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CSE544: Principles of 
Database Systems 

Lectures 3 
Storage and Indexes 



Review of Lecture 2 

•  What is a many-to-many relationship? 
What is a many-to-one relationship? 

•  What is a weak entity set? 

•  How do we represent IsA relationships 
in tables? 

University Team affiliation 

number sport name 

Product 

name category 

price 

isa isa 

Educational Product Software Product 

Age Group platforms 



Review of Lecture 2 

•  What are data anomalies? 

•  What is a functional dependency? 

•  When is a relation in Boyce-Codd 
Normal Form? 

CSEP544 - Winter, 2014   3 



Where We Are 

•  Part 1: The relational data model 

•  Part 2: Database Systems 

•  Part 3: Transactions 

•  Part 4: Miscellaneous 
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Outline 

•  Storage and Indexes 
– Book: Ch. 8-11, and 20 

•  Pax paper 

CSEP544 - Winter, 2014   5 



6 

The Mechanics of Disk 
Mechanical characteristics: 
•  Rotation speed (5400RPM) 
•  Number of platters (1-30) 
•  Number of tracks (<=10000) 
•  Number of bytes/track(105) 

Platters 

Spindle 
Disk head 

Arm movement 

Arm assembly 

Tracks 

Sector 

Cylinder 

Unit of read or write: 
       disk block 
Once in memory: 
        page 
Typically: 4k or 8k or 16k 
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Disk Access Characteristics 
•  Disk latency 

–  Time between when command is issued and when data is in 
memory 

–  Equals = seek time + rotational latency 
•  Seek time = time for the head to reach cylinder 

–  10ms – 40ms 
•  Rotational latency = time for the sector to rotate 

•  Rotation time = 10ms 
•  Average latency = 10ms/2 

•  Transfer time = typically 40MB/s 

Basic factoid: disks always read/write an entire block at a time 



8 

RAID 
Several disks that work in parallel 
•  Redundancy: use parity to recover from disk failure 
•  Speed: read from several disks at once 

Various configurations (called levels): 
•  RAID 1 = mirror 
•  RAID 4 = n disks + 1 parity disk 
•  RAID 5 = n+1 disks, assign parity blocks round robin 
•  RAID 6 = “Hamming codes” 



Storage Model 

•  DBMS needs spatial and temporal control over 
storage 
–  Spatial control for performance 
–  Temporal control for correctness and performance 

•  For spatial control, two alternatives 
–  Use “raw” disk device interface directly 
–  Use OS files 

CSEP544 - Winter, 2014 9 



CSEP544 - Winter, 2014 

Spatial Control 
Using “Raw” Disk Device Interface 

•  Overview 
–  DBMS issues low-level storage requests directly to disk device 

•  Advantages 
–  DBMS can ensure that important queries access data 

sequentially  
–  Can provide highest performance 

•  Disadvantages 
–  Requires devoting entire disks to the DBMS  
–  Reduces portability as low-level disk interfaces are OS specific 
–  Many devices are in fact “virtual disk devices” 
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Spatial Control 
Using OS Files 

•  Overview 
–  DBMS creates one or more very large OS files 

•  Advantages 
–  Allocating large file on empty disk can yield good physical 

locality 
•  Disadvantages 

–  OS can limit file size to a single disk 
–  OS can limit the number of open file descriptors 
–  But these drawbacks have mostly been overcome by 

modern OSs 
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Commercial Systems 
•  Most commercial systems offer both alternatives 

–  Raw device interface for peak performance 
–  OS files more commonly used 

•  In both cases, we end-up with a DBMS file 
abstraction implemented on top of OS files or raw 
device interface 
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File Types 

The data file can be one of: 
•  Heap file 

– Set of records, partitioned into blocks 
– Unsorted 

•  Sequential file 
– Sorted according to some attribute(s) called 

key 

CSEP544 - Winter, 2014      Note: “key” here means something else than “primary key” 
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Buffer Management in a 
DBMS 

•  Data must be in RAM for DBMS to operate on it! 
•  Table of <frame#, pageid> pairs is maintained 

DB 

MAIN MEMORY 

DISK 

disk page 

free frame 

Page Requests from Higher Levels 

BUFFER POOL 

choice of frame dictated 
by replacement policy 
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Buffer Manager 

Needs to decide on page replacement policy 

•  LRU 
•  Clock algorithm 
 
Both work well in OS, but not always in DB 
 
Enables the higher levels of the  
DBMS to assume that the 
needed data is in main memory. 
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Arranging Pages on Disk 
A disk is organized into blocks  (a.k.a. pages) 
•  blocks on same track, followed by 
•  blocks on same cylinder, followed by 
•  blocks on adjacent cylinder 

A file should (ideally) consists of sequential blocks on 
disk, to minimize seek and rotational delay. 

For a sequential scan, pre-fetching several pages at a 
time is a big win! 

CSEP544 - Winter, 2014     
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Issues 

•  Managing free blocks 

•  File Organization 

•  Represent the records inside the blocks 

•  Represent attributes inside the records 
CSEP544 - Winter, 2014     
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Managing Free Blocks 

•  Linked list of free blocks 

•  Or bit map 
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File Organization 

Header 
page 

Data   
page 

Data   
page 

Data   
page 

Data   
page 

Data   
page 

Data   
page 

Linked list of pages: 
Data   
page 

Data   
page 

 
 
 

Full pages 

 
 
 

Pages with some free space 
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File Organization 

Data   
page 

Data   
page 

Data   
page 

Better: directory of pages 

Directory 

Header 



21 

Page Formats 
Issues to consider 
•  1 page = fixed size (e.g. 8KB) 
•  Records: 

– Fixed length 
– Variable length 

•  Record id = RID 
– Typically RID = (PageID, SlotNumber) 

Why do we need RID’s in a relational DBMS ? 
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Page Formats 
Fixed-length records: packed representation 

Rec 1 Rec 2 Rec N 

Free space N 

One page 
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Page Formats 

Free 
space 

 
 
 
Slot directory 

Variable-length records 



1237 RH1 PAGE HEADER 

30 Jane RH2 4322 John 

45 RH3 Jim 20 

• • • 

RH4 

7658 Susan 52 

• 

1563 
RID SSN Name Age 

1 1237 Jane 30 

2 4322 John 45 

3 1563 Jim 20 

4 7658 Susan 52 

5 2534 Leon 43 

6 8791 Dan 37 

R 

q  Records are stored sequentially 
q  Offsets to start of each record at end of page 

Formal name: NSM (N-ary Storage Model) 

Current Scheme: Slotted Pages 

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt 



CACHE 

MAIN MEMORY 

1237 RH1 PAGE HEADER 

30 Jane RH2 4322 John 

45 RH3 Jim 20 

• • • 

RH4 

7658 52 

• 

1563 

select name 
from  R 
where age > 50 

NSM pushes non-referenced data to the cache 

2534 Leon Susan 

Predicate Evaluation using NSM 

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt 



CACHE 

MAIN MEMORY 

1237 RH1 PAGE HEADER 

30 Jane RH2 4322 John 

45 RH3 Jim 20 

• • • 

RH4 

7658 52 

• 

1563 

block 1 30 Jane RH 

select name 
from  R 
where age > 50 

NSM pushes non-referenced data to the cache 

2534 Leon Susan 

Predicate Evaluation using NSM 

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt 



CACHE 

MAIN MEMORY 

1237 RH1 PAGE HEADER 

30 Jane RH2 4322 John 

45 RH3 Jim 20 

• • • 

RH4 

7658 52 

• 

1563 

block 1 30 Jane RH 

45 RH3 1563 block 2 

select name 
from  R 
where age > 50 

NSM pushes non-referenced data to the cache 

2534 Leon Susan 

Predicate Evaluation using NSM 
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CACHE 

MAIN MEMORY 

1237 RH1 PAGE HEADER 

30 Jane RH2 4322 John 

45 RH3 Jim 20 

• • • 

RH4 

7658 52 

• 

1563 

block 1 30 Jane RH 

Jim 20 RH4 block 3 

45 RH3 1563 block 2 

select name 
from  R 
where age > 50 

NSM pushes non-referenced data to the cache 

2534 Leon Susan 

Predicate Evaluation using NSM 
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CACHE 

MAIN MEMORY 

1237 RH1 PAGE HEADER 

30 Jane RH2 4322 John 

45 RH3 Jim 20 

• • • 

RH4 

7658 52 

• 

1563 

block 1 30 Jane RH 

52 2534 Leon block 4 

Jim 20 RH4 block 3 

45 RH3 1563 block 2 

select name 
from  R 
where age > 50 

NSM pushes non-referenced data to the cache 

2534 Leon Susan 

Predicate Evaluation using NSM 

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt 



Need New Data Page Layout 

q  Eliminates unnecessary memory accesses 
q  Improves inter-record locality 
q  Keeps a record’s fields together 
q  Does not affect I/O performance 
 
 
and, most importantly, is… 

low-implementation-cost, high-impact 
Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt 



1237 RH1 PAGE HEADER 

30 Jane RH2 4322 John 

45 

1563 

RH3 Jim 20 

• • • 

RH4 

7658 Susan 52 

• 

PAGE HEADER 1237 4322 

1563 

7658 

Jane John Jim Susan 

30 45 20 52 

• • • • 

NSM PAGE PAX PAGE 

Partition data within the page for spatial locality 

Partition Attributes Across (PAX) 
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CACHE 

1563 

PAGE HEADER 1237 4322 

7658 

Jane John Jim Suzan 

30 45 20 52 
• • • • 

MAIN MEMORY 

select name 
from  R 
where age > 50 

Fewer cache misses, low reconstruction cost 

Predicate Evaluation using PAX 

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt 



CACHE 

1563 

PAGE HEADER 1237 4322 

7658 

Jane John Jim Suzan 

30 45 20 52 
• • • • 

block 1 30 45 20 52 

MAIN MEMORY 

select name 
from  R 
where age > 50 

Fewer cache misses, low reconstruction cost 

Predicate Evaluation using PAX 

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt 



FIXED-LENGTH VALUES! VARIABLE-LENGTH VALUES!HEADER!

offsets to variable-!
length fields!

null bitmap,!
record length, etc!

NSM: All fields of record stored together + slots 

A Real NSM Record 

Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt 



pid 3 2 4 v 4 

4322 1237 

Jane John 

• 

1 1 

30 45 

1 1 

f } 

}
Page Header 

attribute sizes 

free space # records 

# attributes 

F - Minipage 

presence bits 

presence bits 

v-offsets 

}
}

F - Minipage 

V - Minipage 

PAX: Detailed Design 

PAX: Group fields + amortizes record headers 
Ailamaki VLDB’01 http://research.cs.wisc.edu/multifacet/papers/vldb01_pax_talk.ppt 



41 

Record Formats:  Fixed Length 

•  Information about field types same for all records 
in a file; stored in system catalogs. 

•  Finding i’th field requires scan of record. 
•  Note the importance of schema information! 

Base address (B) 

L1 L2 L3 L4 

pid name descr maker 

Address = B+L1+L2 

Product(pid, name, descr, maker) 
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Record Header 

L1 L2 L3 L4 

To schema 
length 

timestamp (e.g. for MVCC) 

Need the header because: 
•  The schema may change 

for a while new+old may coexist 
•  Records from different relations may coexist 

header 

pid name descr maker 
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Variable Length Records 

L1 L2 L3 L4 

Other header information 

length 

Place the fixed fields first:  F1 
Then the variable length fields: F2, F3, F4 
Null values take 2 bytes only 
Sometimes they take 0 bytes (when at the end) 

header pid name descr maker 
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BLOB 

•  Binary large objects 
•  Supported by modern database systems 
•  E.g. images, sounds, etc. 
•  Storage: attempt to cluster blocks together 

CLOB = character large object 
•  Supports only restricted operations 



File Organizations 

•  Heap (random order) files: Suitable when typical 
access is a file scan retrieving all records. 

•  Sorted Files Best if records must be retrieved in 
some order, or only a `range’ of records is needed. 

•  Indexes Data structures to organize records via trees 
or hashing.   
–  Like sorted files, they speed up searches for a subset of 

records, based on values in certain (“search key”) fields 
–  Updates are much faster than in sorted files. 

45 



Index 

•  A (possibly separate) file, that allows 
fast access to records in the data file 

•  The index contains (key, value) pairs: 
– The key = an attribute value 
– The value = one of: 

•  pointer to the record  secondary index 
•  or the record itself  primary index 

46 CSEP544 - Winter, 2014      Note: “key” (aka “search key”) again means something else 
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Index Classification 
•  Clustered/unclustered 

–  Clustered = records close in index are close in data 
–  Unclustered = records close in index may be far in data 

•  Primary/secondary 
–  Meaning 1: 

•  Primary = is over attributes that include the primary key 
•  Secondary = otherwise 

–  Meaning 2: means the same as clustered/unclustered 
•  Organization B+ tree or Hash table 
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Clustered Index 

•  File is sorted on the index attribute 
•  Only one per table 

10 

20 

30 

40 

50 

60 

70 

80 

10 

20 

30 

40 

50 

60 

70 

80 



49 

Unclustered Index 

•  Several per table 

10 

10 

20 

20 

20 

30 

30 

30 

20 

30 

30 

20 

10 

20 

10 

30 



Clustered vs. Unclustered 
Index 

Data entries 
(Index File) 
(Data file) 

Data Records 

Data entries 

Data Records 

CLUSTERED UNCLUSTERED 

B+ Tree B+ Tree 

50 CSEP544 - Winter, 2014      
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Hash-Based Index 

18 

18 

20 

22 

19 

21 

21 

19 

10 21 

20 20 

30 18 

40 19 

50 22 

60 18 

70 21 

80 19 

H1 

h1(sid) = 00 

h1(sid) = 11 

sid 

H2 age 

h2(age) = 00 

h2(age) = 01 

Another example of  
clustered/primary index 

Another example 
of unclustered/secondary index 

Good for point queries but not range queries 

51 
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Alternatives for Data Entry k* 
in Index 

Three alternatives for k*: 
 
•  Data record with key value k 

•  <k, rid of data record with key = k> 

•  <k, list of rids of data records with key = k> 
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Alternatives 1, 2, 3 

10 

10 

20 

20 

20 

30 

30 

30 

10 

20 

30 

… 

10 ssn age … 

10 ssn age … 

20 ssn age … 

20 ssn age … 

20 ssn age … 

30 ssn age … 

30 ssn age … 

30 ssn age … 
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B+ Trees 

•  Search trees 
 
•  Idea in B Trees 

–  Make 1 node = 1 block 
–  Keep tree balanced in height 

•  Idea in B+ Trees 
–  Make leaves into a linked list: facilitates range 

queries 
CSEP544 - Winter, 2014      
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•  Parameter d = the degree 
•  Each node has >= d and <= 2d keys (except 

root) 

•  Each leaf has >=d and <= 2d keys: 

B+ Trees Basics 

30 120 240 

Keys k < 30 
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k 

40 50 60 

40 50 60 

Next leaf 



B+ Tree Example 

80 

20 60 100 120 140 

10 15 18 20 30 40 50 60 65 80 85 90 

10 15 18 20 30 40 50 60 65 80 85 90 

d = 2 Find the key 40 



B+ Tree Example 

80 

20 60 100 120 140 

10 15 18 20 30 40 50 60 65 80 85 90 

10 15 18 20 30 40 50 60 65 80 85 90 

d = 2 Find the key 40 

40 ≤ 80 



B+ Tree Example 

80 

20 60 100 120 140 

10 15 18 20 30 40 50 60 65 80 85 90 

10 15 18 20 30 40 50 60 65 80 85 90 

d = 2 Find the key 40 

40 ≤ 80 

20 < 40 ≤ 60 



B+ Tree Example 

80 

20 60 100 120 140 

10 15 18 20 30 40 50 60 65 80 85 90 

10 15 18 20 30 40 50 60 65 80 85 90 

d = 2 Find the key 40 

40 ≤ 80 

20 < 40 ≤ 60 

30 < 40 ≤ 40 
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Using a B+ Tree 

•  Exact key values: 
– Start at the root 
– Proceed down, to the leaf 

•  Range queries: 
– As above 
– Then sequential traversal 

SELECT name 
FROM People 
WHERE age = 25 

SELECT name 
FROM People 
WHERE 20 <= age 
  and  age <= 30 

CSEP544 - Winter, 2014      

Index on People(age) 



Which queries can use this 
index ? 

CSEP544 - Winter, 2014      61 

SELECT * 
FROM People 
WHERE name = ‘Smith’  
   and zipcode = 12345 

Index on People(name, zipcode) 

SELECT * 
FROM People 
WHERE name = ‘Smith’ 

SELECT * 
FROM People 
WHERE zipcode = 12345 
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Insertion in a B+ Tree 
Insert (K, P) 
•  Find leaf where K belongs, insert 
•  If no overflow (2d keys or less), halt 
•  If overflow (2d+1 keys), split node, insert in parent: 

•  If leaf, keep K3 too in right node 
•  When root splits, new root has 1 key only 

K1 K2 K3 K4 K5 

P0 P1 P2 P3 P4 p5 

K1 K2 

P0 P1 P2 

K4 K5 

P3 P4 p5 

parent    
      K3     

parent 
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Insertion in a B+ Tree 

80 

20 60 

10 15 18 20 30 40 50 60 65 80 85 90 

Insert K=19 

100 120 140 

10 15 18 20 30 40 50 60 65 80 85 90 
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Insertion in a B+ Tree 

80 

20 60 

10 15 18 20 30 40 50 60 65 80 85 90 19 

After insertion 

100 120 140 

10 15 18 19 20 30 40 50 60 65 80 85 90 
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Insertion in a B+ Tree 

80 

20 60 

10 15 18 20 30 40 50 60 65 80 85 90 19 

Now insert 25 

100 120 140 

10 15 18 19 20 30 40 50 60 65 80 85 90 
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Insertion in a B+ Tree 

80 

20 60 

20 25 30 40 50 

10 15 18 20 25 30 40 60 65 80 85 90 19 

After insertion 

50 

100 120 140 

10 15 18 19 60 65 80 85 90 
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Insertion in a B+ Tree 

80 

20 60 

10 15 18 20 25 30 40 60 65 80 85 90 19 

But now have to split ! 

50 

100 120 140 

20 25 30 40 50 10 15 18 19 60 65 80 85 90 
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Insertion in a B+ Tree 

80 

20 30 60 

10 15 18 19 20 25 

10 15 18 20 25 30 40 60 65 80 85 90 19 

After the split 

50 

30 40 50 

100 120 140 

60 65 80 85 90 
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Deletion from a B+ Tree 

80 

20 30 60 

10 15 18 20 25 30 40 60 65 80 85 90 19 

Delete 30 

50 

100 120 140 

10 15 18 19 20 25 30 40 50 60 65 80 85 90 
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Deletion from a B+ Tree 

80 

20 30 60 

10 15 18 20 25 40 60 65 80 85 90 19 

After deleting 30 

50 

40 50 

May change to 
40, or not 

100 120 140 

10 15 18 19 20 25 60 65 80 85 90 
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Deletion from a B+ Tree 

80 

20 30 60 

10 15 18 20 25 40 60 65 80 85 90 19 

Now delete 25 

50 

100 120 140 

40 50 10 15 18 19 20 25 60 65 80 85 90 
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Deletion from a B+ Tree 

80 

20 30 60 

20 

10 15 18 20 40 60 65 80 85 90 19 

After deleting 25 
Need to rebalance 
Rotate 

50 

100 120 140 

40 50 10 15 18 19 60 65 80 85 90 
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Deletion from a B+ Tree 

80 

19 30 60 

10 15 18 20 40 60 65 80 85 90 19 

Now delete 40 

50 

100 120 140 

19 20 40 50 10 15 18 60 65 80 85 90 
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Deletion from a B+ Tree 

80 

19 30 60 

10 15 18 20 60 65 80 85 90 19 

After deleting 40 
Rotation not possible 
Need to merge nodes 

50 

100 120 140 

19 20 50 10 15 18 60 65 80 85 90 
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Deletion from a B+ Tree 

80 

19 60 

19 20 50 

10 15 18 20 60 65 80 85 90 19 

Final tree 

50 

100 120 140 

10 15 18 60 65 80 85 90 
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B+ Tree Design 

•  How large d ? 
•  Example: 

– Key size = 4 bytes 
– Pointer size = 8 bytes 
– Block size = 4096 byes 

•  2d x 4  + (2d+1) x 8  <=  4096 
•  d = 170 

CSEP544 - Winter, 2014      



B+ Trees in Practice 

•  Typical order: 100.  Typical fill-factor: 67% 
–  average fanout = 133 

•  Typical capacities 
–  Height 4: 1334 = 312,900,700 records 
–  Height 3: 1333 =     2,352,637 records 

•  Can often hold top levels in buffer pool 
–  Level 1 =           1 page  =     8 Kbytes 
–  Level 2 =      133 pages =     1 Mbyte 
–  Level 3 = 17,689 pages = 133 Mbytes        

77 CSEP544 - Winter, 2014      



Practical Aspects of B+ Trees 

Key compression: 
•  Each node keeps only the from parent 

keys 
•  Jonathan, John, Johnsen, Johnson … à 

– Parent: Jo 
– Child: nathan, hn, hnsen, hnson, … 

 

CSEP544 - Winter, 2014     78 



Practical Aspects of B+ Trees 

Bulk insertion 
•  When a new index is created there are 

two options: 
– Start from empty tree, insert each key one-

by-one 
– Do bulk insertion – what does that mean ? 

CSEP544 - Winter, 2014     79 



Practical Aspects of B+ Trees 

Concurrency control 
•  The root of the tree is a “hot spot” 

– Leads to lock contention during insert/
delete 

•  Solution: do proactive split during insert, 
or proactive merge during delete 
–  Insert/delete now require only one 

traversal, from the root to a leaf 
– Use the “tree locking” protocol 80 
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Summary on B+ Trees 

•  Default index structure on most DBMS 
•  Very effective at answering ‘point’ 

queries: 
    productName = ‘gizmo’ 

•  Effective for range queries: 
    50 < price AND price < 100 

•  Less effective for multirange: 
    50 < price < 100  AND 2 < quant < 20 

CSEP544 - Winter, 2014      
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Hash Tables 

•  Secondary storage hash tables are much like 
main memory ones 

•  Recall basics: 
– There are n buckets 
– A hash function f(k) maps a key k to {0, 1, …, 

n-1} 
– Store in bucket f(k) a pointer to record with key k 

•  Secondary storage: bucket = block, use 
overflow blocks when needed 
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•  Assume 1 bucket (block) stores 2 keys 
+ pointers 

•  h(e)=0 
•  h(b)=h(f)=1 
•  h(g)=2 
•  h(a)=h(c)=3 

Hash Table Example 

e 

b 
f 
g 

a 
c 

0 

1 

2 

3 

CSEP544 - Winter, 2014     
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•  Search for a: 
•  Compute h(a)=3 
•  Read bucket 3 
•  1 disk access 

Searching in a Hash Table 

e 

b 
f 
g 

a 
c 

0 

1 

2 

3 
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•  Place in right bucket, if space 
•  E.g. h(d)=2 

Insertion in Hash Table 

e 

b 
f 
g 
d 
a 
c 

0 

1 

2 

3 

CSEP544 - Winter, 2014     



86 

•  Create overflow block, if no space 
•  E.g. h(k)=1 

•  More over- 
flow blocks 
may be needed 

Insertion in Hash Table 

e 

b 
f 
g 
d 
a 
c 

0 

1 

2 

3 

k 
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Hash Table Performance 

•  Excellent, if no overflow blocks 
•  Degrades considerably when number of 

keys exceeds the number of buckets 
(I.e. many overflow blocks). 
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Extensible Hash Table 

•  Allows has table to grow, to avoid 
performance degradation 

•  Assume a hash function h that returns 
numbers in {0, …, 2k – 1} 

•  Start with n = 2i << 2k , only look at i 
least significant bits 
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Extensible Hash Table 

•  E.g. i=1, n=2i=2, k=4 

•  Keys: 
–  4 (=0100) 
–  7 (=0111) 

•  Note: we only look at the last bit (0 or 1) 

(010)0 

(011)1 

i=1 1 

1 

0 
1 
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Insertion in Extensible Hash 
Table 

•  Insert 13 (=1101) 
(010)0 

(011)1 
(110)1 

i=1 1 

1 

0 
1 
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Insertion in Extensible Hash 
Table 

•  Now insert 0101 

•  Need to extend table, split blocks 
•  i becomes 2 

(010)0 

(011)1 
(110)1, (010)1 

i=1 1 

1 

0 
1 
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Insertion in Extensible Hash 
Table 

(010)0 

(11)01 
(01)01 

i=2 1 

2 

00 
01 
10 
11 

(01)11 2 

(010)0 

(011)1 
(110)1, (010)1 

i=1 
1 

1 

0 
1 
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Insertion in Extensible Hash 
Table 

•  Now insert 0000, 1110 

•  Need to split block 

(010)0 
(000)0, (111)0 

(11)01 
(01)01 

i=2 1 

2 

00 
01 
10 
11 

(01)11 2 
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Insertion in Extensible Hash 
Table 

•  After splitting the block 

(01)00 
(00)00 

(11)01 
(01)01 

i=2 2 

2 
00 
01 
10 
11 

(01)11 2 

(11)10 2 

1 became 2 



95 

Extensible Hash Table 

•  How many buckets (blocks) do we need 
to touch after an insertion ? 

•  How many entries in the hash table do 
we need to touch after an insertion ? 
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Performance Extensible Hash 
Table 

•  No overflow blocks: access always one 
read 

•  BUT: 
– Extensions can be costly and disruptive 
– After an extension table may no longer fit in 

memory 
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Linear Hash Table 

•  Idea: extend only one entry at a time 
•  Problem: n= no longer a power of 2 
•  Let i be such that 2i <= n < 2i+1 

•  After computing h(k), use last i bits: 
–  If last i bits represent a number > n, change 

msb from 1 to 0 (get a number <= n) 
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Linear Hash Table Example 

•  n=3 
(01)00 
(11)00 

(10)10 

i=2 

00 
01 
10 

(01)11   BIT FLIP 
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Linear Hash Table Example 

•  Insert 1000: overflow blocks… 

(01)00 
(11)00 

(10)10 

i=2 

00 
01 
10 

(01)11 

(10)00 
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Linear Hash Tables 

•  Extension: independent on overflow 
blocks 

•  Extend n:=n+1 when average number 
of records per block exceeds (say) 80% 
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Linear Hash Table Extension 
•  From n=3 to n=4 

•  Only need to touch 
one block (which one ?) 

(01)00 
(11)00 

(10)10 

i=2 

00 
01 
10 

(01)11 
(01)11 

(01)11 

i=2 

00 
01 
10 

(10)10 

(01)00 
(11)00 

n=11 
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Linear Hash Table Extension 

•  From n=3 to n=4 finished 

•  Extension from n=4 
to n=5 (new bit) 

•  Need to touch every 
single block (why ?) (01)11 

i=2 

00 
01 
10 

(10)10 

(01)00 
(11)00 

11 



Indexes in Postgres 
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CREATE  INDEX V1_N ON V(N) 

CREATE  TABLE    V(M int,   N varchar(20),    P int); 

CREATE  INDEX V2 ON V(P, M) 

CREATE  INDEX VVV ON V(M, N) 

CLUSTER V USING V2 Makes V2 clustered 



Index Selection Problem 1 

V(M, N, P); 

SELECT *  
FROM V 
WHERE N=? 

SELECT *  
FROM V 
WHERE P=? 

100000 queries: 100 queries: 
Your workload is this 

Which indexes should we create? 



Index Selection Problem 1 
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V(M, N, P); 

SELECT *  
FROM V 
WHERE N=? 

SELECT *  
FROM V 
WHERE P=? 

100000 queries: 100 queries: 
Your workload is this 

CSEP544 - Winter, 2014      A:  V(N) and V(P) (hash tables or B-trees) 



Index Selection Problem 2 
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V(M, N, P); 

SELECT *  
FROM V 
WHERE N>? and N<? 

SELECT *  
FROM V 
WHERE P=? 

100000 queries: 100 queries: 
Your workload is this 

INSERT INTO V 
VALUES (?, ?, ?) 

100000 queries: 

CSEP544 - Winter, 2014      Which indexes should we create? 



Index Selection Problem 2 
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V(M, N, P); 

SELECT *  
FROM V 
WHERE P=? 

100000 queries: 100 queries: 
Your workload is this 

INSERT INTO V 
VALUES (?, ?, ?) 

100000 queries: 

SELECT *  
FROM V 
WHERE N>? and N<? 

CSEP544 - Winter, 2014      A:  definitely V(N) (must B-tree); unsure about  V(P) 



Index Selection Problem 3 
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V(M, N, P); 

SELECT *  
FROM V 
WHERE N=? 

SELECT *  
FROM V 
WHERE N=? and P>? 

100000 queries: 1000000 queries: 
Your workload is this 

INSERT INTO V 
VALUES (?, ?, ?) 

100000 queries: 

CSEP544 - Winter, 2014      Which indexes should we create? 



Index Selection Problem 3 
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V(M, N, P); 

SELECT *  
FROM V 
WHERE N=? 

SELECT *  
FROM V 
WHERE N=? and P>? 

100000 queries: 1000000 queries: 
Your workload is this 

INSERT INTO V 
VALUES (?, ?, ?) 

100000 queries: 

A:  V(N, P) 



Index Selection Problem 4 
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V(M, N, P); 

SELECT *  
FROM V 
WHERE P>? and P<? 

1000 queries: 100000 queries: 
Your workload is this 

SELECT *  
FROM V 
WHERE N>? and N<? 

CSEP544 - Winter, 2014      Which indexes should we create? 



Index Selection Problem 4 
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V(M, N, P); 

SELECT *  
FROM V 
WHERE P>? and P<? 

1000 queries: 100000 queries: 
Your workload is this 

SELECT *  
FROM V 
WHERE N>? and N<? 

CSEP544 - Winter, 2014      A: V(N) secondary,   V(P) primary index 



The Index Selection Problem 

•  SQL Server 
–  Automatically, thanks to AutoAdmin project 
–  Much acclaimed successful research project from 

mid 90’s, similar ideas adopted by the other major 
vendors 

•  PostgreSQL 
–  You will do it manually, part of homework 5 
–  But tuning wizards also exist 
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Index Selection: Multi-attribute 
Keys 

Consider creating a multi-attribute key on 
K1, K2, … if 

•  WHERE clause has matches on K1, K2, 
… 
– But also consider separate indexes 

•  SELECT clause contains only K1, K2, .. 
– A covering index is one that can be used 

exclusively to answer a query, e.g. index 
R(K1,K2) covers the query: 113 CSEP544 - Winter, 2014     SELECT K2 FROM R WHERE K1=55 



To Cluster or Not 

•  Range queries benefit mostly from 
clustering 

•  Covering indexes do not need to be 
clustered: they work equally well 
unclustered 
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Percentage tuples retrieved 

Cost 

0 100 

Sequential scan 

SELECT * 
FROM R 
WHERE K>? and K<? 
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Hash Table v.s. B+ tree 

•  Rule 1: always use a B+ tree  J 

•  Rule 2: use a Hash table on K when: 
– There is a very important selection query on 

equality (WHERE K=?), and no range queries 
– You know that the optimizer uses a nested 

loop join where K is the join attribute of the 
inner relation (you will understand that in a few 
lectures) 



Balance Queries v.s. Updates 

•  Indexes speed up queries 
– SELECT FROM WHERE 

•  But they usually slow down updates: 
–  INSERT, DELECTE, UPDATE 
– However some updates benefit from 

indexes 
UPDATE R 
   SET A = 7 
   WHERE K=55 



Tools for Index Selection 

•  SQL Server 2000 Index Tuning Wizard 
•  DB2 Index Advisor 

•  How they work: 
– They walk through a large number of 

configurations, compute their costs, and 
choose the configuration with minimum 
cost 
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