
Lecture 09: Parallel Databases, 
Big Data, Map/Reduce, Pig-Latin 

Wednesday, November 23rd, 2011 
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Overview of Today’s Lecture 
•  Parallel databases 

– Chapter 22.1 – 22.5 
•  Big Data 

– Kumar et al. The Web as a Graph 
•  Cluster Computing 

– Map/reduce: Rajaraman&Ullman online book 
– Declarative layer: Pig-Latin, Tenzing (see papers) 

•  WILL NOT DISUCSS IN CLASS: mini-tutorial 
on Pig-Latin (see the last part of the slides) 
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Parallel Databases 
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Parallel v.s. Distributed 
Databases 

•  Parallel database system: 
–  Improve performance through parallel 

implementation 
– Will discuss in class 

•  Distributed database system: 
– Data is stored across several sites, each site 

managed by a DBMS capable of running 
independently 

– Will not discuss in class 
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Parallel DBMSs 
•  Goal 

–  Improve performance by executing multiple 
operations in parallel 

 
•  Key benefit 

– Cheaper to scale than relying on a single 
increasingly more powerful processor 

•  Key challenge 
– Ensure overhead and contention do not kill 

performance 
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Performance Metrics  
for Parallel DBMSs 

•  Speedup 
–  More processors è higher speed 
–  Individual queries should run faster 
–  Should do more transactions per second (TPS) 

•  Scaleup 
–  More processors è can process more data 
–  Batch scaleup 

•  Same query on larger input data should take the same time 
–  Transaction scaleup 

•  N-times as many TPS on N-times larger database 
•  But each transaction typically remains small 
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Linear v.s. Non-linear Speedup 
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# processors (=P) 

Speedup 
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Linear v.s. Non-linear Scaleup 

# processors (=P) AND data size  

Batch 
Scaleup 

×1 ×5 ×10 ×15 
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Challenges to  
Linear Speedup and Scaleup 

•  Startup cost  
– Cost of starting an operation on many 

processors 

•  Interference 
– Contention for resources between processors 

•  Skew 
– Slowest processor becomes the bottleneck 
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Architectures for Parallel 
Databases 

•  Shared memory 

•  Shared disk 

•  Shared nothing 
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Architectures for Parallel 
Databases 
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Shared Nothing 

•  Most scalable architecture 
– Minimizes interference by minimizing resource 

sharing 
– Can use commodity hardware 
– Processor = server = node 
– P = number of nodes 

•  Also most difficult to program and manage 
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Taxonomy for 
Parallel Query Evaluation 

•  Inter-query parallelism 
– Each query runs on one processor 

•  Inter-operator parallelism 
– A query runs on multiple processors 
– An operator runs on one processor 

•  Intra-operator parallelism 
– An operator runs on multiple processors 
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Query Evaluation 
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Query Evaluation 
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Horizontal Data Partitioning 
•  Relation R split into P chunks R0, …, RP-1, 

stored at the P nodes 

•  Round robin: tuple ti to chunk (i mod P) 

•  Hash based partitioning on attribute A: 
– Tuple t to chunk h(t.A) mod P 

•  Range based partitioning on attribute A: 
– Tuple t to chunk i if vi-1 < t.A < vi 
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Parallel Selection 

Compute σA=v(R), or σv1<A<v2(R) 

•  On a conventional database: cost = B(R) 

•  Q: What is the cost on a parallel database 
with P processors ? 
– Round robin 
– Hash partitioned 
– Range partitioned 
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Parallel Selection 
•  Q: What is the cost on a parallel database with P 

processors ? 
•  Round robin: all servers do the work 

–  Parallel time = B(R)/P; total work = B(R) 
–  Good load balance but needs to read all the data 

•  Hash:  
–  σA=v(R): Parallel time = total work = B(R)/P 
–  σA∈[v1,v2](R): Parallel time = B(R)/P; total work = B(R) 

•  Range: one server only 
–  Parallel time = total work = B(R) 
–  Works well for range predicates but suffers from data skew 
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Parallel Group By 

•  Given R(A,B,C) , compute γA, sum(B)(R) 

•  Assume R is hash-partitioned on C 

•  How do we compute γA, sum(B)(R)? 
19 
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Parallel Group By 

Compute γA, sum(B)(R) 
•  Step 1: server i hash-partitions chunk Ri using h(t.A): 

     Ri0, Ri1, …, Ri,P-1   
•  Step 2: server i sends partition Rij to serve j 
•  Step 3:  server j computes γA, sum(B)(R0j ∪ R1j ∪ … ∪RP-1,j) 
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Parallel Join 

•  How do we compute R(A,B) ⋈ S(B,C) ? 
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Parallel Join 
•  Step 1 

–  For all servers in [0,k-1], server i partitions chunk Ri 
using a hash function h(t.A) mod P: Ri0, Ri1, …, Ri,P-1   

–  For all servers in [k,P], server j partitions chunk Sj 
using a hash function h(t.A) mod P: Sj0, Sj1, …, Rj,P-1   

•  Step 2:  
–  Servers i=0..k-1 send partition Riu to server u 
–  Servers j=k..P send partition Sju to server u 

•  Steps 3: Server u computes the join of Riu with Sju 
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Parallel Dataflow Implementation 

•  Use relational operators unchanged  

•  Add special split and merge operators 
–  Handle data routing, buffering, and flow control 

•  Example: exchange (or “shuffle”) operator  
–  Inserted between consecutive operators in the query plan 
–  Can act as either a producer or consumer 
–  Producer pulls data from operator and sends to n 

consumers 
•  Producer acts as driver for operators below it in query plan 

–  Consumer buffers input data from n producers and makes 
it available to operator through getNext interface 
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Big Data 
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Big Data 

A buzzword that means several things: 
•  Large data mining: 

– More and more corporations have data as the 
basis of their business, not just "nice to have” 

•  “External” data is increasingly mined too: 
– Blogs, emails, reviews, websites 

•  Sometimes it just means using cluster 
computing for large data analytics 
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Famous Example of Big Data 
Analysis 

Kumar et al., The Web as a Graph 

•  Question 1: is the Web like a “random graph”? 
–  Random Graphs introduced by Erdos and Reny in the 

1940s 
–  Extensively studied in mathematics, well understood 
–  If the Web is a “random graph”, then we have 

mathematical tools to understand it: clusters, 
communities, diameter, etc 

•  Question 2: how does the Web graph look like? 
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Histogram of a Graph 

•  Outdegree of a node = 
number of outgoing 
edges 

•  For each d, let n(d) = 
number of nodes with 
oudegree d 

•  The outdegree 
histogram of a graph = 
the scatterplot (d, n(d)) 
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Exponential Distribution 

•  n(d) ≅ c/2d   (generally, cxd, for some x < 1) 
•  A random graph has exponential distribution 
•  Best seen when n is on a log scale 
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Zipf Distribution 

•  n(d) ≅ 1/dx,   for some value x>0 
•  Human-generated data has Zipf distribution: 

letters in alphabet, words in vocabulary, etc. 
•  Best seen in a log-log scale (why ?) 
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The Histogram of the Web 
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The Bowtie Structure of the Web 



Big Data: Summary 

•  Today, such analysis are done daily, by all 
large corporations 

•  Increasingly, using Cluster Computing: 
– Distributed File System (for storing the data) 
– Map/reduce 
– Declarative languages over Map/Reduce: 

Pig-Latin, SQL, Hive, Scope, Dryad-Linq, … 
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Cluster Computing 
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Cluster Computing 

•  Large number of commodity servers, 
connected by high speed, commodity 
network 

•  Rack: holds a small number of servers 
•  Data center: holds many racks 
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Cluster Computing 

•  Massive parallelism:  
– 100s, or 1000s, or 10000s servers 
– Many hours 

•  Failure: 
–  If medium-time-between-failure is 1 year 
– Then 10000 servers have one failure / hour 
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Distributed File System (DFS) 

•  For very large files: TBs, PBs 
•  Each file is partitioned into chunks, 

typically 64MB 
•  Each chunk is replicated several times 

(≥3), on different racks, for fault tolerance 
•  Implementations: 

– Google’s DFS:  GFS, proprietary 
– Hadoop’s DFS:  HDFS, open source 
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Map Reduce 

•  Google: paper published 2004 
•  Free variant: Hadoop 

•  Map-reduce = high-level programming 
model and implementation for large-scale 
parallel data processing 
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Data Model 

Files ! 

A file = a bag of (key, value) pairs 

A map-reduce program: 
•  Input: a bag of (inputkey, value)pairs 
•  Output: a bag of (outputkey, value)pairs 
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Step 1: the MAP Phase 

User provides the MAP-function: 
•  Input: (input key, value) 
•  Ouput:  

bag of (intermediate key, value 

System applies the map function in parallel 
to all (input key, value) pairs in the 
input file 
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Step 2: the REDUCE Phase 

User provides the REDUCE function: 
•  Input:  
(intermediate key, bag of values) 

•  Output: bag of output values 
System groups all pairs with the same 

intermediate key, and passes the bag of 
values to the REDUCE function 
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Example 

•  Counting the number of occurrences of 
each word in a large collection of 
documents 

41 

map(String key, String value): 
// key: document name 
// value: document contents 
for each word w in value: 

 EmitIntermediate(w, “1”): reduce(String key, Iterator values): 
// key: a word 
// values: a list of counts 
int result = 0; 
for each v in values: 

 result += ParseInt(v); 
Emit(AsString(result)); 

Dan Suciu -- CSEP544 Fall 2011         



42 

(k1,v1) 

(k2,v2) 

(k3,v3) 

. . . . 

(i1, w1) 

(i2, w2) 

(i3, w3) 

. . . . 

MAP REDUCE 
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Map = GROUP BY, 
Reduce = Aggregate 
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SELECT word, sum(1) 
FROM R 
GROUP BY word 

R(documentID, word) 
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Example 2: MR word length count 

Abridged Declaration of Independence 
A Declaration By the Representatives of the United States of America, in General Congress Assembled. 
When in the course of human events it becomes necessary for a people to advance from that subordination in 
which they have hitherto remained, and to assume among powers of the earth the equal and independent station 
to which the laws of nature and of nature's god entitle them, a decent respect to the opinions of mankind 
requires that they should declare the causes which impel them to the change. 
We hold these truths to be self-evident; that all men are created equal and independent; that from that equal 
creation they derive rights inherent and inalienable, among which are the preservation of life, and liberty, and 
the pursuit of happiness; that to secure these ends, governments are instituted among men, deriving their just 
power from the consent of the governed; that whenever any form of government shall become destructive of 
these ends, it is the right of the people to alter or to abolish it, and to institute new government, laying it's 
foundation on such principles and organizing it's power in such form, as to them shall seem most likely to effect 
their safety and happiness. Prudence indeed will dictate that governments long established should not be 
changed for light and transient causes: and accordingly all experience hath shewn that mankind are more 
disposed to suffer while evils are sufferable, than to right themselves by abolishing the forms to which they are 
accustomed. But when a long train of abuses and usurpations, begun at a distinguished period, and pursuing 
invariably the same object, evinces a design to reduce them to arbitrary power, it is their right, it is their duty, to 
throw off such government and to provide new guards for future security. Such has been the patient sufferings 
of the colonies; and such is now the necessity which constrains them to expunge their former systems of 
government. the history of his present majesty is a history of unremitting injuries and usurpations, among which 
no one fact stands single or solitary to contradict the uniform tenor of the rest, all of which have in direct object 
the establishment of an absolute tyranny over these states. To prove this, let facts be submitted to a candid 
world, for the truth of which we pledge a faith yet unsullied by falsehood. 
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(yellow, 20) 
(red, 71) 
(blue, 93) 
(pink, 6 ) 

Abridged Declaration of Independence 
A Declaration By the Representatives of the United States of America, in General 
Congress Assembled. 
When in the course of human events it becomes necessary for a people to advance from 
that subordination in which they have hitherto remained, and to assume among powers of 
the earth the equal and independent station to which the laws of nature and of nature's 
god entitle them, a decent respect to the opinions of mankind requires that they should 
declare the causes which impel them to the change. 
We hold these truths to be self-evident; that all men are created equal and independent; 
that from that equal creation they derive rights inherent and inalienable, among which are 
the preservation of life, and liberty, and the pursuit of happiness; that to secure these 
ends, governments are instituted among men, deriving their just power from the consent 
of the governed; that whenever any form of government shall become destructive of these 
ends, it is the right of the people to alter or to abolish it, and to institute new government, 
laying it's foundation on such principles and organizing it's power in such form, as to  
them shall seem most likely to effect their safety and happiness. Prudence indeed will  
 
dictate that governments long established should not be changed for light and transient 
causes: and accordingly all experience hath shewn that mankind are more disposed to 
suffer while evils are sufferable, than to right themselves by abolishing the forms to 
which they are accustomed. But when a long train of abuses and usurpations, begun at a 
distinguished period, and pursuing invariably the same object, evinces a design to reduce 
them to arbitrary power, it is their right, it is their duty, to throw off such government and 
to provide new guards for future security. Such has been the patient sufferings of the 
colonies; and such is now the necessity which constrains them to expunge their former 
systems of government. the history of his present majesty is a history of unremitting 
injuries and usurpations, among which no one fact stands single or solitary to contradict 
the uniform tenor of the rest, all of which have in direct object the establishment of an 
absolute tyranny over these states. To prove this, let facts be submitted to a candid world, 
for the truth of which we pledge a faith yet unsullied by falsehood. 
 
 

Yellow: 10+ 
 
Red: 5..9 
 
Blue: 2..4 
 
Pink: = 1  

Map Task 1 
(204 words) 

Map Task 2 
(190 words) 

(key, value) 
 
(yellow, 17) 
(red, 77) 
(blue, 107) 
(pink, 3)  

Example 2: MR word length count 
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Map task 1 
 
(yellow, 17) 
(red, 77) 
(blue, 107) 
(pink, 3)  
 
Map task 2 
 
(yellow, 20) 
(red, 71) 
(blue, 93) 
(pink, 6 ) 
 
 
 

Reduce task  
(yellow,[17,20]) à (yellow, 37) 
 
 
 
(red,[77,71]) à (red, 148) 
 
 
(blue,[107,93]) à (blue, 200) 
 
 
(pink, [3, 6]) à (pink, 9) 

Map is a GROUP BY operation 
Reduce is an AGGREGATE operation 

Example 2: MR word length count 
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Local	
  storage	
  `	
  

MR Phases 

•  Each Map and Reduce task has multiple phases: 
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Implementation 

•  There is one master node 
•  Master partitions input file into M splits, by key 
•  Master assigns workers (=servers) to the M 

map tasks, keeps track of their progress 
•  Workers write their output to local disk, 

partition into R regions 
•  Master assigns workers to the R reduce tasks 
•  Reduce workers read regions from the map 

workers’ local disks  
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Interesting Implementation Details 

Worker failure: 

•  Master pings workers periodically, 

•  If down then reassigns the task to another 
worker 
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Interesting Implementation Details 
Backup tasks: 
•   Straggler = a machine that takes unusually 

long time to complete one of the last tasks. 
Eg: 
– Bad disk forces frequent correctable errors 

(30MB/s à 1MB/s) 
– The cluster scheduler has scheduled other tasks 

on that machine 
•  Stragglers are a main reason for slowdown 
•  Solution: pre-emptive backup execution of 

the last few remaining in-progress tasks 
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Tuning Map-Reduce 

•  It is very hard! 
•  Choice of M and R: 

– Larger is better for load balancing 
– Limitation: master needs O(M×R) memory 
– Typical choice: 

•  M=number of chunks (“number of blocks”) 
•  R=much smaller (why??); rule of thumb: R=1.5 * 

number of servers (does AWS follow it?) 
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Tuning Map-Reduce 
•  Lots of other parameters: partition function, 

sort factor, etc, etc 

•  The combiner! (Talk in class…) 

•  Over 100 parameters to tune; about 50 affect 
running time significantly 

•  Active research on automatic tuning 
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[Shivnath Babu, SOCC’2010 



Map-Reduce Summary 

•  Hides scheduling and parallelization 
details 

•  However, very limited queries 
– Difficult to write more complex tasks 
– Need multiple map-reduce operations 

•  Solution: declarative query language 
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Declarative Languages on MR 
•  PIG Latin (Yahoo!) 

– New language, like Relational Algebra 
– Open source 

•  SQL / Tenzing (google) 
– SQL on MR 
– Proprietary 

•  Others (won’t discuss): 
– Scope (MS):  SQL; proprietary 
– DryadLINQ (MS): LINQ; proprietary 
– Clustera (other UW) : SQL; Not publicly available 
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What is Pig? 

•  An engine for executing programs on top of Hadoop 
•  It provides a language, Pig Latin, to specify these programs  
•  An Apache open source project 

http://hadoop.apache.org/pig/ 

Credit: Alan Gates, Yahoo! 
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Map Reduce Illustrated 

map 

reduce 

map 

reduce 

Credit: Alan Gates, Yahoo! 
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Map Reduce Illustrated 

map 

reduce 

map 

reduce 

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt? 

Credit: Alan Gates, Yahoo! 
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Map Reduce Illustrated 

map 

reduce 

map 

reduce 

Romeo, Romeo, wherefore art thou Romeo? 

Romeo, 1 
Romeo, 1 
wherefore, 1 
art, 1 
thou, 1 
Romeo, 1 

What, art thou hurt? 

What, 1 
art, 1 
thou, 1 
hurt, 1 

Credit: Alan Gates, Yahoo! 
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Map Reduce Illustrated 

map 

reduce 

map 

reduce 

Romeo, Romeo, wherefore art thou Romeo? 

Romeo, 1 
Romeo, 1 
wherefore, 1 
art, 1 
thou, 1 
Romeo, 1 

art, (1, 1) 
hurt (1), 
thou (1, 1) 

What, art thou hurt? 

What, 1 
art, 1 
thou, 1 
hurt, 1 

Romeo, (1, 1, 1) 
wherefore, (1) 
what, (1) 

Credit: Alan Gates, Yahoo! 
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Map Reduce Illustrated 

map 

reduce 

map 

reduce 

Romeo, Romeo, wherefore art thou Romeo? 

Romeo, 1 
Romeo, 1 
wherefore, 1 
art, 1 
thou, 1 
Romeo, 1 

art, (1, 1) 
hurt (1), 
thou (1, 1) 

art, 2 
hurt, 1 
thou, 2 

What, art thou hurt? 

What, 1 
art, 1 
thou, 1 
hurt, 1 

Romeo, (1, 1, 1) 
wherefore, (1) 
what, (1) 

Romeo, 3 
wherefore, 1 
what, 1 

Credit: Alan Gates, Yahoo! 



- 62 - 

Why use Pig? 

   Suppose you have 
user data in one 
file, website data in 
another, and you 
need to find the top 
5 most visited sites 
by users aged 18 - 
25. 

Load Users Load Pages 

Filter by age 

Join on name 

Group on url 

Count clicks 

Order by clicks 

Take top 5 

Credit: Alan Gates, Yahoo! 
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In Map-Reduce 
import java.io.IOException; 
import java.util.ArrayList; 
import java.util.Iterator; 
import java.util.List; 
 
import org.apache.hadoop.fs.Path; 
import org.apache.hadoop.io.LongWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.io.Writable; 
import org.apache.hadoop.io.WritableComparable; 
import org.apache.hadoop.mapred.FileInputFormat; 
import org.apache.hadoop.mapred.FileOutputFormat; 
import org.apache.hadoop.mapred.JobConf; 
import org.apache.hadoop.mapred.KeyValueTextInputFormat; 
import org.apache.hadoop.mapred.Mapper; 
import org.apache.hadoop.mapred.MapReduceBase; 
import org.apache.hadoop.mapred.OutputCollector; 
import org.apache.hadoop.mapred.RecordReader; 
import org.apache.hadoop.mapred.Reducer; 
import org.apache.hadoop.mapred.Reporter; 
import org.apache.hadoop.mapred.SequenceFileInputFormat; 
import org.apache.hadoop.mapred.SequenceFileOutputFormat; 
import org.apache.hadoop.mapred.TextInputFormat; 
import org.apache.hadoop.mapred.jobcontrol.Job; 
import org.apache.hadoop.mapred.jobcontrol.JobControl; 
import org.apache.hadoop.mapred.lib.IdentityMapper; 
 
public class MRExample { 
    public static class LoadPages extends MapReduceBase 
        implements Mapper<LongWritable, Text, Text, Text> { 
 
        public void map(LongWritable k, Text val, 
                OutputCollector<Text, Text> oc, 
                Reporter reporter) throws IOException { 
            // Pull the key out 
            String line = val.toString(); 
            int firstComma = line.indexOf(','); 
            String key = line.substring(0, firstComma); 
            String value = line.substring(firstComma + 1); 
            Text outKey = new Text(key); 
            // Prepend an index to the value so we know which file 
            // it came from. 
            Text outVal = new Text("1" + value); 
            oc.collect(outKey, outVal); 
        } 
    } 
    public static class LoadAndFilterUsers extends MapReduceBase 
        implements Mapper<LongWritable, Text, Text, Text> { 
 
        public void map(LongWritable k, Text val, 
                OutputCollector<Text, Text> oc, 
                Reporter reporter) throws IOException { 
            // Pull the key out 
            String line = val.toString(); 
            int firstComma = line.indexOf(','); 
            String value = line.substring(firstComma + 1); 
            int age = Integer.parseInt(value); 
            if (age < 18 || age > 25) return; 
            String key = line.substring(0, firstComma); 
            Text outKey = new Text(key); 
            // Prepend an index to the value so we know which file 
            // it came from. 
            Text outVal = new Text("2" + value); 
            oc.collect(outKey, outVal); 
        } 
    } 
    public static class Join extends MapReduceBase 
        implements Reducer<Text, Text, Text, Text> { 
 
        public void reduce(Text key, 
                Iterator<Text> iter,  
                OutputCollector<Text, Text> oc, 
                Reporter reporter) throws IOException { 
            // For each value, figure out which file it's from and 
store it 
            // accordingly. 
            List<String> first = new ArrayList<String>(); 
            List<String> second = new ArrayList<String>(); 
 
            while (iter.hasNext()) { 
                Text t = iter.next(); 
                String value = t.toString(); 
                if (value.charAt(0) == '1') 
first.add(value.substring(1)); 
                else second.add(value.substring(1)); 

                reporter.setStatus("OK"); 
            } 
 
            // Do the cross product and collect the values 
            for (String s1 : first) { 
                for (String s2 : second) { 
                    String outval = key + "," + s1 + "," + s2; 
                    oc.collect(null, new Text(outval)); 
                    reporter.setStatus("OK"); 
                } 
            } 
        } 
    } 
    public static class LoadJoined extends MapReduceBase 
        implements Mapper<Text, Text, Text, LongWritable> { 
 
        public void map( 
                Text k, 
                Text val, 
                OutputCollector<Text, LongWritable> oc, 
                Reporter reporter) throws IOException { 
            // Find the url 
            String line = val.toString(); 
            int firstComma = line.indexOf(','); 
            int secondComma = line.indexOf(',', firstComma); 
            String key = line.substring(firstComma, secondComma); 
            // drop the rest of the record, I don't need it anymore, 
            // just pass a 1 for the combiner/reducer to sum instead. 
            Text outKey = new Text(key); 
            oc.collect(outKey, new LongWritable(1L)); 
        } 
    } 
    public static class ReduceUrls extends MapReduceBase 
        implements Reducer<Text, LongWritable, WritableComparable, 
Writable> { 
 
        public void reduce( 
                Text key, 
                Iterator<LongWritable> iter,  
                OutputCollector<WritableComparable, Writable> oc, 
                Reporter reporter) throws IOException { 
            // Add up all the values we see 
 
            long sum = 0; 
            while (iter.hasNext()) { 
                sum += iter.next().get(); 
                reporter.setStatus("OK"); 
            } 
 
            oc.collect(key, new LongWritable(sum)); 
        } 
    } 
    public static class LoadClicks extends MapReduceBase 
        implements Mapper<WritableComparable, Writable, LongWritable, 
Text> { 
 
        public void map( 
                WritableComparable key, 
                Writable val, 
                OutputCollector<LongWritable, Text> oc, 
                Reporter reporter) throws IOException { 
            oc.collect((LongWritable)val, (Text)key); 
        } 
    } 
    public static class LimitClicks extends MapReduceBase 
        implements Reducer<LongWritable, Text, LongWritable, Text> { 
 
        int count = 0; 
        public void reduce( 
            LongWritable key, 
            Iterator<Text> iter, 
            OutputCollector<LongWritable, Text> oc, 
            Reporter reporter) throws IOException { 
 
            // Only output the first 100 records 
            while (count < 100 && iter.hasNext()) { 
                oc.collect(key, iter.next()); 
                count++; 
            } 
        } 
    } 
    public static void main(String[] args) throws IOException { 
        JobConf lp = new JobConf(MRExample.class); 
        lp.setJobName("Load Pages"); 
        lp.setInputFormat(TextInputFormat.class); 

        lp.setOutputKeyClass(Text.class); 
        lp.setOutputValueClass(Text.class); 
        lp.setMapperClass(LoadPages.class); 
        FileInputFormat.addInputPath(lp, new 
Path("/user/gates/pages")); 
        FileOutputFormat.setOutputPath(lp, 
            new Path("/user/gates/tmp/indexed_pages")); 
        lp.setNumReduceTasks(0); 
        Job loadPages = new Job(lp); 
 
        JobConf lfu = new JobConf(MRExample.class); 
        lfu.setJobName("Load and Filter Users"); 
        lfu.setInputFormat(TextInputFormat.class); 
        lfu.setOutputKeyClass(Text.class); 
        lfu.setOutputValueClass(Text.class); 
        lfu.setMapperClass(LoadAndFilterUsers.class); 
        FileInputFormat.addInputPath(lfu, new 
Path("/user/gates/users")); 
        FileOutputFormat.setOutputPath(lfu, 
            new Path("/user/gates/tmp/filtered_users")); 
        lfu.setNumReduceTasks(0); 
        Job loadUsers = new Job(lfu); 
 
        JobConf join = new JobConf(MRExample.class); 
        join.setJobName("Join Users and Pages"); 
        join.setInputFormat(KeyValueTextInputFormat.class); 
        join.setOutputKeyClass(Text.class); 
        join.setOutputValueClass(Text.class); 
        join.setMapperClass(IdentityMapper.class); 
        join.setReducerClass(Join.class); 
        FileInputFormat.addInputPath(join, new 
Path("/user/gates/tmp/indexed_pages")); 
        FileInputFormat.addInputPath(join, new 
Path("/user/gates/tmp/filtered_users")); 
        FileOutputFormat.setOutputPath(join, new 
Path("/user/gates/tmp/joined")); 
        join.setNumReduceTasks(50); 
        Job joinJob = new Job(join); 
        joinJob.addDependingJob(loadPages); 
        joinJob.addDependingJob(loadUsers); 
 
        JobConf group = new JobConf(MRExample.class); 
        group.setJobName("Group URLs"); 
        group.setInputFormat(KeyValueTextInputFormat.class); 
        group.setOutputKeyClass(Text.class); 
        group.setOutputValueClass(LongWritable.class); 
        group.setOutputFormat(SequenceFileOutputFormat.class); 
        group.setMapperClass(LoadJoined.class); 
        group.setCombinerClass(ReduceUrls.class); 
        group.setReducerClass(ReduceUrls.class); 
        FileInputFormat.addInputPath(group, new 
Path("/user/gates/tmp/joined")); 
        FileOutputFormat.setOutputPath(group, new 
Path("/user/gates/tmp/grouped")); 
        group.setNumReduceTasks(50); 
        Job groupJob = new Job(group); 
        groupJob.addDependingJob(joinJob); 
 
        JobConf top100 = new JobConf(MRExample.class); 
        top100.setJobName("Top 100 sites"); 
        top100.setInputFormat(SequenceFileInputFormat.class); 
        top100.setOutputKeyClass(LongWritable.class); 
        top100.setOutputValueClass(Text.class); 
        top100.setOutputFormat(SequenceFileOutputFormat.class); 
        top100.setMapperClass(LoadClicks.class); 
        top100.setCombinerClass(LimitClicks.class); 
        top100.setReducerClass(LimitClicks.class); 
        FileInputFormat.addInputPath(top100, new 
Path("/user/gates/tmp/grouped")); 
        FileOutputFormat.setOutputPath(top100, new 
Path("/user/gates/top100sitesforusers18to25")); 
        top100.setNumReduceTasks(1); 
        Job limit = new Job(top100); 
        limit.addDependingJob(groupJob); 
 
        JobControl jc = new JobControl("Find top 100 sites for users 
18 to 25"); 
        jc.addJob(loadPages); 
        jc.addJob(loadUsers); 
        jc.addJob(joinJob); 
        jc.addJob(groupJob); 
        jc.addJob(limit); 
        jc.run(); 
    } 
} 

170 lines of code, 4 hours to write 
Credit: Alan Gates, Yahoo! 
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In Pig Latin 

Users = load ‘users’ as (name, age); 
Fltrd = filter Users by  
        age >= 18 and age <= 25;  
Pages = load ‘pages’ as (user, url); 
Jnd = join Fltrd by name, Pages by user; 
Grpd = group Jnd by url; 
Smmd = foreach Grpd generate group, 
       COUNT(Jnd) as clicks; 
Srtd = order Smmd by clicks desc; 
Top5 = limit Srtd 5; 
store Top5 into ‘top5sites’; 

9 lines of code, 15 minutes to write 

Credit: Alan Gates, Yahoo! 



Background: Pig system 
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Pig Latin  
program 

A = LOAD 'file1' AS (sid,pid,mass,px:double);  
B = LOAD 'file2' AS (sid,pid,mass,px:double);  
C = FILTER A BY px < 1.0; 
D = JOIN C BY sid,  
         B BY sid; 
      STORE g INTO 'output.txt'; 

Ensemble of 
MapReduce jobs 
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But can it fly? 

Credit: Alan Gates, Yahoo! 
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Essence of Pig 

•  Map-Reduce is too low a level to program, SQL too high 
•  Pig Latin, a language intended to sit between the two: 

–  Imperative 
–  Provides standard relational transforms (join, sort, etc.) 
–  Schemas are optional, used when available, can be defined at 

runtime 
–  User Defined Functions are first class citizens 
–  Opportunities for advanced optimizer but optimizations by 

programmer also possible 

Credit: Alan Gates, Yahoo! 
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How It Works 

Parser 

Script 
A = load 
B = filter 
C = group 
D = foreach 

Logical Plan 
Semantic 
Checks 

Logical Plan 
Logical 
Optimizer 

Logical Plan 

Logical to 
Physical 
Translator Physical Plan 

Physical 
To MR 
Translator 

MapReduce 
Launcher 

Jar to 
hadoop 

Map-Reduce Plan 

Logical Plan ≈ 
relational algebra 

Plan standard 
optimizations 

Physical Plan = 
physical operators 
to be executed 

Map-Reduce Plan =  
physical operators 
broken into Map, 
Combine, and 
Reduce stages 

Credit: Alan Gates, Yahoo! 



Tenzing 

•  Google’s implementation of SQL 
•  Supports full SQL92 
•  On top of google’s Map/Reduce 
•  Uses traditional query optimizer, plus 

optimizations to MR 
•  Widely adopted inside Google, especially 

by the non-engineering community 
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Join Algorithms on Map/Reduce 

•  Broadcast join 

•  Hash-join 

•  Skew join 

•  Merge join 

Dan Suciu -- CSEP544 Fall 2011         70 
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Fragment Replicate Join 

Pages Users 

Aka 
“Broakdcast Join” 

Credit: Alan Gates, Yahoo! 
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Fragment Replicate Join 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “replicated”; 

Pages Users 

Aka 
“Broakdcast Join” 

Credit: Alan Gates, Yahoo! 
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Fragment Replicate Join 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “replicated”; 

Pages Users 

Aka 
“Broakdcast Join” 

Credit: Alan Gates, Yahoo! 
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Fragment Replicate Join 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “replicated”; 

Pages Users 

Map 1 

Map 2 

Aka 
“Broakdcast Join” 

Credit: Alan Gates, Yahoo! 
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Fragment Replicate Join 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “replicated”; 

Pages Users 

Map 1 

Map 2 

Users 

Users 

Pages 
block 1 

Pages 
block 2 

Aka 
“Broakdcast Join” 

Credit: Alan Gates, Yahoo! 
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Hash Join 

Pages Users 

Credit: Alan Gates, Yahoo! 
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Hash Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Users by name, Pages by user; 

Credit: Alan Gates, Yahoo! 
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Hash Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Users by name, Pages by user; 

Credit: Alan Gates, Yahoo! 
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Hash Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Users by name, Pages by user; 

Map 1 

User 
block n 

Map 2 

Page 
block m 

Credit: Alan Gates, Yahoo! 
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Hash Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Users by name, Pages by user; 

Map 1 

User 
block n 

Map 2 

Page 
block m 

(1, user) 

(2, name) 

Credit: Alan Gates, Yahoo! 

Means: it comes 
from relation #1 

Means: it comes 
from relation #2 
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Hash Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Users by name, Pages by user; 

Map 1 

User 
block n 

Map 2 

Page 
block m 

Reducer 1 

Reducer 2 

(1, user) 

(2, name) 

(1, fred) 
(2, fred) 
(2, fred) 

(1, jane) 
(2, jane) 
(2, jane) 

Credit: Alan Gates, Yahoo! 
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Skew Join 

Pages Users 

Credit: Alan Gates, Yahoo! 
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Skew Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “skewed”; 

Credit: Alan Gates, Yahoo! 
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Skew Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “skewed”; 

Credit: Alan Gates, Yahoo! 
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Skew Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “skewed”; 

Map 1 

Pages 
block n 

Map 2 

Users 
block m 

Credit: Alan Gates, Yahoo! 
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Skew Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “skewed”; 

Map 1 

Pages 
block n 

Map 2 

Users 
block m 

S
P 

S
P 

Credit: Alan Gates, Yahoo! 
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Skew Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “skewed”; 

Map 1 

Pages 
block n 

Map 2 

Users 
block m 

(1, user) 

(2, name) 

S
P 

S
P 

Credit: Alan Gates, Yahoo! 
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Skew Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “skewed”; 

Map 1 

Pages 
block n 

Map 2 

Users 
block m 

Reducer 1 

Reducer 2 

(1, user) 

(2, name) 

(1, fred, p1) 
(1, fred, p2) 
(2, fred) 

(1, fred, p3) 
(1, fred, p4) 
(2, fred) 

S
P 

S
P 

Credit: Alan Gates, Yahoo! 
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Merge Join 

Pages Users 
aaron 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
zach 

aaron 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
zach 

Credit: Alan Gates, Yahoo! 
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Merge Join 

Pages Users 
aaron 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
zach 

aaron 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
zach 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “merge”; 

Credit: Alan Gates, Yahoo! 
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Merge Join 

Pages Users 
aaron 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
zach 

aaron 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
zach 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “merge”; 

Credit: Alan Gates, Yahoo! 
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Merge Join 

Pages Users 
aaron 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
zach 

aaron 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
zach 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “merge”; 

Map 1 

Map 2 

Users 

Users 

Pages 

Pages 

aaron… 
amr 

aaron 
… 

amy… 
barb 

amy 
… 

Credit: Alan Gates, Yahoo! 
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Multi-store script 

A = load ‘users’ as (name, age, gender,  
      city, state); 
B = filter A by name is not null; 
C1 = group B by age, gender; 
D1 = foreach C1 generate group, COUNT(B); 
store D into ‘bydemo’; 
C2= group B by state; 
D2 = foreach C2 generate group, COUNT(B); 
store D2 into ‘bystate’; 

load users filter nulls 

group by state 

group by age, 
gender 

apply UDFs 

apply UDFs 

store into 
‘bystate’ 

store into 
‘bydemo’ 

Credit: Alan Gates, Yahoo! 
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Multi-Store Map-Reduce Plan 

map filter 

local rearrange 
split 

local rearrange 

reduce 

demux package package 

foreach foreach 

Credit: Alan Gates, Yahoo! 



Other Optimizations in Tenzing 

•  Keep processes running: process pool 
•  Remove reducer-side sort for hash-based 

algorithms 
– Note: the data must fit in main memory, 

otherwise the task fails 
•  Pipelining 
•  Indexes 

Dan Suciu -- CSEP544 Fall 2011         95 



Final Thoughts 

Challenging problems in MR jobs: 

•  Skew 

•  Fault tolerance 

Dan Suciu -- CSEP544 Fall 2011         96 



Skew 
Balazinska, A study of Skew 



Skew 
Balazinska, A study of Skew 



Skew 
Balazinska, A study of Skew 



Fault Tolerance 

•  Fundamental tension: 
•  Materialize after each Map and each Reduce 

– This is what MR does 
–  Ideal for fault tolerance 
– Very poor performance 

•  Pipeline between steps 
– This is what Parallel DBs usually do 
–  Ideal for performance 
– Very poor fault tolerance 

Dan Suciu -- CSEP544 Fall 2011         100 
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Pig Latin Mini-Tutorial 

(will skip in class; please read in 
order to do homework 6) 



Outline 

Based entirely on Pig Latin: A not-so-
foreign language for data processing, 
by Olston, Reed, Srivastava, Kumar, 
and Tomkins, 2008 

 
 
Quiz section tomorrow: in CSE 403 

(this is CSE, don’t go to EE1) 
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Pig-Latin Overview 
•  Data model = loosely typed nested 

relations 
•  Query model = a sql-like, dataflow 

language 

•  Execution model: 
– Option 1: run locally on your machine 
– Option 2: compile into sequence of map/

reduce, run on a cluster supporting Hadoop 

•  Main idea: use Opt1 to debug, Opt2 to 
execute 
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Example 

•  Input: a table of urls:  
 (url, category, pagerank) 

•  Compute the average pagerank of all 
sufficiently high pageranks, for each 
category 

•  Return the answers only for categories 
with sufficiently many such pages 
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First in SQL… 
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SELECT category, AVG(pagerank) 
FROM urls 
WHERE pagerank > 0.2 
GROUP By category 
HAVING COUNT(*) > 106 



…then in Pig-Latin 

106 

good_urls = FILTER urls BY pagerank > 0.2 
groups = GROUP good_urls BY category 
big_groups = FILTER groups  

      BY COUNT(good_urls) > 106 

output = FOREACH big_groups GENERATE 
    category, AVG(good_urls.pagerank) 



Types in Pig-Latin 

•  Atomic: string or number, e.g. ‘Alice’ or 55 

•  Tuple: (‘Alice’, 55, ‘salesperson’) 

•  Bag: {(‘Alice’, 55, ‘salesperson’), 
           (‘Betty’,44, ‘manager’), …} 

•  Maps: we will try not to use these 
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Types in Pig-Latin 

Bags can be nested ! 

•  {(‘a’, {1,4,3}), (‘c’,{ }), (‘d’, {2,2,5,3,2})} 

Tuple components can be referenced by 
number 

•  $0, $1, $2, … 
108 
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Loading data 

•  Input data = FILES ! 
– Heard that before ? 

•  The LOAD command parses an input 
file into a bag of records 

•  Both parser  (=“deserializer”) and output 
type are provided by user 
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Loading data 
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queries = LOAD ‘query_log.txt’ 
         USING myLoad( ) 
             AS (userID, queryString, timeStamp) 



Loading data 

•  USING userfuction( )  -- is optional 
–  Default deserializer expects tab-delimited file 

•  AS type – is optional 
–  Default is a record with unnamed fields; refer to 

them as $0, $1, … 
•  The return value of LOAD is just a handle to a 

bag 
–  The actual reading is done in pull mode, or 

parallelized 
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FOREACH 

113 

expanded_queries =  
 FOREACH queries 
 GENERATE userId, expandQuery(queryString) 

expandQuery( ) is  a UDF that produces likely expansions 
Note: it returns a bag, hence expanded_queries is a  nested bag 



FOREACH 

114 

expanded_queries =  
 FOREACH queries 
 GENERATE userId,  
                     flatten(expandQuery(queryString)) 

Now we get a flat collection 
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FLATTEN 

Note that it is NOT a first class function ! 
(that’s one thing I don’t like about Pig-latin) 

•  First class FLATTEN: 
– FLATTEN({{2,3},{5},{},{4,5,6}}) = {2,3,5,4,5,6} 
– Type: {{T}} à {T} 

•  Pig-latin FLATTEN 
– FLATTEN({4,5,6}) = 4, 5, 6 
– Type: {T} à T, T, T, …, T       ????? 
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FILTER 

117 

real_queries =  FILTER queries BY userId neq ‘bot’ 

Remove all queries from Web bots: 

real_queries =  FILTER queries  
                      BY NOT isBot(userId) 

Better: use a complex UDF to detect Web bots: 



JOIN 

118 

join_result = JOIN results BY queryString 
                            revenue BY queryString 

results:       {(queryString, url, position)} 
revenue:     {(queryString, adSlot, amount)} 

join_result : {(queryString, url, position, adSlot, amount)} 
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GROUP BY 

120 

grouped_revenue = GROUP revenue BY queryString 
query_revenues = 
       FOREACH grouped_revenue 
       GENERATE queryString, 
                     SUM(revenue.amount) AS totalRevenue 

revenue:     {(queryString, adSlot, amount)} 

grouped_revenue: {(queryString, {(adSlot, amount)})} 
query_revenues: {(queryString, totalRevenue)} 



Simple Map-Reduce 
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map_result = FOREACH input  
                      GENERATE FLATTEN(map(*)) 
key_groups = GROUP map_result BY $0 
output = FOREACH key_groups  

           GENERATE reduce($1) 

input  : {(field1, field2, field3, . . . .)} 

map_result :  {(a1, a2, a3, . . .)} 
key_groups : {(a1, {(a2, a3, . . .)})} 



Co-Group 
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grouped_data =  
        COGROUP results BY queryString, 
                            revenue BY queryString; 

results: {(queryString, url, position)} 
revenue: {(queryString, adSlot, amount)} 

grouped_data: {(queryString, results:{(url, position)},  
                                                revenue:{(adSlot, amount)})} 

What is the output type in general ? 



Co-Group 

123 
Is this an inner join, or an outer join ? 



Co-Group 
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url_revenues = FOREACH grouped_data  
        GENERATE 
                 FLATTEN(distributeRevenue(results, revenue)); 

grouped_data: {(queryString, results:{(url, position)},  
                                                revenue:{(adSlot, amount)})} 

distributeRevenue is a UDF that accepts search re- 
sults and revenue information for a query string at a time, 
and outputs a bag of urls and the revenue attributed to them. 



Co-Group v.s. Join 
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grouped_data = COGROUP results BY queryString, 
                                        revenue BY queryString; 
join_result = FOREACH grouped_data 
                     GENERATE FLATTEN(results),  
                                           FLATTEN(revenue); 

grouped_data: {(queryString, results:{(url, position)},  
                                                revenue:{(adSlot, amount)})} 

Result is the same as JOIN 



Asking for Output: STORE 
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STORE query_revenues INTO `myoutput' 
                  USING myStore(); 

Meaning: write query_revenues to the file ‘myoutput’ 



Implementation 

•  Over Hadoop ! 
•  Parse query: 

– Everything between LOAD and STORE à 
one logical plan 

•  Logical plan à sequence of Map/
Reduce ops 

•  All statements between two (CO)
GROUPs à one Map/Reduce op 
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Implementation 
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