Lecture 10:
Parallel Databases

Wednesday, December 18t 2010

Dan Suciu -- CSEP544 Fall 2010

Announcements

 Take-home Final: this weekend

* Next Wednesday: last homework due at
midnight (Pig Latin)

* Also next Wednesday: last lecture (data
provenance, data privacy)

Reading Assignment: “Rethinking
the Contract”

 What is today's
contract with the
optimizer ?

« What are the main
limitations in today’s
optimizers ?

* What is a “plan o N
d|agram” ? S o SUPP:IER) '“9;8&::

4N IS BT B A
= 8 8 8 &8 8§ 8 8 &8 &8

Dan Suciu -- CSEP544 Fall 2010 3

Overview of Today’s Lecture

Parallel databases (Chapter 22.1 — 22.5)
Map/reduce

Pig-Latin

— Some slides from Alan Gates (Yahoo!Research)
— Mini-tutorial on the slides

— Read manual for HW7

Bloom filters
— Use slides extensively !
— Bloom joins are mentioned on pp. 746 in the book

Parallel v.s. Distributed
Databases

« Parallel database system:

— Improve performance through parallel
implementation

— Will discuss in class (and are on the final)

 Distributed database system:

— Data is stored across several sites, each site
managed by a DBMS capable of running
independently

— Wil not discuss in class

Parallel DBMSs

 Goal

— Improve performance by executing multiple
operations in parallel

« Key benefit

— Cheaper to scale than relying on a single
increasingly more powerful processor

« Key challenge

— Ensure overhead and contention do not Kkill
performance

Performance Metrics

for Parallel DBMSs

« Speedup
— More processors = higher speed
— Individual queries should run faster
— Should do more transactions per second (TPS)

« Scaleup
— More processors =» can process more data
— Batch scaleup
« Same query on larger input data should take the same time

— Transaction scaleup
* N-times as many TPS on N-times larger database
« But each transaction typically remains small

Linear v.s. Non-linear Speedup

Speedup

processors (=P)

Linear v.s. Non-linear Scaleup

Batch
Scaleup

X1 X5 xX10 X135
| | |

| ! I I
processors (=P) AND data size

Challenges to
Linear Speedup and Scaleup

« Startup cost

— Cost of starting an operation on many
Processors

* Interference
— Contention for resources between processors

« Skew
— Slowest processor becomes the bottleneck

Architectures for Parallel
Databases

« Shared memory
» Shared disk

» Shared nothing

Shared Memory

o990

Interconnectlon Network

Global Shared Memory

o o o

Dan Suciu -- CSEP544 Fall 2010 12

Shared Disk

\Y \Y V]
Interconnectlon Network}

o b D

- CSEP544 Fall 2010

Shared Nothing

Interconnectlon Network

® © o

o o o

Dan Suciu -- CSEP544 Fall 2010 14

Shared Nothing

Most scalable architecture

— Minimizes interference by minimizing
resource sharing

— Can use commodity hardware

Also most difficult to program and manage

Processor = server = node
P = number of nodes

[We will focus on shared nothing}

Taxonomy for
Parallel Query Evaluation

* Inter-query parallelism
— Each query runs on one processor

* Inter-operator parallelism
— A query runs on multiple processors
— An operator runs on one processor

* Intra-operator parallelism
— An operator runs on multiple processors

[We study only intra-operator parallelism: most scalable}

Horizontal Data Partitioning

Relation R split into P chunks R, ..., Rp_4,
stored at the P nodes

Round robin: tuple t, to chunk (i mod P)

Hash based partitioning on attribute A:
— Tuple t to chunk h(t.A) mod P

Range based partitioning on attribute A:
— Tuple tto chunkiifv,, <tA<v,

Parallel Selection

CompUte O'sz(R), or o-v1<A<V2(R)

 Conventional database:
— Cost = B(R)

» Parallel database with P processors:
—Cost=B(R)/P

Parallel Selection

Different processors do the work:
* Round robin partition: all servers do the work
« Hash partition:

— One server for o,_,(R),
— All servers for o,¢_a_o(R)

* Range partition: one server does the work

Data Partitioning Revisited

What are the pros and cons ?

« Round robin
— Good load balance but always needs to read all the data

» Hash based partitioning

— Good load balance but works only for equality predicates
and full scans

« Range based partitioning

— V\liorks well for range predicates but can suffer from data
skew

Parallel Group By: Ya sum@)(R)

Step 1: server i partitions chunk R; using a
hash function h(t.A): Ry, Riy, ..., Rip;

Step 2: server i sends partition R; to server |

Step 3: server j computes Y gyme) ON
Roi» Rijs -y Rpy;

1 -

Cost of Parallel Group By

Recall conventional cost = 3B(R)
« Step 1: Cost = B(R)/P /O operations

» Step 2: Cost = (P-1)/P B(R) blocks are sent
— Network costs << I/O costs

» Step 3: Cost = 2 B(R)/P
— When can we reduce itto 0 ?
Total = 3B(R) / P + communication costs

Parallel Join: R >, g S

Step 1

» For all servers in [0,k], server i partitions chunk R,
using a hash function h(t.A): R, Riy, ..., Rip

« For all servers in [k+1,P], server | partitions chunk
S; using a hash function h(t.A): Sy, S;y, ..., Rip-;

Step 2:
« Server i sends partition R;, to server u
» Server | sends partition S, to server u

Steps 3: Server u computes the join of R, with S,

Cost of Parallel Join

« Step 1: Cost = (B(R) + B(S))/P

e« Step2: 0
— (P-1)/P (B(R) + B(S)) blocks are sent, but we
assume network costs to be << disk I/O costs

« Step 3:
— Cost = 0 if small table fits in memory: B(S)/P <=M
— Cost = 4(B(R)+B(S))/P otherwise

Parallel Query Plans

« Same relational operators

» Add special split and merge operators

— Handle data routing, buffering, and flow
control

« Example: exchange operator

— Inserted between consecutive operators in the
qguery plan

Map Reduce

» Google: paper published 2004
* Free variant: Hadoop

» Map-reduce = high-level programming
model and implementation for large-scale
parallel data processing

Data Model

Files !

Afile = abag of (key, value) pairs

A map-reduce program:
 |[nput: a bag of (inputkey, wvalue)pairs
* QOutput: a bag of (outputkey, wvalue)pairs

Step 1: the MAP Phase

User provides the MAP-function:
* Input: one (input key, wvalue)

* Ouput: bag of (intermediate key,
value) pairs

System applies the map function in parallel
to all (input key, wvalue) pairsinthe

input file

Step 2: the REDUCE Phase

User provides the REDUCE function:

* Input: (intermediate key, bag of
values)

» QOutput: bag of output values

System groups all pairs with the same
intermediate key, and passes the bag of
values to the REDUCE function

Example

» Counting the number of occurrences of
each word in a large collection of

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
Emitintermediate(w, “17):

reduce(String key, lterator values):
// key: a word
// values: a list of counts
Int result = 0;
for each v in values:
result += Parselnt(v);
Emit(AsString(result));

MAP REDUCE

(k1,v1) (i1, wi)
(k2,v2) V/ (i2, w2) ——>

(k3,v3) (I3, w3) ——

Map = GROUP BY,
Reduce = Aggregate

(documentKey, word)

SELECT word, sum(1)
FROM R
GROUP BY word

Implementation

There is one master node
Master partitions input file into M splits, by key

Master assigns workers (=servers) to the M
map tasks, keeps track of their progress

Workers write their output to local disk,
partition into R regions

Master assigns workers to the R reduce tasks

Reduce workers read regions from the map
workers’ local disks

MR Phases

Map Task Reduce Task

{P1} {P2} {P 3} {P 4} {P 5}

Split-»r Record Reader—%Map —# Combine

\

- —

——»‘ Copy kw‘ Reduce \
o) 1 l o™
‘ Local storag% ——

HDFS

Interesting Implementation Details

» Worker failure:
— Master pings workers periodically,

— If down then reassigns its splits to all other
workers - good load balance

 Choice of M and R:

— Larger is better for load balancing
— Limitation: master needs O(MxR) memory

Interesting Implementation Details

Backup tasks:

- Straggler = a machine that takes unusually
long time to complete one of the last tasks.
Eg:

— Bad disk forces frequent correctable errors
(30MB/s - 1MB/s)

— The cluster scheduler has scheduled other tasks
on that machine

« Stragglers are a main reason for slowdown

» Solution: pre-emptive backup execution of
the last few remaining in-progress tasks

Map-Reduce Summary

» Hides scheduling and parallelization
details

* However, very limited queries
— Difficult to write more complex tasks
— Need multiple map-reduce operations

e Solution:
OHO PIG-Latin |

Following Slides provided by:
Alan Gates, Yahoo!Research

What is Pig?

* An engine for executing programs on top of Hadoop
It provides a language, Pig Latin, to specify these programs

« An Apache open source project
http://hadoop.apache.org/pig/

-39-

Map-Reduce

« Computation is moved to the data

« A simple yet powerful programming model

— Map: every record handled individually

— Shuffle: records collected by key

— Reduce: key and iterator of all associated values
« User provides:

— input and output (usually files)

— map Java function

— key to aggregate on

— reduce Java function

« Opportunities for more control: partitioning, sorting, partial
aggregations, etc.

<!

Map Reduce lllustrated

[J>N<i |
S

Map Reduce lllustrated

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?

>
S

Map Reduce lllustrated

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?
N -~
\\ ,,’
N\ P

\\ P
Romeo, 1 S -7
Romeo, 1 What, 1

J m m J

wherefore, 1 P ap art, 1
art, 1 thou, 1
thou, 1 hurt, 1
Romeo, 1 ‘I><l

reduce reduce

Map Reduce lllustrated

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?
N ’/
\\ ,,
\\\ ,//
Romeo, 1 N _ -7
Romeo, 1 What, 1
wherefore, 1 map map art, 1
art, 1 thou, 1
thou, 1 hurt, 1
Romeo, 1 ‘I><l
art, (1, 1) reduce reduce Romeo, (1, 1, 1)
hurt (1), wherefore, (1)
thou (1, 1) what, (1)

- 44 - g!

Map Reduce lllustrated

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?
\\\ ,/”
\ //
Romeo, 1
Romeo, 1 What, 1
wherefore, 1 art, 1
art, 1 thou, 1
thou, 1 hurt, 1
Romeo, 1 ‘I><l
art, (reduce reduce Romeo, (1,1, 1)
hurt wherefore, (1)
thou (what, (1)
art, 2 ,/’ \\ Romeo, 3
hurt, 1 -~ . wherefore, 1
thou, 2 what, 1

Making Parallelism Simple

« Sequential reads = good read speeds

 Inlarge cluster failures are guaranteed; Map Reduce
handles retries

« Good fit for batch processing applications that need to touch
all your data:

— data mining
— model tuning
« Bad fit for applications that need to find one particular record

« Bad fit for applications that need to communicate between
processes; oriented around independent units of work

<!

Why use Pig?

Suppose you have |icadusesy Load Pages
user data in one

file, website data in |
another, and you

need to find the top

5 most visited sites

by users aged 18 -

25.

Joinon name.
Groupon
Gount s
Onderby ks
Tke'ops

In Map-Reduce

'OExLepL,\n,

import java.io
import java.ut

import java.ut

import org.apache.hadoop.fs.Path;
.apache .hadoop.i0.LongWritable;

t org.apache.had Text;
org.apache. had Writable;
org.apache.hadoop.io.WritableComparable;

org.apache.hadoop.mapred.FileInputFormat;
.FileOutputFormat;
org.apache.hadoo .rvap,ea.J,bLmI;
.apache .hadoop.mapred. alueTextInputFormat;
g.a pache.hadoop. map:ad Mapper ;
org.apache.hadoop.mapred . MapReduceBase;
red.outputCollector;
.RecordReader ;
-Reducer;
d.Reporter
imp ort org.apache.hadoop.mapred.SequenceFileInputFormat;
import org.apache.hadoop.mapred.SequenceFileOutputFormat;
import org.apache.hadoop.m extInputFormat;
.apache .hadoop.mapred. jobcontrol.Job;
rg.apache .hadoop.mapred. jobcontrol.JobC ontrol;
import org.apache.hadoop.mapred.lib.IdentityMapper;

red

lic class MRExample
public static class LoadPages extends MapReduceBase
implements Mapper<LongWritable, Text, Text,

public void map(LongWritable k, Text val,
Text> oc,
Reporter reporter) throws IOExcept
// Pull the key out
String line = val.toString();
: Line.indexOf (

string (0,
irstComma + 1);

tComma) ;

String key

String value = line.substring(

Text outKey = new Text (key);

// Prepend an index to the value so we know which

// it came from.

Text outVal = new Text ("l
c.collect (outKey, outvVal);

"+ value);

}

public static class LoadAndFilterUsers extends

r apReduceBase
implements Mapper<LongWritable, Text, Text,

x> {

public void map(LongWritable k, Text val,
OutputCollector<Text, Text> oc,
Reporter reporter) throws IOException
// Pull the key out

ostring();

firstComma + 1);

> 25) return;
ine.substring (0,
new Text (key);
an index to the value so w e know which £
from.

new Text("2" + value);

rstComma) ;

// it came
Text out
oc.collect (outKey, outvVal);

}

public static class Ju
implements Reducer<

in extends MapReduceBase
ext, Text, Text, Text>

public void »educa«rext key,
Iter xt> iter,
OutputCollector<Text, Text>
Reporter reporter) throws IOException
// For each value, figure out which file it's from and

store it
// accordingl
List<String>
List<String> second = new Ar

t = new

yList<String>();
yList<string>();

(iter.hasNext ())
X r.next();
t string();

ring value = t.

if (value.charht (0)

first.add(value.substring(1));
else second.add (value.substring(1));

1

reporter.setStatus ("OK");

the values

o the ¢
(String s1
for (String s2 : second) {

string outval = key + "," + s1 + "," + s2;
, new Text (outval));
porter.setStatus ("0K");

¢ static class LoadJoined extends MapReduceBase
implements Mapper<Text, Text, Text, LongWritabl

public void map(

ctor<Text, LongWritable> oc,
Reporter reporter) throws IOException

// Find the url

string line = val.toString();

int firstComma = line.indexOf(',')
int secondComma = line.indexOf (', ', first Comma) ;
String key = line.substring(firstComma, secondComma);

p the rest of the rec don't need it anymore,
the combiner/reducer to sum instead.

// just pass
Text outKey
oc.collect

Y;
new Longiritable(1L));

¢ static class ReduceUrls extends MapReduceBa
implements Reducer<Text, LongWritable, Writabl o omparable,

pub.

Writable> {

public void reduce(

xt ke v,

Iterator<LongWritable> iter,
OutputCollector<WritableComparable, Writable> oc
eporter reporter) throws IOException

// add up all the values we see

long sum = 0;
wh ile (iter.hasNext()) {
sum += iter.next().get ()
reporter.setStatus ("OK")
}

oc.collect (key, new LongWritable(sum));

static class LoadClicks extends MapReduceBase
mplements Mapper<WritableComparable, Writable, LongWritable,

public void map(
WritableComp:
Writable v
outputCollector<LongWritable, Text> oc
Reporter reporter) throws IOException
oc.collect ((LongWritable)val, (Text)key);

able key,

public static class LimitClicks extends MapReduceBa
implements Reducer<LongWritable, Text, LongWritable, Text> {

int count = 0;

public void reduce(
LongWritable key,
Iterator<Text> iter,
OutputCollector<LongWritable, Text> oc,
Reporter reporter) throws IOException {

// Only output the first 100 records
while (count < 100 &5 iter.hasNext()) {
oc.collect (key, iter.next());
count++;

static void main(String(] args) throws IOException
= new JobConf (MRExample.class) ;

tJobName ("Load Pages");

setInputFormat (TextInputFormat.class);

etOutputKeyClass (Text.class);

1p.setOutputvalues

etMapperClass (LoadPages.class) ;
FileInputFormat. ﬂuu,npuwﬂun,

Path("/ user/gates/pages"));
FileOutputFormat.setoutputPath (1p,

new Path (*/user/gates/tmp/indexed_pages")) ;

.setNumReduceTasks (0) ;

Job Toadpages = new dob(1p) s

s);

JobConf 1fu = new JobConf (MRExample.class
fu.s etJobName("Load and Filter Users");
at (TextInpucPornat.class)

5 (Text.class);

s (Text.class

u.setMapperClass (LoadAndFilterUs:
FileInputFormat.add

Path("/user/gates/users"));
FileOutputFormat.setoutputPath(1fu,

new Path("/user/gates/tmp/filtered_users"));

fu.setNumReduceTasks (0) ;

Job loadUsers = new Job(Lfu);

JobConf join = new JobConf (MRExample.class)
join.setJobName ("Join Users and Pages");
Join.setTnputfornat (KeyValueText InpucFormat .class) ;
join.setOutputKeyClass (Text.class);
Join.setoutputvalucciass (Toxt clase) s
join.setMapperClass (IdentityMap per.class);
join.setReducerClass (Join.class);
FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/indexed_pages"));

FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/filtered users"));

FileOutputFormat.se tOutputPath(join, new
E’nLh("/uSe,/gnLeS/Lrvp/JuAned"}1,

join. setNumReduceTasks (50) ;

Job joinJob = new Job(join);

joinJob.addDependingJob (LoadPages) ;

joinJob.addDependingJob (LoadUsers) ;

JobConf group = new JobCo
group.setJobName ("Group URLs")
group. set InputFormat (KeyValueText InputFornat class) ;
group.setOutputKeyClass (Text.class) ;
Group. setoutputvalueciass (Longiieitable.class) ;
group. setOutputFormat (SequenceF i
group.setMapperClass (LoadJoined.class);
group.setCombinerClass (ReduceUrls.class);
group. setReducerClass (ReduceUrls.class) ;
FileInputFormat.addInputPath(group, new
/gates/tmp/joined"));
FileOutputFormat.setOutputPath(group, new

Path("/user/gates/tmp/grouped™)) ;

group. setNumReduceTasks (50)

Job groupJob = new Job (group);

groupJob. addbependingJob (joindob) ;

JobConf topl00 = new JobConf (WRExample.class);
tﬁPlCCvaﬂtJotNamﬂ(" op 100 sites
£0p100. set InputFormat (Sequencer i leTnputFormat . class) ;

topl00. setOutputKeyClass (LongWritable.class);

1ue xt.class);

topl00. setOutputFormat (SequenceFileoutputk
mmcc,semappe:c s (LoadClicks.class);
top100. setCombinerClass (LimitClicks.class);
topl00. setReducerClass (LimitClicks.class) ;
FileInputFormat.addInputPath(topl00, new
Path("/user/gates/tmp/grouped™)) ;
FileOutputFormat.setOutputPath(to
Path("/user/gates/topl00sitesforuserslst,
£0P100. setumReduceTasks (1)
Job limit = new Job(topl00);
1limit.addDependingJob (groupJob) ;

JobControl jc = new JobControl ("Find to
18 to 25M);

jc.addJob(loadPages) ;

jc.addJob(loadUsers) ;

je.addJob(joindob) ;

jc.adddob (groupdob) ;

jo.addJob(limit);

je.run();

170 lines of code, 4 hours to write

-48 -

MRE xample.class);

leoutputFormat .class)

100

sites

users

In Pig Latin

load “users’ as (name, age);

filter Users by

age >= 18 and age <= 25;

Pages = load ‘pages’ as (user, url);

Jnd = joiln Fltrd by name, Pages by user;

Grpd = group Jnd by url;

smmd = foreach Grpd generate group,
COUNT (Jnd) as clicks;

Srtd = order Smmd by clicks desc;

TopS = limit Srtd 5;

store TopS 1nto ‘topbsites’;

Users
Fltrd

9 lines of code, 15 minutes to write

But can it fly?

Pig Performance vs Map-Reduce

3.0 7.6
7.0 -

6.0 -

50 -

40 -

3.0

< | 2.5
1.8 1.6
1.0 -
| B B B B B B

0.0

Sep 11 08 Nov 11 Jan 20 09Feb 23 09Apr 20 09Jun 28 09 Aug 28 Oct 18 09
08 09

-50- gl’

Essence of Pig

« Map-Reduce is too low a level to program, SQL too high
« Pig Latin, a language intended to sit between the two:

— Imperative

— Provides standard relational transforms (join, sort, etc.)

— Schemas are optional, used when available, can be defined at
runtime

— User Defined Functions are first class citizens

— Opportunities for advanced optimizer but optimizations by
programmer also possible

51 v

How It Works

Script
A

B
C
D

load
filter —| Parser

group
foreach

Logical Plan =

relational algebra

Logical Plan

Plan standard
optimizations

MapReduce

Launcher

Jar to
hadoop

O hErEEm

Map-Reduce Plan

Map-Reduce Plan =
physical operators
broken into Map,

Combine, and
Reduce stages

-52-

_ Logical Plan _
| Semantic | Logical
Checks Optimizer
Logical Plan
Physical Logical to
ToMR L Physical
Translator| Physical Plan | Translator
Physical Plan =

physical operators

to be executed

Cool Things We’ve Added In the Last Year

Multiquery — Ability to combine multiple group bys into a
single MR job (0.3)

Merge join — If data is already sorted on join key, do join via
merge in map phase (0.4)

Skew join — Hash join for data with skew in join key. Allows
splitting of key across multiple reducers to handle skew.
(0.4)

Zebra — Contrib project that provides columnar storage of
data (0.4)

Rework of Load and Store functions to make them much
easier to write (0.7, branched but not released)

Owl, a metadata service for the grid (committed, will be
released in 0.8).

-53- Q!

Aka

Fragment Replicate Join “Broakdcast Join”

Pages Users

&/

Aka

Fragment Replicate Join “Broakdcast Join”

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “replicated”;
Pages Users

- 55 - !Ei!

Aka

Fragment Replicate Join “Broakdcast Join”

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “replicated”;
Pages Users

- 56 - !Ei!

Aka

Fragment Replicate Join “Broakdcast Join”
Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

4 Map 1 A

Pages Users

N
N\

Map 2

Aka

Fragment Replicate Join “Broakdcast Join”
Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

4 Map 1 A

Pages Users

Pages Users block 1

N %
—) 4 Map 2 A

Pages Users
block 2

- /
&

Pages Users

-59- gl’

Hash Join

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Users by name, Pages by user;
Pages Users

- 60 - !Ei!

Hash Join

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Users by name, Pages by user;
Pages Users

&/

Hash Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

4 Map 1 A

User
block n

o %
4 Map 2

Pages Users

Page
block m

N /

Hash Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

4 Map 1 A

(1, user)
User

block n
\ /
4 Map 2

Pages Users

Page
block m

N /

(2, name)

|Il!!!III!lIII

Users =
Pages =

Jnd = join Users by name,

Pages

load “‘users’

load ‘pages’

Users

as
as

(name, age);
(user, url);

4 N

Map 1

User
block n

Pages by user;

(1, user)

/
Map2\

-
-~

Page
block m

4 N

Reducer 1

(1, fred)
(2, fred)
(2, fred)

N /

-64 -

(2, name)

N /
-

Reducer 2

(1, jane)
(2, jane)

(2, jane)

_

!

Pages Users

-65- gl’

Skew Join

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “skewed”;
Pages Users

- 66 - !Ei!

Skew Join

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “skewed”;
Pages Users

&/

Skew Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

4 Map 1 A

Pages
block n

o %
4 Map 2

Pages Users

Users
block m

N /

Skew Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

4 Map 1 A

Pages
block n

o A
4 Map 2

Pages Users

T W]

Users
block m

N N

oW

Skew Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

4 Map 1 A

(1, user)
Pages

block n
\ N
4 Map 2

Pages Users

T W]

Users
block m

N N

oW

(2, name)

Skew Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;
N) N
4 Map 1 /Reducer 1
S (1, user)
Pages > (15 fred! p1)
Pages Users block P (1. fred, p2)
(2, fred)
NG N o /
N] N
4 Map 2 /Reducer 2
Users |§ | (1,fred, p3)
lock m (1, fred, p4)
bloc (2, name) (2, fred)

=71- Q!

Merge Join

Pages Users
aaron aaron
zach zach

-72- g!

Merge Join

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “merge’”;
Pages Users
aaron aaron
zach zach

&/

Merge Join

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “merge’”;
Pages Users
aaron aaron
zach zach

o g!

Merge Join

Users = load

Pages = load ‘pages’

Jnd = join Pages by user,
Pages Users
aaron aaron
zach zach

‘users’

(name, age);
(user, url);

Users by name using “merge’”;

-

~

N O

Map 1
Pages Users
aaron... aaron
amr

Map 2
Pages Users
amy... amy
barb

/
~

ot

-75-

Multi-store script

A = load ‘users’ as (name, age, gender,
city, state);

B filter A by name 1s not null;

Cl = group B by age, gender;

D1 = foreach Cl generate group, COUNT (B),;

store D into ‘bydemo’;
CZ2= group B by state;

D2
store D2 into ‘bystate’;

foreach C2 generate group, COUNT (B);

\
group by age, store into
) gender _)[apply UDFs]_) ‘bydemo’

[load users]—>[filter nulls g -
) i store into
group by statej—>[apply UDFs]—i ‘bystate’

-76 -

Multi-Store Map-Reduce Plan

/map filter
split
local rearrange local rearrange
\ 2
/reduce
4 demux
package package
foreach foreach
\\

-77 -

What are people doing with Pig

« At Yahoo ~70% of Hadoop jobs are Pig jobs
« Being used at Twitter, LinkedIn, and other companies

« Available as part of Amazon EMR web service and Cloudera
Hadoop distribution

« What users use Pig for:
— Search infrastructure
— Ad relevance
— Model training
— User intent analysis
— Web log processing
— Image processing
— Incremental processing of large data sets

-78- v

What We’re Working on this Year

« Optimizer rewrite
 Integrating Pig with metadata

« Usability — our current error messages might as well be
written in actual Latin

« Automated usage info collection
« UDFs in python

!

Research Opportunities

« Cost based optimization — how does current RDBMS technology carry
over to MR world?

- Memory Usage — given that data processing is very memory intensive
and Java offers poor control of memory usage, how can Pig be written
to use memory well?

« Automated Hadoop Tuning — Can Pig figure out how to configure
Hadoop to best run a particular script?

* Indices, materialized views, etc. — How do these traditional RDBMS
tools fit into the MR world?

« Human time queries — Analysts want access to the petabytes of data
available via Hadoop, but they don’t want to wait hours for their jobs to
finish; cargl Pig find a way to answer analysts question in under 60
seconds”

« Map-Reduce-Reduce — Can MR be made more efficient for multiple
MR jobs?

« How should Pig integrate with workflow systems?
« See more: http://wiki.apache.ora/pia/PigJournal

Learn More

e Visit our website: http://hadoop.apache.org/pia/

 On line tutorials
— From Yahoo, htip://developer.yahoo.com/hadoop/tutorial/

— From Cloudera, http://www.cloudera.com/hadoop-training

« A couple of Hadoop books are available that include
chapters on Pig, search at your favorite bookstore

 Join the mailing lists:
— pig-user@hadoop.apache.org for user questions

— pig-dev@hadoop.apache.com for developer issues

« Contribute your work, over 50 people have so far

Pig Latin Mini-Tutorial

(will skip in class; please read in
order to do homework 7)

82

Outline

Based entirely on Pig Latin: A not-so-
foreign language for data processing,
by Olston, Reed, Srivastava, Kumar,
and Tomkins, 2008

Quiz section tomorrow: in CSE 403
(this is CSE, don't go to EE1)

83

Pig-Latin Overview

» Data model = loosely typed nested
relations

* Query model = a sql-like, dataflow
language

» Execution model:
— Option 1: run locally on your machine

— Option 2: compile into sequence of
map/reduce, run on a cluster supporting
Hadoop

84

Example

* Input: a table of urls:
(url, category, pagerank)

« Compute the average pagerank of all
sufficiently high pageranks, for each
category

* Return the answers only for categories
with sufficiently many such pages

85

First in SQL...

SELECT category, AVG(pagerank)
FROM urls

WHERE pagerank > 0.2

GROUP By category

HAVING COUNT(*) > 106

86

...then in Pig-Latin

good _urls = FILTER urls BY pagerank > 0.2
groups = GROUP good urls BY category
big_groups = FILTER groups
BY COUNT(good_urls) > 106
output = FOREACH big_groups GENERATE
category, AVG(good_urls.pagerank)

87

Types in Pig-Latin
Atomic: string or number, e.g. ‘Alice’ or 55
Tuple: (‘Alice’, 55, ‘salesperson’)

Bag: {(‘Alice’, 55, ‘salesperson’),
(‘Betty’,44, ‘manager’), ...}

Maps: we will try not to use these

88

Types in Pig-Latin
Bags can be nested !
- {(a’, {1,4,3}), (c.{ }), (d,{2,2,5,3,2})]

Tuple components can be referenced by
number

- $0, $1, $2, ...

89

Y PP (‘lakers’, 1) .
t = (alice ,{ (‘iPod’, 2) ,[age —,20}

Let fields of tuple t be called f1, £2, £3

- Expression Type Example Value for t
Constant ‘bob’ Independent of t
Field by position $0 ‘alice’
Field by name £3 ‘age’ — 20
_ (‘lakers’)
Projection £2.$0 i (“iPod’)
Map Lookup f3#‘age’ 20
Function Evaluation SUM(£2.$1) 1+2=3
Conditional f3#‘age’>187 ;
: dult’
Expression ‘adult’: ‘minor’ ada
: ‘lakers’, 1
Flattening FLATTEN(£2) ‘iPod’, 2

Loading data

 |[nput data = FILES !
— Heard that before ?

 The LOAD command parses an input
file into a bag of records

« Both parser (="deserializer”) and output
type are provided by user

91

Loading data

queries = LOAD ‘query_log.txt’
USING myLoad()
AS (userlD, queryString, timeStamp)

92

Loading data

« USING userfuction() --is optional
— Default deserializer expects tab-delimited file
« AS type —is optional
— Default is a record with unnamed fields; refer to
them as $0, $1, ...

* The return value of LOAD is just a handle to a
bag

— The actual reading is done in pull mode, or
parallelized

93

FOREACH

expanded_queries =
FOREACH queries
GENERATE userld, expandQuery(queryString)

expandQuery() is a UDF that produces likely expansions
Note: it returns a bag, hence expanded_queries is a nested bag

94

FOREACH

expanded_queries =
FOREACH queries

GENERATE userld,
flatten(expandQuery(queryString))

Now we get a flat collection

95

queries:
(userld, queryString, timestamp)

FOREACH queries GENERATE
(alice, lakers, 1) expandQuery(queryString)

(e

lakers rumors)
(lakers news)

iPod shuffle)

(bob, iPod, 3) (without flattening) > (- {((iPod nano) |

-’

: . (alice, lakers rumors)
Wwith flattening “cqlice, lakers news)

>

(bob, 1Pod

nanc)

(bob, iPod shuffle)

96

FLATTEN

Note that it is NOT a first class function |
(that’s one thing | don’t like about Pig-latin)

* First class FLATTEN:
— FLATTEN({{2,3},{5},{},{4,5,6}}) = {2,3,5,4,5,6}
— Type: {{T}} =2 {T}

* Pig-latin FLATTEN

— FLA

EN({4,5,6}) = 4, 5, 6

—Type: {T}>T,T,T,....T 22?272

97

FILTER

Remove all queries from Web bots:

real_queries = FILTER queries BY userld neq ‘bot’

Better: use a complex UDF to detect Web bots:

real_queries = FILTER queries
BY NOT isBot(userld)

98

JOIN

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

join_result = JOIN results BY queryString
revenue BY queryString

join_result : {(queryString, url, position, adSlot, amount)}

99

results:
(queryString, url, rank)

(lakers, nba.com, 1)
(lakers, espn.com, 2) _
(kings, nhl.com, 1)
(kings, nba.com, 2) /-—f—'

revenue:
(queryString, adSlot, amount)

(lakers, top, 50) —
(lakers, side, 20) v

(kings, top, 30)
(kings, side, 10) i
o

(lakers, nba.com, 1, top , SO@)
(lakers, nba.com, 1, side, 20)
(lakers, espn.com, 2, top, 50)

(lakers, espn.com, 2, side, 20)

100

Y.

GROUP BY

revenue: {(queryString, adSlot, amount)}

grouped_revenue = GROUP revenue BY queryString
query_revenues =
FOREACH grouped_revenue
GENERATE queryString,
SUM(revenue.amount) AS totalRevenue

grouped_revenue: {(queryString, {(adSlot, amount)})}
guery_revenues: {(queryString, totalRevenue)} 1o

Simple Map-Reduce
input : {(field1, field2, field3,)}

map_result = FOREACH input
GENERATE FLATTEN(map(*))
key _groups = GROUP map_result BY $0

output = FOREACH key_groups
GENERATE reduce($1)

map_result : {(al, a2, a3, .. .)}
key _groups : {(al, {(a2, a3, . . .)})}

102

Co-Group

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

grouped_data =
COGROUP results BY queryString,
revenue BY queryString;

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

What is the output type in general ? | 103

Co-Group

grouped_data: (group, results, revenue)
results: - -

(queryString, url, rank) lakers. J Clakers, nba.com, 1) (lakers, top, 50)
' 4 (lakers, espn.com, 2) [+ 7 (lakers, side, 20)
COGROUP

A

(lakers, nba.com, 1)
(lakers, espn.com, 2) - =

: »
(kings, nhl.com, 1) A .
(kings. nba.com, 2) [(kings, {(k}ngs, nhl.com, 1) L (kings, top, 30)})

- —

A

(kings, nba.com, 2) (kings, side, 10)

o —

revenue:
(queryString, adSlot, amount)

(lakers, top, 50) —

(lakers, side, 20)
(kings, top, 30)
(kings, side, 10)

Is this an inner join, or an outer join 7

Co-Group

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

url_revenues = FOREACH grouped_data
GENERATE
FLAT TEN(distributeRevenue(results, revenue));

distributeRevenue is a UDF that accepts search re-

sults and revenue information for a query string at a time,

and outputs a bag of urls and the revenue attributed to them.
105

Co-Group v.s. Join

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

grouped_data = COGROUP results BY queryString,
revenue BY queryString;
join_result = FOREACH grouped_data
GENERATE FLATTEN(results),
FLATTEN(revenue);

Result is the same as JOIN (06

Asking for Output: STORE

STORE query _revenues INTO ‘myoutput’
USING myStore();

Meaning: write query_revenues to the file ‘myoutput’

107

Implementation

« Over Hadoop !
» Parse query:

— Everything between LOAD and STORE >
one logical plan

 Logical plan = sequence of
Map/Reduce ops

« All statements between two
(CO)GROUPs - one Map/Reduce op

108

Implementation

map, reduce, map; reduce;map,,, reduce,,,
Load p filter » group --—-------—---p COGroUp ----p cogr:om -
C: 4 cl ct¢l
load

109

Bloom Filters

We *WILL* discuss in class !

Lecture on Bloom Filters

Not described in the textbook !
Lecture based in part on:

 Broder, Andrei; Mitzenmacher, Michael
(2005), "Network Applications of Bloom
Filters: A Survey", Internet Mathematics 1 (4):
485—509

* Bloom, Burton H. (1970), "Space/time trade-

offs in hash coding with allowable errors”,
Communications of the ACM 13 (7): 422—42

Dan Suciu -- CSEP544 Fall 2010 111

Pig Latin Example Continued

Users(name, age)
Pages(user, url)

SELECT Pages.url, count(*) as cnt
FROM Users, Pages
WHERE Users.age in [18..25]

and Users.name = Pages.user
GROUP BY Pages.url
ORDER DESC cnt

Dan Suciu -- CSEP544 Fall 2010 112

Example

Problem: many Pages, but only a few
visited by users with age 18..25

* Pig’s solution:
— MAP phase sends all pages to the
reducers
 How can we reduce communication
cost ?

Dan Suciu -- CSEP544 Fall 2010 113

Hash Maps

« Let S ={x,, X5, .. ., X} be a set of
elements

e letm>n
« Hash functionh :S > {1, 2, ..., m}

S ={X{, Xoy .« . ., X}

114

o o0|1,0;1}1,0|0|0]1]0O0

Hash Map = Dictionary

The hash map acts like a dictionary
* Insert(x, H) = set bit h(x) to 1
— Collisions are possible

* Member(y, H) = check if bit h(y) is 1
— False positives are possible

» Delete(y, H) = not supported !
— Extensions possible, see later

Dan Suciu -- CSEP544 Fall 2010 115

oo0}|1,0;1}1,0|0|O0}|1T 0|1

Example (cont'd)

 Map-Reduce task 1

— Map task: compute a hash map H of User names, where
age in [18..25]. Several Map tasks in parallel.

— Reduce task: combine all hash maps using OR. One
single reducer suffices.
« Map-Reduce task 2
— Map tasks 1: map each User to the appraopriate region

— Map tasks 2: map only Pages wherg
appropriate region
— Reduce task: do the join

Why don’t we

lose any Pages”? 116

Analysis
Let S = {x4, X5, . . ., X}
Let | = a specificbitin H (1 <j<m)
What is the probabillity that | remains 0 after

inserting all n elements from S into H ?
Will compute in two steps

Dan Suciu -- CSEP544 Fall 2010 117

00

0

0

1

0

Analysis

* Recall |[H| =m

 Let's insert only x; into H

» What is the probability that bit jis 0 ?

Dan Suciu -- CSEP544 Fall 2010

118

o, 0;0;0}|1T|]0|0]|O0O]|0|0/ O

Analysis

Recall |[H| = m
Let’s insert only x; into H

What is the probability that bit jis O 7

Answer:.p=1—-1/m

Dan Suciu -- CSEP544 Fall 2010 119

o o0|1,0;1}1,0|0|0]1]0O0

Analysis

* Recall [H =m, S ={Xq, X5, . . ., X}
e Let's insert all elements from S in H

* What is the probability that bit | remains
07

Dan Suciu -- CSEP544 Fall 2010 120

o o0|1,0;1}1,0|0|0]1]0O0

Analysis

Recall |H =m, S ={Xq, Xo, . . ., X}
Let's insert all elements from S in H

What is the probability that bit j remains
07

Answer:p = (1 —1/m)"

Dan Suciu -- CSEP544 Fall 2010 121

0

0

1

0

1

1

0

0

0

1

0

Probability of False Positives

» Take a random element y, and check

member(y,H)

» What is the probability that it returns true ?

Dan Suciu -- CSEP544 Fall 2010

122

oo0}|1,0;1}1,0|0|O0}|1T 0|1

Probability of False Positives

» Take a random element y, and check
member(y,H)

» What is the probability that it returns true ?

* Answer: it is the probability that bit h(y) is 1,
whichisf=1—-(1-1/m)"=1 —enm

Dan Suciu -- CSEP544 Fall 2010 123

0

0

1

0

1

1

0

0

0

Analysis: Example

« Example: m = 8n, then
f=1-e"m=1-e"8=0.11

* A 10% false positive rate is rather high...

» Bloom filters improve that (coming next)

Dan Suciu -- CSEP544 Fall 2010

124

Bloom Filters

* Introduced by Burton Bloom in 1970
* Improve the false positive ratio

 |dea: use k independent hash functions

Dan Suciu -- CSEP544 Fall 2010 125

Bloom Filter = Dictionary

* Insert(x, H) = set bits h,(x), . . ., h(x) to 1
— Collisions between x and x’ are possible

* Member(y, H) = check if bits h,(y), . . ., h(y)
are 1
— False positives are possible

» Delete(z, H) = not supported !
— Extensions possible, see later

Dan Suciu -- CSEP544 Fall 2010 126

Example Bloom Filter k=3
ojojojojofofojojojofofo

Insert(x, H)j\ X X,

[Member (y,H % ’
ﬂlllﬂllﬂllﬂllﬂlﬂ

y; =is notin H (why ?); y, may be in H (why,?)

Choosing k

Two competing forces:
» If kK =large

— Test more bits for member(y,H) =» lower false
positive rate

— More bits in H are 1 =» higher false positive rate
 [f K=small

— More bits in H are O =» lower positive rate
— Test fewer bits for member(y,H) =» higher rate

Dan Suciu -- CSEP544 Fall 2010 128

00

0

0

1

0

* Recall |H| = m, #hash functions = k

Analysis

 Let's insert only x; into H

» What is the probability that bit jis 0 ?

Dan Suciu -- CSEP544 Fall 2010

129

o,0;0;0}|1T|]0|0}|1T]|]0|1 0

Analysis

Recall |[H| = m, #hash functions = k
Let's insert only x; into H

What is the probability that bit jis O 7
Answer: p = (1 — 1/m)&

Dan Suciu -- CSEP544 Fall 2010 130

o,o0(1T;0}|1({1T0|1T (0|10

Analysis

* Recall [H =m, S ={Xq, X5, . . ., X}
e Let's insert all elements from S in H

* What is the probability that bit | remains
07

Dan Suciu -- CSEP544 Fall 2010 131

o,o0(1T;0}|1({1T0|1T (0|10

Analysis

Recall |H =m, S ={Xq, Xo, . . ., X}
Let's insert all elements from S in H

What is the probability that bit j remains
07

Answer: p = (1 — 1/m)kxn = g-knv/m

Dan Suciu -- CSEP544 Fall 2010 132

Probability of False Positives

» Take a random element y, and check
member(y,H)

» What is the probabillity that it returns
true ?

Dan Suciu -- CSEP544 Fall 2010 133

Probability of False Positives

» Take a random element y, and check
member(y,H)

» What is the probabillity that it returns
true ?

« Answer: it is the probabillity that all k bits
h,(y), ..., h(y) are 1, which is:

f — (1 _p)k ~ (1 _ e-kﬂ/m)k

134

Optimizing k

* For fixed m, n, choose k to minimize the
false positive rate f

 Denote g = In(f) = k In(1 — e*n/m)
« Goal: find k to minimize g

. - L
ﬁ:ln(l—e_%) WAL
ok | m 1 — e—

k”.
— —
m

kn
"

K =ln2 X m/d

135

Bloom Filter Summary

Given n = |S|, m = |H|,
choose k =1In2 X m/n hash functions

Probability that some bitjis 1 |p = e*VM= 15

Expected distribution | m/2 pits 1, m/2 bits 0

Probability of false positive

f = (1 _p)k ~ (1/2)k =(1/2)(In 2)M/N ~ (0.61 85)m/n

Bloom Filter Summary

* |n practice one sets m = cn, for some constant c

— Thus, we use c bits for each elementin S
— Thenf = (0.6185)¢ = constant

« Example: m = 8n, then
— k =8(In 2) = 5.545 (use 6 hash functions)
— f=(0.6185)™" = (0.6185)8 = 0.02 (2% false positives)
— Compare to a hash table: f =1 —e"m = 1-e18 = (0.11

The reward for increasing m is much higher for Bloom filters

Set Operations

Intersection and Union of Sets:
« Set S = Bloom filter H
e Set S’ = Bloom filter H’

 How do we computed the Bloom filter for
the intersectionof Sand S’ 7

Set Operations

Intersection and Union:
e Set S = Bloom filter H
e Set S’ = Bloom filter H’

* How do we computed the Bloom filter
for the intersection of S and S’ ?

« Answer: bit-wise AND: H A H’

Dan Suciu -- CSEP544 Fall 2010 139

Counting Bloom Filter

Goal: support delete(z, H)
Keep a counter for each bit |
* Insertion =» increment counter
» Deletion =» decrement counter
» Overflow =» keep bit 1 forever
Using 4 bits per counter:
Probability of overflow < 1.37 107> X m

Dan Suciu -- CSEP544 Fall 2010 140

Application: Dictionaries

Bloom originally introduced this for
hyphenation

* 90% of English words can be hyphenated
using simple rules

* 10% require table lookup

» Use “bloom filter” to check if lookup
needed

Dan Suciu -- CSEP544 Fall 2010 141

Application: Distributed Caching

* Web proxies maintain a cache of (URL,
page) pairs
 |[f a URL is not present in the cache, they

would like to check the cache of other
proxies in the network

 Transferring all URLs is expensive |

 |[nstead: compute Bloom filter, exchange
periodically

Dan Suciu -- CSEP544 Fall 2010 142

