
1

Lecture 02:
Relational Query Languages

and Database Design
Tuesday, January 14, 2014

CSEP544 - Winter 2014

Brief Review of 1st Lecture

•  Database = collection of related files
•  Physical data independence
•  SQL:

– Select-from-where
– Nested loop semantics
– Group by (you read the slides, right?)
– Advanced stuff: nested queries, outerjoins

CSEP544 - Winter 2014 2

Outline

•  Stonebraker’s blog on Big Data

•  Relational Query Languages

•  Database Design: Book Chapters 2, 3

•  Functional Dependencies and BCNF
CSEP544 - Winter 2014 3

Big Data

What is it?

4

Big Data

What is it?
•  Gartner report*

– High Volume
– High Variety
– High Velocity

5

* http://www.gartner.com/newsroom/id/1731916

Big Data

What is it?
•  Stonebraker:

– Big volumes, small analytics
– Big analytics, on big volumes
– Big velocity
– Big variety

•  What do you think about Big Data?
6

Outline

•  Stonebraker’s blog on Big Data
•  Relational Query Languages

– Relational algebra
– Recursion-free datalog with negation
– Relational calculus

•  Database Design
•  Functional Dependencies and BCNF

CSEP544 - Winter 2014 7

Running Example

CSEP544 - Winter 2014 8

Q: SELECT DISTINCT a.fname, a.lname
 FROM Actor a, Casts c1, Movie m1, Casts c2, Movie m2
 WHERE a.id = c1.pid AND c1.mid = m1.id
 AND a.id = c2.pid AND c2.mid = m2.id
 AND m1.year = 1910 AND m2.year = 1940;

Find all actors who acted both in 1910 and in 1940:

Two Perspectives

•  Named Perspective:
 Actor(id, fname, lname)
 Casts(pid,mid)
 Movie(id,name,year)

•  Unnamed Perspective:
 Actor = arity 3
 Casts = arity 2
 Movie = arity 3

CSEP544 - Winter 2014 9

1. Relational Algebra

•  Used internally by the database engine
to execute queries

•  Book: chapter 4.2

•  We will return to RA when we discuss
query execution

CSEP544 - Winter 2014 10

1. Relational Algebra
The Basic Five operators:
•  Union: ∪
•  Difference: -
•  Selection: σ
•  Projection: Π
•  Join: ⨝

Renaming: ρ (for named perspective)

1. Relational Algebra (Details)
•  Selection: returns tuples that satisfy condition

–  Named perspective: σyear = ‘1910’(Movie)
–  Unamed perspective: σ3 = ‘1910’ (Movie)

1. Relational Algebra (Details)
•  Selection: returns tuples that satisfy condition

–  Named perspective: σyear = ‘1910’(Movie)
–  Unamed perspective: σ3 = ‘1910’ (Movie)

•  Projection: returns only some attributes
–  Named perspective: Π fname,lname(Actor)
–  Unnamed perspective: Π 2,3(Actor)

1. Relational Algebra (Details)
•  Selection: returns tuples that satisfy condition

–  Named perspective: σyear = ‘1910’(Movie)
–  Unamed perspective: σ3 = ‘1910’ (Movie)

•  Projection: returns only some attributes
–  Named perspective: Π fname,lname(Actor)
–  Unnamed perspective: Π 2,3(Actor)

•  Join: joins two tables on a condition
–  Named perspective: Casts ⨝ mid=id Movie
–  Unnamed perspectivie: Casts ⨝ 2=1 Movie

1. Relational Algebra Example
Q: SELECT DISTINCT a.fname, a.lname
 FROM Actor a, Casts c1, Movie m1, Casts c2, Movie m2
 WHERE a.id = c1.pid AND c1.mid = m1.id
 AND a.id = c2.pid AND c2.mid = m2.id
 AND m1.year = 1910 AND m2.year = 1940;

⨝ mid=id

σyear1=‘1910’ and year2=‘1940’

⨝ id=pid

⨝ mid=id

Casts Movie Casts Movie Actor

⨝ id=pid

Πfname,lname

ρ year2=year ρ year1=year

Note how we
renamed year
to year1, year2

Named perspective

Actor(id, fname, lname)
Casts(pid,mid)
Movie(id,name,year)

1. Relational Algebra Example
Q: SELECT DISTINCT a.fname, a.lname
 FROM Actor a, Casts c1, Movie m1, Casts c2, Movie m2
 WHERE a.id = c1.pid AND c1.mid = m1.id
 AND a.id = c2.pid AND c2.mid = m2.id
 AND m1.year = 1910 AND m2.year = 1940;

⨝ 2=1

σ8 =‘1910’ and 13=‘1940’

⨝ 1=1

⨝ 2=1

Casts Movie Casts Movie Actor

⨝ 1=1

Π2,3

Actor(id, fname, lname)
Casts(pid,mid)
Movie(id,name,year)

Unnamed perspective

Joins and Cartesian Product

•  Each tuple in R1 with each tuple in R2

•  Rare in practice; mainly used to express
joins

R1 × R2

CSEP544 - Winter 2014 17

Name SSN
John 999999999
Tony 777777777

Employee
EmpSSN DepName
999999999 Emily
777777777 Joe

Dependent

Employee ✕ Dependent
Name SSN EmpSSN DepName
John 999999999 999999999 Emily
John 999999999 777777777 Joe
Tony 777777777 999999999 Emily
Tony 777777777 777777777 Joe

Cartesian Product
(aka Cross Product)

CSEP544 - Winter 2014 18

Natural Join

•  Meaning: R1⨝ R2 = ΠA(σ(R1 × R2))

•  Where:
– Selection σ checks equality of all common

attributes
– Projection eliminates duplicate common

attributes
CSEP544 - Winter 2014 19

R1 ⨝ R2

Natural Join Example
A B
X Y
X Z
Y Z
Z V

B C
Z U
V W
Z V

A B C
X Z U
X Z V
Y Z U
Y Z V
Z V W

R S

R ⨝ S =
ΠABC(σR.B=S.B(R × S))

CSEP544 - Winter 2014 20

CSEP544 - Winter 2014

Natural Join Example 2

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P V

name age zip
p1 54 98125
p2 20 98120

age zip disease name

54 98125 heart p1

20 98120 flu p2

21

Natural Join

•  Given schemas R(A, B, C, D), S(A, C, E),
what is the schema of R ⨝ S ?

•  Given R(A, B, C), S(D, E), what is R ⨝ S ?

•  Given R(A, B), S(A, B), what is R ⨝ S ?

CSEP544 - Winter 2014 22

Theta Join

•  A join that involves a predicate

•  Here θ can be any condition
•  For our voters/disease example:

R1 ⨝θ R2 = σ θ (R1 × R2)

P ⨝ P.zip = V.zip and P.age < V.age + 5 and P.age > V.age - 5 V

Equijoin

•  A theta join where θ is an equality

•  This is by far the most used variant of
join in practice

R1 ⨝A=B R2 = σA=B (R1 × R2)

CSEP544 - Winter 2014 24

CSEP544 - Winter 2014

Equijoin Example

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P P.age=V.age V

name age zip
p1 54 98125
p2 20 98120

age P.zip disease name V.zip

54 98125 heart p1 98125

20 98120 flu p2 98120

25

CSEP544 - Winter 2014

Join Summary
•  Theta-join: R θ S = σθ(R x S)

–  Join of R and S with a join condition θ
–  Cross-product followed by selection θ

•  Equijoin: R θ S = πA (σθ(R x S))
–  Join condition θ consists only of equalities
–  Projection πA drops all redundant attributes

•  Natural join: R S = πA (σθ(R x S))
–  Equijoin
–  Equality on all fields with same name in R and in S

26

So Which Join Is It ?

•  When we write R ⨝ S we usually mean
an equijoin, but we often omit the
equality predicate when it is clear from
the context

CSEP544 - Winter 2014 27

CSEP544 - Winter 2014

More Joins

•  Outer join
–  Include tuples with no matches in the output
–  Use NULL values for missing attributes

•  Variants
–  Left outer join
–  Right outer join
–  Full outer join

28

CSEP544 - Winter 2014

Outer Join Example

age zip disease
54 98125 heart
20 98120 flu
33 98120 lung

AnonPatient P

P ⋉ V

age zip disease job

54 98125 heart lawyer

20 98120 flu cashier

33 98120 lung null

29

AnnonJob J
job age zip
lawyer 54 98125
cashier 20 98120

CSEP544 - Winter 2014

Some Examples

Q2: Name of supplier of parts with size greater than 10
πsname(Supplier Supply (σpsize>10 (Part))

Q3: Name of supplier of red parts or parts with size greater than 10
πsname(Supplier Supply (σpsize>10 (Part) ∪ σpcolor=‘red’ (Part)))

30

Supplier(sno,sname,scity,sstate)!
Part(pno,pname,psize,pcolor)!
Supply(sno,pno,qty,price)!

Outline

•  Stonebraker’s blog on Big Data
•  Relational Query Languages

– Relational algebra
– Recursion-free datalog with negation
– Relational calculus

•  Database Design
•  Functional Dependencies and BCNF

CSEP544 - Winter 2014 31

2. Datalog

•  Very friendly notation for queries
•  Initially designed for recursive queries
•  Some companies offer datalog

implementation for data anlytics, e.g.
LogicBlox

•  Today: only recursion-free or non-
recursive datalog, and add negation

•  Later: full datalog
32

2. Datalog

How to try out datalog quickly:
•  Download DLV from

http://www.dbai.tuwien.ac.at/proj/dlv/
•  Run DLV on this file: parent(william, john).

parent(john, james).
parent(james, bill).
parent(sue, bill).
parent(james, carol).
parent(sue, carol).

male(john).
male(james).
female(sue).
male(bill).
female(carol).

grandparent(X, Y) :- parent(X, Z), parent(Z, Y).
father(X, Y) :- parent(X, Y), male(X).
mother(X, Y) :- parent(X, Y), female(X).
brother(X, Y) :- parent(P, X), parent(P, Y), male(X), X != Y.
sister(X, Y) :- parent(P, X), parent(P, Y), female(X), X != Y.

2. Datalog: Facts and Rules

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts Rules

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
 Movie(x,y,’1940’).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
 Casts(z,x2), Movie(x2,y2,1940)

Facts = tuples in the database
Rules = queries

Extensional Database Predicates = EDB
Intensional Database Predicates = IDB

2. Datalog: Terminology

CSEP544 - Winter 2014 35

Q2(f, l) :- Actor(z,f,l), Casts(z,x), Movie(x,y,’1940’).

body head

atom atom atom

f, l = head variables
x,y,z = existential variables

2. Datalog program

CSEP544 - Winter 2014 36

 B0(x) :- Actor(x,'Kevin', 'Bacon')
 B1(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B0(y)
 B2(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B1(y)
 Q4(x) :- B1(x)
 Q4(x) :- B2(x)

Find all actors with Bacon number ≤ 2

Note: Q4 is the union of B1 and B2

2. Datalog with negation

CSEP544 - Winter 2014 37

 B0(x) :- Actor(x,'Kevin', 'Bacon')
 B1(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B0(y)
 Q6(x) :- Actor(x,f,l), not B1(x), not B0(x)

Find all actors with Bacon number ≥ 2

2. Safe Datalog Rules

CSEP544 - Winter 2014 38

U1(x,y) :- Movie(x,z,1994), y>1910

Here are unsafe datalog rules. What’s “unsafe” about them ?

U2(x) :- Movie(x,z,1994), not Casts(u,x)

A datalog rule is safe if every variable appears
in some positive relational atom

2. Datalog v.s. SQL

•  Non-recursive datalog with negation is
very close to SQL; with some practice,
you should be able to translate between
them back and forth without difficulty;
see example in the paper

CSEP544 - Winter 2014 39

Outline

•  Stonebraker’s blog on Big Data
•  Relational Query Languages

– Relational algebra
– Recursion-free datalog with negation
– Relational calculus

•  Database Design
•  Functional Dependencies and BCNF

CSEP544 - Winter 2014 40

3. Relational Calculus

•  Also known as predicate calculus, or first
order logic

•  The most expressive formalism for queries:
easy to write complex queries

•  TRC = Tuple RC = named perspective
•  DRC = Domain RC = unnamed perspective

CSEP544 - Winter 2014 41

3. Relational Calculus

P ::= atom | P ∧ P | P ∨ P | P⇒P | not(P) | ∀x.P | ∃x.P

Predicate P:

Q(x1, …, xk) = P

Query Q:

Q(f,l) = ∃x. ∃y. ∃z. (Actor(z,f,l) ∧Casts(z,x)∧Movie(x,y,1940))

Example: find the first/last names of actors who acted in 1940

Q(f,l) = ∃z. (Actor(z,f,l) ∧∀x.(Casts(z,x) ⇒ ∃y.Movie(x,y,1940)))

What does this query return ?

3. Relational Calculus:
Example

Find drinkers that frequent some bar that serves some beer they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

3. Relational Calculus:
Example

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

3. Relational Calculus:
Example

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

Q(x) = ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z))

46

3. Relational Calculus:
Example

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent only bars that serves only beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Dan Suciu -- p544 Fall 2011

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

Q(x) = ∀y. Frequents(x, y)⇒ ∀z.(Serves(y,z) ⇒ Likes(x,z))

Q(x) = ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z))

3. Domain Independent
Relational Calculus

•  As in datalog, one can write “unsafe”
RC queries; they are also called domain
dependent

•  See examples in the paper

•  Moral: make sure your RC queries are
always domain independent

CSEP544 - Winter 2014 47

3. Relational Calculus

Take home message:
•  Need to write a complex SQL query:
•  First, write it in RC
•  Next, translate it to datalog (see next)
•  Finally, write it in SQL

As you gain experience, take shortcuts

CSEP544 - Winter 2014 48

3. From RC to Non-recursive
Datalog w/ negation

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z))

Query: Find drinkers that like some beer so much that
 they frequent all bars that serve it

3. From RC to Non-recursive
Datalog w/ negation

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z))

Query: Find drinkers that like some beer so much that
 they frequent all bars that serve it

Step 1: Replace ∀ with ∃ using de Morgan’s Laws

Q(x) = ∃y. Likes(x, y)∧ ¬∃z.(Serves(z,y) ∧	
 ¬Frequents(x,z))

3. From RC to Non-recursive
Datalog w/ negation

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z))

Query: Find drinkers that like some beer so much that
 they frequent all bars that serve it

Step 1: Replace ∀ with ∃ using de Morgan’s Laws

Q(x) = ∃y. Likes(x, y)∧ ¬∃z.(Serves(z,y) ∧	
 ¬Frequents(x,z))

Step 2: Make all subqueries domain independent

Q(x) = ∃y. Likes(x, y)	
 ∧ ¬∃z.(Likes(x,y)∧Serves(z,y)∧¬Frequents(x,z))

3. From RC to Non-recursive
Datalog w/ negation

Step 3: Create a datalog rule for each subexpression;
 (shortcut: only for “important” subexpressions)

Q(x) = ∃y. Likes(x, y)	
 ∧¬ ∃z.(Likes(x,y)∧Serves(z,y)∧¬Frequents(x,z))

H(x,y) :- Likes(x,y),Serves(y,z), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

H(x,y)

3. From RC to Non-recursive
Datalog w/ negation

Step 4: Write it in SQL

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists
 (SELECT * FROM Likes L2, Serves S
 WHERE L2.drinker=L.drinker and L2.beer=L.beer
 and L2.beer=S.beer
 and not exists (SELECT * FROM Frequents F
 WHERE F.drinker=L2.drinker
 and F.bar=S.bar))

H(x,y) :- Likes(x,y),Serves(y,z), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

3. From RC to Non-recursive
Datalog w/ negation

Improve the SQL query by using an unsafe datalog rule

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists
 (SELECT * FROM Serves S
 WHERE L.beer=S.beer
 and not exists (SELECT * FROM Frequents F
 WHERE F.drinker=L.drinker
 and F.bar=S.bar))

H(x,y) :- Likes(x,y),Serves(y,z), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y) Unsafe rule

Summary of Translation

•  RC à recursion-free datalog w/ negation
– Subtle: as we saw; more details in the paper

•  Recursion-free datalog w/ negation à RA
– Easy: see paper

•  RA à RC
– Easy: see paper

CSEP544 - Winter 2014 55

Summary

•  All three have same expressive power:
– RA
– Non-recursive datalog w/ neg. (= “core” SQL)
– RC

•  Write complex queries in RC first, then
translate to SQL

CSEP544 - Winter 2014 56

Outline

•  Stonebraker’s blog on Big Data
•  Relational Query Languages

– Relational algebra
– Recursion-free datalog with negation
– Relational calculus

•  Database Design
•  Functional Dependencies and BCNF

CSEP544 - Winter 2014 57

Database Design

CSEP544 - Winter 2014 58

Database Design Process
company makes product

name

price name address

Conceptual Model:

Relational Model:
Tables + constraints
And also functional dep.
Normalization:
Eliminates anomalies

Conceptual Schema

Physical Schema
Physical storage details

Entity / Relationship Diagrams

•  Entity set = a class
– An entity = an object

•  Attribute

•  Relationship

CSEP544 - Winter 2014 60

Product

city

makes

61

Person

Company
Product

62

Person

Company
Product

name CEO

price

address name ssn

address

name

63

Person

Company
Product

buys

makes

employs

name CEO

price

address name ssn

address

name

Keys in E/R Diagrams

•  Every entity set must have a key

Product

name

price

CSEP544 - Winter 2014 64

What is a Relation ?
•  A mathematical definition:

–  if A, B are sets, then a relation R is a subset of A × B
•  A={1,2,3}, B={a,b,c,d},

A × B = {(1,a),(1,b), . . ., (3,d)}
R = {(1,a), (1,c), (3,b)}

•  makes is a subset of Product × Company:

1

2

3

a

b

c

d

A=

B=

makes Company
Product

CSEP544 - Winter 2014 65

Multiplicity of E/R Relations

•  one-one:

•  many-one

•  many-many

1
2
3

a
b
c
d

1
2
3

a
b
c
d

1
2
3

a
b
c
d

CSEP544 - Winter 2014 66

67

Person

Company
Product

buys

makes

employs

name CEO

price

address name ssn

address

name

What does
this say ?

Notation in Class v.s. the
Book

68

makes Company Product

makes Company Product

In class:

In the book:

Multi-way Relationships
How do we model a purchase relationship between buyers,
products and stores?

Purchase

Product

Person

Store

Can still model as a mathematical set (Q. how ?)

69 A. As a set of triples ⊆ Person × Product × Store

Q: What does the arrow mean ?

Arrows in Multiway
Relationships

A: A given person buys a given product from at most one store

Purchase

Product

Person

Store

70

[Arrow pointing to E means that if we select one entity from each of the
other entity sets in the relationship, those entities are related to
at most one entity in E]

Q: What does the arrow mean ?

Arrows in Multiway
Relationships

A: A given person buys a given product from at most one store
AND every store sells to every person at most one product

Purchase

Product

Person

Store

CSEP544 - Winter 2014 71

Q: How do we say that every person shops at at most one store ?

Arrows in Multiway
Relationships

A: Cannot. This is the best approximation.
(Why only approximation ?)

Purchase

Product

Person

Store

CSEP544 - Winter 2014 72

Converting Multi-way
Relationships to Binary

Purchase

Person

Store

Product

StoreOf

ProductOf

BuyerOf

date

Arrows go in which direction? 73

Converting Multi-way
Relationships to Binary

Purchase

Person

Store

Product

StoreOf

ProductOf

BuyerOf

date

Make sure you understand why! 74

Design Principles

Purchase Product Person

What’s wrong?

President Person Country

Moral: be faithful to the specifications of the app!

CSEP544 - Winter 2014 75

Design Principles:
What’s Wrong?

Purchase

Product

Store

date

personName personAddr

Moral: pick the right
 kind of entities.

CSEP544 - Winter 2014 76

Design Principles:
What’s Wrong?

Purchase

Product

Person

Store

date Dates

Moral: don’t
 complicate life more
 than it already is.

77

From E/R Diagrams
to Relational Schema

•  Entity set à relation
•  Relationship à relation

CSEP544 - Winter 2014 78

Entity Set to Relation

Product

prod-ID category

price

Product(prod-ID, category, price)

prod-ID category price
Gizmo55 Camera 99.99
Pokemn19 Toy 29.99 79

Create Table (SQL)

CREATE TABLE Product (
 prod-ID CHAR(30) PRIMARY KEY,
 category VARCHAR(20),

 price double)

CSEP544 - Winter 2014 80

N-N Relationships to Relations

Orders

prod-ID cust-ID

date

Shipment Shipping-Co

address

name
date

Represent that in relations!
CSEP544 - Winter 2014 81

N-N Relationships to Relations

Orders

prod-ID cust-ID

date

Shipment Shipping-Co

address

name

Orders(prod-ID,cust-ID, date)
Shipment(prod-ID,cust-ID, name, date)
Shipping-Co(name, address)

date

prod-ID cust-ID name date

Gizmo55 Joe12 UPS 4/10/2011

Gizmo55 Joe12 FEDEX 4/9/2011

Create Table (SQL)
CREATE TABLE Shipment(

 name CHAR(30)
 REFERENCES Shipping-Co,

 prod-ID CHAR(30),
 cust-ID VARCHAR(20),
 date DATETIME,
PRIMARY KEY (name, prod-ID, cust-ID),
FOREIGN KEY (prod-ID, cust-ID)
 REFERENCES Orders
)

N-1 Relationships to Relations

Orders

prod-ID cust-ID

date

Shipment Shipping-Co

address

name
date

Represent this in relations!
CSEP544 - Winter 2014 84

N-1 Relationships to Relations

Orders

prod-ID cust-ID

date

Shipment Shipping-Co

address

name

Orders(prod-ID,cust-ID, date1, name, date2)
Shipping-Co(name, address)

date

Remember: no separate relations for many-one relationship

Multi-way Relationships to
Relations

Purchase

Product

Person

Store prod-ID price

ssn name

name address

86
Purchase(prod-ID, cust-ssn, store-name)

Modeling Subclasses

Some objects in a class may be special

 define a new class
 better: define a subclass

Products

Software
products

Educational
products

So --- we define subclasses in E/R
CSEP544 - Winter 2014 87

Product

name category

price

isa isa

Educational Product Software Product

Age Group platforms

Subclasses

CSEP544 - Winter 2014

Understanding Subclasses

Think in terms of records:
Product

SoftwareProduct

EducationalProduct

field1
field2

field1
field2

field1
field2

field3

field4
field5

CSEP544 - Winter 2014 89

Subclasses to

Relations

Product

name category

price

isa isa

Educational Product Software Product

Age Group platforms

Name Price Category

Gizmo 99 gadget

Camera 49 photo

Toy 39 gadget

Name platforms

Gizmo unix

Name Age
Group

Gizmo toddler

Toy retired

Product

Sw.Product

Ed.Product

Other ways to convert are possible

Modeling Union Types With
Subclasses

FurniturePiece

Person Company

Say: each piece of furniture is owned
either by a person or by a company

CSEP544 - Winter 2014 91

Modeling Union Types With
Subclasses

Say: each piece of furniture is owned either by a
person or by a company
Solution 1. Acceptable but imperfect (What’s wrong ?)

FurniturePiece Person Company

ownedByPerson ownedByComp.

CSEP544 - Winter 2014 92

Modeling Union Types With
Subclasses

Solution 2: better, more laborious

isa

FurniturePiece

Person Company
ownedBy

Owner

isa

CSEP544 - Winter 2014 93

94

Weak Entity Sets
Entity sets are weak when their key comes from other
classes to which they are related.

University Team affiliation

number sport name

Team(sport, number, universityName)
University(name)

CSEP544 - Winter 2014

What Are the Keys of R ?

R

A

B

S

T

V

Q

U W

V

Z

C

D
E G

K

H

F L

Constraints in E/R Diagrams
• Finding constraints is part of the modeling process.
• Commonly used constraints:

•  Keys: social security number uniquely identifies a person.

•  Single-value constraints: a person can have only one father.

•  Referential integrity constraints: if you work for a company, it
•  must exist in the database.

•  Other constraints: peoples’ ages are between 0 and 150.

CSEP544 - Winter 2014 96

 Keys in E/R Diagrams

address name ssn

Person

Product

name category

price

No formal way
 to specify multiple
 keys in E/R diagrams

Underline:

Single Value Constraints

makes

makes

v. s.

CSEP544 - Winter 2014 98

Referential Integrity
Constraints

Company Product makes

Company Product makes

Each product made by at most one company.
Some products made by no company

Each product made by exactly one company.

CSEP544 - Winter 2014 99

Note: For weak entity sets should be replaced by
(sec 4.4.2)

Other Constraints

Company Product makes
<100

Q: What does this mean ?
A: A Company entity cannot be connected
by relationship to more than 99 Product entities

CSEP544 - Winter 2014 100

Note: For “at least one”, you can use “≥ 1” in a many-many relationship

101

Database Design Summary

•  Conceptual modeling = design the database
schema
–  Usually done with Entity-Relationship diagrams
–  It is a form of documentation the database

schema; it is not executable code
–  Straightforward conversion to SQL tables
–  Big problem in the real world: the SQL tables are

updated, the E/R documentation is not maintained

•  Schema refinement using normal forms
– Functional dependencies, normalization

CSEP544 - Winter 2014

Outline

•  Stonebraker’s blog on Big Data

•  Relational Query Languages

•  Database Design

•  Functional Dependencies and BCNF
CSEP544 - Winter 2014 102

103

Relational Schema Design

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield

One person may have multiple phones, but lives in only one city

Primary key is thus (SSN,PhoneNumber)

What is the problem with this schema?

CSEP544 - Winter 2014

104

Relational Schema Design

Anomalies:
 Redundancy = repeat data
 Update anomalies = what if Fred moves to “Bellevue”?
 Deletion anomalies = what if Joe deletes his phone number?

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield

CSEP544 - Winter 2014

105

Relation Decomposition
Break the relation into two:

Name SSN City
Fred 123-45-6789 Seattle
Joe 987-65-4321 Westfield

SSN PhoneNumber
123-45-6789 206-555-1234
123-45-6789 206-555-6543
987-65-4321 908-555-2121 Anomalies have gone:

 No more repeated data
 Easy to move Fred to “Bellevue” (how ?)
 Easy to delete all Joe’s phone numbers (how ?)

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield

106

Relational Schema Design
(or Logical Design)

How do we do this systematically?

Start with some relational schema

Find out its functional dependencies (FDs)

Use FDs to normalize the relational schema

CSEP544 - Winter 2014

107

Functional Dependencies
(FDs)

Definition

 If two tuples agree on the attributes

 then they must also agree on the attributes

Formally:

A1, A2, …, An à B1, B2, …, Bm

A1, A2, …, An

B1, B2, …, Bm

CSEP544 - Winter 2014

A1…An determines B1..Bm

108

Functional Dependencies
(FDs)

Definition A1, ..., Am à B1, ..., Bn holds in R if:
 ∀t, t’ ∈ R,
 (t.A1 = t’.A1 ∧ ... ∧ t.Am = t’.Am ⇒ t.B1 = t’.B1 ∧ ... ∧ t.Bn =

t’.Bn)
 A1 ... Am B1 ... Bn

if t, t’ agree here

then t, t’ agree here

t

t’

R

109

Example

EmpID à Name, Phone, Position
Position à Phone
but not Phone à Position

An FD holds, or does not hold on an instance:

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

CSEP544 - Winter 2014

110

Example

Position à Phone

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 ← Salesrep
E1111 Smith 9876 ← Salesrep
E9999 Mary 1234 Lawyer

CSEP544 - Winter 2014

111

Example

 But not Phone à Position

EmpID Name Phone Position
E0045 Smith 1234 → Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 → Lawyer

CSEP544 - Winter 2014

112

Example

Do all the FDs hold on this instance?

name à color
category à department
color, category à price

name category color department price

Gizmo Gadget Green Toys 49

Tweaker Gadget Green Toys 99

CSEP544 - Winter 2014

113

Example

name category color department price

Gizmo Gadget Green Toys 49

Tweaker Gadget Black Toys 99

Gizmo Stationary Green Office-supp. 59

What about this one ?

name à color
category à department
color, category à price

Terminology

FD holds or does not hold on an instance

If we can be sure that every instance of R will
be one in which a given FD is true, then we say
that R satisfies the FD

If we say that R satisfies an FD F, we are
stating a constraint on R

CSEP544 - Winter 2014 114

115

An Interesting Observation

If all these FDs are true:
name à color
category à department
color, category à price

Then this FD also holds: name, category à price

CSEP544 - Winter 2014

If we find out from application domain that a relation satisfies some FDs,
it doesn’t mean that we found all the FDs that it satisfies!
There could be more FDs implied by the ones we have.

116

Closure of a set of Attributes
Given a set of attributes A1, …, An

The closure, {A1, …, An}+ = the set of attributes B
 s.t. A1, …, An à B
Example:

Closures:
 name+ = {name, color}
 {name, category}+ = {name, category, color, department, price}
 color+ = {color}

1. name à color
2. category à department
3. color, category à price

CSEP544 - Winter 2014

117

Closure Algorithm
X={A1, …, An}.

Repeat until X doesn’t change do:
 if B1, …, Bn à C is a FD and
 B1, …, Bn are all in X
 then add C to X.

{name, category}+ =
 { }

Example:

1. name à color
2. category à department
3. color, category à price

CSEP544 - Winter 2014

118

Closure Algorithm
X={A1, …, An}.

Repeat until X doesn’t change do:
 if B1, …, Bn à C is a FD and
 B1, …, Bn are all in X
 then add C to X.

{name, category}+ =
 { }

Example:

name, category, color, department, price

1. name à color
2. category à department
3. color, category à price

CSEP544 - Winter 2014

119

Closure Algorithm
X={A1, …, An}.

Repeat until X doesn’t change do:
 if B1, …, Bn à C is a FD and
 B1, …, Bn are all in X
 then add C to X.

{name, category}+ =
 { }

Example:

name, category, color, department, price

Hence: name, category à color, department, price

1. name à color
2. category à department
3. color, category à price

CSEP544 - Winter 2014

120

Example

Compute {A,B}+ X = {A, B, }

Compute {A, F}+ X = {A, F, }

R(A,B,C,D,E,F)

In class:

CSEP544 - Winter 2014

A, B à C
A, D à E
B à D
A, F à B

121

Example

Compute {A,B}+ X = {A, B, C, D, E }

Compute {A, F}+ X = {A, F, }

R(A,B,C,D,E,F)

In class:

CSEP544 - Winter 2014

A, B à C
A, D à E
B à D
A, F à B

122

Example

Compute {A,B}+ X = {A, B, C, D, E }

Compute {A, F}+ X = {A, F, B, C, D, E }

R(A,B,C,D,E,F)

In class:

CSEP544 - Winter 2014

A, B à C
A, D à E
B à D
A, F à B

123

Example

Compute {A,B}+ X = {A, B, C, D, E }

Compute {A, F}+ X = {A, F, B, C, D, E }

R(A,B,C,D,E,F)

In class:

CSEP544 - Winter 2014

A, B à C
A, D à E
B à D
A, F à B

What is the key of R?

Practice at Home
A, B à C
A, D à B
B à D

Find all FD’s implied by:

124 CSEP544 - Winter 2014

Practice at Home
A, B à C
A, D à B
B à D

Step 1: Compute X+, for every X:
A+ = A, B+ = BD, C+ = C, D+ = D
AB+ =ABCD, AC+=AC, AD+=ABCD,
 BC+=BCD, BD+=BD, CD+=CD
ABC+ = ABD+ = ACD+ = ABCD (no need to compute– why ?)
BCD+ = BCD, ABCD+ = ABCD

Find all FD’s implied by:

125 CSEP544 - Winter 2014

Practice at Home
A, B à C
A, D à B
B à D

Step 1: Compute X+, for every X:
A+ = A, B+ = BD, C+ = C, D+ = D
AB+ =ABCD, AC+=AC, AD+=ABCD,
 BC+=BCD, BD+=BD, CD+=CD
ABC+ = ABD+ = ACD+ = ABCD (no need to compute– why ?)
BCD+ = BCD, ABCD+ = ABCD

Step 2: Enumerate all FD’s X à Y, s.t. Y ⊆ X+ and X∩Y = ∅:
AB à CD, ADàBC, ABC à D, ABD à C, ACD à B

Find all FD’s implied by:

126

127

Keys
•  A superkey is a set of attributes A1, ..., An s.t. for

any other attribute B, we have A1, ..., An à B

•  A key is a minimal superkey
–  A superkey and for which no subset is a superkey

CSEP544 - Winter 2014

128

Computing (Super)Keys

•  For all sets X, compute X+

•  If X+ = [all attributes], then X is a
superkey

•  Try only the minimal X’s to get the keys

CSEP544 - Winter 2014

129

Example

Product(name, price, category, color)

name, category à price
category à color

What is the key ?

CSEP544 - Winter 2014

130

Example

Product(name, price, category, color)

What is the key ?

(name, category) + = { name, category, price, color }

Hence (name, category) is a key

CSEP544 - Winter 2014

name, category à price
category à color

131

Key or Keys ?
Can we have more than one key ?

Given R(A,B,C) define FD’s s.t. there are two or more keys

CSEP544 - Winter 2014

132

Key or Keys ?
Can we have more than one key ?

Given R(A,B,C) define FD’s s.t. there are two or more keys

ABàC
BCàA

AàBC
BàAC or

what are the keys here ?

A à B
B à C
C à A

or

CSEP544 - Winter 2014

133

Eliminating Anomalies
Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield
Joe 987-65-4321 908-555-1234 Westfield

SSN à Name, City

CSEP544 - Winter 2014

What is the key?

Suggest a rule for decomposing the table to eliminate anomalies

134

Eliminating Anomalies

Main idea:

•  X à A is OK if X is a (super)key

•  X à A is not OK otherwise
– Need to decompose the table, but how?

CSEP544 - Winter 2014

135

Boyce-Codd Normal Form

There are no
“bad” FDs:

Definition. A relation R is in BCNF if:

 Whenever Xà B is a non-trivial dependency,
 then X is a superkey.

Equivalently: Definition. A relation R is in BCNF if:
 ∀ X, either X+ = X or X+ = [all attributes]

CSEP544 - Winter 2014

136

BCNF Decomposition Algorithm
Normalize(R)
 find X s.t.: X ≠ X+ ≠ [all attributes]
 if (not found) then “R is in BCNF”
 let Y = X+ - X; Z = [all attributes] - X+
 decompose R into R1(X ∪ Y) and R2(X ∪ Z)
 Normalize(R1); Normalize(R2);

Y X Z

X+ CSEP544 - Winter 2014

137

Example

The only key is: {SSN, PhoneNumber}
Hence SSN à Name, City is a “bad” dependency

SSN à Name, City

In other words:
SSN+ = Name, City and is neither SSN nor All Attributes

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield
Joe 987-65-4321 908-555-1234 Westfield

Name,
City

SSN
Phone-
Number

SSN+

138

Example BCNF
Decomposition

Name SSN City
Fred 123-45-6789 Seattle
Joe 987-65-4321 Westfield

SSN PhoneNumber
123-45-6789 206-555-1234
123-45-6789 206-555-6543
987-65-4321 908-555-2121
987-65-4321 908-555-1234

SSN à Name, City

Let’s check anomalies:
 Redundancy ?
 Update ?
 Delete ?

Name,
City

SSN
Phone-
Number

SSN+

CSEP544 - Winter 2014

139

Example BCNF Decomposition
Person(name, SSN, age, hairColor, phoneNumber)

 SSN à name, age
 age à hairColor

Find X s.t.: X ≠X+ ≠ [all attributes]

CSEP544 - Winter 2014

140

Example BCNF Decomposition
Person(name, SSN, age, hairColor, phoneNumber)

 SSN à name, age
 age à hairColor

Find X s.t.: X ≠X+ ≠ [all attributes]

Iteration 1: Person: SSN+ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor)
 Phone(SSN, phoneNumber)

SSN name,
age,
hairColor

phoneNumber

CSEP544 - Winter 2014

141

Example BCNF Decomposition
Person(name, SSN, age, hairColor, phoneNumber)

 SSN à name, age
 age à hairColor

Find X s.t.: X ≠X+ ≠ [all attributes]

Iteration 1: Person: SSN+ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor)
 Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor
Decompose: People(SSN, name, age)
 Hair(age, hairColor)
 Phone(SSN, phoneNumber)

What are
the keys ?

CSEP544 - Winter 2014

142

Example BCNF Decomposition
Person(name, SSN, age, hairColor, phoneNumber)

 SSN à name, age
 age à hairColor

Find X s.t.: X ≠X+ ≠ [all attributes]

Iteration 1: Person: SSN+ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor)
 Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor
Decompose: People(SSN, name, age)
 Hair(age, hairColor)
 Phone(SSN, phoneNumber)

Note the keys!

CSEP544 - Winter 2014

143

Practice at Home
A à B
B à C

R(A,B,C,D)
 A+ = ABC ≠ ABCD

R(A,B,C,D)

CSEP544 - Winter 2014

144

Practice at Home

What are
the keys ?

A à B
B à C

R(A,B,C,D)
 A+ = ABC ≠ ABCD

R(A,B,C,D)

What happens if in R we first pick B+ ? Or AB+ ?

R1(A,B,C)
 B+ = BC ≠ ABC

R2(A,D)

R11(B,C) R12(A,B)

CSEP544 - Winter 2014

145

Schema Refinements
= Normal Forms

•  1st Normal Form = all tables are flat
•  2nd Normal Form = obsolete
•  Boyce Codd Normal Form = today
•  3rd Normal Form = see book

CSEP544 - Winter 2014

