
1

CSE544: Principles of
Database Systems

Lectures 3
Storage and Indexes

Review of Lecture 2

•  What is a many-to-many relationship?
What is a many-to-one relationship?

•  What is a weak entity set?

•  How do we represent IsA relationships
in tables?

University Team affiliation

number sport name

Product

name category

price

isa isa

Educational Product Software Product

Age Group platforms

Review of Lecture 2

•  What are data anomalies?

•  What is a functional dependency?

•  When is a relation in Boyce-Codd
Normal Form?

CSEP544 - Winter, 2014 3

Where We Are

•  Part 1: The relational data model

•  Part 2: Database Systems

•  Part 3: Transactions

•  Part 4: Miscellaneous
CSEP544 - Winter, 2014 4

Outline

•  Storage and Indexes
– Book: Ch. 8-11, and 20

•  Pax paper

CSEP544 - Winter, 2014 5

6

The Mechanics of Disk
Mechanical characteristics:
•  Rotation speed (5400RPM)
•  Number of platters (1-30)
•  Number of tracks (<=10000)
•  Number of bytes/track(105)

Platters

Spindle
Disk head

Arm movement

Arm assembly

Tracks

Sector

Cylinder

Unit of read or write:
 disk block
Once in memory:
 page
Typically: 4k or 8k or 16k

7

Disk Access Characteristics
•  Disk latency

–  Time between when command is issued and when data is in
memory

–  Equals = seek time + rotational latency
•  Seek time = time for the head to reach cylinder

–  10ms – 40ms
•  Rotational latency = time for the sector to rotate

•  Rotation time = 10ms
•  Average latency = 10ms/2

•  Transfer time = typically 40MB/s

Basic factoid: disks always read/write an entire block at a time

8

RAID
Several disks that work in parallel
•  Redundancy: use parity to recover from disk failure
•  Speed: read from several disks at once

Various configurations (called levels):
•  RAID 1 = mirror
•  RAID 4 = n disks + 1 parity disk
•  RAID 5 = n+1 disks, assign parity blocks round robin
•  RAID 6 = “Hamming codes”

Storage Model

•  DBMS needs spatial and temporal control over
storage
–  Spatial control for performance
–  Temporal control for correctness and performance

•  For spatial control, two alternatives
–  Use “raw” disk device interface directly
–  Use OS files

CSEP544 - Winter, 2014 9

CSEP544 - Winter, 2014

Spatial Control
Using “Raw” Disk Device Interface

•  Overview
–  DBMS issues low-level storage requests directly to disk device

•  Advantages
–  DBMS can ensure that important queries access data

sequentially
–  Can provide highest performance

•  Disadvantages
–  Requires devoting entire disks to the DBMS
–  Reduces portability as low-level disk interfaces are OS specific
–  Many devices are in fact “virtual disk devices”

10

CSEP544 - Winter, 2014

Spatial Control
Using OS Files

•  Overview
–  DBMS creates one or more very large OS files

•  Advantages
–  Allocating large file on empty disk can yield good physical

locality
•  Disadvantages

–  OS can limit file size to a single disk
–  OS can limit the number of open file descriptors
–  But these drawbacks have mostly been overcome by

modern OSs

11

CSEP544 - Winter, 2014

Commercial Systems
•  Most commercial systems offer both alternatives

–  Raw device interface for peak performance
–  OS files more commonly used

•  In both cases, we end-up with a DBMS file
abstraction implemented on top of OS files or raw
device interface

12

13

File Types

The data file can be one of:
•  Heap file

– Set of records, partitioned into blocks
– Unsorted

•  Sequential file
– Sorted according to some attribute(s) called

key

CSEP544 - Winter, 2014 Note: “key” here means something else than “primary key”

14

Buffer Management in a
DBMS

•  Data must be in RAM for DBMS to operate on it!
•  Table of <frame#, pageid> pairs is maintained

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

15

Buffer Manager

Needs to decide on page replacement policy

•  LRU
•  Clock algorithm

Both work well in OS, but not always in DB

Enables the higher levels of the
DBMS to assume that the
needed data is in main memory.

16

Arranging Pages on Disk
A disk is organized into blocks (a.k.a. pages)
•  blocks on same track, followed by
•  blocks on same cylinder, followed by
•  blocks on adjacent cylinder

A file should (ideally) consists of sequential blocks on
disk, to minimize seek and rotational delay.

For a sequential scan, pre-fetching several pages at a
time is a big win!

CSEP544 - Winter, 2014

17

Issues

•  Managing free blocks

•  File Organization

•  Represent the records inside the blocks

•  Represent attributes inside the records
CSEP544 - Winter, 2014

18

Managing Free Blocks

•  Linked list of free blocks

•  Or bit map

CSEP544 - Winter, 2014

19

File Organization

Header
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Linked list of pages:
Data
page

Data
page

Full pages

Pages with some free space

20

File Organization

Data
page

Data
page

Data
page

Better: directory of pages

Directory

Header

21

Page Formats
Issues to consider
•  1 page = fixed size (e.g. 8KB)
•  Records:

– Fixed length
– Variable length

•  Record id = RID
– Typically RID = (PageID, SlotNumber)

Why do we need RID’s in a relational DBMS ?

22

Page Formats
Fixed-length records: packed representation

Rec 1 Rec 2 Rec N

Free space N

One page

23

Page Formats

Free
space

Slot directory

Variable-length records

1237 RH1 PAGE HEADER

30 Jane RH2 4322 John

45 RH3 Jim 20

• • •

RH4

7658 Susan 52

•

1563
RID SSN Name Age

1 1237 Jane 30

2 4322 John 45

3 1563 Jim 20

4 7658 Susan 52

5 2534 Leon 43

6 8791 Dan 37

R

q  Records are stored sequentially
q  Offsets to start of each record at end of page

Formal name: NSM (N-ary Storage Model)

Current Scheme: Slotted Pages

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

CACHE

MAIN MEMORY

1237 RH1 PAGE HEADER

30 Jane RH2 4322 John

45 RH3 Jim 20

• • •

RH4

7658 52

•

1563

select name
from R
where age > 50

NSM pushes non-referenced data to the cache

2534 Leon Susan

Predicate Evaluation using NSM

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

CACHE

MAIN MEMORY

1237 RH1 PAGE HEADER

30 Jane RH2 4322 John

45 RH3 Jim 20

• • •

RH4

7658 52

•

1563

block 1 30 Jane RH

select name
from R
where age > 50

NSM pushes non-referenced data to the cache

2534 Leon Susan

Predicate Evaluation using NSM

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

CACHE

MAIN MEMORY

1237 RH1 PAGE HEADER

30 Jane RH2 4322 John

45 RH3 Jim 20

• • •

RH4

7658 52

•

1563

block 1 30 Jane RH

45 RH3 1563 block 2

select name
from R
where age > 50

NSM pushes non-referenced data to the cache

2534 Leon Susan

Predicate Evaluation using NSM

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

CACHE

MAIN MEMORY

1237 RH1 PAGE HEADER

30 Jane RH2 4322 John

45 RH3 Jim 20

• • •

RH4

7658 52

•

1563

block 1 30 Jane RH

Jim 20 RH4 block 3

45 RH3 1563 block 2

select name
from R
where age > 50

NSM pushes non-referenced data to the cache

2534 Leon Susan

Predicate Evaluation using NSM

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

CACHE

MAIN MEMORY

1237 RH1 PAGE HEADER

30 Jane RH2 4322 John

45 RH3 Jim 20

• • •

RH4

7658 52

•

1563

block 1 30 Jane RH

52 2534 Leon block 4

Jim 20 RH4 block 3

45 RH3 1563 block 2

select name
from R
where age > 50

NSM pushes non-referenced data to the cache

2534 Leon Susan

Predicate Evaluation using NSM

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

Need New Data Page Layout

q  Eliminates unnecessary memory accesses
q  Improves inter-record locality
q  Keeps a record’s fields together
q  Does not affect I/O performance

and, most importantly, is…

low-implementation-cost, high-impact
Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

1237 RH1 PAGE HEADER

30 Jane RH2 4322 John

45

1563

RH3 Jim 20

• • •

RH4

7658 Susan 52

•

PAGE HEADER 1237 4322

1563

7658

Jane John Jim Susan

30 45 20 52

• • • •

NSM PAGE PAX PAGE

Partition data within the page for spatial locality

Partition Attributes Across (PAX)

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

1237 RH1 PAGE HEADER

30 Jane RH2 4322 John

45

1563

RH3 Jim 20

• • •

RH4

7658 Susan 52

•

PAGE HEADER 1237 4322

1563

7658

Jane John Jim Susan

30 45 20 52

• • • •

NSM PAGE PAX PAGE

Partition data within the page for spatial locality

Partition Attributes Across (PAX)

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

1237 RH1 PAGE HEADER

30 Jane RH2 4322 John

45

1563

RH3 Jim 20

• • •

RH4

7658 Susan 52

•

PAGE HEADER 1237 4322

1563

7658

Jane John Jim Susan

30 45 20 52

• • • •

NSM PAGE PAX PAGE

Partition data within the page for spatial locality

Partition Attributes Across (PAX)

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

1237 RH1 PAGE HEADER

30 Jane RH2 4322 John

45

1563

RH3 Jim 20

• • •

RH4

7658 Susan 52

•

PAGE HEADER 1237 4322

1563

7658

Jane John Jim Susan

30 45 20 52

• • • •

NSM PAGE PAX PAGE

Partition data within the page for spatial locality

Partition Attributes Across (PAX)

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

1237 RH1 PAGE HEADER

30 Jane RH2 4322 John

45

1563

RH3 Jim 20

• • •

RH4

7658 Susan 52

•

PAGE HEADER 1237 4322

1563

7658

Jane John Jim Susan

30 45 20 52

• • • •

NSM PAGE PAX PAGE

Partition data within the page for spatial locality

Partition Attributes Across (PAX)

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

1237 RH1 PAGE HEADER

30 Jane RH2 4322 John

45

1563

RH3 Jim 20

• • •

RH4

7658 Susan 52

•

PAGE HEADER 1237 4322

1563

7658

Jane John Jim Susan

30 45 20 52

• • • •

NSM PAGE PAX PAGE

Partition data within the page for spatial locality

Partition Attributes Across (PAX)

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

CACHE

1563

PAGE HEADER 1237 4322

7658

Jane John Jim Suzan

30 45 20 52
• • • •

MAIN MEMORY

select name
from R
where age > 50

Fewer cache misses, low reconstruction cost

Predicate Evaluation using PAX

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

CACHE

1563

PAGE HEADER 1237 4322

7658

Jane John Jim Suzan

30 45 20 52
• • • •

block 1 30 45 20 52

MAIN MEMORY

select name
from R
where age > 50

Fewer cache misses, low reconstruction cost

Predicate Evaluation using PAX

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

FIXED-LENGTH VALUES! VARIABLE-LENGTH VALUES!HEADER!

offsets to variable-!
length fields!

null bitmap,!
record length, etc!

NSM: All fields of record stored together + slots

A Real NSM Record

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

pid 3 2 4 v 4

4322 1237

Jane John

•

1 1

30 45

1 1

f }

}
Page Header

attribute sizes

free space # records

attributes

F - Minipage

presence bits

presence bits

v-offsets

}
}

F - Minipage

V - Minipage

PAX: Detailed Design

PAX: Group fields + amortizes record headers
Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt

41

Record Formats: Fixed Length

•  Information about field types same for all records
in a file; stored in system catalogs.

•  Finding i’th field requires scan of record.
•  Note the importance of schema information!

Base address (B)

L1 L2 L3 L4

pid name descr maker

Address = B+L1+L2

Product(pid, name, descr, maker)

42

Record Header

L1 L2 L3 L4

To schema
length

timestamp (e.g. for MVCC)

Need the header because:
•  The schema may change

for a while new+old may coexist
•  Records from different relations may coexist

header

pid name descr maker

43

Variable Length Records

L1 L2 L3 L4

Other header information

length

Place the fixed fields first: F1
Then the variable length fields: F2, F3, F4
Null values take 2 bytes only
Sometimes they take 0 bytes (when at the end)

header pid name descr maker

44

BLOB

•  Binary large objects
•  Supported by modern database systems
•  E.g. images, sounds, etc.
•  Storage: attempt to cluster blocks together

CLOB = character large object
•  Supports only restricted operations

File Organizations

•  Heap (random order) files: Suitable when typical
access is a file scan retrieving all records.

•  Sorted Files Best if records must be retrieved in
some order, or only a `range’ of records is needed.

•  Indexes Data structures to organize records via trees
or hashing.
–  Like sorted files, they speed up searches for a subset of

records, based on values in certain (“search key”) fields
–  Updates are much faster than in sorted files.

45

Index

•  A (possibly separate) file, that allows
fast access to records in the data file

•  The index contains (key, value) pairs:
– The key = an attribute value
– The value = one of:

•  pointer to the record secondary index
•  or the record itself primary index

46 CSEP544 - Winter, 2014 Note: “key” (aka “search key”) again means something else

47

Index Classification
•  Clustered/unclustered

–  Clustered = records close in index are close in data
–  Unclustered = records close in index may be far in data

•  Primary/secondary
–  Meaning 1:

•  Primary = is over attributes that include the primary key
•  Secondary = otherwise

–  Meaning 2: means the same as clustered/unclustered
•  Organization B+ tree or Hash table

48

Clustered Index

•  File is sorted on the index attribute
•  Only one per table

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

80

49

Unclustered Index

•  Several per table

10

10

20

20

20

30

30

30

20

30

30

20

10

20

10

30

Clustered vs. Unclustered
Index

Data entries
(Index File)
(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

B+ Tree B+ Tree

50 CSEP544 - Winter, 2014

CSEP544 - Winter, 2014

Hash-Based Index

18

18

20

22

19

21

21

19

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

H1

h1(sid) = 00

h1(sid) = 11

sid

H2 age

h2(age) = 00

h2(age) = 01

Another example of
clustered/primary index

Another example
of unclustered/secondary index

Good for point queries but not range queries

51

52

Alternatives for Data Entry k*
in Index

Three alternatives for k*:

•  Data record with key value k

•  <k, rid of data record with key = k>

•  <k, list of rids of data records with key = k>

53

Alternatives 1, 2, 3

10

10

20

20

20

30

30

30

10

20

30

…

10 ssn age …

10 ssn age …

20 ssn age …

20 ssn age …

20 ssn age …

30 ssn age …

30 ssn age …

30 ssn age …

54

B+ Trees

•  Search trees

•  Idea in B Trees

–  Make 1 node = 1 block
–  Keep tree balanced in height

•  Idea in B+ Trees
–  Make leaves into a linked list: facilitates range

queries
CSEP544 - Winter, 2014

55

•  Parameter d = the degree
•  Each node has >= d and <= 2d keys (except

root)

•  Each leaf has >=d and <= 2d keys:

B+ Trees Basics

30 120 240

Keys k < 30
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

40 50 60

40 50 60

Next leaf

B+ Tree Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

B+ Tree Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 ≤ 80

B+ Tree Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 ≤ 80

20 < 40 ≤ 60

B+ Tree Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 ≤ 80

20 < 40 ≤ 60

30 < 40 ≤ 40

60

Using a B+ Tree

•  Exact key values:
– Start at the root
– Proceed down, to the leaf

•  Range queries:
– As above
– Then sequential traversal

SELECT name
FROM People
WHERE age = 25

SELECT name
FROM People
WHERE 20 <= age
 and age <= 30

CSEP544 - Winter, 2014

Index on People(age)

Which queries can use this
index ?

CSEP544 - Winter, 2014 61

SELECT *
FROM People
WHERE name = ‘Smith’
 and zipcode = 12345

Index on People(name, zipcode)

SELECT *
FROM People
WHERE name = ‘Smith’

SELECT *
FROM People
WHERE zipcode = 12345

62

Insertion in a B+ Tree
Insert (K, P)
•  Find leaf where K belongs, insert
•  If no overflow (2d keys or less), halt
•  If overflow (2d+1 keys), split node, insert in parent:

•  If leaf, keep K3 too in right node
•  When root splits, new root has 1 key only

K1 K2 K3 K4 K5

P0 P1 P2 P3 P4 p5

K1 K2

P0 P1 P2

K4 K5

P3 P4 p5

parent
 K3

parent

63

Insertion in a B+ Tree

80

20 60

10 15 18 20 30 40 50 60 65 80 85 90

Insert K=19

100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

64

Insertion in a B+ Tree

80

20 60

10 15 18 20 30 40 50 60 65 80 85 90 19

After insertion

100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

65

Insertion in a B+ Tree

80

20 60

10 15 18 20 30 40 50 60 65 80 85 90 19

Now insert 25

100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

66

Insertion in a B+ Tree

80

20 60

20 25 30 40 50

10 15 18 20 25 30 40 60 65 80 85 90 19

After insertion

50

100 120 140

10 15 18 19 60 65 80 85 90

67

Insertion in a B+ Tree

80

20 60

10 15 18 20 25 30 40 60 65 80 85 90 19

But now have to split !

50

100 120 140

20 25 30 40 50 10 15 18 19 60 65 80 85 90

68

Insertion in a B+ Tree

80

20 30 60

10 15 18 19 20 25

10 15 18 20 25 30 40 60 65 80 85 90 19

After the split

50

30 40 50

100 120 140

60 65 80 85 90

69

Deletion from a B+ Tree

80

20 30 60

10 15 18 20 25 30 40 60 65 80 85 90 19

Delete 30

50

100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

70

Deletion from a B+ Tree

80

20 30 60

10 15 18 20 25 40 60 65 80 85 90 19

After deleting 30

50

40 50

May change to
40, or not

100 120 140

10 15 18 19 20 25 60 65 80 85 90

71

Deletion from a B+ Tree

80

20 30 60

10 15 18 20 25 40 60 65 80 85 90 19

Now delete 25

50

100 120 140

40 50 10 15 18 19 20 25 60 65 80 85 90

72

Deletion from a B+ Tree

80

20 30 60

20

10 15 18 20 40 60 65 80 85 90 19

After deleting 25
Need to rebalance
Rotate

50

100 120 140

40 50 10 15 18 19 60 65 80 85 90

73

Deletion from a B+ Tree

80

19 30 60

10 15 18 20 40 60 65 80 85 90 19

Now delete 40

50

100 120 140

19 20 40 50 10 15 18 60 65 80 85 90

74

Deletion from a B+ Tree

80

19 30 60

10 15 18 20 60 65 80 85 90 19

After deleting 40
Rotation not possible
Need to merge nodes

50

100 120 140

19 20 50 10 15 18 60 65 80 85 90

75

Deletion from a B+ Tree

80

19 60

19 20 50

10 15 18 20 60 65 80 85 90 19

Final tree

50

100 120 140

10 15 18 60 65 80 85 90

76

B+ Tree Design

•  How large d ?
•  Example:

– Key size = 4 bytes
– Pointer size = 8 bytes
– Block size = 4096 byes

•  2d x 4 + (2d+1) x 8 <= 4096
•  d = 170

CSEP544 - Winter, 2014

B+ Trees in Practice

•  Typical order: 100. Typical fill-factor: 67%
–  average fanout = 133

•  Typical capacities
–  Height 4: 1334 = 312,900,700 records
–  Height 3: 1333 = 2,352,637 records

•  Can often hold top levels in buffer pool
–  Level 1 = 1 page = 8 Kbytes
–  Level 2 = 133 pages = 1 Mbyte
–  Level 3 = 17,689 pages = 133 Mbytes

77 CSEP544 - Winter, 2014

Practical Aspects of B+ Trees

Key compression:
•  Each node keeps only the from parent

keys
•  Jonathan, John, Johnsen, Johnson … à

– Parent: Jo
– Child: nathan, hn, hnsen, hnson, …

CSEP544 - Winter, 2014 78

Practical Aspects of B+ Trees

Bulk insertion
•  When a new index is created there are

two options:
– Start from empty tree, insert each key one-

by-one
– Do bulk insertion – what does that mean ?

CSEP544 - Winter, 2014 79

Practical Aspects of B+ Trees

Concurrency control
•  The root of the tree is a “hot spot”

– Leads to lock contention during insert/
delete

•  Solution: do proactive split during insert,
or proactive merge during delete
–  Insert/delete now require only one

traversal, from the root to a leaf
– Use the “tree locking” protocol 80

81

Summary on B+ Trees

•  Default index structure on most DBMS
•  Very effective at answering ‘point’

queries:
 productName = ‘gizmo’

•  Effective for range queries:
 50 < price AND price < 100

•  Less effective for multirange:
 50 < price < 100 AND 2 < quant < 20

CSEP544 - Winter, 2014

82

Hash Tables

•  Secondary storage hash tables are much like
main memory ones

•  Recall basics:
– There are n buckets
– A hash function f(k) maps a key k to {0, 1, …,

n-1}
– Store in bucket f(k) a pointer to record with key k

•  Secondary storage: bucket = block, use
overflow blocks when needed

83

•  Assume 1 bucket (block) stores 2 keys
+ pointers

•  h(e)=0
•  h(b)=h(f)=1
•  h(g)=2
•  h(a)=h(c)=3

Hash Table Example

e

b
f
g

a
c

0

1

2

3

CSEP544 - Winter, 2014

84

•  Search for a:
•  Compute h(a)=3
•  Read bucket 3
•  1 disk access

Searching in a Hash Table

e

b
f
g

a
c

0

1

2

3

CSEP544 - Winter, 2014

85

•  Place in right bucket, if space
•  E.g. h(d)=2

Insertion in Hash Table

e

b
f
g
d
a
c

0

1

2

3

CSEP544 - Winter, 2014

86

•  Create overflow block, if no space
•  E.g. h(k)=1

•  More over-
flow blocks
may be needed

Insertion in Hash Table

e

b
f
g
d
a
c

0

1

2

3

k

87

Hash Table Performance

•  Excellent, if no overflow blocks
•  Degrades considerably when number of

keys exceeds the number of buckets
(I.e. many overflow blocks).

CSEP544 - Winter, 2014

88

Extensible Hash Table

•  Allows has table to grow, to avoid
performance degradation

•  Assume a hash function h that returns
numbers in {0, …, 2k – 1}

•  Start with n = 2i << 2k , only look at i
least significant bits

CSEP544 - Winter, 2014

89

Extensible Hash Table

•  E.g. i=1, n=2i=2, k=4

•  Keys:
–  4 (=0100)
–  7 (=0111)

•  Note: we only look at the last bit (0 or 1)

(010)0

(011)1

i=1 1

1

0
1

CSEP544 - Winter, 2014

90

Insertion in Extensible Hash
Table

•  Insert 13 (=1101)
(010)0

(011)1
(110)1

i=1 1

1

0
1

CSEP544 - Winter, 2014

91

Insertion in Extensible Hash
Table

•  Now insert 0101

•  Need to extend table, split blocks
•  i becomes 2

(010)0

(011)1
(110)1, (010)1

i=1 1

1

0
1

CSEP544 - Winter, 2014

92

Insertion in Extensible Hash
Table

(010)0

(11)01
(01)01

i=2 1

2

00
01
10
11

(01)11 2

(010)0

(011)1
(110)1, (010)1

i=1
1

1

0
1

CSEP544 - Winter, 2014

93

Insertion in Extensible Hash
Table

•  Now insert 0000, 1110

•  Need to split block

(010)0
(000)0, (111)0

(11)01
(01)01

i=2 1

2

00
01
10
11

(01)11 2

CSEP544 - Winter, 2014

94

Insertion in Extensible Hash
Table

•  After splitting the block

(01)00
(00)00

(11)01
(01)01

i=2 2

2
00
01
10
11

(01)11 2

(11)10 2

1 became 2

95

Extensible Hash Table

•  How many buckets (blocks) do we need
to touch after an insertion ?

•  How many entries in the hash table do
we need to touch after an insertion ?

CSEP544 - Winter, 2014

96

Performance Extensible Hash
Table

•  No overflow blocks: access always one
read

•  BUT:
– Extensions can be costly and disruptive
– After an extension table may no longer fit in

memory

CSEP544 - Winter, 2014

97

Linear Hash Table

•  Idea: extend only one entry at a time
•  Problem: n= no longer a power of 2
•  Let i be such that 2i <= n < 2i+1

•  After computing h(k), use last i bits:
–  If last i bits represent a number > n, change

msb from 1 to 0 (get a number <= n)

CSEP544 - Winter, 2014

98

Linear Hash Table Example

•  n=3
(01)00
(11)00

(10)10

i=2

00
01
10

(01)11 BIT FLIP

CSEP544 - Winter, 2014

99

Linear Hash Table Example

•  Insert 1000: overflow blocks…

(01)00
(11)00

(10)10

i=2

00
01
10

(01)11

(10)00

CSEP544 - Winter, 2014

100

Linear Hash Tables

•  Extension: independent on overflow
blocks

•  Extend n:=n+1 when average number
of records per block exceeds (say) 80%

CSEP544 - Winter, 2014

101

Linear Hash Table Extension
•  From n=3 to n=4

•  Only need to touch
one block (which one ?)

(01)00
(11)00

(10)10

i=2

00
01
10

(01)11
(01)11

(01)11

i=2

00
01
10

(10)10

(01)00
(11)00

n=11

102

Linear Hash Table Extension

•  From n=3 to n=4 finished

•  Extension from n=4
to n=5 (new bit)

•  Need to touch every
single block (why ?) (01)11

i=2

00
01
10

(10)10

(01)00
(11)00

11

Indexes in Postgres

103

CREATE INDEX V1_N ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX VVV ON V(M, N)

CLUSTER V USING V2 Makes V2 clustered

Index Selection Problem 1

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

Which indexes should we create?

Index Selection Problem 1

105

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

CSEP544 - Winter, 2014 A: V(N) and V(P) (hash tables or B-trees)

Index Selection Problem 2

106

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSEP544 - Winter, 2014 Which indexes should we create?

Index Selection Problem 2

107

V(M, N, P);

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

SELECT *
FROM V
WHERE N>? and N<?

CSEP544 - Winter, 2014 A: definitely V(N) (must B-tree); unsure about V(P)

Index Selection Problem 3

108

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:
Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSEP544 - Winter, 2014 Which indexes should we create?

Index Selection Problem 3

109

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:
Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

A: V(N, P)

Index Selection Problem 4

110

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:
Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

CSEP544 - Winter, 2014 Which indexes should we create?

Index Selection Problem 4

111

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:
Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

CSEP544 - Winter, 2014 A: V(N) secondary, V(P) primary index

The Index Selection Problem

•  SQL Server
–  Automatically, thanks to AutoAdmin project
–  Much acclaimed successful research project from

mid 90’s, similar ideas adopted by the other major
vendors

•  PostgreSQL
–  You will do it manually, part of homework 5
–  But tuning wizards also exist

112 CSEP544 - Winter, 2014

Index Selection: Multi-attribute
Keys

Consider creating a multi-attribute key on
K1, K2, … if

•  WHERE clause has matches on K1, K2,
…
– But also consider separate indexes

•  SELECT clause contains only K1, K2, ..
– A covering index is one that can be used

exclusively to answer a query, e.g. index
R(K1,K2) covers the query: 113 CSEP544 - Winter, 2014 SELECT K2 FROM R WHERE K1=55

To Cluster or Not

•  Range queries benefit mostly from
clustering

•  Covering indexes do not need to be
clustered: they work equally well
unclustered

114 CSEP544 - Winter, 2014

115

Percentage tuples retrieved

Cost

0 100

Sequential scan

SELECT *
FROM R
WHERE K>? and K<?

CSEP544 - Winter, 2014

Hash Table v.s. B+ tree

•  Rule 1: always use a B+ tree J

•  Rule 2: use a Hash table on K when:
– There is a very important selection query on

equality (WHERE K=?), and no range queries
– You know that the optimizer uses a nested

loop join where K is the join attribute of the
inner relation (you will understand that in a few
lectures)

Balance Queries v.s. Updates

•  Indexes speed up queries
– SELECT FROM WHERE

•  But they usually slow down updates:
–  INSERT, DELECTE, UPDATE
– However some updates benefit from

indexes
UPDATE R
 SET A = 7
 WHERE K=55

Tools for Index Selection

•  SQL Server 2000 Index Tuning Wizard
•  DB2 Index Advisor

•  How they work:
– They walk through a large number of

configurations, compute their costs, and
choose the configuration with minimum
cost

118 CSEP544 - Winter, 2014

