Lecture 10: NoSQL

Wednesday, December 1st, 2011
RDBMS v.s. Map/Reduce

Common Wisdom:

• RDBMS load slowly, process fast

• MR load fast, process slower
Hadoop MR v.s. Parallel DBMS

Performance study done at the University of Wisconsin, by Stonebraker, DeWitt, and others, in 2009

• 100-nodes, shared nothing:
• Hadoop MR; DBMS-X; Vertica

• Grep: 10B records x 100bytes = 1TB
• Weblog: a group-by: 2TB = 155M records
• Joins: 2TB x 100GB
<table>
<thead>
<tr>
<th></th>
<th>Hadoop</th>
<th>DBMS-X</th>
<th>Vertica</th>
<th>Hadoop/DBMS-X</th>
<th>Hadoop/Vertica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grep</td>
<td>284s</td>
<td>194s</td>
<td>108x</td>
<td>1.5x</td>
<td>2.6x</td>
</tr>
<tr>
<td>Web Log</td>
<td>1,146s</td>
<td>740s</td>
<td>268s</td>
<td>1.6x</td>
<td>4.3x</td>
</tr>
<tr>
<td>Join</td>
<td>1,158s</td>
<td>32s</td>
<td>55s</td>
<td>36.3x</td>
<td>21.0x</td>
</tr>
</tbody>
</table>
Discussion

• Repetitive record parsing: MR needs to parse during both M and R.
• Compression in DBMS delivered significant performance gain; unclear why Hadoop MR did not benefit equally from compression
• Pipelining
• Scheduling: static in DBMS (=query plan), dynamic in MR
Five Typical MR applications

• ETL and “read once” data sets; e.g. read logs, parse&clean, perform complex transformations, store information into DBMS – this is ETL
• Complex analytics: would require multipass SQL
• Semistructured data: usually this means key-value pairs, where the number of attributes per record varies
• Quick-and-dirty analysis: idea is that MR provides better “out of the box” experience than RDBMS: but lots of tuning needed
• Limited budget operations (Hadoop MR is free; but no free parallel RDBMS)
No-SQL
NoSLQ: Overview

• Main objective: implement distributed state
 – Different objects stored on different servers
 – Same object replicated on different servers
• Main idea: give up some of the ACID constraints to improve performance
• Simple interface:
 – Write (=Put): needs to write all replicas
 – Read (=Get): may get only one
• Eventual consistency ← Strong consistency
NoSQL

“Not Only SQL” or “Not Relational”. Six key features:

1. Scale horizontally “simple operations”
2. Replicate/distribute data over many servers
3. Simple call level interface (contrast w/ SQL)
4. Weaker concurrency model than ACID
5. Efficient use of distributed indexes and RAM
6. Flexible schema
Outline of this Lecture

• Main techniques and concepts:
 – Distributed storage using DHTs
 – Consistency: 2PC, vector clocks
 – The CAP theorem

• Overview of No-SQL systems (Cattell)

• Short case studies:
 – Dynamo, Cassandra, PNUTS

• Critique (c.f. Stonebraker)
Main Techniques and Concepts
Main Techniques, Concepts

• Distributed Hash Tables

• Consistency: 2PC, Vector Clocks

• The CAP theorem
A Note

• These techniques belong to a course on distributed systems, and not databases

• We will mention them because they are very relevant to NoSQL, but this is not an exhaustive treatment
Distributed Hash Table

Implements a distributed storage
- Each key-value pair \((k,v)\) is stored at some server \(h(k)\)
- API: write\((k,v)\); read\((k)\)

Use standard hash function: service key \(k\) by server \(h(k)\)
- Problem 1: a client knows only one server, doesn’t know how to access \(h(k)\)
- Problem 2. if new server joins, then \(N \rightarrow N+1\), and the entire hash table needs to be reorganized
- Problem 3: we want replication, i.e. store the object at more than one server
Distributed Hash Table

- Responsibility of A
- Responsibility of B
- Responsibility of C

h = 2^n - 1
h = 0
Problem 1: Routing

A client doesn’t know server $h(k)$, but some other server

• Naive routing algorithm:
 – Each node knows its neighbors
 – Send message to nearest neighbor
 – Hop-by-hop from there
 – Obviously this is $O(n)$, So no good

• Better algorithm: “finger table”
 – Memorize locations of other nodes in the ring
 – $a, a + 2, a + 4, a + 8, a + 16, \ldots a + 2^n - 1$
 – Send message to closest node to destination
 – Hop-by-hop again: this is $\log(n)$
Problem 1: Routing

\[h = 2^n - 1 \]

\[h = 0 \]

Client only "knows" server A

Redirect request to A + 2^m

Found Read(k)!

\[h(k) \text{ handled by server } G \]

\[O(\log n) \]
Problem 2: Joining

When X joins:
select random ID

Responsibility of D
Problem 2: Joining

When X joins: select random ID

Responsibility of D
Problem 2: Joining

When X joins:
- select random ID
- redistribute the load at D

Responsibility of X

Responsibility of D
Problem 3: Replication

• Need to have some degree of replication to cope with node failure

• Let $N=$ degree of replication

• Assign key k to $h(k)$, $h(k)+1$, ..., $h(k)+N-1$
Problem 3: Replication

\[h = 2^n - 1 \quad \text{h=0} \]

Responsibility of A, B, C

Responsibility of B, C, D

Responsibility of C, D, E
Consistency

• ACID
 – Two phase commit
 – Paxos (will not discuss)

• Eventual consistency
 – Vector clocks
Two Phase Commit

• Multiple servers run parts of the same transaction
• They all must commit, or none should commit
• Two-phase commit is a complicated protocol that ensures that
• 2PC can also be used for WRITE with replication: commit the write at all replicas before declaring success
Two Phase Commit

Assumptions:

• Each site logs actions at that site, but there is no global log

• There is a special site, called the coordinator, which plays a special role

• 2PC involves sending certain messages: as each message is sent, it is logged at the sending site, to aid in case of recovery
Two-Phase Commit

Book, Sec. 21.13.1

1. Coordinator sends \textit{prepare} message

2. Subordinates receive \textit{prepare} statement; force-write \texttt{<prepare>} log entry; answers \textit{yes} or \textit{no}

3. If coordinator receives only \textit{yes}, force write \texttt{<commit>}, sends \textit{commit} messages;
 If at least one \textit{no}, or timeout, force write \texttt{<abort>}, sends \textit{abort} messages

5. When coordinator receives all \textit{ack}, writes \texttt{<end log>
Two-Phase Commit

• ACID properties, but expensive

• Relies on central coordinator: both performance bottleneck, and single-point-of-failure

• Solution: Paxos = distributed protocol
 – Complex: will not discuss at all
Vector Clocks

• An extension of Multiversion Concurrency Control (MVCC) to multiple servers

• Standard MVCC:
 each data item X has a timestamp t:
 $X_4, X_9, X_{10}, X_{14}, …, X_t$

• Vector Clocks:
 X has set of [server, timestamp] pairs
 $X([s1,t1], [s2,t2], …)$
Vector Clocks

Figure 3: Version evolution of an object over time.
Vector Clocks: Example

- A client writes D1 at server SX:
 \[D1 ([SX,1]) \]

- Another client reads D1, writes back D2; also handled by server SX:
 \[D2 ([SX,2]) \] (D1 garbage collected)

- Another client reads D2, writes back D3; handled by server SY:
 \[D3 ([SX,2], [SY,1]) \]

- Another client reads D2, writes back D4; handled by server SZ:
 \[D4 ([SX,2], [SZ,1]) \]

- Another client reads D3, D4: CONFLICT!
Vector Clocks: Conflict or not?

<table>
<thead>
<tr>
<th>Data 1</th>
<th>Data 2</th>
<th>Conflict ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>([SX,3],[SY,6])</td>
<td>([SX,3],[SZ,2])</td>
<td></td>
</tr>
</tbody>
</table>
Vector Clocks: Conflict or not?

<table>
<thead>
<tr>
<th>Data 1</th>
<th>Data 2</th>
<th>Conflict ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>([SX,3],[SY,6])</td>
<td>([SX,3],[SZ,2])</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Vector Clocks: Conflict or not?

<table>
<thead>
<tr>
<th>Data 1</th>
<th>Data 2</th>
<th>Conflict ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>([SX,3],[SY,6])</td>
<td>([SX,3],[SZ,2])</td>
<td>Yes</td>
</tr>
<tr>
<td>([SX,3])</td>
<td>([SX,5])</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vector Clocks: Conflict or not?

<table>
<thead>
<tr>
<th>Data 1</th>
<th>Data 2</th>
<th>Conflict</th>
</tr>
</thead>
<tbody>
<tr>
<td>([SX,3],[SY,6])</td>
<td>([SX,3],[SZ,2])</td>
<td>Yes</td>
</tr>
<tr>
<td>([SX,3])</td>
<td>([SX,5])</td>
<td>No</td>
</tr>
</tbody>
</table>
Vector Clocks: Conflict or not?

<table>
<thead>
<tr>
<th>Data 1</th>
<th>Data 2</th>
<th>Conflict?</th>
</tr>
</thead>
<tbody>
<tr>
<td>([SX,3],[SY,6])</td>
<td>([SX,3],[SZ,2])</td>
<td>Yes</td>
</tr>
<tr>
<td>([SX,3])</td>
<td>([SX,5])</td>
<td>No</td>
</tr>
<tr>
<td>([SX,3],[SY,6])</td>
<td>([SX,3],[SY,6],[SZ,2])</td>
<td></td>
</tr>
</tbody>
</table>
Vector Clocks: Conflict or not?

<table>
<thead>
<tr>
<th>Data 1</th>
<th>Data 2</th>
<th>Conflict?</th>
</tr>
</thead>
<tbody>
<tr>
<td>([SX,3],[SY,6])</td>
<td>([SX,3],[SZ,2])</td>
<td>Yes</td>
</tr>
<tr>
<td>([SX,3])</td>
<td>([SX,5])</td>
<td>No</td>
</tr>
<tr>
<td>([SX,3],[SY,6])</td>
<td>([SX,3],[SY,6],[SZ,2])</td>
<td>No</td>
</tr>
</tbody>
</table>

Vector Clocks: Conflict or not?

<table>
<thead>
<tr>
<th>Data 1</th>
<th>Data 2</th>
<th>Conflict ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>([SX,3],[SY,6])</td>
<td>([SX,3],[SZ,2])</td>
<td>Yes</td>
</tr>
<tr>
<td>([SX,3])</td>
<td>([SX,5])</td>
<td>No</td>
</tr>
<tr>
<td>([SX,3],[SY,6])</td>
<td>([SX,3],[SY,6],[SZ,2])</td>
<td>No</td>
</tr>
<tr>
<td>([SX,3],[SY,10])</td>
<td>([SX,3],[SY,6],[SZ,2])</td>
<td></td>
</tr>
</tbody>
</table>
Vector Clocks: Conflict or not?

<table>
<thead>
<tr>
<th>Data 1</th>
<th>Data 2</th>
<th>Conflict ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>([SX,3],[SY,6])</td>
<td>([SX,3],[SZ,2])</td>
<td>Yes</td>
</tr>
<tr>
<td>([SX,3])</td>
<td>([SX,5])</td>
<td>No</td>
</tr>
<tr>
<td>([SX,3],[SY,6])</td>
<td>([SX,3],[SY,6],[SZ,2])</td>
<td>No</td>
</tr>
<tr>
<td>([SX,3],[SY,10])</td>
<td>([SX,3],[SY,6],[SZ,2])</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Vector Clocks: Conflict or not?

<table>
<thead>
<tr>
<th>Data 1</th>
<th>Data 2</th>
<th>Conflict ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>([SX,3],[SY,6])</td>
<td>([SX,3],[SZ,2])</td>
<td>Yes</td>
</tr>
<tr>
<td>([SX,3])</td>
<td>([SX,5])</td>
<td>No</td>
</tr>
<tr>
<td>([SX,3],[SY,6])</td>
<td>([SX,3],[SY,6],[SZ,2])</td>
<td>No</td>
</tr>
<tr>
<td>([SX,3],[SY,10])</td>
<td>([SX,3],[SY,6],[SZ,2])</td>
<td>Yes</td>
</tr>
<tr>
<td>([SX,3],[SY,10])</td>
<td>([SX,3],[SY,20],[SZ,2])</td>
<td></td>
</tr>
</tbody>
</table>
Vector Clocks: Conflict or not?

<table>
<thead>
<tr>
<th>Data 1</th>
<th>Data 2</th>
<th>Conflict ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>([SX,3],[SY,6])</td>
<td>([SX,3],[SZ,2])</td>
<td>Yes</td>
</tr>
<tr>
<td>([SX,3])</td>
<td>([SX,5])</td>
<td>No</td>
</tr>
<tr>
<td>([SX,3],[SY,6])</td>
<td>([SX,3],[SY,6],[SZ,2])</td>
<td>No</td>
</tr>
<tr>
<td>([SX,3],[SY,10])</td>
<td>([SX,3],[SY,6],[SZ,2])</td>
<td>Yes</td>
</tr>
<tr>
<td>([SX,3],[SY,10])</td>
<td>([SX,3],[SY,20],[SZ,2])</td>
<td>No</td>
</tr>
</tbody>
</table>
CAP Theorem

Brewer 2000:

You can only have two of the following three:

• Consistency
• Availability
• Tolerance to Partitions
CAP Theorem: No Partitions

- CA = Consistency + Availability

- Single site database
- Cluster database

- Need 2 phase commit
- Need cache validation protocol

Brewer 2000
CAP Theorem: No Availability

• CP = Consistency + tolerance to Partitions

• Distributed databases
• Majority protocols

• Make minority partitions unavailable

Brewer 2000
CAP Theorem: No Consistency

- AP = Availability + tolerance to Partitions
- DNS
- Web caching
CAP Theorem: Criticism

- Not really a “theorem”, since definitions are imprecise: a real theorem was proven a few years later, but under more limiting assumptions
- Many tradeoffs possible
- D. Abadi: “CP makes no sense” because it suggest never available. A, C asymmetric!
 - No “C” = all the time
 - No “A” = only when the network is partitioned
Overview of No-SQL systems
Early “Proof of Concepts”

- Memcached: demonstrated that in-memory indexes (DHT) can be highly scalable
- Dynamo: pioneered *eventual consistency* for higher availability and scalability
- BigTable: demonstrated that persistent record storage can be scaled to thousands of nodes
ACID v.s. BASE

• ACID = Atomicity, Consistency, Isolation, and Durability

• BASE = Basically Available, Soft state, Eventually consistent
Terminology

• **Simple operations** = key lookups, read/writes of one record, or a small number of records
• **Sharding** = horizontal partitioning by some key, and storing records on different servers in order to improve performance.
• **Horizontal scalability** = distribute both data and load over many servers
• **Vertical scaling** = when a dbms uses multiple cores and/or CPUs

Cattell, SIGMOD Record 2010
Data Model

- **Tuple** = row in a relational db
- **Document** = nested values, extensible records (think XML or JSON)
- **Extensible record** = families of attributes have a schema, but new attributes may be added
- **Object** = like in a programming language, but without methods
1. Key-value Stores

Think “file system” more than “database”

• Persistence,
• Replication
• Versioning,
• Locking
• Transactions
• Sorting
1. Key-value Stores

- Voldemort, Riak, Redis, Scalaris, Tokyo Cabinet, Memcached/Membrain/Membase

- Consistent hashing (DHT)
- Only primary index: lookup by key
- No secondary indexes
- Transactions: single- or multi-update TXNs
 - locks, or MVCC
2. Document Stores

• A "document" = a pointerless object = e.g. JSON = nested or not = schema-less

• In addition to KV stores, may have secondary indexes
2. Document Stores

• SimpleDB, CouchDB, MongoDB, Terrastore

• Scalability:
 – Replication (e.g. SimpleDB, CouchDB – means entire db is replicated),
 – Sharding (MongoDB);
 – Both
3. Extensible Record Stores

• Typical Access: Row ID, Column ID, Timestamp

• Rows: sharding by primary key
 – BigTable: split table into *tablets* = units of distribution

• Columns: "column groups" = indication for which columns to be stored together (e.g. customer name/address group, financial info group, login info group)

• HBase, HyperTable, Cassandra, PNUT, BigTable
4. Scalable Relational Systems

• Means RDBS that are offering sharding

• Key difference: NoSQL make it difficult or impossible to perform large-scope operations and transactions (to ensure performance), while scalable RDBMS do not *preclude* these operations, but users pay a price only when they need them.

• MySQL Cluster, VoltDB, Clusterix, ScaleDB, Megastore (the new BigTable)
Application 1

- Web application that needs to display lots of customer information; the users data is rarely updated, and when it is, you know when it changes because updates go through the same interface. Store this information persistently using a KV store.

Key-value store
Application 2

• Department of Motor Vehicle: lookup objects by multiple fields (driver's name, license number, birth date, etc); "eventual consistency" is ok, since updates are usually performed at a single location.

Document Store
Application 3

• eBay-style application. Cluster customers by country; separate the rarely changed "core” customer information (address, email) from frequently-updated info (current bids).
Application 4

• Everything else (e.g. a serious DMV application)
Short Case Studies
Case Study 1: Dynamo

- Developed at Amazon, published 2007
- It is probably in SimpleDB today, I couldn’t confirm
- Was the first to demonstrate that eventual consistency can work
Case Study 1: Dynamo

Key features:

• Service Level Agreement (SLN): at the 99th percentile, and not on mean/median/variance (otherwise, one penalizes the heavy users)
 – “Respond within 300ms for 99.9% of its requests”
Case Study 1: Dynamo

Key features:

• DHT with replication:
 – Store value at k, k+1, ..., k+N-1

• Eventual consistency through vector clocks

• Reconciliation at read time:
 – Writes never fail (“poor customer experience”)
 – Conflict resolution: “last write wins” or application specific
Case Study 2: Cassandra

• Cassandra stores semi-structured rows that belong to column families
 – Rows are accessed by a *key*
 – Rows are replicated and distributed by hashing keys

• Multi-master replication for each row
 – Enables Cassandra to run in multiple data centers
 – Also gives us partition tolerance
Case Study 2: Cassandra

- Client controls the consistency vs. latency trade-off for each read and write operation
 - write(1)/read(1) – fast but not necessarily consistent
 - write(ALL)/read(ALL) – consistent but may be slow

- Client decides the serialization order of updates

- Scalable, elastic, highly available
 - Like many other cloud storage systems!
Consistency vs. Latency

- value = read(1, key, column)
 - Send read request to all replicas of the row (based on key)
 - Return first response received to client
 - Returns quickly but may return stale data

- value = read(ALL, key, column)
 - Send read request to all replicas of the row (based on key)
 - Wait until all replicas respond and return latest version to client
 - Consistent but as slow as the slowest replica

- write(1) vs. write(ALL)
 - Send write request to all replicas
 - Client provides a timestamp for each write

- Other consistency levels are supported
Consistency vs. Latency

- Which v is returned to the read()?
 - write(1)/read(1): possibly v_1, and \textit{eventually} v_2
 - write(ALL)/read(1): guaranteed to return v_2 if successful
 - write(1)/read(ALL): guaranteed to return v_2 if successful
Consistency vs. Latency

Experiment on Amazon EC2 – Yahoo! Cloud Serving Benchmark (YCSB) – 4 Cassandra Nodes
Same EC2 Availability Zone
Consistency vs. Latency

Two EC2 Availability Zones
Same EC2 Geographic Region
Consistency vs. Latency

Two EC2 Regions
(US East and US West)
Case Study 3: PNUTS

• Yahoo; the only system that has a benchmark, and thorough experimental evaluation
Case Study 3: PNUTS

- Read-any = returns any stable version
- Read-critical(required_version) = reads a version that is strictly newer
- Read-latest = reads absolute latest
- Test-and-set-write(required_version) = writes only if current version is the required one
Criticism
Criticism

• Two ways to improve OLTP performance:
 – Sharding over shared-nothing
 – Improve per-server OLTP performance

• Recent RDBMs do provide sharding: Greenplum, Aster Data, Vertica, ParAccel

• Hence, the discussion is about single-node performance
Criticism (cont’d)

• Single-node performance:

• Major performance bottleneck: communication with DBMS using ODBC or JDBC
 – Solution: stored procedures, OR embedded databases

• Server-side performance (next slide)
Criticism (cont’d)

Server-side performance: abut 25% each

• Logging
 – Everything written twice; log must be forced

• Locking
 – Needed for ACID semantics

• Latching
 – This is when the DBMS itself is multithreaded; e.g. latch for the lock table

• Buffer management
Main take-away:

- NoSQL databases give up 1, or 2, or 3 of those features
- Thus, performance improvement can only be modest
- Need to give up all 4 features for significantly higher performance
- On the downside, NoSQL give up ACID
Criticism (cont’d)

Who are the customers of NoSQL?
• Lots of startups
• Very few enterprises. Why? most applications are traditional OLTP on structured data; a few other applications around the “edges”, but considered less important
Criticism (cont’d)

• No ACID Equals No Interest
 – Screwing up mission-critical data is no-no-no

• Low-level Query Language is Death
 – Remember CODASYL?

• NoSQL means NoStandards
 – One (typical) large enterprise has 10,000 databases. These need accepted standards