea: do a two step merge sort, but
change one of the steps

« Question in class: which step needs to
be changed and how ?

Cost = 3B(R)
Assumption: B(6(R)) <= M?

JOINR X S
e How?....

Merge-Join

CSEP 544 -- Winter 2014

48

Merge-Join

JoIn R X S

» Step 1a: initial runs for R
« Step 1b: initial runs for S
» Step 2: merge and join

CSEP 544 -- Winter 2014

49

Merge-Join

| Input 1

\

"I Input 2

Input M

Main memory

Output

-

M, = B(R)/M runs for R
M, = B(S)/M runs for S

Merge-join M, + M, runs;

need M, + M, <=M

Partitioned Hash Algorithms

|dea:

* If B(R) > M, then partition it into smaller files:
R1, R2,R3, ..., Rk

« Assuming B(R1)=B(R2)=...= B(Rk), we have
B(Ri) = B(R)/k

* Goal: each Ri should fit in main memory:
B(Ri) <M

How big can k be ?

Partitioned Hash Algorithms

 l|dea: partition a relation R into M-1 buckets, on disk
« Each bucket has size approx. B(R)/(M-1) = B(R)/M

B(R)

Relation

S

R

INPUT

~
Disk

> fup\ac%%n

OUTPUT
1

Partitions
e

2

00 ¢

h M-1

[

M main memory buffers

—
Disk

M-1

Assumption:

B(RYM <M, ie.B(R)<M?

Grouping

* v(R) = grouping and aggregation

Step 1. Partition R into buckets

Step 2. Apply y to each bucket (may
read in main memory)

Cost: 3B(R)
Assumption: B(R) < M?

CSEP 544 -- Winter 2014

53

Grace-Join

RNXS

Note: grace-join is
also called
partitioned hash-join

—

CSEP 544 -

Grace-Join

RNXS
o Step 1:
— Hash S into M buckets
— send all buckets to disk
¢ Step 2
— Hash R into M buckets
— Send all buckets to disk

¢ Step 3

— Join every pair of buck

Note: grace-join is
also called
partitioned hash-join

—

CSEP 544 -

Grace-Join

Partition both relations
using hash fn h: R tuples
in partition i will only
match S tuples in partition
.

Original

Relation

INPUT

.
>

hash
function

h

OUTPUT
1

Partitions
e

2

00§

M-1

Disk B main memory buffers

M-1

Grace-Join

Partition both relations
using hash fn h: R tuples
in partition i will only
match S tuples in partition
.

Read in a partition
of R, hash it using
h2 (<> h!). Scan
matching partition of
S, search for
matches.

Original

Partitions
e

Join Result

Y

Relation OUTPUT
1
INPUT 2
hash
> function
00 ¢
| | | | |] h M_1
~
Disk B main memory buffers
Partitions
of R&S .
—— Hash table for partition
hash Si (< M-1 pages)
fn
h2 N o 0 0
— .
Input buffer Output
for Ri buffer
N~

B main memory buffers Disk

Grace Join

» Cost: 3B(R) + 3B(S)
« Assumption: min(B(R), B(S)) <= M?

CSEP 544 -- Winter 2014

58

Hybrid Hash Join Algorithm

« How does it work?

CSEP 544 -- Winter 2014

59

Hybrid Hash Join Algorithm

 Partition S into k buckets

t buckets S, , ..., S; stay in memory
k-t buckets S, 4, ..., S, to disk

* Partition R into k buckets

— First t buckets join immediately with S
— Rest k-t buckets go to disk

* Finally, join k-t pairs of buckets:
(Re+1:5¢41)s (Ris2:Su2),) (RiS¢)

Hybrid Hash Join Algorithm

 Partition S into k buckets

t buckets S, , ..., S; stay in memory
k-t buckets S, 4, ..., S, to disk

* Partition R into k buckets

— First t buckets join immediately with
— Rest k-t buckets go to disk

* Finally, join k-t pairs of buckets:
(Re+1:5¢41)s (Ris2:Su2),) (RiS¢)

Shapiro’s notation:
1/(B+1) = t/k in main memory
B/(B+1) = (k-t)/k go to disk

Hybrid Hash Join Algorithm

Original
Relation

———

~
Disk

1
Partitions
2 e
t o ¢ 9
INPUT
h
> t+1
//'
Ilo o 0
v

B main memory buffers

Disk

t+1

Hybrid Join Algorithm

e How to choose k and t ?

— Choose k large but s.t. k<=M
— Choose t/k large but s.t. t’/k * B(S) <=M
— Moreover: t’/k * B(S) + k-t<=M

« Assuming t/k * B(S) >> k-t: t’/k = M/B(S)

Hybrid Join Algorithm

Cost of Hybrid Join:

« Grace join: 3B(R) + 3B(S)

* Hybrid join:
— Saves 2 I/Os for t/k fraction of buckets
— Saves 2t/k(B(R) + B(S)) 1/Os

— Cost:
(3-2t/k)(B(R) + B(S)) = (3-2M/B(S))(B(R) + B(S))

Hybrid Join Algorithm

« Question in class: what is the
advantage of the hybrid algorithm ?

Summary of External Join

Algorithms
» Block Nested Loop: B(S) + B(R)*B(S)/M

* Index Join: B(R) + T(R)B(S)/V(S,a)

» Partitioned Hash: 3B(R)+3B(S);
— min(B(R),B(S)) <= M2

* Merge Join: 3B(R)+3B(S)
— B(R)+B(S) <= M?

Other Operators

Selection, projection
Duplicate elimination
Semi-join

Anti-semijoin

CSEP 544 -- Winter 2014

67

Selections, Projections

» Selection = easy, check condition on
each tuple at a time

* Projection = easy (assuming no
duplicate elimination), remove
extraneous attributes from each tuple

CSEP 544 -- Winter 2014

68

Duplicate Elimination IS
Group By

Duplicate elimination 6(R) is the same as
group by y(R) WHY 7?7?77

« Hash table in main memory

» Cost: B(R)
« Assumption: B(8(R)) <= M

CSEP 544 -- Winter 2014

69

Semijoin

RXcS =11 a1 an (RXe S)

 Where A,, ..., A, are the attributes in R

Formally, R X~ S means this: retain from R only those
tuples that have some matching tuple in S

* Duplicates in R are preserved

* Duplicates in S don’t matter

Semijoins in Distributed
Databases

Dependent
Employee

SSN

DepName | Age

Stuff

Name

Employee Mssn-empssn (O ages71 (DEPENdeENt))

Assumptions

* Very few dependents have age > 71.
« “Stuff’ is big.

Task: compute the query with minimum amount of data transfer

Semijoins in Distributed
Databases

Dependent

Employee
ploy DepName | Age

SSN Stuff

Name

Employee Mssn-empssn (O ages71 (DEPENdeENt))

T=11 Empssn O a e>7_1_(Dependents)_

CSEP 544 -- Winter 2014 72

Semijoins in Distributed
Databases

Dependent

Empl
ployee DepName | Age

SSN Stuff

Name

Employee Mssn-empssn (O ages71 (DEPENdeENt))

fh_nlz_r,n,gs_si\l_%g_e;m_(Dependents)

R = Employee Xggn-gmpssn T

M@Mﬂ1 (Dependents))

Semijoins in Distributed
Databases

Dependent

Employee
ploy DepName | Age

SSN Stuff

Name

Employee Mssn-empssn (O ages71 (DEPENdeENt))

/ T=11 EmpSSN O age>7'1_(_De|c_)endents.)'

R = Em|?|0¥ee D<SSN=EmpSSN T

S

Answer = R Mssn=EmpssN O age>7" Dependents

— —

Anti-Semi-Join

* Notation:R> S
— Warning: not a standard notation

* Meaning: all tuples in R that do NOT
have a matching tuple in S

CSEP 544 -- Winter 2014

75

R(A,B)

S(B) Set Difference v.s.
Anti-semijoin

SELECT DISTINCT R.B —
FROM R Plan
WHERE not exists (SELECT *

FROM S

WHERE R.B=S.B)

SELECT DISTINCT *
FROM R
WHERE not exists (SELECT *
FROM S
WHERE R.B=S.B)

R(A,B)

S(B) Set Difference v.s.
Anti-semijoin

SELECT DISTINCT R.B Plan= e

FROM R a H

WHERE not exists (SELECT * B
FROM S |

WHERE R.B=S.B) R(A,B)

SELECT DISTINCT *
FROM R
WHERE not exists (SELECT *
FROM S
WHERE R.B=S.B)

R(A,B)

S(B) Set Difference v.s.
Anti-semijoin

SELECT DISTINCT R.B Plan= e

FROM R a H

WHERE not exists (SELECT * B
FROM S |

WHERE R.B=S.B) R(A,B)

Plan=

SELECT DISTINCT *
FROM R
WHERE not exists (SELECT *
FROM S
WHERE R.B=S.B)

R(A,B)

S(B) Set Difference v.s.
Anti-semijoin

SELECT DISTINCT R.B Plan= e

FROM R a H

WHERE not exists (SELECT * B
FROM S |

WHERE R.B=S.B) R(A,B) S(B)

SELECT DISTINCT * ‘

FROM R

WHERE not exists (SELECT * _
FROM S \

WHERE R.B=S.B)

R(A,B) R(A,B)

R(A,B)

S(B) Set Difference v.s.
Anti-semijoin

SELECT DISTINCT R.B Plan= e

FROM R a H

WHERE not exists (SELECT * B
FROM S |

WHERE R.B=S.B) R(A,B) S(B)

Plan= I Anti-semi-join
SELECT DISTINCT * ‘
FROM R ~
WHERE not exists (SELECT * _
FROM S \ / \

WHERE R.B=S.B)

R(A,B) R(AB) sB) R(AB) S(B)

Operators on Bags

* Duplicate elimination o
8(R) = SELECT DISTINCT * FROM R

« Grouping y

YA, sum(B) (R) =
SELECT A,sum(B) FROM R GROUP BY A

e Sorting T

Outline of the Lecture

* Physical operators: join, group-by

* Query execution: pipeline, iterator model

* Query optimization

 Database statistics

CSEP 544 -- Winter 2014 82

lterator Interface

Each operator implements this interface
Interface has only three methods

open()

— Initializes operator state

— Sets parameters such as selection condition

get _next()
— Operator invokes get _next() recursively on its inputs
— Performs processing and produces an output tuple

close(): cleans-up state

CSEP 544 -- Winter 2014 83

Supplier(sno, sname, scity, sstate)

Supply(sho, pno, price)
Part(pno, pname, psize, pcolor)

1. Nested Loop Join

for S in Supply do {
for P in Part do {

if (S.pno == P.pno) output(S,P);

J

Supply = outer relation
Part = inner relation
Note: sometimes

terminology is switched

Would it be more efficient to
choose Part=outer, Supply=inner?
What if we had an index on Part.pno ?

It's more complicated...

Each operator implements this interface

open()
get_next()

close()

CSEP 544 -- Winter 2014

85

Supplier(sno, sname, scity, sstate)

Supply(sho, pno, price)
Part(pno, pname, psize, pcolor)

Main Memory Nested Loop Join

open () {
Supply.open();
Part.open();
S = Supply.get_next();
}

close () {
Supply.close ();
Part.close ();

}

get_next() {
repeat {
P= Part.get_next();
if (P== NULL)
{ Part.close();
S= Supply.get_next();
if (S== NULL) return NULL;
Part.open();
P= Part.get_next();
}
until (S.pno == P.pno);
return (S, P)
}

ALL operators need to be implemented this way !

Supplier(sno, sname, scity, sstate)

Supply(sho, pno, price)
Part(pno, pname, psize, pcolor)

2. Hash Join (main memory)

Build - - .
@%r S in Supply do insert(S.pno, S);

for P in Part do {
Probi
LS = find(P.pno);

for S in LS do { output(S, P); }

Supply=outer
Part=inner

Recall: need to rewrite as open, get next, close

Supplier(sno, sname, scity, sstate)

Supply(sho, pno, price)
Part(pno, pname, psize, pcolor)

3. Merge Join (main memory)

Part1 = sort(Part, pno);
Supply1 = sort(Supply,pno);
P=Part1.get_next(); S=Supply1.get_next();

While (P!=NULL and S!=NULL) {
case:
P.pno < S.pno:. P =Part1.get next();
P.pno > S.pno: S = Supply1.get next();
P.ono == S.pno { output(P,S);
S = Supply1.get_next()
}

Supplier(sno, sname, scity, sstate)
Supply(sho, pno, price)

Pipelined Execution
(On the fly) I

sname

(Onthefly) o

sscity="Seattle’ nsstate="WA' A pno=2

(Nested loop) =

SNOo = Sno

N

Supplier Supply
(File scan) (File scan)

Pipelined Execution

* Applies parent operator to tuples directly as
they are produced by child operators

» Benefits
— No operator synchronization issues
— Saves cost of writing intermediate data to disk
— Saves cost of reading intermediate data from disk
— Good resource utilizations on single processor

* This approach is used whenever possible

CSEP 544 -- Winter 2014 90

Supplier(sno, sname, scity, sstate)
Supply(sho, pno, price)

Intermediate Tuple Materialization

(On the fly) 11 sname

(Sort'merge JOIn)G sscity="Seattle’ nsstate="WA' A pno=2

(Scan: write to T1)] (Scan: write to T2)
SNO = sSnO
Supplier Supply

(File scan) (File scan)

Intermediate Tuple
Materialization

Writes the results of an operator to an
Intermediate table on disk

No direct benefit but
Necessary data is larger than main memory

Necessary when operator needs to examine
the same tuples multiple times

CSEP 544 -- Winter 2014 92

Outline of the Lecture

* Physical operators: join, group-by

* Query execution: pipeline, iterator model

* Query optimization

 Database statistics

CSEP 544 -- Winter 2014 93

Query Optimization

» Search space = set of all physical query
plans that are equivalent to the SQL
query

— Defined by algebraic laws and restrictions
on the set of plans used by the optimizer

* Search algorithm = a heuristics-based
algorithm for searching the space and
selecting an optimal plan

CSEP 544 -- Winter 2014 94

Relational Algebra Laws:
Joins

Commutativity : RXS=SXR
Associativity: RX(SXT)=(RXS)XT
Distributivity: RX(SUT) = (RXS)U(RNXT)

Outer joins get more complicated

CSEP 544 -- Winter 2014 95

Relational Algebra Laws:
Selections

R(A, B, C, D), S(E, F, G)

OF=3(R[X]D=E S)= ?
O a=5AND G=9 (R X pg S) = ?

CSEP 544 -- Winter 2014 96

Relational Algebra Laws:
Selections

R(A, B, C, D), S(E, F, G)

O F=3 (RX pp S) = R X pg (0 (=3 (S))
O a=5 AND G=9 (R X p_p S) =0-5(R) Mp_g 0g=9(S)

CSEP 544 -- Winter 2014 97

Group-by and Join

R(A, B), S(C,D)

VA, sum(D)(R(AaB) M g=c S(C,D)) =

CSEP 544 -- Winter 2014

?

98

Group-by and Join

R(A, B), S(C,D)

VA, sum(D)(R(AaB) M g=c S(C,D)) =
YA, sum(D (R(A,B) X B=C (YC, sum(D S(C’D)))

These are very powerful laws.
They were introduced only in the 90’s.

CSEP 544 -- Winter 2014

99

Laws Involving Constraints

Foreign key

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

d. pricelProduct X ,_ .,y Company) = ?

CSEP 544 -- Winter 2014 100

Laws Involving Constraints

Foreign key

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

d. oricelProduct X ._..qy GCompany) = I1; ,...(Product)

Need a second constraint for this law to hold. Which ?

CSEP 544 -- Winter 2014 101

Why such queries occur

Foreign key

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

SELECT *
FROM Product x, Company y

SELECT pname, price
FROM CheapProductCompany

CSEP 544 -- Winter 2014

WHERE x.cid = y.cid and x.price < 100

CREATE VIEW CheapProductCompany

SELECT pname, price
FROM Product
WHERE price < 100

Law of Semijoins

Input: R(A1,...An), S(B1,...,Bm)
Output: T(A1,...,An)
Semjoinis: RX S =11 4,

The law of semijoins is:

R X S=(RXS) X S

CSEP 544 -- Winter 2014 103

Laws with Semijoins

» Used in parallel/distributed databases
« Often combined with Bloom Filters

 Read pp. 747 in the textbook

CSEP 544 -- Winter 2014 104

Left-Deep Plans and
Bushy Plans

/<\R /\

. \ R3/ \R1 / \

R3 R1

Left-deep plan Bushy plan

System R considered only left deep plans,
and so do some optimizers today 105

Search Algorithms

* Dynamic programming
— Pioneered by System R for computing optimal join order, used
today by all advanced optimizers

e Search space pruning
— Enumerate partial plans, drop unpromising partial plans
— Bottom-up v.s. top-down plans

« Access path selection
— Refers to the plan for accessing a single table

CSEP 544 -- Winter 2014 106

Complete Plans

R(A,B) SELECT *
S(B,C) FROMR, S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40

A
T

O <40

|

R

/N\

c7A<4o

CSEP 544 -- Winter 2014

I\

If the algorithm
enumerates
complete plans,

then it is difficult
to prune out
unpromising
sets of plans.

Bottom-up Partial Plans

R(A,B) SELECT *
S(B,C) FROMR, S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40

If the algorithm enumerates

partial bottom-up plans, X
then pruning can be done

more efficiently
/7 ST
GAI<40 / N\ Opcsg O / N\ Opcso O
S T R R S

R R 108

Top-down Partial Plans

R(A,B)
S(B,C)
T(C,D)

Same here.

[\

SELECT *

FROMR, S

WHERE R.B=S.B
and R.A<40

T

SELECT *
FROMR, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

N \ Oa<40

SELECT R.A, T.D
/ FROMR, S, T
WHERE R.B=S.B
SELECT * andSC=TCf} -

FROM R
WHERE R.A< 40

109

Access Path Selection

Supplier(sid,sname,scategory,scity,sstate) B(Supplier) = 10k

T(Supplier) = 1M

o) Supplier)

scategory = ‘organic’ A scity='Seattle’ (

V(Supplier,city) = 1000
Clustered index on scity V(Supplier,scategory)=100
Unclustered index on (scategory,scity)

Access plan options:

« Table scan: cost= ?
* Index scan on scity: cost= ?
« Index scan on scategory,scity: cost= ?

CSEP 544 -- Winter 2014 110

Access Path Selection

Supplier(sid,sname,scategory,scity,sstate) B(Supplier) = 10k

T(Supplier) = 1M

o) Supplier)

scategory = ‘organic’ A scity='Seattle’ (

V(Supplier,city) = 1000
Clustered index on scity V(Supplier,scategory)=100
Unclustered index on (scategory,scity)

Access plan options:

* Table scan: cost= 10k =10k
* Index scan on scity: cost= 10k/1000 =10
* |Index scan on scategory,scity: cost= 1M/1000*100 =10

CSEP 544 -- Winter 2014 111

Outline of the Lecture

* Physical operators: join, group-by
* Query execution: pipeline, iterator model

* Query optimization

 Database statistics

CSEP 544 -- Winter 2014 112

Database Statistics

* Collect statistical summaries of stored data

« Estimate size (=cardinality) in a bottom-up
fashion

— This is the most difficult part, and still inadequate
In today’s query optimizers

« Estimate cost by using the estimated size

— Hand-written formulas, similar to those we used
for computing the cost of each physical operator

CSEP 544 -- Winter 2014 113

Database Statistics

Number of tuples (cardinality)
Indexes, number of keys in the index
Number of physical pages, clustering info

Statistical information on attributes
— Min value, max value, number distinct values
— Histograms

Correlations between columns (hard)

» Collection approach: periodic, using sampling

CSEP 544 -- Winter 2014 114

Size Estimation Problem

S = SELECT list
FROM R1,...,Rn
WHERE cond,; AND cond, AND . . . AND cond,

Given T(R1), T(R2), ..., T(Rn)
Estimate T(S)

How can we do this ? Note: doesn’t have to be exact.

CSEP 544 -- Winter 2014 115

Size Estimation Problem

S = SELECT list
FROM R1,...,Rn
WHERE cond,; AND cond, AND . . . AND cond,

Remark: T(S) = T(R1) x T(R2) x ... x T(Rn)

CSEP 544 -- Winter 2014 116

Selectivity Factor

« Each condition cond reduces the size
by some factor called selectivity factor

* Assuming independence, multiply the
selectivity factors

CSEP 544 -- Winter 2014 117

Example

R(A,B) SELECT *
S(B,C) FROMR, S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40

T(R) = 30k, T(S) =200k, T(T) = 10k

Selectivity of R.B=S.B is 1/3
Selectivity of S.C=T.Cis 1/10
Selectivity of R A<40is %

What is the estimated size of the query output ?

CSEP 544 -- Winter 2014 118

Example

R(A,B) SELECT *
S(B,C) FROMR, S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40

T(R) = 30k, T(S) =200k, T(T) = 10k

Selectivity of R.B=S.B is 1/3
Selectivity of S.C=T.Cis 1/10
Selectivity of R A<40is %

What is the estimated size of the query output ?

30k * 200k * 10k * 1/3 * 1/10 * 2
=1TB

CSEP 544 -- Wi

Rule of Thumb

* |f selectivities are unknown, then:
selectivity factor = 1/10
[System R, 1979]

CSEP 544 -- Winter 2014 120

Using Data Statistics

e Conditionis A=c [/*value selectionon R */
— Selectivity = 1/V(R,A)

 Conditionis A<c /*range selectionon R */
— Selectivity = (c - Low(R, A))/(High(R,A) - Low(R,A))T(R)

« Conditionis A =8B "R Xp g S*/
— Selectivity = 1 / max(V(R,A),V(S,A))

— (will explain next)

CSEP 544 -- Winter 2014 121

Assumptions

« Containment of values: if V(R,A) <= V(S,B), then
the set of A values of R is included in the set of
B values of S

— Note: this indeed holds when A is a foreign key in R,
and BisakeyinS

« Preservation of values: for any other attribute C,
V(RMa5S, C) = V(R, C) (or V(S, C))

CSEP 544 -- Winter 2014 122

Selectivity of R Mg S
Assume V(R,A) <= V(S,B)
+ Each tuple tin R joins with T(S)/V(S,B) tuple(s) in S
+ Hence T(R X,z S) = T(R) T(S) / V(S,B)

In general: T(R X,_5 S) = T(R) T(S) / max(V(R,A),V(S,B))

CSEP 544 -- Winter 2014 123

Size Estimation for Join

Example:

« T(R)=10000, T(S)=20000
* V(R,A) =100, V(S,B) =200
* How large is R X,_g S 7

CSEP 544 -- Winter 2014 124

Histograms

» Statistics on data maintained by the
RDBMS

* Makes size estimation much more
accurate (hence, cost estimations are
more accurate)

CSEP 544 -- Winter 2014 125

Histograms
Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Gage=48(EmpO|yee) =7 Gage>28 and age<35(EmpO|yee) =7

CSEP 544 -- Winter 2014 126

Histograms
Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

o (Empolyee)=7? © (Empolyee) = ?

age=48 age>28 and age<35

$ $

Estimate = 25000 / 50 = 500 Estimate = 25000 * 6 /50 = 3000

CSEP 544 -- Winter 2014

Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Gage=48(EmpO|yee) =7 Gage>28 and age<35(EmpO|yee) =7

Age:

0..20

20..29

30-39

40-49

50-59

> 60

Tuples

200

800

5000

12000

6500

500

CSEP 544 -- Winter 2014

Histograms

Employee(ssn, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50
min(age) = 19, max(age) = 68

Gage=48(EmpO|yee) =7 Gage>28 and age<35(EmpO|yee) =7

Age:

0..20

20..29

30-39

40-49

50-59

> 60

Tuples

200

800

5000

12000

6500

500

Estimate = 1200

Estimate = 1*80 + 5*500 = 2580

Types of Histograms

 How should we determine the bucket
boundaries in a histogram ?

CSEP 544 -- Winter 2014 130

Types of Histograms

How should we determine the bucket
boundaries in a histogram ?

Eqg-Width

Eqg-Depth
Compressed
V-Optimal histograms

CSEP 544 -- Winter 2014 131

Employee(ssn, name, age)

Histograms
Eg-width:
Age: 0..20 20..29 30-39 40-49 50-59 > 60
Tuples 200 800 5000 12000 6500 500
Eqg-depth:
Age: 0..20 20..29 30-39 40-49 50-59 > 60
Tuples 1800 2000 2100 2200 1900 1800

Compressed: store separately highly frequent values: (48,1900)

V-Optimal Histograms

» Defines bucket boundaries in an optimal

way, to minimize the error over all point
gueries

« Computed rather expensively, using
dynamic programming

 Modern databases systems use V-
optimal histograms or some variations

CSEP 544 -- Winter 2014 133

Difficult Questions on Histograms

« Small number of buckets
— Hundreds, or thousands, but not more
— WHY ?

* Not updated during database update,
but recomputed periodically
— WHY ?

* Multidimensional histograms rarely used
— WHY ?

CSEP 544 -- Winter 2014 134

Summary of Query
Optimization

* Three parts:
— search space, algorithms, size/cost estimation

* |deal goal: find optimal plan. But
— Impossible to estimate accurately
— Impossible to search the entire space

« Goal of today’s optimizers:
— Avoid very bad plans

CSEP 544 -- Winter 2014 135

