Lecture 4: Query Execution

Tuesday, January 28, 2014

Announcemenents

- Homework 2 was due last night
- Paper review (Shapiro) was due today
- Homework 3 is posted
- You have received a token (=\$100@AWS)
- You need to write 4 simple queries
- Data is huge: last query $\approx 4-7$ hours
- Learn PigLatin on your own (easy)
- Plan a lot of time for setup

Where We Are

Query execution!

- We have seen:
- Disk organization = set of blocks(pages)
- The buffer pool
- How records are organized in pages
- Indexes, in particular B+ -trees
- Today: rest of query execution, optimization

Steps of the Query Processor

SQL query
Parse \& Rewrite SQL Query

Steps in Query Evaluation

- Step 0: Admission control
- User connects to the db with username, password
- User sends query in text format
- Step 1: Query parsing
- Parses query into an internal format
- Performs various checks using catalog
- Correctness, authorization, integrity constraints
- Step 2: Query rewrite
- View rewriting, flattening, etc.

Continue with Query Evaluation

- Step 3: Query optimization
- Find an efficient query plan for executing the query
- A query plan is
- Logical query plan: an extended relational algebra tree
- Physical query plan: with additional annotations at each node
- Access method to use for each relation
- Implementation to use for each relational operator

Final Step in Query Processing

- Step 4: Query execution
- Each operator has several implementation algorithms
- Synchronization techniques:
- Pipelined execution
- Materialized relations for intermediate results
- Passing data between operators:
- Iterator interface
- One thread per operator

SQL Query

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name FROM Product x, Purchase y, Customer z WHERE x.pid $=y . p i d$ and y.cid $=y . c i d$ and x.price > 100 and z.city = 'Seattle'

Logical Plan

Product(pid, name, price) Purchase(pid, cid, store) Customer(cid, name, city)

Logical v.s. Physical Plan

- Physical plan = Logical plan plus annotations
- Access path selection for each relation
- Use a file scan or use an index
- Implementation choice for each operator
- Scheduling decisions for operators

Logical Query Plan

Physical Query Plan

(On the fly)
(On the fly)
$\sigma_{\text {sscity }}=‘$ Seattle' \wedge sstate='WA' $\wedge \mathrm{pno}=2$
(Nested loop)
$\Pi_{\text {sname }}$

Supplier
(File scan)

(File scan)

Outline of the Lecture

- Physical operators: join, group-by
- Query execution: pipeline, iterator model
- Query optimization
- Database statistics

Extended Algebra Operators

- Union \cup, difference -
- Selection σ
- Projection Π
- Join \bowtie-- also: semi-join, anti-semi-join
- Rename ρ

ExtendedRA

- Duplicate elimination δ
- Grouping and aggregation γ
- Sorting τ

Sets v.s. Bags

- Sets: $\{a, b, c\},\{a, d, e, f\},\{ \}, \ldots$
- Bags: $\{a, a, b, c\},\{b, b, b, b, b\}, \ldots$

Relational Algebra has two semantics:

- Set semantics (paper "Three languages...")
- Bag semantics

Physical Operators

Each of the logical operators may have one or more implementations = physical operators

Will discuss several basic physical operators, with a focus on join

Question in Class

Logical operator:
Supply(sno,pno,price) $\bowtie_{\text {pno=pno }}$ Part(pno,pname,psize,pcolor)
Propose three physical operators for the join, assuming the tables are in main memory:
1.
2.
3.

Question in Class

Logical operator:
Supply(sno,pno,price) $\bowtie_{\text {pno=pno }}$ Part(pno,pname,psize,pcolor)
Propose three physical operators for the join, assuming the tables are in main memory:

1. Nested Loop Join
2. Merge join
3. Hash join

BRIEF Review of Hash Tables

 Separate chaining:A (naïve) hash function:
$h(x)=x \bmod 10$

Operations:
find(103) $=$?? insert(488) $=$??

BRIEF Review of Hash Tables

- insert(k, v) = inserts a key k with value v
- Many values for one key
- Hence, duplicate k's are OK
- find $(\mathrm{k})=$ returns the list of all values v associated to the key k

Cost Parameters

The cost of an operation = total number of I/Os
Cost parameters (used both in the book and by Shapiro):

- $B(R)=$ number of blocks for relation R (Shapiro: $|R|$)
- $T(R)=$ number of tuples in relation R
- $V(R, a)=$ number of distinct values of attribute a
- M = size of main memory buffer pool, in blocks

Facts: (1) $B(R) \ll T(R)$:

(2) When a is a key, $V(R, a)=T(R)$

When a is not a key, $V(R, a) \ll T(R)$

Cost of an Operator

Assumption: runtime dominated by \# of disk I/O's; will ignore the main memory part of the runtime

- If R (and S) fit in main memory, then we use a main-memory algorithm
- If R (or S) does not fit in main memory, then we use an external memory algorithm

Ad-hoc Convention

- The operator reads the data from disk - Note: different from Shapiro
- The operator does not write the data back to disk (e.g.: pipelining)
- Thus:

Any main memory join algorithms for $R \bowtie S$: Cost $=B(R)+B(S)$
Any main memory grouping $\gamma(\mathrm{R})$: Cost $=\mathrm{B}(\mathrm{R})$

Nested Loop Joins

- Tuple-based nested loop $R \bowtie$ S
for each tuple r in R do for each tuple s in S do
$\mathrm{R}=$ outer relation $\mathrm{S}=$ inner relation if r and s join then output (r, s)
- Cost: $\mathrm{T}(\mathrm{R}) \mathrm{B}(\mathrm{S})$

Examples

$M=4$

- Example 1:
$-B(R)=1000, T(R)=10000$
$-B(S)=2, T(S)=20$
- Cost = ?

Can you do better with nested loops?

- Example 2:
$-B(R)=1000, T(R)=10000$
$-B(S)=4, T(S)=40$
- Cost = ?

Block-Based Nested-loop Join

for each (M-2) blocks bs of \mathbf{S} do for each block br of \mathbf{R} do for each tuple \mathbf{s} in bs for each tuple \mathbf{r} in $\mathbf{b r}$ do if " \mathbf{r} and \mathbf{s} join" then output(\mathbf{r}, \mathbf{s})

Terminology alert: sometimes S is called S the inner relation

Block-Based Nested-loop Join

Why not M ?

for each (M-2) blocks bs of \mathbf{S} do for each block br of \mathbf{R} do
for each tuple \mathbf{s} in bs
for each tuple \mathbf{r} in $\mathbf{b r}$ do if "r and \mathbf{s} join" then output(\mathbf{r}, \mathbf{s})

Terminology alert: sometimes S is called S the inner relation

Block-Based Nested-loop Join

Why not M ?

for each (M-2) blocks bs of \mathbf{S} do for each block br of \mathbf{R} do
for each tuple s in bs for each tuple \mathbf{r} in $\mathbf{b r}$ do if " r and \mathbf{s} join" then output(\mathbf{r}, \mathbf{s})

Terminology alert: sometimes S is called S the inner relation

Block Nested-loop Join

Examples

$M=4$

- Example 1:
$-B(R)=1000, T(R)=10000$
$-B(S)=2, T(S)=20$
- Cost $=B(S)+B(R)=1002$
- Example 2:
$-B(R)=1000, T(R)=10000$
$-B(S)=4, T(S)=40$
- Cost $=B(S)+2 B(R)=2004$

Note: $T(R)$ and $T(S)$ are irrelevant here.

Cost of Block Nested-loop Join

- Read S once: cost B(S)
- Outer loop runs $B(S) /(M-2)$ times, and each time need to read R : costs $B(S) B(R) /(M-2)$

$$
\text { Cost }=\mathrm{B}(\mathrm{~S})+\mathrm{B}(\mathrm{~S}) \mathrm{B}(\mathrm{R}) /(\mathrm{M}-2)
$$

Index Based Selection

Recall IMDB; assume indexes on Movie.id, Movie.year

SELET *
FROM Movie
WHERE id = '12345'

SELET *
FROM Movie
WHERE year = '1995'
$\mathrm{B}($ Movie $)=10 \mathrm{k}$
$\mathrm{T}($ Movie $)=1 \mathrm{M}$
What is your estimate of the I/O cost?

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- Clustered index on a: cost?
- Unclustered index : cost ?

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- Clustered index on a : cost $B(R) / V(R, a)$
- Unclustered index : cost $T(R) / V(R, a)$

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- Clustered index on a : cost $B(R) / V(R, a)$
- Unclustered index : cost $T(R) / V(R, a)$

Note: we assume that the cost of reading the index $=0$ Why?

Index Based Selection

- Example:

$$
\begin{aligned}
& B(R)=10 k \\
& T(R)=1 M \\
& V(R, a)=100
\end{aligned}
$$

- Table scan:
- B(R) = 10k I/Os
- Index based selection:
- If index is clustered: $B(R) / V(R, a)=1001 / O s$
- If index is unclustered: $T(R) / V(R, a)=10000$ I/Os

Rule of thumb: don't build unclustered indexes when $\mathrm{V}(\mathrm{R}, \mathrm{a})$ is small !

Index Based Join

- $R \bowtie S$
- Assume S has an index on the join attribute
for each tuple r in R do lookup the tuple(s) s in S using the index output (r,s)

Index Based Join

Cost:

- If index is clustered:
- If unclustered:

Index Based Join

Cost:

- If index is clustered: $B(R)+T(R) B(S) / V(S, a)$
- If unclustered: $\quad B(R)+T(R) T(S) / V(S, a)$

Operations on Very Large Tables

- Compute $R \bowtie S$ when each is larger than main memory
- Two methods:
- Partitioned hash join (many variants)
- Merge-join
- Similar for grouping

External Sorting

- Problem:
- Sort a file of size B with memory M
- Where we need this:
- ORDER BY in SQL queries
- Several physical operators
- Bulk loading of B+-tree indexes.
- Will discuss only 2-pass sorting, when $\mathrm{B}<\mathrm{M}^{2}$

Basic Terminology

- A run in a sequence is an increasing subsequence
- What are the runs?
$2,4,99,103,88,77,3,79,100,2,50$

External Merge-Sort: Step 1

- Phase one: load M bytes in memory, sort

Runs of length M bytes

Can increase to length 2M using "replacement selection"

Basic Terminology

- Merging multiple runs to produce a longer run:
0, 14, 33, 88, 92, 192, 322
2, 4, 7, 43, 78, 103, 523
1, 6, 9, 12, 33, 52, 88, 320

Output:
$0,1,2,4,6,7$, ?

External Merge-Sort: Step 2

- Merge $\mathrm{M}-1$ runs into a new run
- Result: runs of length $M(M-1) \approx M^{2}$

If $B<=M^{2}$ then we are done

Cost of External Merge Sort

- Read+write+read $=3 B(R)$
- Assumption: $\mathrm{B}(\mathrm{R})<=\mathrm{M}^{2}$

Group-by

Group-by: $\gamma_{a, \operatorname{sum}(b)}(R)$

- Idea: do a two step merge sort, but change one of the steps
- Question in class: which step needs to be changed and how?

Cost $=3 B(R)$

Assumption: $\mathrm{B}(\delta(\mathrm{R}))<=\mathrm{M}^{2}$

Merge-Join

Join $R \bowtie S$

- How?

Merge-Join

Join $R \bowtie S$

- Step 1a: initial runs for R
- Step 1b: initial runs for S
- Step 2: merge and join

Merge-Join

Partitioned Hash Algorithms

Idea:

- If $B(R)>M$, then partition it into smaller files: R1, R2, R3, ..., Rk
- Assuming $B(R 1)=B(R 2)=\ldots=B(R k)$, we have $B(R i)=B(R) / k$
- Goal: each Ri should fit in main memory: $B(R i) \leq M$

How big can k be ?

Partitioned Hash Algorithms

- Idea: partition a relation R into $M-1$ buckets, on disk
- Each bucket has size approx. $B(R) /(M-1) \approx B(R) / M$

$$
\text { Assumption: } B(R) / M \leq M \text {, i.e. } B(R) \leq M^{2}
$$

Grouping

- $\gamma(\mathrm{R})=$ grouping and aggregation
- Step 1. Partition R into buckets
- Step 2. Apply γ to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption: $B(R) \leq M^{2}$

Grace-Join

$R \bowtie S$

Note: grace-join is also called

Grace-Join

$R \bowtie S$

- Step 1:
- Hash S into M buckets
- send all buckets to disk
- Step 2
- Hash R into M buckets
- Send all buckets to disk
- Step 3
- Join every pair of bucketa

Note: grace-join is also called partitioned hash-join

Grace-Join

- Partition both relations using hash fn h : R tuples in partition i will only match S tuples in partition i.

Grace-Join

- Partition both relations using hash fn h : R tuples in partition i will only match S tuples in partition i.

Partitions

Grace Join

- Cost: 3B(R) $+3 \mathrm{~B}(\mathrm{~S})$
- Assumption: $\min (B(R), B(S))<=M^{2}$

Hybrid Hash Join Algorithm

- How does it work?

Hybrid Hash Join Algorithm

- Partition S into k buckets t buckets S_{1}, \ldots, S_{t} stay in memory k-t buckets S_{t+1}, \ldots, S_{k} to disk
- Partition R into k buckets
- First t buckets join immediately with S
- Rest k-t buckets go to disk
- Finally, join k-t pairs of buckets:
$\left(R_{t+1}, S_{t+1}\right),\left(R_{t+2}, S_{t+2}\right), \ldots,\left(R_{k}, S_{k}\right)$

Hybrid Hash Join Algorithm

- Partition S into k buckets t buckets S_{1}, \ldots, S_{t} stay in memory $k-t$ buckets S_{t+1}, \ldots, S_{k} to disk Shapirios notation:
- Partition R into k buckets
- First t buckets join immediately with S
- Rest k-t buckets go to disk
- Finally, join k-t pairs of buckets:
$\left(R_{t+1}, S_{t+1}\right),\left(R_{t+2}, S_{t+2}\right), \ldots,\left(R_{k}, S_{k}\right)$

Hybrid Hash Join Algorithm

Hybrid Join Algorithm

- How to choose k and t?
- Choose k large but s.t.

$$
k<=M
$$
t / k * $B(S)<=M$
t / k * $B(S)+k-t<=M$

- Choose t/k large but s.t.
- Moreover:
- Assuming t / k * $B(S) \gg k-t: \quad t / k=M / B(S)$

Hybrid Join Algorithm

Cost of Hybrid Join:

- Grace join: 3B(R) + 3B(S)
- Hybrid join:
- Saves 2 I/Os for t / k fraction of buckets
- Saves 2t/k(B(R) + B(S)) I/Os
- Cost:

$$
(3-2 t / k)(B(R)+B(S))=(3-2 M / B(S))(B(R)+B(S))
$$

Hybrid Join Algorithm

- Question in class: what is the advantage of the hybrid algorithm ?

Summary of External Join Algorithms

- Block Nested Loop: B(S) + B(R)*B(S)/M
- Index Join: $B(R)+T(R) B(S) / V(S, a)$
- Partitioned Hash: 3B(R)+3B(S);
$-\min (B(R), B(S))<=M^{2}$
- Merge Join: $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})$
$-B(R)+B(S)<=M^{2}$

Other Operators

- Selection, projection
- Duplicate elimination
- Semi-join
- Anti-semijoin

Selections, Projections

- Selection = easy, check condition on each tuple at a time
- Projection = easy (assuming no duplicate elimination), remove extraneous attributes from each tuple

Duplicate Elimination IS Group By

Duplicate elimination $\delta(R)$ is the same as group by $\gamma(R)$ WHY ???

- Hash table in main memory
- Cost: B(R)
- Assumption: $B(\delta(R))<=M$

Semijoin

$$
R \ltimes_{C} S=\Pi_{A 1, \ldots, A_{n}}\left(R \bowtie_{C} S\right)
$$

- Where A_{1}, \ldots, A_{n} are the attributes in R

Formally, $R \ltimes_{C} S$ means this: retain from R only those tuples that have some matching tuple in S

- Duplicates in R are preserved
- Duplicates in S don't matter

Semijoins in Distributed Databases

Employee $\bowtie_{\text {SSN }=\text { EmpSSN }}\left(\sigma_{\text {age }}\right.$ (Di $($ Dependent) $)$

Assumptions

- Very few dependents have age >71.
- "Stuff" is big.

Task: compute the query with minimum amount of data transfer

Semijoins in Distributed Databases

$$
\mathrm{T}=\Pi_{\text {EmpSSN }} \sigma_{\text {age>71 }} \text { (Dependents) }
$$

Semijoins in Distributed Databases

Employee $\bowtie_{\text {SSN }=\text { EmpSSN }}\left(\sigma_{\text {age>71 }}\right.$ (Dependent) $)$

$$
\mathrm{T}=\Pi_{\mathrm{EmpssN}} \sigma_{\mathrm{age}>71} \text { (Dependents) }
$$

$$
\begin{aligned}
R & =\text { Employee } \ltimes_{\text {SSN }=\text { EmpSSN }} \quad \begin{array}{l}
\top \\
\\
\end{array}=\text { Employee } \ltimes_{\text {SSN }=\text { EmpSSN }}\left(\sigma_{\text {age>71 }}(\text { Dependents })\right)
\end{aligned}
$$

Semijoins in Distributed Databases

Employee $\bowtie_{\text {SSN }=\text { EmpSSN }}\left(\sigma_{\text {age }>71}\right.$ (Dependent))

$\mathrm{T}=\Pi_{\text {Empssn }} \sigma_{\text {age }>71}$ (Dependents)

$\mathrm{R}=$ Employee $\ltimes_{\text {SSN }}=$ EmpSSN T

$$
\text { Answer }=\mathrm{R} \bowtie_{\text {SSN }=\text { EmpSSN }} \sigma_{\text {age>71 }} \text { Dependents }
$$

Anti-Semi-Join

- Notation: $\mathrm{R} \triangleright$ S
- Warning: not a standard notation
- Meaning: all tuples in R that do NOT have a matching tuple in S
$R(A, B)$ S(B)

Set Difference v.s. Anti-semijoin

SELECT DISTINCT R.B FROM R
WHERE not exists (SELECT *
FROM S
WHERE R.B=S.B)

```
SELECT DISTINCT *
FROM R
WHERE not exists (SELECT *
FROM S
    WHERE R.B=S.B)
```

$R(A, B)$ S(B)

Set Difference v.s. Anti-semijoin

SELECT DISTINCT R.B FROM R
WHERE not exists (SELECT *
FROM S
WHERE R.B=S.B)

```
SELECT DISTINCT *
FROM R
WHERE not exists (SELECT *
    FROM S
    WHERE R.B=S.B)
```

$R(A, B)$ S(B)

Set Difference v.s. Anti-semijoin

SELECT DISTINCT R.B FROM R
WHERE not exists (SELECT *
FROM S
WHERE R.B=S.B)
Plan=

Plan=

```
SELECT DISTINCT *
FROM R
WHERE not exists (SELECT *
    FROM S
    WHERE R.B=S.B)
```

$R(A, B)$ S(B)

Set Difference v.s. Anti-semijoin

SELECT DISTINCT R.B	
FROM R	
WHERE not exists	(SELECT *
	FROM S
	WHERE R.B=S.B)

Plan $=\underset{R}{\text { R }}$
Plan=
SELECT DISTINCT *
FROM R
WHERE not exists (SELECT *
FROM S
WHERE R.B=S.B)

$$
R(A, B) \quad R(A, B) \quad S(B)
$$

$R(A, B)$ S(B)

Set Difference v.s. Anti-semijoin

SELECT DISTINCT R.B	
FROM R	
WHERE not exists	(SELECT *
	FROM S
	WHERE R.B=S.B)

Plan $=\underset{R}{\text { R }}$

Operators on Bags

- Duplicate elimination δ $\delta(R)=$ SELECT DISTINCT * FROM R
- Grouping γ

$$
\begin{aligned}
& \gamma_{A, s u m(B)}(R)= \\
& \text { SELECT A,sum(B) } \quad \text { FROM } R \text { GROUP BY A }
\end{aligned}
$$

- Sorting τ

Outline of the Lecture

- Physical operators: join, group-by
- Query execution: pipeline, iterator model
- Query optimization
- Database statistics

Iterator Interface

- Each operator implements this interface
- Interface has only three methods
- open()
- Initializes operator state
- Sets parameters such as selection condition
- get_next()
- Operator invokes get_next() recursively on its inputs
- Performs processing and produces an output tuple
- close(): cleans-up state

1. Nested Loop Join

for S in Supply do \{ for P in Part do \{ if (S.pno == P.pno) output(S,P); \} \}

Supply = outer relation Part = inner relation Note: sometimes terminology is switched

Would it be more efficient to choose Part=outer, Supply=inner? What if we had an index on Part.pno?

It's more complicated...

- Each operator implements this interface
- open()
- get_next()
- close()

Main Memory Nested Loop Join

```
open ( ) {
    Supply.open( );
    Part.open( );
    S = Supply.get_next( );
}
```

```
close ( ) {
    Supply.close ();
    Part.close ( );
}
```

get_next() \{
repeat \{
P= Part.get_next();
if ($\mathrm{P}==\mathrm{NULL}$)
\{ Part.close();
S= Supply.get_next();
if ($\mathrm{S}==\mathrm{NULL}$) return NULL;
Part.open();
$\mathrm{P}=$ Part.get_next();
\}
until (S.pno == P.pno);
return (S, P)
\}

ALL operators need to be implemented this way!

2. Hash Join (main memory)

Build phase
 Tor S in Supply do insert(S.pno, S);

for P in Part do \{
LS = find(P.pno);
Probing for S in LS do \{ output(S, P); \}
\}

Supply=outer

Part=inner
Recall: need to rewrite as open, get_next, close

3. Merge Join (main memory)

Part1 = sort(Part, pno);
Supply1 = sort(Supply,pno);
$P=$ Part1.get_next(); S=Supply1.get_next();
While (P!=NULL and S!=NULL) \{
case:

> P.pno < S.pno: $\quad P=$ Part1.get_next($) ;$
> P.pno $>$ S.pno: $\quad S=$ Supply1.get_next($) ;$
> P.pno $==$ S.pno $\{$ output $(P, S) ;$

S = Supply1.get_next();
\}
\}

Pipelined Execution

(On the fly)
$\Pi_{\text {sname }}$
1
σ sscity=‘Seattle’ \wedge sstate='WA' $\wedge \mathrm{pno}=2$
(On the fly)

Supplier
(File scan)

(File scan)

Pipelined Execution

- Applies parent operator to tuples directly as they are produced by child operators
- Benefits
- No operator synchronization issues
- Saves cost of writing intermediate data to disk
- Saves cost of reading intermediate data from disk
- Good resource utilizations on single processor
- This approach is used whenever possible

Intermediate Tuple Materialization

(On the fly)
(Sort-merge join) $\sigma_{\text {sscity='Seattle' } \wedge s s t a t e=' W A ' ~} \quad$ pno=2
(Scan: write to T1)

(Scan: write to T2)

Supplier
(File scan)

$\Pi_{\text {sname }}$
^sstate='WA' ^ pno=2

Intermediate Tuple Materialization

- Writes the results of an operator to an intermediate table on disk
- No direct benefit but
- Necessary data is larger than main memory
- Necessary when operator needs to examine the same tuples multiple times

Outline of the Lecture

- Physical operators: join, group-by
- Query execution: pipeline, iterator model
- Query optimization
- Database statistics

Query Optimization

- Search space = set of all physical query plans that are equivalent to the SQL query
- Defined by algebraic laws and restrictions on the set of plans used by the optimizer
- Search algorithm = a heuristics-based algorithm for searching the space and selecting an optimal plan

Relational Algebra Laws: Joins

```
Commutativity: }R\bowtieS=S\bowtie
Associativity:
Distributivity:
R\bowtie(S\bowtieT) = (R\bowtieS)\bowtie T
R\bowtie(S\cupT) = (R\bowtieS)\cup(R\bowtieT)
```

Outer joins get more complicated

Relational Algebra Laws: Selections

$R(A, B, C, D), S(E, F, G)$

$$
\begin{aligned}
& \sigma_{F=3}\left(R \bowtie_{D=E} S\right)= \\
& \sigma_{A=5 A N D G=9}\left(R \bowtie_{D=E} S\right)=
\end{aligned}
$$

Relational Algebra Laws: Selections

$R(A, B, C, D), S(E, F, G)$

$$
\begin{aligned}
& \sigma_{F=3}\left(R \bowtie_{D=E} S\right)=R \bowtie_{D=E}\left(\sigma_{F=3}(S)\right) \\
& \sigma_{A=5 A N D G=9}\left(R \bowtie_{D=E} S\right)=\sigma_{A=5}(R) \bowtie_{D=E} \sigma_{G=9}(S)
\end{aligned}
$$

Group-by and Join

$R(A, B), S(C, D)$

$$
\gamma_{A, \operatorname{sum}(D)}\left(R(A, B) \bowtie_{B=C} S(C, D)\right)=?
$$

Group-by and Join

$R(A, B), S(C, D)$

$\gamma_{A, \operatorname{sum}(D)}\left(R(A, B) \bowtie_{B=C} S(C, D)\right)=$
 $\gamma_{A, \text { sum(D) }}\left(R(A, B) \bowtie_{B=C}\left(\gamma_{C, \text { sum(D) }} S(C, D)\right)\right)$

These are very powerful laws.
They were introduced only in the 90's.

Laws Involving Constraints

Foreign key
Product(pid, pname, price, cid)
Company(cid, cname, city, state)
$\Pi_{\text {pid, price }}\left(\right.$ Product $\bowtie_{\text {cid=cid }}$ Company $)=$?

Laws Involving Constraints

Foreign key

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

$\Pi_{\text {pid, price }}\left(\right.$ Product $\bowtie_{\text {cid=cid }}$ Company $)=\Pi_{\text {pid, price }}$ (Product)

Need a second constraint for this law to hold. Which?

Why such queries occur

Foreign key

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

CREATE VIEW CheapProductCompany

 SELECT *FROM Product x, Company y
WHERE x.cid = y.cid and x. price <100

SELECT pname, price FROM CheapProductCompany

SELECT pname, price FROM Product WHERE price < 100

Law of Semijoins

- Input: R(A1,...An), S(B1,...,Bm)
- Output: T(A1, ...,An)
- Semjoin is: $R \ltimes S=\Pi_{A 1, \ldots, A n}(R \bowtie S)$
- The law of semijoins is:

$$
R \bowtie S=(R \ltimes S) \bowtie S
$$

Laws with Semijoins

- Used in parallel/distributed databases
- Often combined with Bloom Filters
- Read pp. 747 in the textbook

Left-Deep Plans and Bushy Plans

System R considered only left deep plans, and so do some optimizers today

Search Algorithms

- Dynamic programming
- Pioneered by System R for computing optimal join order, used today by all advanced optimizers
- Search space pruning
- Enumerate partial plans, drop unpromising partial plans
- Bottom-up v.s. top-down plans
- Access path selection
- Refers to the plan for accessing a single table

Complete Plans

R(A,B)
S(B,C)
T(C,D)

```
SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A \(<40\)
```


If the algorithm
enumerates
complete plans,
then it is difficult
to prune out
unpromising
sets of plans.

Bottom-up Partial Plans

R(A,B)
S(B,C)
T(C,D)

```
SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A \(<40\)
```

If the algorithm enumerates partial bottom-up plans, then pruning can be done more efficiently

Top-down Partial Plans

R(A,B)
S(B,C)
T(C,D)

SELECT *
 FROM R, S, T
 WHERE R.B=S.B and S.C=T.C and R.A <40

Same here.

Access Path Selection

Supplier(sid,sname,scategory,scity,sstate)
$\sigma_{\text {scategory }}=$ 'organic' \wedge scity='Seattle' (Supplier)
Clustered index on scity
$B($ Supplier $)=10 k$ $\mathrm{T}($ Supplier $)=1 \mathrm{M}$

V(Supplier,city) $=1000$
V(Supplier,scategory)=100

Unclustered index on (scategory,scity)

Access plan options:

- Table scan:
- Index scan on scity:
- Index scan on scategory,scity:

$$
\begin{aligned}
& \operatorname{cost}=? \\
& \operatorname{cost}=? \\
& \operatorname{cost}=?
\end{aligned}
$$

Access Path Selection

Supplier(sid,sname,scategory,scity,sstate)
$B($ Supplier $)=10 \mathrm{k}$ $\mathrm{T}($ Supplier $)=1 \mathrm{M}$

V(Supplier,city) $=1000$ V(Supplier,scategory)=100

Clustered index on scity
(Supplier)

Unclustered index on (scategory,scity)

Access plan options:

- Table scan:
- Index scan on scity:
- Index scan on scategory,scity:

Outline of the Lecture

- Physical operators: join, group-by
- Query execution: pipeline, iterator model
- Query optimization
- Database statistics

Database Statistics

- Collect statistical summaries of stored data
- Estimate size (=cardinality) in a bottom-up fashion
- This is the most difficult part, and still inadequate in today's query optimizers
- Estimate cost by using the estimated size
- Hand-written formulas, similar to those we used for computing the cost of each physical operator

Database Statistics

- Number of tuples (cardinality)
- Indexes, number of keys in the index
- Number of physical pages, clustering info
- Statistical information on attributes
- Min value, max value, number distinct values
- Histograms
- Correlations between columns (hard)
- Collection approach: periodic, using sampling

Size Estimation Problem

$\mathrm{S}=\mathrm{SELECT}$ list FROM R1, ..., Rn WHERE cond ${ }_{1}$ AND cond ${ }_{2}$ AND . . . AND cond ${ }_{k}$

Given $\mathrm{T}(\mathrm{R} 1), \mathrm{T}(\mathrm{R} 2), \ldots, \mathrm{T}(\mathrm{Rn})$
Estimate T(S)
How can we do this? Note: doesn't have to be exact.

Size Estimation Problem

$\mathrm{S}=\mathrm{SELECT}$ list FROM R1, ..., Rn WHERE cond ${ }_{1}$ AND cond ${ }_{2}$ AND . . . AND cond ${ }_{k}$

Remark: $\mathrm{T}(\mathrm{S}) \leq \mathrm{T}(\mathrm{R} 1) \times \mathrm{T}(\mathrm{R} 2) \times \ldots \times \mathrm{T}(\mathrm{Rn})$

Selectivity Factor

- Each condition cond reduces the size by some factor called selectivity factor
- Assuming independence, multiply the selectivity factors

Example

R(A,B)
$S(B, C)$
T(C,D)

SELECT *

FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A <40
$T(R)=30 k, T(S)=200 k, T(T)=10 k$
Selectivity of R.B $=S . B$ is $1 / 3$
Selectivity of S.C $=$ T.C is $1 / 10$ Selectivity of R.A <40 is $1 / 2$

What is the estimated size of the query output ?

Example

R(A,B)
$S(B, C)$
T(C,D)

SELECT *

FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A <40
$T(R)=30 k, T(S)=200 k, T(T)=10 k$
Selectivity of R.B $=S . B$ is $1 / 3$
Selectivity of S.C $=$ T.C is $1 / 10$ Selectivity of R.A <40 is $1 / 2$

What is the estimated size of the query output ?

Rule of Thumb

- If selectivities are unknown, then: selectivity factor = 1/10 [System R, 1979]

Using Data Statistics

- Condition is $A=c \quad / *$ value selection on R */
- Selectivity $=1 / V(R, A)$
- Condition is $A<c \quad / *$ range selection on R */
- Selectivity $=(c-\operatorname{Low}(R, A)) /(\operatorname{High}(R, A)-\operatorname{Low}(R, A)) T(R)$
- Condition is $\mathrm{A}=\mathrm{B}$

$$
/ * R \bowtie_{A=B} S * /
$$

- Selectivity = $1 / \max (\mathrm{V}(\mathrm{R}, \mathrm{A}), \mathrm{V}(\mathrm{S}, \mathrm{A}))$
- (will explain next)

Assumptions

- Containment of values: if $\mathrm{V}(\mathrm{R}, \mathrm{A})<=\mathrm{V}(\mathrm{S}, \mathrm{B})$, then the set of A values of R is included in the set of B values of S
- Note: this indeed holds when A is a foreign key in R, and B is a key in S
- Preservation of values: for any other attribute C , $V\left(R \bowtie_{A=B} S, C\right)=V(R, C) \quad(o r V(S, C))$

Selectivity of $R \bowtie_{A=B} S$

Assume $\mathrm{V}(\mathrm{R}, \mathrm{A})<=\mathrm{V}(\mathrm{S}, \mathrm{B})$

- Each tuple t in R joins with $T(S) / V(S, B)$ tuple(s) in S
- Hence $T\left(R \bowtie_{A=B} S\right)=T(R) T(S) / V(S, B)$

In general: $T\left(R \bowtie_{A=B} S\right)=T(R) T(S) / \max (V(R, A), V(S, B))$

Size Estimation for Join

Example:

- $T(R)=10000, T(S)=20000$
- $\mathrm{V}(\mathrm{R}, \mathrm{A})=100, \mathrm{~V}(\mathrm{~S}, \mathrm{~B})=200$
- How large is $R \bowtie_{A=B} S$?

Histograms

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

Histograms

Employee(ssn, name, age)

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$ $\min ($ age $)=19, \max ($ age $)=68$

$$
\sigma_{\text {age }=48}(\text { Empolyee })=? \quad \sigma_{\text {age }>28 \text { and age }<35}(\text { Empolyee })=?
$$

Histograms

Employee(ssn, name, age)

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$ $\min ($ age $)=19, \max ($ age $)=68$

$$
\sigma_{\text {age }=48}(\text { Empolyee })=? \quad \sigma_{\text {age }>28 \text { and age }<35}(\text { Empolyee })=?
$$

Estimate $=25000 / 50=500$ Estimate $=25000 * 6 / 50=3000$

Histograms

Employee(ssn, name, age)

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$ $\min ($ age $)=19, \max ($ age $)=68$

$$
\sigma_{\text {age }=48}(\text { Empolyee })=? \quad \sigma_{\text {age }>28 \text { and age }<35}(\text { Empolyee })=?
$$

Age:	0.20	20.29	$30-39$	$40-49$	$50-59$	>60
Tuples	200	800	5000	12000	6500	500

Histograms

Employee(ssn, name, age)

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$ $\min ($ age $)=19, \max ($ age $)=68$

$$
\sigma_{\text {age }=48}(\text { Empolyee })=? \quad \sigma_{\text {age }>28 \text { and age }<35}(\text { Empolyee })=?
$$

Age:	$0 . .20$	$20 . .29$	$30-39$	$40-49$	$50-59$	>60
Tuples	200	800	5000	12000	6500	500
Estimate $=1 * 80+5^{*} 500=2580$						

Types of Histograms

- How should we determine the bucket boundaries in a histogram ?

Types of Histograms

- How should we determine the bucket boundaries in a histogram?
- Eq-Width
- Eq-Depth
- Compressed
- V-Optimal histograms

Employee(ssn, name, age)

Histograms

Eq-width:

Age:	$0 . .20$	$20 . .29$	$30-39$	$40-49$	$50-59$	>60
Tuples	200	800	5000	12000	6500	500

Eq-depth:

Age:	$0 . .20$	$20 . .29$	$30-39$	$40-49$	$50-59$	>60
Tuples	1800	2000	2100	2200	1900	1800

Compressed: store separately highly frequent values: $(48,1900)$

V-Optimal Histograms

- Defines bucket boundaries in an optimal way, to minimize the error over all point queries
- Computed rather expensively, using dynamic programming
- Modern databases systems use Voptimal histograms or some variations

Difficult Questions on Histograms

- Small number of buckets
- Hundreds, or thousands, but not more
- WHY ?
- Not updated during database update, but recomputed periodically - WHY ?
- Multidimensional histograms rarely used
- WHY ?

Summary of Query Optimization

- Three parts:
- search space, algorithms, size/cost estimation
- Ideal goal: find optimal plan. But
- Impossible to estimate accurately
- Impossible to search the entire space
- Goal of today's optimizers:
- Avoid very bad plans

