
Lecture 09: Parallel Databases,
Big Data, Map/Reduce, Pig-Latin

Wednesday, November 23rd, 2011

Dan Suciu -- CSEP544 Fall 2011 1

Overview of Today’s Lecture
•  Parallel databases

– Chapter 22.1 – 22.5
•  Big Data

– Kumar et al. The Web as a Graph
•  Cluster Computing

– Map/reduce: Rajaraman&Ullman online book
– Declarative layer: Pig-Latin, Tenzing (see papers)

•  WILL NOT DISUCSS IN CLASS: mini-tutorial
on Pig-Latin (see the last part of the slides)

Dan Suciu -- CSEP544 Fall 2011 2

Parallel Databases

Dan Suciu -- CSEP544 Fall 2011 3

Parallel v.s. Distributed
Databases

•  Parallel database system:
–  Improve performance through parallel

implementation
– Will discuss in class

•  Distributed database system:
– Data is stored across several sites, each site

managed by a DBMS capable of running
independently

– Will not discuss in class

Dan Suciu -- CSEP544 Fall 2011 4

Parallel DBMSs
•  Goal

–  Improve performance by executing multiple
operations in parallel

•  Key benefit

– Cheaper to scale than relying on a single
increasingly more powerful processor

•  Key challenge
– Ensure overhead and contention do not kill

performance

Dan Suciu -- CSEP544 Fall 2011 5

Performance Metrics
for Parallel DBMSs

•  Speedup
–  More processors è higher speed
–  Individual queries should run faster
–  Should do more transactions per second (TPS)

•  Scaleup
–  More processors è can process more data
–  Batch scaleup

•  Same query on larger input data should take the same time
–  Transaction scaleup

•  N-times as many TPS on N-times larger database
•  But each transaction typically remains small

Dan Suciu -- CSEP544 Fall 2011 6

Linear v.s. Non-linear Speedup

Dan Suciu -- CSEP544 Fall 2011

processors (=P)

Speedup

7

Linear v.s. Non-linear Scaleup

processors (=P) AND data size

Batch
Scaleup

×1 ×5 ×10 ×15

Dan Suciu -- CSEP544 Fall 2011 8

Challenges to
Linear Speedup and Scaleup

•  Startup cost
– Cost of starting an operation on many

processors

•  Interference
– Contention for resources between processors

•  Skew
– Slowest processor becomes the bottleneck

Dan Suciu -- CSEP544 Fall 2011 9

Architectures for Parallel
Databases

•  Shared memory

•  Shared disk

•  Shared nothing

Dan Suciu -- CSEP544 Fall 2011 10

Architectures for Parallel
Databases

11

From: Greenplum Database Whitepaper

Shared Nothing

•  Most scalable architecture
– Minimizes interference by minimizing resource

sharing
– Can use commodity hardware
– Processor = server = node
– P = number of nodes

•  Also most difficult to program and manage

12

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Taxonomy for
Parallel Query Evaluation

•  Inter-query parallelism
– Each query runs on one processor

•  Inter-operator parallelism
– A query runs on multiple processors
– An operator runs on one processor

•  Intra-operator parallelism
– An operator runs on multiple processors

Dan Suciu -- CSEP544 Fall 2011 We study only intra-operator parallelism: most scalable 13

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Query Evaluation

14

From: Greenplum Database Whitepaper

Query Evaluation

15 From: Greenplum Database Whitepaper

Horizontal Data Partitioning
•  Relation R split into P chunks R0, …, RP-1,

stored at the P nodes

•  Round robin: tuple ti to chunk (i mod P)

•  Hash based partitioning on attribute A:
– Tuple t to chunk h(t.A) mod P

•  Range based partitioning on attribute A:
– Tuple t to chunk i if vi-1 < t.A < vi

16

Parallel Selection

Compute σA=v(R), or σv1<A<v2(R)

•  On a conventional database: cost = B(R)

•  Q: What is the cost on a parallel database
with P processors ?
– Round robin
– Hash partitioned
– Range partitioned

17

Parallel Selection
•  Q: What is the cost on a parallel database with P

processors ?
•  Round robin: all servers do the work

–  Parallel time = B(R)/P; total work = B(R)
–  Good load balance but needs to read all the data

•  Hash:
–  σA=v(R): Parallel time = total work = B(R)/P
–  σA∈[v1,v2](R): Parallel time = B(R)/P; total work = B(R)

•  Range: one server only
–  Parallel time = total work = B(R)
–  Works well for range predicates but suffers from data skew

18

Parallel Group By

•  Given R(A,B,C) , compute γA, sum(B)(R)

•  Assume R is hash-partitioned on C

•  How do we compute γA, sum(B)(R)?
19

R0 R1 RP-1 . . .

Parallel Group By

Compute γA, sum(B)(R)
•  Step 1: server i hash-partitions chunk Ri using h(t.A):

 Ri0, Ri1, …, Ri,P-1
•  Step 2: server i sends partition Rij to serve j
•  Step 3: server j computes γA, sum(B)(R0j ∪ R1j ∪ … ∪RP-1,j)

20

R0 R1 RP-1 . . .

R0’ R1’ RP-1’ . . .

Parallel Join

•  How do we compute R(A,B) ⋈ S(B,C) ?

21

R0 R1 Rk-1 . . . Sk Sk+1 SP-1 . . .

Parallel Join
•  Step 1

–  For all servers in [0,k-1], server i partitions chunk Ri
using a hash function h(t.A) mod P: Ri0, Ri1, …, Ri,P-1

–  For all servers in [k,P], server j partitions chunk Sj
using a hash function h(t.A) mod P: Sj0, Sj1, …, Rj,P-1

•  Step 2:
–  Servers i=0..k-1 send partition Riu to server u
–  Servers j=k..P send partition Sju to server u

•  Steps 3: Server u computes the join of Riu with Sju

22

R0 R1 Rk-1 . . . Sk Sk+1 SP-1 . . .

R0,S0 R1,S1 RP-1,SP-1 . . .

Parallel Dataflow Implementation

•  Use relational operators unchanged

•  Add special split and merge operators
–  Handle data routing, buffering, and flow control

•  Example: exchange (or “shuffle”) operator
–  Inserted between consecutive operators in the query plan
–  Can act as either a producer or consumer
–  Producer pulls data from operator and sends to n

consumers
•  Producer acts as driver for operators below it in query plan

–  Consumer buffers input data from n producers and makes
it available to operator through getNext interface

23

Big Data

Dan Suciu -- CSEP544 Fall 2011 24

Big Data

A buzzword that means several things:
•  Large data mining:

– More and more corporations have data as the
basis of their business, not just "nice to have”

•  “External” data is increasingly mined too:
– Blogs, emails, reviews, websites

•  Sometimes it just means using cluster
computing for large data analytics

Dan Suciu -- CSEP544 Fall 2011 25

Famous Example of Big Data
Analysis

Kumar et al., The Web as a Graph

•  Question 1: is the Web like a “random graph”?
–  Random Graphs introduced by Erdos and Reny in the

1940s
–  Extensively studied in mathematics, well understood
–  If the Web is a “random graph”, then we have

mathematical tools to understand it: clusters,
communities, diameter, etc

•  Question 2: how does the Web graph look like?

Dan Suciu -- CSEP544 Fall 2011 26

Histogram of a Graph

•  Outdegree of a node =
number of outgoing
edges

•  For each d, let n(d) =
number of nodes with
oudegree d

•  The outdegree
histogram of a graph =
the scatterplot (d, n(d))

Dan Suciu -- CSEP544 Fall 2011 27

0

2

4
2

1

1

1

d n(d)
0 1
1 3
2 2
3 0
4 1

0

1

2

3

4

0 5
d

n

Exponential Distribution

•  n(d) ≅ c/2d (generally, cxd, for some x < 1)
•  A random graph has exponential distribution
•  Best seen when n is on a log scale

Dan Suciu -- CSEP544 Fall 2011 28

1
10

100
1000

10000
100000

1000000

0 2 4 6 8

n

Zipf Distribution

•  n(d) ≅ 1/dx, for some value x>0
•  Human-generated data has Zipf distribution:

letters in alphabet, words in vocabulary, etc.
•  Best seen in a log-log scale (why ?)

Dan Suciu -- CSEP544 Fall 2011 29

1000

10000

100000

1 10

n

The Histogram of the Web

Dan Suciu -- CSEP544 Fall 2011 30

Late 1990’s
200M Webpages

Exponential ?

Zipf ?

The Bowtie Structure of the Web

Big Data: Summary

•  Today, such analysis are done daily, by all
large corporations

•  Increasingly, using Cluster Computing:
– Distributed File System (for storing the data)
– Map/reduce
– Declarative languages over Map/Reduce:

Pig-Latin, SQL, Hive, Scope, Dryad-Linq, …

Dan Suciu -- CSEP544 Fall 2011 32

Cluster Computing

Dan Suciu -- CSEP544 Fall 2011 33

Cluster Computing

•  Large number of commodity servers,
connected by high speed, commodity
network

•  Rack: holds a small number of servers
•  Data center: holds many racks

Dan Suciu -- CSEP544 Fall 2011 34

Cluster Computing

•  Massive parallelism:
– 100s, or 1000s, or 10000s servers
– Many hours

•  Failure:
–  If medium-time-between-failure is 1 year
– Then 10000 servers have one failure / hour

Dan Suciu -- CSEP544 Fall 2011 35

Distributed File System (DFS)

•  For very large files: TBs, PBs
•  Each file is partitioned into chunks,

typically 64MB
•  Each chunk is replicated several times

(≥3), on different racks, for fault tolerance
•  Implementations:

– Google’s DFS: GFS, proprietary
– Hadoop’s DFS: HDFS, open source

Dan Suciu -- CSEP544 Fall 2011 36

Map Reduce

•  Google: paper published 2004
•  Free variant: Hadoop

•  Map-reduce = high-level programming
model and implementation for large-scale
parallel data processing

37 Dan Suciu -- CSEP544 Fall 2011

Data Model

Files !

A file = a bag of (key, value) pairs

A map-reduce program:
•  Input: a bag of (inputkey, value)pairs
•  Output: a bag of (outputkey, value)pairs

38 Dan Suciu -- CSEP544 Fall 2011

Step 1: the MAP Phase

User provides the MAP-function:
•  Input: (input key, value)
•  Ouput:

bag of (intermediate key, value

System applies the map function in parallel
to all (input key, value) pairs in the
input file

39 Dan Suciu -- CSEP544 Fall 2011

Step 2: the REDUCE Phase

User provides the REDUCE function:
•  Input:
(intermediate key, bag of values)

•  Output: bag of output values
System groups all pairs with the same

intermediate key, and passes the bag of
values to the REDUCE function

40 Dan Suciu -- CSEP544 Fall 2011

Example

•  Counting the number of occurrences of
each word in a large collection of
documents

41

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

 EmitIntermediate(w, “1”): reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

 result += ParseInt(v);
Emit(AsString(result));

Dan Suciu -- CSEP544 Fall 2011

42

(k1,v1)

(k2,v2)

(k3,v3)

. . . .

(i1, w1)

(i2, w2)

(i3, w3)

. . . .

MAP REDUCE

Dan Suciu -- CSEP544 Fall 2011

Map = GROUP BY,
Reduce = Aggregate

43

SELECT word, sum(1)
FROM R
GROUP BY word

R(documentID, word)

Dan Suciu -- CSEP544 Fall 2011

Example 2: MR word length count

Abridged Declaration of Independence
A Declaration By the Representatives of the United States of America, in General Congress Assembled.
When in the course of human events it becomes necessary for a people to advance from that subordination in
which they have hitherto remained, and to assume among powers of the earth the equal and independent station
to which the laws of nature and of nature's god entitle them, a decent respect to the opinions of mankind
requires that they should declare the causes which impel them to the change.
We hold these truths to be self-evident; that all men are created equal and independent; that from that equal
creation they derive rights inherent and inalienable, among which are the preservation of life, and liberty, and
the pursuit of happiness; that to secure these ends, governments are instituted among men, deriving their just
power from the consent of the governed; that whenever any form of government shall become destructive of
these ends, it is the right of the people to alter or to abolish it, and to institute new government, laying it's
foundation on such principles and organizing it's power in such form, as to them shall seem most likely to effect
their safety and happiness. Prudence indeed will dictate that governments long established should not be
changed for light and transient causes: and accordingly all experience hath shewn that mankind are more
disposed to suffer while evils are sufferable, than to right themselves by abolishing the forms to which they are
accustomed. But when a long train of abuses and usurpations, begun at a distinguished period, and pursuing
invariably the same object, evinces a design to reduce them to arbitrary power, it is their right, it is their duty, to
throw off such government and to provide new guards for future security. Such has been the patient sufferings
of the colonies; and such is now the necessity which constrains them to expunge their former systems of
government. the history of his present majesty is a history of unremitting injuries and usurpations, among which
no one fact stands single or solitary to contradict the uniform tenor of the rest, all of which have in direct object
the establishment of an absolute tyranny over these states. To prove this, let facts be submitted to a candid
world, for the truth of which we pledge a faith yet unsullied by falsehood.

44

(yellow, 20)
(red, 71)
(blue, 93)
(pink, 6)

Abridged Declaration of Independence
A Declaration By the Representatives of the United States of America, in General
Congress Assembled.
When in the course of human events it becomes necessary for a people to advance from
that subordination in which they have hitherto remained, and to assume among powers of
the earth the equal and independent station to which the laws of nature and of nature's
god entitle them, a decent respect to the opinions of mankind requires that they should
declare the causes which impel them to the change.
We hold these truths to be self-evident; that all men are created equal and independent;
that from that equal creation they derive rights inherent and inalienable, among which are
the preservation of life, and liberty, and the pursuit of happiness; that to secure these
ends, governments are instituted among men, deriving their just power from the consent
of the governed; that whenever any form of government shall become destructive of these
ends, it is the right of the people to alter or to abolish it, and to institute new government,
laying it's foundation on such principles and organizing it's power in such form, as to
them shall seem most likely to effect their safety and happiness. Prudence indeed will

dictate that governments long established should not be changed for light and transient
causes: and accordingly all experience hath shewn that mankind are more disposed to
suffer while evils are sufferable, than to right themselves by abolishing the forms to
which they are accustomed. But when a long train of abuses and usurpations, begun at a
distinguished period, and pursuing invariably the same object, evinces a design to reduce
them to arbitrary power, it is their right, it is their duty, to throw off such government and
to provide new guards for future security. Such has been the patient sufferings of the
colonies; and such is now the necessity which constrains them to expunge their former
systems of government. the history of his present majesty is a history of unremitting
injuries and usurpations, among which no one fact stands single or solitary to contradict
the uniform tenor of the rest, all of which have in direct object the establishment of an
absolute tyranny over these states. To prove this, let facts be submitted to a candid world,
for the truth of which we pledge a faith yet unsullied by falsehood.

Yellow: 10+

Red: 5..9

Blue: 2..4

Pink: = 1

Map Task 1
(204 words)

Map Task 2
(190 words)

(key, value)

(yellow, 17)
(red, 77)
(blue, 107)
(pink, 3)

Example 2: MR word length count

45

Map task 1

(yellow, 17)
(red, 77)
(blue, 107)
(pink, 3)

Map task 2

(yellow, 20)
(red, 71)
(blue, 93)
(pink, 6)

Reduce task
(yellow,[17,20]) à (yellow, 37)

(red,[77,71]) à (red, 148)

(blue,[107,93]) à (blue, 200)

(pink, [3, 6]) à (pink, 9)

Map is a GROUP BY operation
Reduce is an AGGREGATE operation

Example 2: MR word length count

46

Local	
 storage	
 `	

MR Phases

•  Each Map and Reduce task has multiple phases:

47

Implementation

•  There is one master node
•  Master partitions input file into M splits, by key
•  Master assigns workers (=servers) to the M

map tasks, keeps track of their progress
•  Workers write their output to local disk,

partition into R regions
•  Master assigns workers to the R reduce tasks
•  Reduce workers read regions from the map

workers’ local disks
48 Dan Suciu -- CSEP544 Fall 2011

Interesting Implementation Details

Worker failure:

•  Master pings workers periodically,

•  If down then reassigns the task to another
worker

49

Interesting Implementation Details
Backup tasks:
•  Straggler = a machine that takes unusually

long time to complete one of the last tasks.
Eg:
– Bad disk forces frequent correctable errors

(30MB/s à 1MB/s)
– The cluster scheduler has scheduled other tasks

on that machine
•  Stragglers are a main reason for slowdown
•  Solution: pre-emptive backup execution of

the last few remaining in-progress tasks

50 Dan Suciu -- CSEP544 Fall 2011

Tuning Map-Reduce

•  It is very hard!
•  Choice of M and R:

– Larger is better for load balancing
– Limitation: master needs O(M×R) memory
– Typical choice:

•  M=number of chunks (“number of blocks”)
•  R=much smaller (why??); rule of thumb: R=1.5 *

number of servers (does AWS follow it?)

Dan Suciu -- CSEP544 Fall 2011 51

Tuning Map-Reduce
•  Lots of other parameters: partition function,

sort factor, etc, etc

•  The combiner! (Talk in class…)

•  Over 100 parameters to tune; about 50 affect
running time significantly

•  Active research on automatic tuning

Dan Suciu -- CSEP544 Fall 2011 52

[Shivnath Babu, SOCC’2010

Map-Reduce Summary

•  Hides scheduling and parallelization
details

•  However, very limited queries
– Difficult to write more complex tasks
– Need multiple map-reduce operations

•  Solution: declarative query language

54

Declarative Languages on MR
•  PIG Latin (Yahoo!)

– New language, like Relational Algebra
– Open source

•  SQL / Tenzing (google)
– SQL on MR
– Proprietary

•  Others (won’t discuss):
– Scope (MS): SQL; proprietary
– DryadLINQ (MS): LINQ; proprietary
– Clustera (other UW) : SQL; Not publicly available

55

- 56 -

What is Pig?

•  An engine for executing programs on top of Hadoop
•  It provides a language, Pig Latin, to specify these programs
•  An Apache open source project

http://hadoop.apache.org/pig/

Credit: Alan Gates, Yahoo!

- 57 -

Map Reduce Illustrated

map

reduce

map

reduce

Credit: Alan Gates, Yahoo!

- 58 -

Map Reduce Illustrated

map

reduce

map

reduce

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?

Credit: Alan Gates, Yahoo!

- 59 -

Map Reduce Illustrated

map

reduce

map

reduce

Romeo, Romeo, wherefore art thou Romeo?

Romeo, 1
Romeo, 1
wherefore, 1
art, 1
thou, 1
Romeo, 1

What, art thou hurt?

What, 1
art, 1
thou, 1
hurt, 1

Credit: Alan Gates, Yahoo!

- 60 -

Map Reduce Illustrated

map

reduce

map

reduce

Romeo, Romeo, wherefore art thou Romeo?

Romeo, 1
Romeo, 1
wherefore, 1
art, 1
thou, 1
Romeo, 1

art, (1, 1)
hurt (1),
thou (1, 1)

What, art thou hurt?

What, 1
art, 1
thou, 1
hurt, 1

Romeo, (1, 1, 1)
wherefore, (1)
what, (1)

Credit: Alan Gates, Yahoo!

- 61 -

Map Reduce Illustrated

map

reduce

map

reduce

Romeo, Romeo, wherefore art thou Romeo?

Romeo, 1
Romeo, 1
wherefore, 1
art, 1
thou, 1
Romeo, 1

art, (1, 1)
hurt (1),
thou (1, 1)

art, 2
hurt, 1
thou, 2

What, art thou hurt?

What, 1
art, 1
thou, 1
hurt, 1

Romeo, (1, 1, 1)
wherefore, (1)
what, (1)

Romeo, 3
wherefore, 1
what, 1

Credit: Alan Gates, Yahoo!

- 62 -

Why use Pig?

 Suppose you have
user data in one
file, website data in
another, and you
need to find the top
5 most visited sites
by users aged 18 -
25.

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Credit: Alan Gates, Yahoo!

- 63 -

In Map-Reduce
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.KeyValueTextInputFormat;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.RecordReader;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.SequenceFileInputFormat;
import org.apache.hadoop.mapred.SequenceFileOutputFormat;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.jobcontrol.Job;
import org.apache.hadoop.mapred.jobcontrol.JobControl;
import org.apache.hadoop.mapred.lib.IdentityMapper;

public class MRExample {
 public static class LoadPages extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, Text> {

 public void map(LongWritable k, Text val,
 OutputCollector<Text, Text> oc,
 Reporter reporter) throws IOException {
 // Pull the key out
 String line = val.toString();
 int firstComma = line.indexOf(',');
 String key = line.substring(0, firstComma);
 String value = line.substring(firstComma + 1);
 Text outKey = new Text(key);
 // Prepend an index to the value so we know which file
 // it came from.
 Text outVal = new Text("1" + value);
 oc.collect(outKey, outVal);
 }
 }
 public static class LoadAndFilterUsers extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, Text> {

 public void map(LongWritable k, Text val,
 OutputCollector<Text, Text> oc,
 Reporter reporter) throws IOException {
 // Pull the key out
 String line = val.toString();
 int firstComma = line.indexOf(',');
 String value = line.substring(firstComma + 1);
 int age = Integer.parseInt(value);
 if (age < 18 || age > 25) return;
 String key = line.substring(0, firstComma);
 Text outKey = new Text(key);
 // Prepend an index to the value so we know which file
 // it came from.
 Text outVal = new Text("2" + value);
 oc.collect(outKey, outVal);
 }
 }
 public static class Join extends MapReduceBase
 implements Reducer<Text, Text, Text, Text> {

 public void reduce(Text key,
 Iterator<Text> iter,
 OutputCollector<Text, Text> oc,
 Reporter reporter) throws IOException {
 // For each value, figure out which file it's from and
store it
 // accordingly.
 List<String> first = new ArrayList<String>();
 List<String> second = new ArrayList<String>();

 while (iter.hasNext()) {
 Text t = iter.next();
 String value = t.toString();
 if (value.charAt(0) == '1')
first.add(value.substring(1));
 else second.add(value.substring(1));

 reporter.setStatus("OK");
 }

 // Do the cross product and collect the values
 for (String s1 : first) {
 for (String s2 : second) {
 String outval = key + "," + s1 + "," + s2;
 oc.collect(null, new Text(outval));
 reporter.setStatus("OK");
 }
 }
 }
 }
 public static class LoadJoined extends MapReduceBase
 implements Mapper<Text, Text, Text, LongWritable> {

 public void map(
 Text k,
 Text val,
 OutputCollector<Text, LongWritable> oc,
 Reporter reporter) throws IOException {
 // Find the url
 String line = val.toString();
 int firstComma = line.indexOf(',');
 int secondComma = line.indexOf(',', firstComma);
 String key = line.substring(firstComma, secondComma);
 // drop the rest of the record, I don't need it anymore,
 // just pass a 1 for the combiner/reducer to sum instead.
 Text outKey = new Text(key);
 oc.collect(outKey, new LongWritable(1L));
 }
 }
 public static class ReduceUrls extends MapReduceBase
 implements Reducer<Text, LongWritable, WritableComparable,
Writable> {

 public void reduce(
 Text key,
 Iterator<LongWritable> iter,
 OutputCollector<WritableComparable, Writable> oc,
 Reporter reporter) throws IOException {
 // Add up all the values we see

 long sum = 0;
 while (iter.hasNext()) {
 sum += iter.next().get();
 reporter.setStatus("OK");
 }

 oc.collect(key, new LongWritable(sum));
 }
 }
 public static class LoadClicks extends MapReduceBase
 implements Mapper<WritableComparable, Writable, LongWritable,
Text> {

 public void map(
 WritableComparable key,
 Writable val,
 OutputCollector<LongWritable, Text> oc,
 Reporter reporter) throws IOException {
 oc.collect((LongWritable)val, (Text)key);
 }
 }
 public static class LimitClicks extends MapReduceBase
 implements Reducer<LongWritable, Text, LongWritable, Text> {

 int count = 0;
 public void reduce(
 LongWritable key,
 Iterator<Text> iter,
 OutputCollector<LongWritable, Text> oc,
 Reporter reporter) throws IOException {

 // Only output the first 100 records
 while (count < 100 && iter.hasNext()) {
 oc.collect(key, iter.next());
 count++;
 }
 }
 }
 public static void main(String[] args) throws IOException {
 JobConf lp = new JobConf(MRExample.class);
 lp.setJobName("Load Pages");
 lp.setInputFormat(TextInputFormat.class);

 lp.setOutputKeyClass(Text.class);
 lp.setOutputValueClass(Text.class);
 lp.setMapperClass(LoadPages.class);
 FileInputFormat.addInputPath(lp, new
Path("/user/gates/pages"));
 FileOutputFormat.setOutputPath(lp,
 new Path("/user/gates/tmp/indexed_pages"));
 lp.setNumReduceTasks(0);
 Job loadPages = new Job(lp);

 JobConf lfu = new JobConf(MRExample.class);
 lfu.setJobName("Load and Filter Users");
 lfu.setInputFormat(TextInputFormat.class);
 lfu.setOutputKeyClass(Text.class);
 lfu.setOutputValueClass(Text.class);
 lfu.setMapperClass(LoadAndFilterUsers.class);
 FileInputFormat.addInputPath(lfu, new
Path("/user/gates/users"));
 FileOutputFormat.setOutputPath(lfu,
 new Path("/user/gates/tmp/filtered_users"));
 lfu.setNumReduceTasks(0);
 Job loadUsers = new Job(lfu);

 JobConf join = new JobConf(MRExample.class);
 join.setJobName("Join Users and Pages");
 join.setInputFormat(KeyValueTextInputFormat.class);
 join.setOutputKeyClass(Text.class);
 join.setOutputValueClass(Text.class);
 join.setMapperClass(IdentityMapper.class);
 join.setReducerClass(Join.class);
 FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/indexed_pages"));
 FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/filtered_users"));
 FileOutputFormat.setOutputPath(join, new
Path("/user/gates/tmp/joined"));
 join.setNumReduceTasks(50);
 Job joinJob = new Job(join);
 joinJob.addDependingJob(loadPages);
 joinJob.addDependingJob(loadUsers);

 JobConf group = new JobConf(MRExample.class);
 group.setJobName("Group URLs");
 group.setInputFormat(KeyValueTextInputFormat.class);
 group.setOutputKeyClass(Text.class);
 group.setOutputValueClass(LongWritable.class);
 group.setOutputFormat(SequenceFileOutputFormat.class);
 group.setMapperClass(LoadJoined.class);
 group.setCombinerClass(ReduceUrls.class);
 group.setReducerClass(ReduceUrls.class);
 FileInputFormat.addInputPath(group, new
Path("/user/gates/tmp/joined"));
 FileOutputFormat.setOutputPath(group, new
Path("/user/gates/tmp/grouped"));
 group.setNumReduceTasks(50);
 Job groupJob = new Job(group);
 groupJob.addDependingJob(joinJob);

 JobConf top100 = new JobConf(MRExample.class);
 top100.setJobName("Top 100 sites");
 top100.setInputFormat(SequenceFileInputFormat.class);
 top100.setOutputKeyClass(LongWritable.class);
 top100.setOutputValueClass(Text.class);
 top100.setOutputFormat(SequenceFileOutputFormat.class);
 top100.setMapperClass(LoadClicks.class);
 top100.setCombinerClass(LimitClicks.class);
 top100.setReducerClass(LimitClicks.class);
 FileInputFormat.addInputPath(top100, new
Path("/user/gates/tmp/grouped"));
 FileOutputFormat.setOutputPath(top100, new
Path("/user/gates/top100sitesforusers18to25"));
 top100.setNumReduceTasks(1);
 Job limit = new Job(top100);
 limit.addDependingJob(groupJob);

 JobControl jc = new JobControl("Find top 100 sites for users
18 to 25");
 jc.addJob(loadPages);
 jc.addJob(loadUsers);
 jc.addJob(joinJob);
 jc.addJob(groupJob);
 jc.addJob(limit);
 jc.run();
 }
}

170 lines of code, 4 hours to write
Credit: Alan Gates, Yahoo!

- 64 -

In Pig Latin

Users = load ‘users’ as (name, age);
Fltrd = filter Users by
 age >= 18 and age <= 25;
Pages = load ‘pages’ as (user, url);
Jnd = join Fltrd by name, Pages by user;
Grpd = group Jnd by url;
Smmd = foreach Grpd generate group,
 COUNT(Jnd) as clicks;
Srtd = order Smmd by clicks desc;
Top5 = limit Srtd 5;
store Top5 into ‘top5sites’;

9 lines of code, 15 minutes to write

Credit: Alan Gates, Yahoo!

Background: Pig system

65

Pig Latin
program

A = LOAD 'file1' AS (sid,pid,mass,px:double);
B = LOAD 'file2' AS (sid,pid,mass,px:double);
C = FILTER A BY px < 1.0;
D = JOIN C BY sid,
 B BY sid;
 STORE g INTO 'output.txt';

Ensemble of
MapReduce jobs

- 66 -

But can it fly?

Credit: Alan Gates, Yahoo!

- 67 -

Essence of Pig

•  Map-Reduce is too low a level to program, SQL too high
•  Pig Latin, a language intended to sit between the two:

–  Imperative
–  Provides standard relational transforms (join, sort, etc.)
–  Schemas are optional, used when available, can be defined at

runtime
–  User Defined Functions are first class citizens
–  Opportunities for advanced optimizer but optimizations by

programmer also possible

Credit: Alan Gates, Yahoo!

- 68 -

How It Works

Parser

Script
A = load
B = filter
C = group
D = foreach

Logical Plan
Semantic
Checks

Logical Plan
Logical
Optimizer

Logical Plan

Logical to
Physical
Translator Physical Plan

Physical
To MR
Translator

MapReduce
Launcher

Jar to
hadoop

Map-Reduce Plan

Logical Plan ≈
relational algebra

Plan standard
optimizations

Physical Plan =
physical operators
to be executed

Map-Reduce Plan =
physical operators
broken into Map,
Combine, and
Reduce stages

Credit: Alan Gates, Yahoo!

Tenzing

•  Google’s implementation of SQL
•  Supports full SQL92
•  On top of google’s Map/Reduce
•  Uses traditional query optimizer, plus

optimizations to MR
•  Widely adopted inside Google, especially

by the non-engineering community

69

Join Algorithms on Map/Reduce

•  Broadcast join

•  Hash-join

•  Skew join

•  Merge join

Dan Suciu -- CSEP544 Fall 2011 70

- 71 -

Fragment Replicate Join

Pages Users

Aka
“Broakdcast Join”

Credit: Alan Gates, Yahoo!

- 72 -

Fragment Replicate Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Aka
“Broakdcast Join”

Credit: Alan Gates, Yahoo!

- 73 -

Fragment Replicate Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Aka
“Broakdcast Join”

Credit: Alan Gates, Yahoo!

- 74 -

Fragment Replicate Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Map 1

Map 2

Aka
“Broakdcast Join”

Credit: Alan Gates, Yahoo!

- 75 -

Fragment Replicate Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Map 1

Map 2

Users

Users

Pages
block 1

Pages
block 2

Aka
“Broakdcast Join”

Credit: Alan Gates, Yahoo!

- 76 -

Hash Join

Pages Users

Credit: Alan Gates, Yahoo!

- 77 -

Hash Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

Credit: Alan Gates, Yahoo!

- 78 -

Hash Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

Credit: Alan Gates, Yahoo!

- 79 -

Hash Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

Map 1

User
block n

Map 2

Page
block m

Credit: Alan Gates, Yahoo!

- 80 -

Hash Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

Map 1

User
block n

Map 2

Page
block m

(1, user)

(2, name)

Credit: Alan Gates, Yahoo!

Means: it comes
from relation #1

Means: it comes
from relation #2

- 81 -

Hash Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

Map 1

User
block n

Map 2

Page
block m

Reducer 1

Reducer 2

(1, user)

(2, name)

(1, fred)
(2, fred)
(2, fred)

(1, jane)
(2, jane)
(2, jane)

Credit: Alan Gates, Yahoo!

- 82 -

Skew Join

Pages Users

Credit: Alan Gates, Yahoo!

- 83 -

Skew Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

Credit: Alan Gates, Yahoo!

- 84 -

Skew Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

Credit: Alan Gates, Yahoo!

- 85 -

Skew Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

Map 1

Pages
block n

Map 2

Users
block m

Credit: Alan Gates, Yahoo!

- 86 -

Skew Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

Map 1

Pages
block n

Map 2

Users
block m

S
P

S
P

Credit: Alan Gates, Yahoo!

- 87 -

Skew Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

Map 1

Pages
block n

Map 2

Users
block m

(1, user)

(2, name)

S
P

S
P

Credit: Alan Gates, Yahoo!

- 88 -

Skew Join

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

Map 1

Pages
block n

Map 2

Users
block m

Reducer 1

Reducer 2

(1, user)

(2, name)

(1, fred, p1)
(1, fred, p2)
(2, fred)

(1, fred, p3)
(1, fred, p4)
(2, fred)

S
P

S
P

Credit: Alan Gates, Yahoo!

- 89 -

Merge Join

Pages Users
aaron
 .
 .
 .
 .
 .
 .
 .
 .
zach

aaron
 .
 .
 .
 .
 .
 .
 .
 .
zach

Credit: Alan Gates, Yahoo!

- 90 -

Merge Join

Pages Users
aaron
 .
 .
 .
 .
 .
 .
 .
 .
zach

aaron
 .
 .
 .
 .
 .
 .
 .
 .
zach

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “merge”;

Credit: Alan Gates, Yahoo!

- 91 -

Merge Join

Pages Users
aaron
 .
 .
 .
 .
 .
 .
 .
 .
zach

aaron
 .
 .
 .
 .
 .
 .
 .
 .
zach

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “merge”;

Credit: Alan Gates, Yahoo!

- 92 -

Merge Join

Pages Users
aaron
 .
 .
 .
 .
 .
 .
 .
 .
zach

aaron
 .
 .
 .
 .
 .
 .
 .
 .
zach

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “merge”;

Map 1

Map 2

Users

Users

Pages

Pages

aaron…
amr

aaron
…

amy…
barb

amy
…

Credit: Alan Gates, Yahoo!

- 93 -

Multi-store script

A = load ‘users’ as (name, age, gender,
 city, state);
B = filter A by name is not null;
C1 = group B by age, gender;
D1 = foreach C1 generate group, COUNT(B);
store D into ‘bydemo’;
C2= group B by state;
D2 = foreach C2 generate group, COUNT(B);
store D2 into ‘bystate’;

load users filter nulls

group by state

group by age,
gender

apply UDFs

apply UDFs

store into
‘bystate’

store into
‘bydemo’

Credit: Alan Gates, Yahoo!

- 94 -

Multi-Store Map-Reduce Plan

map filter

local rearrange
split

local rearrange

reduce

demux package package

foreach foreach

Credit: Alan Gates, Yahoo!

Other Optimizations in Tenzing

•  Keep processes running: process pool
•  Remove reducer-side sort for hash-based

algorithms
– Note: the data must fit in main memory,

otherwise the task fails
•  Pipelining
•  Indexes

Dan Suciu -- CSEP544 Fall 2011 95

Final Thoughts

Challenging problems in MR jobs:

•  Skew

•  Fault tolerance

Dan Suciu -- CSEP544 Fall 2011 96

Skew
Balazinska, A study of Skew

Skew
Balazinska, A study of Skew

Skew
Balazinska, A study of Skew

Fault Tolerance

•  Fundamental tension:
•  Materialize after each Map and each Reduce

– This is what MR does
–  Ideal for fault tolerance
– Very poor performance

•  Pipeline between steps
– This is what Parallel DBs usually do
–  Ideal for performance
– Very poor fault tolerance

Dan Suciu -- CSEP544 Fall 2011 100

101

Pig Latin Mini-Tutorial

(will skip in class; please read in
order to do homework 6)

Outline

Based entirely on Pig Latin: A not-so-
foreign language for data processing,
by Olston, Reed, Srivastava, Kumar,
and Tomkins, 2008

Quiz section tomorrow: in CSE 403

(this is CSE, don’t go to EE1)
102

Pig-Latin Overview
•  Data model = loosely typed nested

relations
•  Query model = a sql-like, dataflow

language

•  Execution model:
– Option 1: run locally on your machine
– Option 2: compile into sequence of map/

reduce, run on a cluster supporting Hadoop

•  Main idea: use Opt1 to debug, Opt2 to
execute

103

Example

•  Input: a table of urls:
 (url, category, pagerank)

•  Compute the average pagerank of all
sufficiently high pageranks, for each
category

•  Return the answers only for categories
with sufficiently many such pages

104

First in SQL…

105

SELECT category, AVG(pagerank)
FROM urls
WHERE pagerank > 0.2
GROUP By category
HAVING COUNT(*) > 106

…then in Pig-Latin

106

good_urls = FILTER urls BY pagerank > 0.2
groups = GROUP good_urls BY category
big_groups = FILTER groups

 BY COUNT(good_urls) > 106

output = FOREACH big_groups GENERATE
 category, AVG(good_urls.pagerank)

Types in Pig-Latin

•  Atomic: string or number, e.g. ‘Alice’ or 55

•  Tuple: (‘Alice’, 55, ‘salesperson’)

•  Bag: {(‘Alice’, 55, ‘salesperson’),
 (‘Betty’,44, ‘manager’), …}

•  Maps: we will try not to use these

107

Types in Pig-Latin

Bags can be nested !

•  {(‘a’, {1,4,3}), (‘c’,{ }), (‘d’, {2,2,5,3,2})}

Tuple components can be referenced by
number

•  $0, $1, $2, …
108

109

Loading data

•  Input data = FILES !
– Heard that before ?

•  The LOAD command parses an input
file into a bag of records

•  Both parser (=“deserializer”) and output
type are provided by user

110

Loading data

111

queries = LOAD ‘query_log.txt’
 USING myLoad()
 AS (userID, queryString, timeStamp)

Loading data

•  USING userfuction() -- is optional
–  Default deserializer expects tab-delimited file

•  AS type – is optional
–  Default is a record with unnamed fields; refer to

them as $0, $1, …
•  The return value of LOAD is just a handle to a

bag
–  The actual reading is done in pull mode, or

parallelized

112

FOREACH

113

expanded_queries =
 FOREACH queries
 GENERATE userId, expandQuery(queryString)

expandQuery() is a UDF that produces likely expansions
Note: it returns a bag, hence expanded_queries is a nested bag

FOREACH

114

expanded_queries =
 FOREACH queries
 GENERATE userId,
 flatten(expandQuery(queryString))

Now we get a flat collection

115

FLATTEN

Note that it is NOT a first class function !
(that’s one thing I don’t like about Pig-latin)

•  First class FLATTEN:
– FLATTEN({{2,3},{5},{},{4,5,6}}) = {2,3,5,4,5,6}
– Type: {{T}} à {T}

•  Pig-latin FLATTEN
– FLATTEN({4,5,6}) = 4, 5, 6
– Type: {T} à T, T, T, …, T ?????

116

FILTER

117

real_queries = FILTER queries BY userId neq ‘bot’

Remove all queries from Web bots:

real_queries = FILTER queries
 BY NOT isBot(userId)

Better: use a complex UDF to detect Web bots:

JOIN

118

join_result = JOIN results BY queryString
 revenue BY queryString

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

join_result : {(queryString, url, position, adSlot, amount)}

119

GROUP BY

120

grouped_revenue = GROUP revenue BY queryString
query_revenues =
 FOREACH grouped_revenue
 GENERATE queryString,
 SUM(revenue.amount) AS totalRevenue

revenue: {(queryString, adSlot, amount)}

grouped_revenue: {(queryString, {(adSlot, amount)})}
query_revenues: {(queryString, totalRevenue)}

Simple Map-Reduce

121

map_result = FOREACH input
 GENERATE FLATTEN(map(*))
key_groups = GROUP map_result BY $0
output = FOREACH key_groups

 GENERATE reduce($1)

input : {(field1, field2, field3,)}

map_result : {(a1, a2, a3, . . .)}
key_groups : {(a1, {(a2, a3, . . .)})}

Co-Group

122

grouped_data =
 COGROUP results BY queryString,
 revenue BY queryString;

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

grouped_data: {(queryString, results:{(url, position)},
 revenue:{(adSlot, amount)})}

What is the output type in general ?

Co-Group

123
Is this an inner join, or an outer join ?

Co-Group

124

url_revenues = FOREACH grouped_data
 GENERATE
 FLATTEN(distributeRevenue(results, revenue));

grouped_data: {(queryString, results:{(url, position)},
 revenue:{(adSlot, amount)})}

distributeRevenue is a UDF that accepts search re-
sults and revenue information for a query string at a time,
and outputs a bag of urls and the revenue attributed to them.

Co-Group v.s. Join

125

grouped_data = COGROUP results BY queryString,
 revenue BY queryString;
join_result = FOREACH grouped_data
 GENERATE FLATTEN(results),
 FLATTEN(revenue);

grouped_data: {(queryString, results:{(url, position)},
 revenue:{(adSlot, amount)})}

Result is the same as JOIN

Asking for Output: STORE

126

STORE query_revenues INTO `myoutput'
 USING myStore();

Meaning: write query_revenues to the file ‘myoutput’

Implementation

•  Over Hadoop !
•  Parse query:

– Everything between LOAD and STORE à
one logical plan

•  Logical plan à sequence of Map/
Reduce ops

•  All statements between two (CO)
GROUPs à one Map/Reduce op

127

Implementation

128

